2012数学建模A题葡萄酒答案

合集下载

2012年全国大学生数学建模竞赛A题国一

2012年全国大学生数学建模竞赛A题国一
葡萄酒的评价模型
摘要
在问题一中,首先根据 T 检验、方差显著性检验和 Wilcoxon 秩和检验对两组评酒 员给葡萄酒的评价结果的差异的显著性检验。在大多数评酒员评分可靠的假设下,分别 利用评分方差比较模型,说明第二组结果可靠。在此基础上引入了评酒员“失误度”概 念来衡量每位评酒员与所有评酒员总体评价的差异, 对各组失误度求和得到第二组结果 更可靠。为了进一步优化评酒员评分,利用根据失误度对评酒员排序,跨组选取失误度 最小的 10 位评酒员组成新的评分组,其平均值认为比第二组更可靠,作为整个文章中 评价葡萄酒质量的标准指标。 在问题二中,由于红、白葡萄的理化指标有较大差异,分开考虑红白两种葡萄酒: 对于红葡萄酒,对应问题一得出的葡萄酒质量指标,从三个角度,即外观分析(又分为 由大分子因子决定的澄清度和基于 LAB 色彩模型的色调考虑到指标间存在的竞争关系 采用非线性回归分析和逐步回归分析) 、香气分析(Fisher 线性判别分析)和口感分析 (主成分分析和因子分析) ,后进行异常点检验,逐一剔除异常点来求解酿酒葡萄的量 化指标。对于白葡萄酒的三个指标采用 Fisher 判别分析求解。最后将三个方面得分加权 平均得到酿酒葡萄量化的总分,进行聚类分析,根据聚类分析结果将红葡萄和白葡萄各 分为四级。 在问题三中,为研究酿酒葡萄与葡萄酒的理化指标之间的联系,将葡萄酒的理化指 标用酿酒葡萄的理化指标来表示。根据指标间的相关性,剔除部分相关性不强的指标, 选择部分相关性较好的酿酒葡萄的指标作为自变量, 对不同的葡萄酒指标分别进行多元 线性回归、逐步回归和回归检验。根据指标本身的特点及 AIC 信息统计量,剔除不显著 的自变量,而达到用尽量少的葡萄的理化指标来表示葡萄酒的理化指标的目的。在求解 过程中,建立典型相关分析模型来分析红葡萄酒色泽指标间的关系,利用主成分分析将 白葡萄的多个指标综合为少数几个主成分,再进行回归分析。模型求解结果显示,葡萄 酒的每个指标都能用部分葡萄的指标来线性表示,且具有较好的拟合效果。 在问题四中,为了分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,结合问 题一、二、三的结果以及理化指标和芳香物质的化学意义,综合评估各个广义上的理化 指标(附件二和附件三) ,针对红葡萄酒和白葡萄酒的区别分别在酿酒葡萄和葡萄酒的 理化指标中选取对葡萄酒质量影响较大的指标, 通过线性回归分析将理化指标和葡萄酒 质量进行拟合,从而得出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。为进一步 论证结果,首先,对模型进行残差分析以及拟合情况分析;其次,用分组样本检验方法, 将白葡萄酒的 28 个样本数据分成两组,采用用一组进行拟合,另一组进行结果回带分 析的方式,进一步论证用葡萄和葡萄酒的理化指标来评价葡萄酒的质量的可靠性。通过 论证分析得出结论:葡萄和葡萄酒的理化指标可以用来评价葡萄酒的质量,但也有其不 足之处,如当从葡萄酒食用性方便角度考虑,用评酒员评价方法就更直接。 关键词:葡萄酒质量 识别聚类 失误度 非线性回归 逐步回归 Fisher 判别分析 主成 分分析 因子分析 显著性检验 残差分析 异常点检测

2012年建模第四问完整版

2012年建模第四问完整版

符号说明:An 花色苷 Ta 单宁 Tp 总酚 Tf 酒总黄酮 Rf 白藜芦醇DP DPPH半抑制体积 CL 色泽 R 评价标准得分在第三问“对于酿酒葡萄与葡萄酒的理化指标之间的联系”的分析中,我们已经得知酿酒葡萄的理化指标与葡萄酒的理化指标呈一种正线性相关趋势,于是对于酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响的分析,仅仅用葡萄酒的理化指标对葡萄酒质量的影响进行分析便是科学可行的。

下面就葡萄酒理化指标对于葡萄酒香气质量、口感质量以及整体评价进行数据分析(见下图)花色太对葡萄酒质量的影响单宁对葡萄酒质量的影响总酚对葡萄酒质量的影响酒总黄酮对葡萄酒质量的影响白藜芦醇对葡萄酒质量的影响DPPH对葡萄酒质量的影响色泽对葡萄酒质量的影响通过上图可找出使得葡萄酒质量较高时对应的葡萄酒中各理化指标。

