二次函数中线段和差最值问题
二次函数中的最值问题【八大题型】(学生版)-初中数学

二次函数中的最值问题【八大题型】【题型1几何图形中线段最值问题】 1【题型2两线段和的最值问题】 5【题型3周长的最值问题】 13【题型4面积的最值问题】 21【题型5线段和差倍分的最值】 28【题型6由二次函数性质求二次函数的最值】 36【题型7由二次函数的最值求字母的值】 40【题型8由二次函数的最值求字母的取值范围】 46【题型1几何图形中线段最值问题】1.(23-24九年级·广西钦州·期中)如图,线段AB =10,点P 在线段AB 上,在AB 的同侧分别以AP ,BP 为边长作正方形APCD 和BPEF ,点M ,N 分别是EF ,CD 的中点,则MN 的最小值是()A.2B.3C.5D.62.(23-24九年级·安徽合肥·阶段练习)如图,AB =6,点C 是AB 上的动点,以AC 、BC 为边在AB 同侧作等边三角形,M 、N 分别是CD 、BE 中点,MN 最小值=()A.3B.32C.322D.3323.(23-24九年级·广东江门·阶段练习)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x0<x<3.(1)填空:PC=,FC=;(用含x的代数式表示)(2)若△PEF的面积为S,求S与x的函数关系及△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.4.(23-24九年级·广东广州·期中)如图,在正方形ABCD中,AB=7,F是边CD上的动点,将△ADF绕点A顺时针旋转90°至△ABE,将△ADF沿AF翻折至△AGF,连接EF、BD交于点H,连接GH,则△EGH面积的最大值为.【题型2两线段和的最值问题】5.((23-24·安徽合肥·一模)如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标,若不存在,请说明理由.6.((23-24·江苏宿迁·模拟预测)如图,在平面直角坐标系中,抛物线y=14x2-14x-3与x轴交于A,B两点,点C为y轴正半轴上一点,且OC=OB,D是线段AC上的动点(不与点A,C重合).(1)写出A、B、C三点坐标;(2)如图1,当点D关于x轴的对称点刚好落在抛物线上时,求此时D点的坐标;(3)如图2,若点E是线段AB上的动点,连接BD、CE,当CD=AE时,求BD+CE的最小值.7.((23-24·辽宁抚顺·模拟预测)如图,直线y=x-4与y轴交于点A,与x轴交于点B,抛物线y=x2+ bx+c经过A,B两点,与x轴负半轴交于点C,长度为22的线段DF在直线AB上滑动,以DF为对角线作正方形DEFG.(1)求抛物线的解析式;(2)当正方形DEFG与抛物线有公共点时,求D点横坐标的取值范围;(3)连接CE,OD,直接写出CE+OD的最小值.8.((23-24·海南省直辖县级单位·二模)如图,抛物线y=ax2+3ax+c经过点B1,0,交x轴、C0,-3于另一点A(点A在点B点的左侧),点P是该抛物线上的动点.(1)求抛物线的解析式;S△AOC时,请求出点P的横坐标;(2)当点P在直线AC下方且S△P AC=34(3)在抛物线的对称轴l上是否存在点Q,使得QC+QB最小?若存在,请求出这个最小值;若不存在,请说明理由;(4)若点E在x轴上,是否存在以P、A、C、E为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.【题型3周长的最值问题】9.((23-24·辽宁丹东·模拟预测)如图,对称轴为直线x=-1的抛物线y=a(x-h)2+k a≠0图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,其中点B的坐标为2,0.,点C的坐标为0,4(1)求该抛物线的解析式;(2)如图1,若点P为抛物线上第二象限内的一个动点,点M为线段CO上一动点,当△APC的面积最大时,求△APM周长的最小值;(3)如图2,将原抛物线绕点A旋转180°,得新抛物线y ,在新抛物线y 的对称轴上是否存在点Q使得△ACQ为等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.10.(23-24九年级·山东淄博·期中)如图,在平面直角坐标系中,抛物线y=-1x2+bx+c与x轴交于4A-2,0两点,与y轴交于点C,点P为直线BC上方抛物线上一动点.,B6,0(1)求抛物线的解析式;(2)过点A作AD∥BC交抛物线于D,若点E为对称轴上一动点,求△BED周长的最小值及此时点E的坐标;(3)过点A作AD∥BC交抛物线于D,过点E为直线AD上一动点,连接CP,CE,BP,BE,求四边形BPCE面积的最大值及此时点P的坐标.11.(23-24九年级·全国·期末)如图抛物线y=ax2+bx+c经过点A(-1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E是直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.12.(23-24九年级·广东广州·阶段练习)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为-1,0.,点C的坐标为0,-3(1)求抛物线的解析式;(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为0,-2,①求DE+EF的最小值②求△DEF周长的最小值;(3)如图2,N为射线CB上的一点,M是地物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,且AM∥CN,当△AMN为等腰三角形时,求点N的坐标.