理化指标浓度香气质量口感质量整体评价总区间长度花色苷74.3767 13.2 16.9 9.3962.0405 517.5387 12 16.6 9.1387.7649 13.6 16 9.4单宁5.8639 13.2 16.9 9.39.644611.07821 12 16.6 9.112.9331 13.6 16 9.4总酚4.8582 13.2 16.9 9.38.67129.5582 12 16.6 9.111.3126 13.6 16 9.4酒总黄酮4.044 13.2 16.9 9.311.464 13.3 12 16.6 9.19.905 13.6 16 9.4白藜芦醇0.9641 13.2 16.9 9.312.3005 3.6484 12 16.6 9.13.8599 13.6 16 9.4色泽28.15 13.6 16 9.439.143340.2467 13.2 16.9 9.328.03 12 16.6 9.1DPPH半抑制体积0.1576 13.2 16.9 9.30.4985 0.4603 12 16.6 9.10.3857 13.6 16 9.4可以认为,在香气质量、口感质量以及平衡度相对达到最优时所对应的葡萄酒的理化值是最优理化值。

2012CUMCM_A题葡萄酒评价讲评

2012CUMCM_A题葡萄酒评价讲评

数据问题:缺失与异常数据处理
• 第一组红葡萄酒20号样本,评酒员4号中缺 色调数据-------取其他评酒员的均值,6; • 第一组白葡萄酒3号样本, 7号评酒员的持久 性超上限------77--7; • 第一组白葡萄酒8样本, 9号评酒员的持久性 超上限,16--6; • 酿酒白葡萄的百粒质量第三组数据太大, 2226.1--226.1。
问题一:建模
• 第一问:两组专家对同一组样本打分,分析两 组数据是否有显著性差异------直观理解:方差 分析,或t检验,F检验,秩和检验,Wilcoxon 符号秩检验,构造一些统计量,计算它们的值, 是否通过检验,给出结果。 • 第二问:确定哪一组专家更可信, 直观理解: 总体方差过小的组别区分度不好, 因此可以通 过比较方差大小来确定,也可以采用Cronbach 可信度系数,比较酒样F值和评酒员F值的相对 大小,Spearman秩相关系数,肯德尔和谐系 数法。
两组专家对红葡萄酒打分统计结果
白葡萄酒品评结果
第一组专家 第二组专家
总均值
73.98214
总均值
76.537037
方差
标准方差 最大
119.329
11.3597 95
方差
标准方差 最大
61.699
7.8548944 91
最小
中位值
40
76
最小
中位值Βιβλιοθήκη 4478初步分析结果
红葡萄酒: 二组均值基本相同,差异性不大 • 第一组方差明显大于第二组,从样本 区分度上说,第一组专家对红葡萄酒 的品评结果更可信 • 白葡萄酒评价结果类似:第一组优于 第二组
• 葡萄酒: 花色苷(mg/L) , 单宁(mmol/L), 总酚(mmol/L), 酒总黄酮(mmol/L), 白藜芦醇(mg/L), DPPH半抑制体积, 色泽; • 酿酒葡萄: 氨基酸总量,蛋白质,VC含量, 花色苷mg/100g鲜重, 酒石酸, 苹果酸, 柠檬酸, 多酚氧化酶活力, 褐变度, DPPH自由基1/IC50, 总酚,单宁,葡萄总黄酮,黄酮醇,白藜芦醇, 总糖,还原糖,可溶性固形物,PH值,可滴定酸, 固酸比,干物质含量,果穗质量,百粒质量, 果梗比,出汁率,果皮质量,果皮颜色

2012年数学建模A题资料

2012年数学建模A题资料

(一)葡萄酒观察方法1 酒液总体观察1.1 澄清度观察衡量葡萄酒澄清程度的指标有透明度、浑浊度等,与之相关的指标还有是否光亮、有无沉淀等。

优良的葡萄酒必须澄清、透明(色深的红葡萄酒例外)、光亮。

a.澄清:是衡量葡萄酒外观质量的重要指标。

澄清表示的是葡萄酒明净清澈、不含悬浮物。

通常情况下,澄清的葡萄酒也具有光泽。

b.透明度:表示的是葡萄酒允许可见光透过的程度。

红葡萄酒如果颜色很深,则澄清的葡萄酒也不一定透明。

c.浑浊度:表示的是葡萄酒的浑浊程度,浑浊的葡萄酒含有悬浮物。

葡萄酒的浑浊往往是由微生物病害、酶破败或金属破败引起的。

浑浊的葡萄酒其口感质量也差。

d.沉淀:指的是从葡萄酒中析出的固体物质。

沉淀是由于在陈酿过程中,葡萄酒构成成份的溶解度变小引起的,一般不会影响葡萄酒的质量。

1.2 颜色观察葡萄酒的颜色受酒龄影响,新红葡萄酒由于源于果皮花色素苷的作用,通常颜色鲜艳,为紫红色和宝石红色,带紫色色调;在葡萄酒的成熟过程中,丹宁逐渐与游离花色素苷等结合而使成年葡萄酒带有黄色色调。

瓦红或砖红色为成年红葡萄酒的常有的颜色,而棕红色则为在瓶内陈酿10年以上的红葡萄酒的颜色。

因此,可根据颜色,判断葡萄酒的成熟状况。

葡萄酒的颜色和口感的变化存在着平行性,颜色和口感之间必须相互协调平衡。

颜色的深浅反应葡萄酒的结构、丰满度以及尾味和余味。

如在红葡萄酒中,颜色的深浅与丹宁的含量往往正相关。

如果红葡萄酒颜色深而浓,几乎处于半透明状态,多数情况下它必然醇厚、丰满、丹宁感强。

相反,色浅的葡萄酒,则味淡、味短。

当然,如果较柔和,具醇香,仍不失为好酒。

例如瓦红色的红葡萄酒,必须与浓郁的醇香和柔顺的口感同时存在,否则表明该酒是人工催熟条件下陈酿而未能表现出最佳感官质量。

带紫色的新葡萄酒往往口味平淡、瘦弱、尖酸、粗糙;褐色过重的成年葡萄酒,氧化过重、老化。

1.3 浑浊度观察观察葡萄酒有无下列情况:略失光,失光,欠透明,微混浊,极浑浊,雾状混浊,乳状混浊;1.4 沉淀观察观察葡萄酒有无下列情况:有无沉淀,沉淀类型:纤维状沉淀,颗粒状沉淀,絮状沉淀,酒石结晶,片状沉淀,块状沉淀。

2012年数学建模葡萄酒

2012年数学建模葡萄酒

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):S12038所属学校(请填写完整的全名):河南科技大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文主要讨论分析了酿酒葡萄的理化指标、葡萄酒的理化指标和葡萄酒质量之间的相互关系,并比较了两组评酒员评价结果的差异。

本文运用多种数学模型,阐述了酿酒葡萄和葡萄酒的理化指标以及葡萄酒的质量之间的联系,具有一定的实际意义。

针对问题一:要比较两组评酒员的评价结果有无显著性差异,先做假设检验,对于某一特定酒类,取各组组员评价结果的平均值作为该酒类的最终得分,故用统计量t来做检验。

我们先用spss对两组数据做了正态分布检验,得到这些数据符合正态分布,再用excel来求得t值,与t分布表的相应值比较后,t的绝对值落在否定域内,所以两组评价结果存在显著性差异。

再通过对比两组样本数据的方差,得出方差较小的第二组的评价结果更可信。

2012年数学建模竞赛-葡萄酒的评价模型

2012年数学建模竞赛-葡萄酒的评价模型

葡萄酒的评价模型摘要本题主要讨论了酿酒葡萄与葡萄酒的理化指标之间的关系,并得出结论能够用葡萄和葡萄酒的理化指标来评价葡萄酒的质量,这对于盛行的葡萄酒的鉴赏具有重要意义。

从建模的角度来说,这道题偏重于统计学的知识,因此,我们利用应用广泛的统计学软件SPSS19.0来进行分析。

问题一用独立样本T检验判断两组有无显著性差异。

对红、白葡萄酒分别检验,则两组评分均有显著性差异,并且第二组评酒员的评分更为可信。

对于问题二,我们利用了问题一的结果作为葡萄酒的质量,使之与葡萄的理化指标相结合进行聚类分析,分别将红白葡萄酒都分为四个等级。

对于问题三,要研究葡萄与葡萄酒理化指标之间的联系,用多元统计中的典型相关分析研究两个变量组之间的联系。

由于两组变量存在组内多重共线性,因而先用因子分析缩减变量,使分析结果准确可靠。

得到结果葡萄的各指标对葡萄酒的综合影响大于个体指标的影响。

问题四则在问题三因子分析的基础上,对公因子变量和葡萄酒质量进行回归分析,得出可以用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。

关键字:独立样本T检验聚类分析因子分析典型相关分析综合影响回归分析一、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?二、问题分析2.1问题1的分析分析两组打分结果有无显著性差异,实质是对这两个独立样本均值的t检验。

2012年数学建模A题第二问参考答案——葡萄分级

2012年数学建模A题第二问参考答案——葡萄分级

描述统计量均值标准差分析 N 天门冬氨酸75.6341 20.68785 27 苏氨酸152.9496 80.05794 27 丝氨酸124.6556 56.67784 27 谷氨酸117.0330 63.52041 27 脯氨酸1441.5378 1557.60578 27 甘氨酸79.5337 52.14485 27 丙氨酸55.2167 29.02871 27 胱氨酸24.2585 12.99296 27 缬氨酸28.8896 11.63951 27 蛋氨酸8.2985 4.98859 27 异亮氨酸17.5300 11.85535 27 亮氨酸24.9378 13.34513 27 酪氨酸 3.4504 2.19987 27 苯丙氨酸 4.7326 2.71900 27 赖氨酸33.0193 19.53507 27 组氨酸23.2141 13.00215 27描述统计量均值标准差分析 N 天门冬氨酸75.6341 20.68785 27 苏氨酸152.9496 80.05794 27 丝氨酸124.6556 56.67784 27 谷氨酸117.0330 63.52041 27 脯氨酸1441.5378 1557.60578 27 甘氨酸79.5337 52.14485 27 丙氨酸55.2167 29.02871 27 胱氨酸24.2585 12.99296 27 缬氨酸28.8896 11.63951 27 蛋氨酸8.2985 4.98859 27 异亮氨酸17.5300 11.85535 27 亮氨酸24.9378 13.34513 27 酪氨酸 3.4504 2.19987 27 苯丙氨酸 4.7326 2.71900 27 赖氨酸33.0193 19.53507 27 组氨酸23.2141 13.00215 27 精氨酸141.5248 106.81323 27成份矩阵a成份1 2 3 4 5天门冬氨酸.512 .504 .386 .279 .180 苏氨酸.374 .639 -.355 -.205 .343 丝氨酸.746 .103 -.103 .415 -.117 谷氨酸.690 .562 -.139 -.220 -.025 脯氨酸-.104 .034 -.187 .739 .532 甘氨酸.482 .676 .068 -.101 -.238 丙氨酸.622 .449 -.185 -.039 -.068 胱氨酸.392 .168 .051 .603 -.475 缬氨酸.861 -.237 .040 .025 -.161 蛋氨酸.703 .043 -.233 -.270 .408 异亮氨酸.756 -.170 .252 -.131 -.180 亮氨酸.853 -.286 .152 -.038 -.081 酪氨酸.317 -.119 .763 -.144 .218 苯丙氨酸.187 .093 .669 .046 .318 赖氨酸.693 -.466 -.198 .224 .194 组氨酸.796 -.525 -.158 -.073 .078 精氨酸.635 -.508 -.226 -.114 .023 提取方法 :主成份。