(直接写出点N的坐标,不要求写解答过程)【题型4面积的最值问题】13.(23-24九年级·云南红河·期中)如图,抛物线y=ax2+bx-4与x轴交于A-3,0两点,与y、B4,0轴交于点C.(1)求抛物线解析式;(2)点H是抛物线对称轴上的一个动点,连接AH、CH,求出△ACH周长的最小值时点H的坐标;(3)若点G是第四象限抛物线上的动点,求△BCG面积的最大值以及此时点G的坐标;14.(23-24九年级·甘肃武威·阶段练习)如图,抛物线y=ax2+bx+c与x轴交于点A-2,0,和点B4,0与y轴交于点C0,4.(1)求抛物线的解析式.(2)点D在抛物线的对称轴上,当AD+CD取得最小值时,求此时点D的坐标.(3)点P是直线BC上方抛物线上一动点,连接CP、BP,求△PBC的面积的最大值,并求此时点P的坐标.15.(23-24九年级·山东·期末)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=1,OB=OC=4.(1)求抛物线的解析式;(2)若连接AC、BC.动点D从点A出发,在线段AB上以每秒1个单位长度向点B做匀速运动;同时,动点E从点B出发,在线段BC上以每秒2个单位长度向点C做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE,设运动时间为t秒.在D、E运动的过程中,当t为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M是抛物线上位于x轴上方的一点,点N在x轴上,是否存在以点M为直角顶点的等腰直角三角形CMN?若存在,求出点M的坐标,若不存在,请说明理由.16.(23-24九年级·福建福州·期中)已知抛物线y=ax2+bx+c a≠0,顶点为与y轴交于点A0,-5 B2,-1直线与抛物线交于D,E两点(点D在点E的左侧).,过点C2,-5(1)求抛物线的解析式;(2)求△BDE面积的最小值;(3)若D,E两点都在第四象限,过点D作直线y=-1的垂线,垂足为F,直线EB与直线DF交于点G,连接CF,求证:四边形BCFG是平行四边形.【题型5线段和差倍分的最值】17.(23-24·山东济南·一模)抛物线y =-12x 2+a -1 x +2a 与x 轴交于A b ,0 ,B 4,0 两点,与y 轴交于点C 0,c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若S △PMB S △AMB =14,求点P 的坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为α(0°<α<90°),连接E 'B ,E C ,求E B +34E C 的最小值.18.(23-24九年级·安徽合肥·阶段练习)如图,在平面直角坐标系中,抛物线y=-x2+23x的顶点为A点,且与x轴的正半轴交于点B.(1)连接AO,AB,则△AOB为三角形;(2)P点为该抛物线对称轴上一点,当OP+1AP取最小值时,OP=.219.(23-24九年级·安徽阜阳·阶段练习)已知抛物线与x轴相交于A,B两点,与y轴相交于点C0,6,顶点为D2,8.(1)求此抛物线的解析式;(2)如图1,点P为抛物线对称轴(直线l)上的动点,求当PB-PC取得最小值时点P的坐标;(3)如图2,在第一象限内,抛物线上有一动点M,求△BCM面积的最大值.20.(23-24九年级·广东东莞·期中)如图,已知抛物线y=ax2+bx+c(a≠0)与y轴相交于点C0,-2,与x轴分别交于点B3,0和点A,且∠CAO=45°.(1)求抛物线解析式;(2)抛物线上是否存在一点Q,使得∠BAQ=∠ABC,若存在,请求出点Q坐标,若不存在,请说明理由;(3)抛物线的对称轴交x轴于点D,在y轴上是否存在一个点P,使2PC+PD的值最小,若存在,请求2出最小值,若不存在,请说明理由.【题型6由二次函数性质求二次函数的最值】21.(23-24九年级·陕西西安·阶段练习)如图,抛物线y=ax2+bx+3与x轴交于点A1,0,与y轴,B3,0交于点C.(1)求抛物线的解析式;(2)点M x1,y1,求y1-y2的最小值. ,N x2,y2是抛物线上不同的两点且x1+x2=4x1-x222.(23-24九年级·江西赣州·期中)观察下列两个数的乘积,说明其中哪个积最大.1×100,2×99,3×98,4×97,⋅⋅⋅,99×2,100×1.【观察发现】(1)发现所列各组式子中两个因数的和都为.【问题解决】(2)若设其中一个因数为x(1≤x≤100,且为正整数),所列两个数的积为y,请说明哪个积最大,最大值是多少.【拓展应用】(3)若大于0的a、b满足a+b=4,求a2+b2的最小值.23.((23-24·贵州·模拟预测)已知二次函数y=ax2-4x+c(a≠0,a,c为常数)的图象经过点1,-6,-4,-1(1)求二次函数的表达式;(2)当-1≤x<0时,求二次函数的最大值;(3)当m≤x≤0时,二次函数的最大值与最小值的和为2m,求m的值.24.(23-24九年级·湖南长沙·开学考试)在平面直角坐标系中,我们将形如1,-1,-2.1,2.1这样,纵坐标与横坐标互为相反数的点称之为“互补点”.(1)直线y=2x-3上的“互补点”的坐标为;(2)直线y=kx+2k≠0上是否有“互补点”,若有,请求出点的坐标,若没有请说明理由;(3)若函数y=14x2+n-k-1x+m+k-2的图象上存在唯一的一个“互补点”,且当-1≤n≤2时,m的最小值为k,求k的值.【题型7由二次函数的最值求字母的值】25.