全国大学生数学建模竞赛一等奖论文葡萄酒的评价

全国大学生数学建模竞赛一等奖论文葡萄酒的评价

第二十一篇葡萄酒质量的影响因素分析宇文皓月2012年A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请测验考试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差别,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格);附件2:葡萄和葡萄酒的理化指标(含2个表格);附件3:葡萄和葡萄酒的芳香物质(含4个表格);原题详见2012年全国大学生数学建模竞赛A题。

葡萄酒质量的影响因素分析*摘要:本文针对葡萄酒和葡萄质量的评价问题,通过t检验、模糊聚类分析、相关性分析等多种方法,综合分析了评酒员葡萄酒品尝评分结果、葡萄和葡萄酒的理化指标以及葡萄和葡萄酒的芳香物质数据,建立了葡萄和葡萄酒的理化指标对葡萄以及葡萄酒质量的影响关系多元线性回归数学模型,运用EXCEL、Matlab软件得出了酿酒葡萄和葡萄酒之间的理化关系。

最后,将模型结果和实际酿酒过程相结合,做出了根据酿酒葡萄和葡萄酒理化指标对葡萄酒质量进行评价的模型,对如何固化葡萄酒质量评判尺度提出了相关可行性方案。

针对问题一,根据评酒员对葡萄酒品尝评分结果数据,分别对红葡萄和白葡萄,首先运用t检验分析建立了显著性差别的成对数据t检验模型,分析出两组评酒员的评酒结果具有显著性差别;再运用方差分析建立了方差分析模型,分析出第二组评酒员的评价结果更为可信。

2012数学建模A 第一问数据分析

2012数学建模A 第一问数据分析

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题葡萄酒的评价
确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:
1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?
2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?
附件1:葡萄酒品尝评分表(含4个表格)
附件2:葡萄和葡萄酒的理化指标(含2个表格)
附件3:葡萄和葡萄酒的芳香物质(含4个表格)。

2012年全国数学建模A题参考答案

2012年全国数学建模A题参考答案

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)答案仅供参考:1. 分析附件1中两组评酒员的评价结果有无显著性差异根据表1计算的各取样点葡萄质量综合评分结果, 结合当地气象资料,进行相关普查和回归分析, 挑选出相关性显著, 并通过0. 01显著性检验的11个因子, 果实着色期平均最低气温(Tn45 )、果实着色期平均日较差(D45 )、果实着色期平均相对湿度(U45 )、果实着色期降水量(R 45 )、果实着色期水热系数(K 45 )、全生育期平均相对湿度(Ug )、全生育期降水量(Rg )、全生育期水热系数(Kg )、7~ 8月份降水量(R 7- 8 )、日照时数( S7- 8 )、水热系数(K 7- 8 )。

利用DPS3. 01 数据处理系统对这些影响因素进行因子分析, 并进行倾斜旋转( promaxrotation)得到11种影响酿酒葡萄品质气象因子结构如表5。

2012数学建模A题---葡萄酒评价---国家奖

2012数学建模A题---葡萄酒评价---国家奖

葡萄酒的评价摘要本文主要运用统计分析方法,解决与所酿葡萄酒有关的问题。

对于问题一,,分别对白酒和红酒的两组数据进行差异性检验。

构建一个能反应葡萄酒本身质量的量,对两组数据分别进行相关性分析,得到第二组评酒员的结果更可信。

对于问题二,先做聚类分析,再做线性回归分析,得到白、红葡萄分为4级和3级。

对于问题三,利用问题二中聚类得到的7个主成分,把每种葡萄酒的理化指标与酿酒葡萄之间的7个主成分进行相关性分析,得到7个回归方程,即为酿酒葡萄与葡萄酒的理化指标之间的联系。

对于问题四,首先建立模型:12W=a *Y +b *Y 。

其中a,b 分别为酿酒葡萄和葡萄酒对葡萄酒质量的贡献率,1Y ,2Y 分别为两种因素的贡献值。

然后,通过确定芳香物质是否对葡萄酒的评分有影响来论证能否用葡萄和葡萄酒的理化指标评价葡萄酒的质量。

问题一中,本文运用excel 做两组数据的显著性差异检验,得到两组评酒员在评论白酒和红酒都存在显著性差异,且通过了F 检验。

接着本文通过确定各指标的权重,构建一个能反应各葡萄酒实际平分的量,把两组数据与之做相关性分析,发现第二组与之相关性更大,故第二组评酒员的结果更可信。

问题二中,本文通过SPSS 做理化指标的聚类分析,得到7个主成分;再做指标与评分的线性回归分析,得到白葡萄的分级结果为4级:一级:白酿酒葡萄14,22;二级:白酿酒葡萄4,5,9,19,23,25,26,28;三级:白酿酒葡萄24,27;四级:白酿酒葡萄1,2,3,6,7,8,10,11,12,13,15,16,17,18,20。

红葡萄酒为3级:一级:红酿酒葡萄2,9;二级:红酿酒葡萄3,4,10,22,24;三级:红酿酒葡萄1,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,23,25,26,27。

问题三中,本文运用excel 将葡萄酒的一级指标分别与7个主成分进行相关性分析然后对每种主要成分利用SPSS 进行线性回归分析得到以下7个回归方程:()()()()()r1134r21367r3137r4136r6137r71Y =-39.542+1.727+21.850+3.9463Y =4.044+0.026-0.156-0.005-0.1954Y =2.807+0.021-0.030-0.1895Y =2.700+0.024-0.169-0.0056Y =0.069+0.001-0.006-0.0077Y =70.028-0.188+x x x x x x x x x x x x x x x x x ()()2347r8123560.841+0.280-0.187+1.7048Y =58.545-0.021-1.028+1.666+27.045-0.0049x x x x x x x x x 即为每种酿酒葡萄与葡萄酒理化指标之间的联系。

2012全国大学生数学建模竞赛A题(葡萄酒评价)

2012全国大学生数学建模竞赛A题(葡萄酒评价)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆交通大学参赛队员(打印并签名) :1. 孟壮2. 瞿琦3. 朱超指导教师或指导教师组负责人(打印并签名):谭远顺10 日期: 2012 年 9 月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文主要用数学建模的方法解决关于葡萄酒评价的一些问题。

结合题目所给信息以及查阅大量资料,对题目所提问题做了相应解答,并验证了相关模型建立及求解的合理性。

针对问题一:首先,我们运用E xcel数据分析和SP SS软件数据分析工具,分别建立了配对样本T检验模型和单因素方差分析模型,分析了两组评酒员的评价结果是否具有显著性差异。

两种方法得出的结果一致:两组评酒员的评价结果有显著性差异。

然后,通过建立权重模型,分别对评酒员与评酒员群体评价之间的“分值偏差”和“排序偏差”两方面考察,得出第二组结果可信。

2012年国赛A葡萄酒获奖论文带附录(完整版)

2012年国赛A葡萄酒获奖论文带附录(完整版)

2012年国赛A葡萄酒获奖论文带附录(完整版)2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A 题葡萄酒的评价摘要:确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

一方面由于每个品酒员间存在评价尺度、评价位置和评价方向等方面的差异,导致不同品酒员对同一酒样的评价存在差异,从而不能真实地反映不同酒样间的差异。

另一方面葡萄酒的质量和酿酒葡萄的好坏又有直接的关系,于是根据题中所给的条件和问题提出相关的约束条件和目标函数,建立合理的数学模型。

对于问题一,在分析附件1中所给的数据后,首先根据每组的10名评酒员对其中的一种酒进行品尝后确定葡萄的质量,然后在进行分析评酒员评27种红葡萄酒的差异,最后运用方差分析对两组评酒员的评价结果进行测定,得出两组评酒员存在是否有显著性差异的结果,看其哪组评酒员的技术水平更高些。

问题二是为了对酿酒葡萄进行分级,要从酿酒葡萄的理化指标和葡萄酒的质量进行分级,在附件2、3中,发现酿酒葡萄的成分数据中有很多因素,首先对酿酒葡萄的理化指标经过查找资料、专家咨询进行了较为有效的分类,我们从中选取一些有效因素,例如:氨基酸总量、糖、单宁、色差值、酸、芳香物质等。

然后再采取系统聚类分析法对酿酒葡萄进行分级。

等级大致分为优、良、中、差四个级别。

在解决问题三时,不仅要考虑酿酒葡萄还要考虑葡萄酒的理化指标,因而采用多元回归模型,模型如下:其中,b0为常数项,为回归系数,错误!未找到引用源。

是随机误差。

2012高教社杯全国大学生数学建模竞赛A题葡萄酒问题评阅要点

2012高教社杯全国大学生数学建模竞赛A题葡萄酒问题评阅要点

2012高教社杯全国大学生数学建模竞赛A题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

本题目希望学生利用数学模型和附件1-3中的数据对评酒员的品评结果给出分析,对酿酒葡萄的质量给出评价,并探讨葡萄和葡萄酒的理化指标与酒的质量的关系。

问题1. 附件1中给出的是评酒员对27种红葡萄酒和28种白葡萄酒的两组品评结果。

这两组评酒员各不相同,两组中的每个酒样都取自相同葡萄酒厂家的同一批次的产品。

要求学生给出判断这两组评价结果好坏的原理、模型和方法,给出具体的结果,并对结果进行说明。

好的品评结果应该是对同一酒样评价时这些评酒员之间的差距小、且这些酒样之间的区分度明确(注:一些学生的模型和方法仅考虑评酒员的打分差距)。

参考:红酒中样品23是好酒,样品12是较差的酒。

问题 2. 给出根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级的原则、模型、算法和结果。

确定酿酒葡萄质量好坏的主要依据是问题1中评酒员对酒的质量的评价结果,根据这个评价结果和酿酒葡萄的各种理化指标给出确定葡萄质量的模型,由此给出这些酿酒葡萄的分级结果。