((23-24九年级·全国·专题练习)已知在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a、b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,-6),求函数y1的表达式;;(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点1r,0(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m、n的值.26.(23-24九年级·河南许昌·期末)如图,已知二次函数y=x2+ax+a-4的图象经过点P-2,-2.(1)求a的值和二次函数图象的顶点坐标.(2)已知点Q m,n在该二次函数图象上.①当m=-3时,求n的值;②当m≤x≤m+1时,该二次函数有最小值1,请结合函数图像求出m的值.27.(23-24九年级·湖南长沙·阶段练习)已知拋物线y=a x-h2+k与x轴交于A,B两点(A在B的左边),与y轴交于点C.顶点为M.(1)如图,若该拋物线可以由抛物线y=ax2先向右平移5个单位,在向上平移4个单位得到,点C坐标为0,-21.(i)求A,B两点的坐标;(ii)若线段AM的垂直平分线交x轴交于点D,交y轴交于点E,交AM交于点P,求证:四边形ADME 是菱形;(2)已知a=1,抛物线顶点M在直线y=2x-5上,若在自变量x的值满足2h≤x≤2h+3的情况下,对应函数值y的最小值为14,求h的值.28.((23-24·广西贺州·二模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx-3与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且OB=3OA=3.(1)求这个二次函数的解析式;(2)若点M是线段BC下方抛物线上的一个动点(不与点B,点C重合),过点M作直线MN⊥x轴于点D,交线段BC于点N.是否存在点M使得线段MN的长度最大,若存在,求线段MN长度的最大值,若不存在,请说明理由;(3)当二次函数y=ax2+bx-3的自变量x满足t≤x≤t+1时,此函数的最大值与最小值的差为2,求出t的值.【题型8由二次函数的最值求字母的取值范围】29.(23-24九年级·江苏南通·阶段练习)用好错题本可以有效的积累解题策略,减少再错的可能.下面是小颖同学错题本上的一道题,请仔细阅读,并完成相应任务.*年*月*日 星期天错题***在平面直角坐标系中,抛物线y=x2-2mx+m2+1存在两点A m-1,y1,B m+2,y2.①求此抛物线的对称轴;(用含m的式子表示)②记抛物线在A,B之间的部分为图象F(包括A,B两点),y轴上一动点C(0,a),过点C作垂直于y轴的直线l与F有且仅有一个交点,求a的取值范围;任务一:请帮助小颖完成上述错题订正;任务二:若点M2,y3也是此抛物线上的点,记抛物线在A,M之间的部分为图象G(包括M,A两点),记图形G上任意一点的纵坐标的最大值与最小值的差为t,若t≥y2-y1,直接写出m的取值范围.30.(23-24九年级·河南郑州·阶段练习)如图,已知二次函数y=-x2+bx+c的图象经过点A4,1,点B0,5.(1)求该二次函数的表达式,并求出对称轴和顶点坐标;(2)点C m,n在该二次函数图象上,当m≤x≤4时,n的最大值为294,最小值为1,请根据图象直接写出m的取值范围.31.((23-24·浙江温州·模拟预测)已知二次函数y=ax2-2ax+3图象的一部分如图所示,它经过-1,0.(1)求这个二次函数的表达式,并在图中补全该图象;(2)当-2≤x≤t时,函数的最大值为m,最小值为n,若m-n=9,求t的取值范围.32.(23-24九年级·湖北·周测)已知抛物线y=x2+bx+c经过点B,与y轴交于点A,顶点P在直线OB上.如图1,若点B的坐标为3,6,点P的横坐标为1.(1)试确定抛物线的解析式;(2)若当m≤x≤4时,y=x2+bx+c的最小值为2,最大值为11,请求出m的取值范围;(3)已知:点M在抛物线上,点N的坐标为2,3,且∠MNA=∠BAN,请直接写出符合题意的点M的坐标.。
专题二 (二) 二次函数之动态线段差最大问题

专题二 (二) 二次函数之动态线段差最大问题问题描述本题要求根据已经给定的二次函数 $y = ax^2 + bx + c$,求出函数对应的动态线段在指定区间上的最大差值。
解题思路首先,我们可以将给定的二次函数转化为标准形式 $y = a(x - h)^2 + k$,其中 $(h, k)$ 为顶点的坐标。
从标准形式中我们可以得知,当 $x = h$ 时,函数取得最大值或最小值。
因此,我们只需要找到动态线段的两个端点,并求出这两个端点上函数的最大值和最小值,然后计算它们的差值即可。
具体的步骤如下:1. 根据给定的二次函数将其转化为标准形式,求出顶点坐标$(h, k)$;2. 根据指定的区间,求出两个端点坐标 $(x_1, y_1)$ 和 $(x_2, y_2)$;3. 分别将两个端点的坐标带入二次函数,计算出两个点上的函数值 $y_1$ 和 $y_2$;4. 比较 $y_1$ 和 $y_2$ 的大小,求出差值并输出。
示例假设给定的二次函数为 $y = 2x^2 - 3x + 1$,指定区间为 $[-1, 2]$。
首先将二次函数转化为标准形式:$$y = 2\left(x - \frac{3}{4}\right)^2 + \frac{1}{8}$$然后求出动态线段的两个端点坐标:$(x_1, y_1) = (-1, 4)$,$(x_2, y_2) = (2, 5)$将两个端点的坐标带入二次函数,计算出两个点上的函数值:$y_1 = 2$, $y_2 = \frac{27}{4}$最后求出差值:$\text{差值} = y_2 - y_1 = \frac{19}{4}$因此,给定二次函数在指定区间上的动态线段的最大差值为$\frac{19}{4}$。
总结本文档介绍了求解二次函数动态线段最大差值问题的思路和步骤。
通过将二次函数转化为标准形式,找到动态线段端点,并带入函数求出对应的函数值,我们可以得到动态线段的最大差值。
二次函数-因动点产生的线段和差问题经典例题.doc

二次函数-因动点产生的线段和差问题例1、在平面直角坐标系中,已知点J(-2,0), 〃(0,4),点、E 在0B 上,且上OAE= Z OBA.(1) 如图L,求点E 的坐标;(2) 如图2,将△昇加沿/轴向右平移得到ZUF O f ,连结"B 、BE' .① 设曲'=加其中0<刃<2,使用含刃的式子表示木用+加S 并求出使才用+3F 彳取得最小值时点用的坐标;② 当彳B+BE'取得最小值时,求点F 的坐标(直接写出结果即可).思路点拨1. 图形在平移的过程中・,对应点的连线平行且相等,EE 1 =AA f =/〃.2. 求彳$的最小值,第一感觉是用勾股定理列关于/〃的式子.3. 求才B+BE'的最小值,第一感觉是典型的“牛喝水”问题一一轴对称,两点之间 线段最短.满分解答(1) 由 ZOAE=ZOBA, ZAOE=ZBOA,得[\AOEs\BOA.rri ., AO BO m u 2 4所以——=—.因此一=一・OE OA 0E 2解得0E=\.所以00,1).(2) ①如图3,在Rt △才 加屮,OB=4, OA 1 =2—刃,所以才 仔=16+(2— 〃 在 Rt △应F 中,BE=3, EE' =m,所以 BE' 2=^+m ・所以"I^+BE' 2=16+(2-/7?)2 + 9+/W 2=2(/»-1)2+27.图2所以当〃尸1时,A 1Ef 2取得•最小值,最小值为27. 此时点彳是昇0的中点,点F 向右平移了 1个单位,所以E 1(1,1).考点伸展第(2)②题这样解:如图4-,过点〃作y 轴的垂线厶作点E'关于直线1的对称点 所以彳 B+BE' =A f R+BE'三点共线时,A r B+BE' f取得最小值,最小值为线段才E'在 Rt △川 O' E f '中,A r O' =2, O f =7,所以川 F '=后. 当才、B 、三点共线时,也=竺1.所以!1 = 1.BO E'O4 7解得m = -.此时£*(-,1). 77当才、B 、E f例2、如图1,在平面直角坐标系中,抛物线y=ax+bx+c经过/(一2, —4 )、0(0, 0)、M2, 0)三点.(1)求抛物线『=ax^+bx+c的解析式;(2)若点〃是该抛物线对称轴上的一点,求加/+〃”的最小值.图1答案(1) y = _討+ z (2)AM+ OM的最小值为4血.例3、如图1,在平面直角坐•标系中,抛物线尸=一#+2/+3与/轴交于爪B 两点、, 与y 轴交于点C 点〃是抛物线的顶点.(1) 求直线的解析式及〃、〃两点的坐标;(2) 点”是*轴上的一个动点,过"作直线〃/力。
部编数学九年级下册专项10二次函数和线段和差最值问题(解析版)含答案

专项10 二次函数和线段和差最值问题“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
“两点定点一定长”模型一:当两定点 A、B 在直线l异侧时,在直线l上找一点 P,使 PA+PB 最小。
作法:连接AB交直线l 于点 P,点P即为所求作的点。
结论:PA+PB值最小模型二:作法:作点B关于直线l的对称点B’,连接AB’与直线l相交的点P即为所求结论:AP+PB’值最小模型三:PA-最大。
当两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PB作法:接 AB并延长交直线l于点 P,点P即为所求作的点。
PA-的最大值为 AB。
结论:PBPA-最大。
当 l 两B定点 A、B 在直线l 异侧时,在直线l 上找一点 P,使PB作法:作点B关于直线l的对称点B′,连接AB′并延长交直线于点 P,点P即为所求作的点。
PA-的最大值为AB′结论:PB模型四:当 l 两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PBPA-最小。
作法:连接 AB,作AB的垂直平分线交直线l于点 P,点 P 即为所求作的点。
PA-的最小值为 0结论:PB【考点1 线段最值问题】【典例1】(盘锦)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交y轴于点C,交x 轴于A、B两点,A(﹣2,0),a+b=,点M是抛物线上的动点,点M在顶点和B点之间运动(不包括顶点和B点),ME∥y轴,交直线BC于点E.(1)求抛物线的解析式;(2)求线段ME的最大值;【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4a﹣2b+4,则,解得:,故抛物线的表达式为:y=﹣x2+x+4;(2)y=﹣x2+x+4,令x=0,则y=4,令y=0,则x=4或﹣2,故点A、B、C的坐标分别为:(﹣2,0)、(4,0)、(0,4),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=﹣x+4,设点M(x,﹣x2+x+4),则点E(x,﹣x+4),则ME=(﹣x2+x+4)﹣(x﹣4)=﹣x2+2x,∵,故ME有最大值,当x=2时,ME的最大值为2;【变式1-1】(2021•柳南区校级模拟)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?【解答】解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)①设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).