参考:分级结果中好的红葡萄应包含样品23,差的应该包含样品12。

问题 3. 给出分析酿酒葡萄与葡萄酒的成分之间关系的原理、模型和方法,得到葡萄酒的理化指标是否与葡萄的理化指标相关的结论,相关时给出具体的依赖关系。

求解时最好先对葡萄的理化指标(包括芳香物质)进行分类和筛选,然后进行评价。

注:仅把葡萄的全部理化指标进行简单回归不够完整。

问题4. 建立模型分析酿酒葡萄和葡萄酒的理化指标与葡萄酒质量之间的关系,在模型的基础上给出具体结论,并对结论给出详细的分析说明。

注:评价葡萄酒质量时不一定需要包含所有的理化指标,但根据经验知道花色苷、总酚和单宁是红葡萄酒的重要指标。

附注:学生答卷中应该说明对缺失数据和异常数据的处理方式。

2012国赛A题-葡萄酒

2012国赛A题-葡萄酒

关键词 :置信区间法 方差分析 主成分分析 熵权法 模糊综合评价 多元回归分析
1
一、问题重述
确定葡萄酒质量时一般是通过评酒员进行品评。过程中,每个评酒员对葡萄酒各方 面打分并求出总分后确定。同时,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反 映葡萄酒和葡萄的质量。附件给出了相关资料,请尝试建立数学模型讨论:两组评酒员 的评价有无差异和相应可信度,理化指标、酒品质量和酿酒葡萄的相互关系以及理化指 标和酿酒葡萄能否评价酒品质量。 葡萄酒的质量评价关系到产品的方方面面, 我们选用统计学方差分析等的方法对葡 萄酒质量、酿酒葡萄和葡萄酒理化指标进行分析。
4.1.1 置信区间法 为了降低各评酒员之间的异质性, 先分别计算每一组中所有评酒员对同一酒样的平 均值( s j )和标准差( j ),评酒员 i 对酒样品 j 评价的置信区间为 s j j[1] 。 如果评酒员 i 对酒品 j 的评分( sij )在其置信区间内则保留;如果评酒员 i 对酒品 j 的评分( sij ) 不在其置信区间内则逐步调整,使评分都处于置信区间 s j j 内,具体为: 若 sij <j , 则 Sij =sij + j ; 若 sij >j ,则 Sij =sij - j 。 直接使用 matlab (附录一) 通过置信区间法对两组评酒员对红葡萄酒和白葡萄酒的 评分进行修正, 此时的数据更加可信, 同时对每一个酒样的得分求均值, 结果见表 4.1.2 (只给出第一组的红葡萄酒数据) 。 表 2 红葡萄酒样品经置信区间检验转换后的数据
4.1.2 方差分析 方差分析是资料分析中常见的统计模型. 1 方差分析的假定条件 (1) 各处理条件下的样本是随机的。 (2) 各处理条件下的样本是相互独立的。 (3) 各处理条件下的样本分别来自正太分布总体。 (4) 各处理条件下的样本方差相同 将得到的四组平均值,运用 SPSS 软件分析处理,得到表: 表 3 红葡萄正态性检验

2012全国大学数学建模竞赛题目汇总(ABCD)

2012全国大学数学建模竞赛题目汇总(ABCD)

(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题太阳能小屋的设计在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。

不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。

因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。

附件1-7提供了相关信息。

请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh计算)及投资的回收年限。

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

葡萄酒理化指标与质量的评鉴分析摘要用好的葡萄也许酿不出好酒,但没人能用劣质葡萄酿出好酒。

巧妇难为无米之炊,再优秀的酿酒师,如果没有优质的葡萄,也很难酿出好酒。

不同葡萄品种酿制出的葡萄酒是不同的,但是,除了品种间的差异,葡萄自身的质量是酿制高品质葡萄酒的关键。

本文通过建立meansK-聚类模型、典型相关分析等模型,逐步探求用葡萄和葡萄酒的理化指标来评鉴葡萄酒质量的方法。

问题一要求我们分析附件1中两组评酒员的评价结果是否存在显著性差异,为此我们依据小概率原理建立模型Ⅰ-显著性检验模型。

首先我们利用F检验求解两组评酒员之间是否存在显著性差异,再利用配对t检验对检验样本做再次检验,以提高研究效率,确保评价结果的准确性。

利用Excel软件处理数据后,进行t、F的联合检验,当联合检验均被接受,得到两组评酒员的评价结果有显著性差异的结论。

同时通过对两组品酒员对55种葡萄酒样品评分的稳定性、统一性分析,确定第二组品酒员的评价结果更可信。

针对问题二本文根据附件2提供的数据,利用模糊数学原理[3],建立模型ⅢK-聚类模型,对酿酒葡萄进行分类,再以葡萄酒品尝评分作为质量评价依据,means对酿酒葡萄进行分级。