②存在.∵h=﹣(x﹣)2+,又∵a=﹣1<0,∴x=时,h的值最大,最大值为.【变式1-2】(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【解答】解:(1)将A,B,C代入函数解析式得,,解得,∴这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式得,,解得,∴BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,=,当n=时,PM最大∴线段PM的最大值;【典例2】(2020秋•椒江区校级月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A (1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为多少?【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=ax2+bx+3,解得a=1,故抛物线的表达式为y=x2﹣4x+3①;(2)点B关于函数对称轴的对称点为点A,连接CA交函数对称轴于点T,则点T为所求点,则TC﹣TB=TC﹣TA=AC为最大,故TC﹣TB的最大值为AC==,故答案为;【变式2】(2020•连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;【解答】解:(1)当y=0时,x2﹣x﹣2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),C(0,﹣2),由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),把(2,﹣12)代入y=a(x+1)(x﹣4),﹣12=﹣6a,解得a=2,∴抛物线的解析式为y=2(x+1)(x﹣4)=2x2﹣6x﹣8.(2)∵抛物线L2与L1是“共根抛物线”,A(﹣1,0),B(4,0),∴抛物线L1,L2的对称轴是直线x=,∴点P在直线x=上,∴BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,此时点P为直线AC与直线x=的交点,∵直线AC的解析式为y=﹣2x﹣2,∴P(,﹣5)【典例3】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)过点P作PN⊥BC,垂足为点N.求线段PN的最大值;【解答】解:(1)∵抛物线对称轴为x=1,点B与A(﹣1,0)关于直线x=1对称,∴B(3,0),设y=a(x﹣3)(x+1),把C(0,3)代入得:﹣3a=3,解得:a=﹣1,∴y=﹣(x﹣3)(x+1)=﹣x2+2x+3,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,故抛物线解析式为y=﹣x2+2x+3,直线BC的解析式为y=﹣x+3;(2)设P(t,﹣t2+2t+3),则Q(t,﹣t+3),∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∵OB=OC=3,∠BOC=90°,∴∠BCO=45°,∵PQ⊥x轴,∴PQ∥y轴,∴∠PQN=∠BCO=45°,∵PN⊥BC,∴PN=PQ•sin∠PQN=(﹣t2+3t)•sin45°=﹣(t﹣)2+,∵<0,∴当t=时,PN的最大值为;【变式3】(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【解答】解:(1)直线y=﹣x﹣2中,当x=0时,y=﹣2,∴B(0,﹣2),当y=0时,﹣x﹣2=0,∴x=﹣2,∴A(﹣2,0),将A(﹣2,0),B(0,﹣2)代入抛物线y=ax2+bx+c(a>0)中,得,,∴2a﹣b=1,c=﹣2;(2)当a=1时,2×1﹣b=1,∴b=1,∴y=x2+x﹣2,∴A(﹣2,0),B(0,﹣2),C(1,0),∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),∴QE=(﹣m﹣2)﹣(m2+m﹣2)=﹣m2﹣2m=﹣(m+1)2+1,∴QD=QE=﹣(m+1)2+,当m=﹣1时,QD有最大值是,当m=﹣1时,y=1﹣1﹣2=﹣2,综上,点Q的坐标为(﹣1,﹣2)时,QD有最大值是.【考点2 线段和最小】【典例4】(2019秋•东莞市校级期末)已知,抛物线y=ax2+bx+c,过A(﹣1,0)、B (3,0)、C(0,﹣3),M为顶点.(1)求抛物线的解析式;(2)在该抛物线的对称轴上找一点P,使得PA+PC的值最小,并求出P的坐标;【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得a×(0+1)×(0﹣3)=﹣3,解得a=1,∴抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)抛物线的对称轴为直线x=1,点A与点B关于直线x=1对称,连接BC交直线x=1于P点,则PA=PB,∵PA+PC=PB+PC=BC,∴此时PA+PC的值最小,设直线BC的解析式为y=mx+n,把B(3,0),C(0,﹣3)代入得,解得,∴直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣2,则满足条件的P点坐标为(1,﹣2);【变式4-1】(2019•赤峰)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;【解答】解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,令y=0,则x=﹣1或3,故点A(﹣1,0);(2)如图1中,作点C关于x轴的对称点C′,连接CD′交x轴于点E,则此时EC+ED 为最小,函数顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),则EC+ED的最小值为DC′=;【变式4-2】(2016•黑龙江二模)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1)2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2.∵y=x2﹣x﹣2=(x2﹣3x﹣4 )=,∴顶点D的坐标为(,﹣).(2)设点C关于x轴的对称点为C′,直线C′D的解析式为y=kx+n,则,解得:.∴y=﹣x+2.∴当y=0时,﹣x+2=0,解得:x=.∴m=.【典例5】(2022•恩施州模拟)如图1,已知抛物线.点A(﹣1,2)在抛物线的对称轴上,是抛物线与y轴的交点,D为抛物线上一动点,过点D 作x轴的垂线,垂足为点C.(1)直接写出h,k的值;(2)如图1,若点D的坐标为(3,m),点Q为y轴上一动点,直线QK与抛物线对称轴垂直,垂足为点K.探求DK+KQ+QC的值是否存在最小值,若存在,求出这个最小值及点Q的坐标;若不存在,请说明理由;【解答】解:(1)∵点A(﹣1,2)在抛物线的对称轴上,∴抛物线的对称轴为直线x=﹣1,∴h=1,∴y=(x+1)2+k,∵是抛物线与y轴的交点,∴+k=,∴k=1;(2)存在最小值,理由如下:由(1)可知y=(x+1)2+1,作C点关于直线x=﹣的对称点C',连接C'D交抛物线对称轴于点K,连接CQ,由对称性可知C'K=CQ,∴CQ+KQ+KD=C'K+KD+KQ≥C'D+KQ,当C'、K、D三点共线时,CQ+KQ+KD的值最小,∵抛物线的对称轴为直线x=﹣1,∴KQ=1,∵D(3,5),CD⊥x轴,∵C(3,0),∴C'(﹣4,0),∴C'D=,∴CQ+KQ+KD的最小值为+1,设直线C'D的解析式为y=kx+b,∴,解得,∴y=x+,∴K(﹣1,),∴Q(0,);【变式5】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B 的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:∵CC'=PQ,CC'∥PQ,∴四边形CC'QP是平行四边形,∴CP=C'Q,∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,∵B,Q,C'共线,∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,∵C(0,4),CC'=PQ=1,∴C'(0,3),∵B(4,0),∴BC'==5,∴BC'+PQ=5+1=6,∴CP+PQ+BQ最小值为6;【考点3 周长最值问题】【典例6】(2020春•五华区校级期末)如图,抛物线y=x2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣3上,∴b=﹣2,∴抛物线解析式y=x2﹣2x﹣3,∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标(1,﹣4);(2)对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴C(0,﹣3),当y=0时,0=x2﹣2x﹣3,解得:x=3或﹣1,∴B(3,0),由抛物线的性质可知:点A和B是对称点,∴连接BC交函数的对称轴于点M,此时AM+CM=BC为最小值,而BC的长度是常数,故此时△ACM的周长最小,设直线BC的表达式为y=mx+n,则,解得,故直线BC的表达式为y=x﹣3,当x=1时,y=﹣2,故点M(1,﹣2).【变式6-1】(2021•富拉尔基区模拟)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线解析式;(2)若M是抛物线对称轴上的一点,则△ACM周长的最小值为多少?【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)∵△ACM周长的值最小,∴MC+AM的值最小,即点M即为直线BC与抛物线对称轴的交点,∴△ACM周长的最小值为BC+AC,∵点B(﹣3,0),C(0,3),∴BC==3,AC==,∴△ACM周长的最小值为,故答案为:;【变式6-2】(2022•齐河县模拟)如图1,抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,交y轴于点C.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在点M,使△ACM的周长最小?若存在,求出△ACM 周长的最小值;若不存在,请说明理由.(3)如图2,连接BC,抛物线上是否存在一点P,使得∠BCP=∠ACB?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,∴方程ax2+bx+3=0的两根为x=1或x=3,∴1+3=﹣,1×3=,∴a=1,b=﹣4,∴二次函数解析式是y=x2﹣4x+3;(2)∵二次函数解析式是y=x2﹣4x+3,∴抛物线的对称轴为直线x=2,C(0,3).∵点A、B关于对称轴对称,∴点M为BC与对称轴的交点时,MA+MC=BC的值最小.设直线BC的解析式为y=kx+t(k≠0),则,解得:.