首先,考虑到酿酒葡萄的理化指标过多,不便分类,我们利用多元统计分析原理对红、白酿酒葡萄进行主成分分析,得出红、白酿酒葡萄分别有8个和11个主成分,从而大大减少了分类指标。

再利用meansK-算法求出最佳聚类数k,建立meansK-聚类模型对各种葡萄样品在各个主成分上的得分进行聚类,将红、白葡萄样品分别划分为3类和4类。

最后,根据每个类别中葡萄样品对应的葡萄酒的品尝评分,对各类酿酒葡萄进行分级。

针对问题三建立模型Ⅳ-典型相关分析模型,定量分析酿酒葡萄与葡萄酒的理化指标之间的联系。

我们首先选取酿酒葡萄与葡萄酒皆含有的花色苷、单宁等成分作为理化指标,然后构建典型相关分析模型,研究酿酒葡萄与葡萄酒两组样品的理化指标之间的相关性。

2012年全国高教杯数学建模A题答案

2012年全国高教杯数学建模A题答案

2012高教社杯全国大学生数学建模竞赛A题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

本题目希望学生利用数学模型和附件1-3中的数据对评酒员的品评结果给出分析,对酿酒葡萄的质量给出评价,并探讨葡萄和葡萄酒的理化指标与酒的质量的关系。

问题1. 附件1中给出的是评酒员对27种红葡萄酒和28种白葡萄酒的两组品评结果。

这两组评酒员各不相同,两组中的每个酒样都取自相同葡萄酒厂家的同一批次的产品。

要求学生给出判断这两组评价结果好坏的原理、模型和方法,给出具体的结果,并对结果进行说明。

好的品评结果应该是对同一酒样评价时这些评酒员之间的差距小、且这些酒样之间的区分度明确(注:一些学生的模型和方法仅考虑评酒员的打分差距)。

参考:红酒中样品23是好酒,样品12是较差的酒。

问题 2. 给出根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级的原则、模型、算法和结果。

确定酿酒葡萄质量好坏的主要依据是问题1中评酒员对酒的质量的评价结果,根据这个评价结果和酿酒葡萄的各种理化指标给出确定葡萄质量的模型,由此给出这些酿酒葡萄的分级结果。