∴直线BC的解析式为y=﹣x+3.∵抛物线的对称轴为直线x=2.∴当x=2时,y=1.∴抛物线对称轴上存在点M(2,1)符合题意,∵A(1,0)、B(3,0),C(0,3).∴AC==,BC==3,∴AC+BC=+3,∴在抛物线的对称轴上存在点M,使△ACM的周长最小,△ACM周长的最小值为+3;【典例7】(2022春•衡阳期中)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;【解答】解:(1)∵直线y=﹣x+3与x轴交于点A,与y轴交于点B,∴A(4,0),B(0,3).∵抛物线y=ax2+x+c经过A、B两点,∴,解得.∴二次函数的解析式为:y=﹣x2+x+3.(2)∵A(4,0),B(0,3).∴OA=4,OB=3,∴AB=5.∵ED⊥AB,∴∠EDM=∠AOB=90°,∵∠DEM+∠EMD=∠FMA+∠BAO=90°,∠FMA=∠EMD,∴∠DEM=∠BAO,∴△AOB∽△EDM,∴AO:OB:AB=ED:DM:EM=4:3:5,设E的横坐标为t,则E(t,﹣t2+t+3),∴M(t,﹣t+3),∴EM=﹣t2+t+3﹣(﹣t+3)=﹣t2+t.∴△DEM的周长为:ED+DM+EM=EM=﹣(t﹣2)2+,∴当t=2时,△DEM的周长的最大值为.【变式7】(2022春•北碚区校级期中)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+2交x轴于A、B两点(点A在点B的左侧),交y轴于点C,一次函数y=﹣x﹣1交抛物线于A,D两点,其中点D(3,﹣4).(1)求抛物线C1的解析式;(2)点G为抛物线上一点,且在线段BC上方,过点G作GH∥y轴交BC于H,交x 轴于点N,作GM⊥BC于点M,求△GHM周长的最大值;【解答】解:(1)∵一次函数y=﹣x﹣1交抛物线于A点,且点A在x轴上,∴A(﹣1,0);将A(﹣1,0)和D(3,﹣4)代入抛物线C1:y=ax2+bx+2,∴,解得,∴抛物线C1:y=﹣x2+x+2.(2)由(1)知抛物线C1:y=﹣x2+x+2.令y=0,解得x=﹣1或x=2,∴B(2,0);令x=0,则y=2,∴C(0,2).∴OB=OC=2,直线BC的解析式为:y=﹣x+2;∴△OBC是等腰直角三角形,且∠OBC=∠OCB=45°;∵GH∥y轴,∴∠GNB=90°,∴∠BHN=45°,∵GM⊥BC,∴∠GMH=90°,∵∠MGH=∠GHM=45°,∴GM=MH=GH;设点G的横坐标为t,则G(t,﹣t2+t+2),H(t,﹣t+2),∴GH=﹣t2+2t=﹣(t﹣1)2+1.∵﹣1<0,∴当t=1时,GH有最大值1;∵△GHM的周长为:GM+MH+GH=(+1)GH,∴△GHM周长的最大值为+1.1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A (﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【解答】解:(1)将A,B,C代入函数解析式得,,解得,∴这个二次函数的表达式y=x2﹣2x﹣3;(2)①设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式得,,解得,∴BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,=,当n=时,PM最大∴线段PM的最大值;2.(2022•宁远县模拟)如图,抛物线y=x2+bx+c与x轴交于A,B两点,其中点A的坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;【解答】解:(1)∴二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),∴,解得:.∴二次函数解析式为y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3的对称轴x=﹣=﹣1,D(﹣2,﹣3),C(0,﹣3),∴C、D关于抛物线的对称轴x=﹣1对称,连接AC与对称轴的交点就是点P,此时PA+PD=PA+PC=AC===3.∴PA+PD的最小值为3;3.(2022•昭平县二模)如图1,对称轴为直线x=1的抛物线经过B(3,0)、C(0,4)两点,抛物线与x轴的另一交点为A.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上的一点,使PA+PC取得最小值,求点P的坐标;【解答】解:(1)由对称性得:A(﹣1,0),设抛物线的解析式为:y=a(x+1)(x﹣3),把C(0,4)代入:4=﹣3a,a=﹣,∴y=﹣(x+1)(x﹣3),∴抛物线的解析式为:y=﹣x2+x+4;(2)如图,点A与点B关于对称轴直线x=1对称,连接BC,交抛物线对称轴于点P,连接PA,即点P为所求点,此时PA+PC=PB+PC=BC的值最小,∵B(3,0)、C(0,4),设直线BC的函数解析式为y=kx+b,∴,解得,∴直线BC的函数解析式为y=﹣x+4,当x=1时,y=,∴P点的坐标为(1,);4.(2022春•石鼓区校级月考)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求△PAD周长的最小值.【解答】解:(1)将(﹣3,0),(﹣2,﹣3)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2+2x﹣3.(2)∵y=x2+2x﹣3,∴抛物线对称轴为直线x=﹣1,连接BD,交对称轴于点P,∵点A坐标为(﹣3,0),抛物线对称轴为直线x=﹣1,∴点B坐标为(1,0),∴BD==3,又∵AD==,∴△PAD周长的最小值为3+.5.