参考:分级结果中好的红葡萄应包含样品23,差的应该包含样品12。

问题 3. 给出分析酿酒葡萄与葡萄酒的成分之间关系的原理、模型和方法,得到葡萄酒的理化指标是否与葡萄的理化指标相关的结论,相关时给出具体的依赖关系。

求解时最好先对葡萄的理化指标(包括芳香物质)进行分类和筛选,然后进行评价。

注:仅把葡萄的全部理化指标进行简单回归不够完整。

问题4. 建立模型分析酿酒葡萄和葡萄酒的理化指标与葡萄酒质量之间的关系,在模型的基础上给出具体结论,并对结论给出详细的分析说明。

注:评价葡萄酒质量时不一定需要包含所有的理化指标,但根据经验知道花色苷、总酚和单宁是红葡萄酒的重要指标。

附注:学生答卷中应该说明对缺失数据和异常数据的处理方式。

2012/9/10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图一的两组红葡萄酒的平均值、和标准差第二组红葡萄酒标准差平均值标准差酒样品1 9.638465 酒样品1 68.1 9.048634 酒样品2 80.3 6.307843 酒样品2 74 4.027682 酒样品3 80.4 6.769211 酒样品3 74.6 5.541761 酒样品4 68.6 10.39444 酒样品4 71.2 6.425643 酒样品5 73.3 7.874713 酒样品5 72.1 3.695342 酒样品6 72.2 7.728734 酒样品6 66.3 4.595892 酒样品7 71.5 10.17895 酒样品7 65.3 7.91693 酒样品8 72.3 6.634087 酒样品8 66 8.069146 酒样品9 81.5 5.739725 酒样品9 78.2 5.072803 酒样品10 74.2 5.51362 酒样品10 68.8 6.014797 酒样品11 61.7 7.91693 酒样品11 61.6 6.168018 酒样品12 53.9 8.924996 酒样品12 68.3 5.012207 酒样品13 74.6 6.703233 酒样品13 68.8 3.910101 酒样品14 73 6 酒样品14 72.6 4.812022 酒样品15 58.7 9.250225 酒样品15 65.7 6.429965 酒样品16 74.9 4.254409 酒样品16 69.9 4.483302 酒样品17 79.3 9.381424 酒样品17 74.5 3.02765 酒样品18 59.9 6.871034 酒样品18 65.4 7.089899 酒样品19 69.4 6.25744 酒样品19 72.6 7.426679 酒样品20 78.6 5.103376 酒样品20 75.8 6.250333 酒样品21 77.1 10.77497 酒样品21 72.2 5.95912 酒样品22 77.2 7.11493 酒样品22 71.6 4.926121 酒样品23 85.6 5.699903 酒样品23 77.1 4.976612 酒样品24 78 8.653837 酒样品24 71.5 3.27448 酒样品25 69.2 8.038795 酒样品25 68.2 6.613118 酒样品26 73.8 5.593647 酒样品26 72 6.44636 酒样品27 73 7.055337 酒样品27 71.5 4.527693图二两组白葡萄酒的平均值、和标准差第一组白葡萄酒第二组白葡萄酒干白品种平均值标准差干白品种平均值标准差酒样品1 82 9.60324 酒样品1 77.9 5.087021 酒样品2 74.2 14.1798 酒样品2 75.8 7.00476 酒样品3 85.3 19.10817 酒样品3 75.6 11.93687 酒样品4 79.4 6.686637 酒样品4 76.9 6.488451 酒样品5 71 11.24475 酒样品5 26.1 5.126185 酒样品6 68.4 12.75583 酒样品6 75.5 4.766783 酒样品7 77.5 6.258328 酒样品7 74.2 1.212265 酒样品8 71.4 13.54991 酒样品8 72.3 5.578729 酒样品9 72.9 9.631545 酒样品9 80.4 10.30857 酒样品10 74.3 14.58348 酒样品10 79.8 8.390471酒样品11 72.3 13.30873 酒样品11 71.4 9.371351 酒样品12 63.3 10.76052 酒样品12 72.4 11.83404 酒样品13 65.9 13.06777 酒样品13 73.9 6.838616 酒样品14 72 10.68748 酒样品14 77.1 3.984693 酒样品15 72.4 11.4717 酒样品15 78.4 7.351493 酒样品16 74 13.34166 酒样品16 53.1 9.06826 酒样品17 78.8 12.00741 酒样品17 80.3 6.201254 酒样品18 73.1 12.51177 酒样品18 76.7 5.498485 酒样品19 72.2 6.811755 酒样品19 76.4 5.103376 酒样品20 77.8 8.024961 酒样品20 43.2 7.07421 酒样品21 76.4 13.14196 酒样品21 79.2 8.024961 酒样品22 71 11.77568 酒样品22 79.4 7.321202 酒样品23 75.9 6.607235 酒样品23 77.4 3.405877 酒样品24 73.3 10.54145 酒样品24 76.1 6.208417 酒样品25 77.1 5.820462 酒样品25 79.5 10.31988 酒样品26 81.3 8.53815 酒样品26 74.3 7.532168 酒样品27 64.8 12.01666 酒样品27 77 5.962848 酒样品28 81.3 8.969702 酒样品28 79.6 5.037636描述统计量N 均值标准差方差统计量统计量标准误统计量统计量VAR00003 27 68.5185 1.50722 7.83174 61.336 VAR00004 27 74.4444 2.24201 11.64980 135.718 VAR00005 27 72.7037 2.70265 14.04338 197.217 VAR00006 27 65.2963 1.44393 7.50290 56.293 VAR00007 27 74.1852 2.64469 13.74223 188.849 VAR00008 27 72.7037 2.13091 11.07254 122.601 VAR00009 27 71.2222 1.51002 7.84628 61.564 VAR00010 27 72.0741 1.95456 10.15619 103.148 VAR00011 27 78.4444 1.23035 6.39311 40.872 VAR00012 0Zscore(VAR00003) 0Zscore(VAR00004) 0Zscore(VAR00005) 0Zscore(VAR00006) 0Zscore(VAR00007) 0Zscore(VAR00008) 0Zscore(VAR00009) 0Zscore(VAR00010) 0Zscore(VAR00011) 0Zscore(VAR00012) 0描述统计量N 均值标准差方差统计量统计量标准误统计量统计量VAR00003 27 68.5185 1.50722 7.83174 61.336 VAR00004 27 74.4444 2.24201 11.64980 135.718 VAR00005 27 72.7037 2.70265 14.04338 197.217 VAR00006 27 65.2963 1.44393 7.50290 56.293 VAR00007 27 74.1852 2.64469 13.74223 188.849 VAR00008 27 72.7037 2.13091 11.07254 122.601 VAR00009 27 71.2222 1.51002 7.84628 61.564 VAR00010 27 72.0741 1.95456 10.15619 103.148 VAR00011 27 78.4444 1.23035 6.39311 40.872 VAR00012 0Zscore(VAR00003) 0Zscore(VAR00004) 0Zscore(VAR00005) 0Zscore(VAR00006) 0Zscore(VAR00007) 0Zscore(VAR00008) 0Zscore(VAR00009) 0Zscore(VAR00010) 0Zscore(VAR00011) 0Zscore(VAR00012) 0有效的 N (列表状态)0模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001个案处理摘要N变量处理摘要变量因变量自变量VAR00003 VAR00007 VAR00005 VAR00011 VAR00008 VAR00004 正值数27 27 27 27 27 27 零的个数0 0 0 0 0 0 负值数0 0 0 0 0 0 缺失值数用户自定义缺失0 0 0 0 0 0 系统缺失0 0 0 0 0 0模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001个案处理摘要N个案总数27已排除的个案a0模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001。

相关文档
最新文档