(2022•江阴市校级一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x 轴分别相交于A(﹣1,0)、B(3,0)两点,与y轴相交于点C(0,3).(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC 的最小值;【解答】解:(1)∵抛物线过点A(﹣1,0),B(3,0),C(0,3),∴设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线解析式为y=﹣x2+2x+3,顶点坐标为M(1,4).(2)如图1,将点C沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,∵A、B关于直线x=1对称,∴AQ′=BQ′,∵CP′∥BC′,P′Q′∥CC′,∴四边形CC′Q′P′是平行四边形,∴CP′=C′Q′,Q′P′=CC′=1,在Rt△BOC′中,BC′=,==.∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=+1,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,∴AQ+QP+PC的最小值为+1.6.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.(1)求此抛物线的解析式;(2)当△OAB的面积为15时,求B的坐标;(3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.【解答】解:(1)∵抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,∴抛物线与x轴的另一个交点坐标为(4,0),设抛物线解析式为y=ax(x﹣4),把A(5,5)代入,得5a=5,解得:a=1,∴y=x(x﹣4)=x2﹣4x,故此抛物线的解析式为y=x2﹣4x;(2)∵点B是抛物线对称轴上的一点,且点B在第一象限,∴设B(2,m)(m>0),设直线OA的解析式为y=kx,则5k=5,解得:k=1,∴直线OA的解析式为y=x,设直线OA与抛物线对称轴交于点H,则H(2,2),∴BH=m﹣2,=15,∵S△OAB∴×(m﹣2)×5=15,解得:t=8,∴点B的坐标为(2,8);(3)设直线AB的解析式为y=cx+d,把A(5,5),B(2,8)代入得:,解得:,∴直线AB的解析式为y=﹣x+10,当PA﹣PB的值最大时,A、B、P在同一条直线上,∵P是抛物线上的动点,∴,解得:,(舍去),∴P(﹣2,12),此时,PA﹣PB=AB==3.7.(2022•玉州区一模)如图,抛物线y=﹣x2x+4交x轴于A,B两点(点B在A的右边),与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P 的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求A、B两点坐标;(2)过点P作PN上BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【解答】解:(1)当y=0,﹣x2+x+4=0,解得x1=﹣3,x2=4,∴A(﹣3,0),B(4,0),(2)设点P(m,﹣m2+m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,P~N=PQ•sin∠PQN=(﹣m2+m+4+m﹣4)=﹣(m﹣2)2+,∵﹣<0,∴PN有最大值,当m=2时,PN的最大值为.8.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,令x=0,可得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,则,∴,∴直线BC的解析式为y=﹣x+3;(2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),∵B (3,0),C (0,3),∴OB =OC =3,∴∠OBC =45°,∵PF ∥AB ,∴∠PFE =∠OBC =45°,∵PE ⊥BC ,∴△PEF 是等腰直角三角形,∴PE 的值最大时,△PEF 的周长最大,∵S △PBC =S △POB +S △POC ﹣S △OBC=×3×(﹣m 2+2m +3)+×3×m ﹣×3×3=﹣m 2+m=﹣(m ﹣)2+,∵﹣<0,∴m =时,△PBC 的面积最大,面积的最大值为,此时PE 的值最大,∵×3×PE =,∴PE =,∴△PEF 的周长的最大值=++=+,此时P (,);。
二次函数线段差最大值问题

二次函数线段差最大值问题二次函数线段差最大值问题是一个经典的数学优化问题,通常在高中数学课程中进行讨论。
该问题要求找到一个二次函数图像上两个点之间线段的最大差值。
假设给定一个二次函数 y = ax^2 + bx + c,其中 a、b 和 c 分别代表二次项、一次项和常数项的系数。
为了求出线段差的最大值,我们需要确定两个点。
一种常见的方法是取二次函数的顶点和 x 轴上的一个点。
首先,我们需要找到二次函数的顶点。
二次函数的顶点可以通过以下公式计算:x = -b / (2a)y = f(x)其中 x 和 y 分别代表顶点的横坐标和纵坐标,f(x) 代表二次函数在 x 处的函数值。
接下来,我们选择 x 轴上的一个点作为第二个点。
这个点可以在顶点两侧选择,在顶点的左侧或右侧都可以。
假设我们选择了一个横坐标为 x1 的点,那么对应的纵坐标为 f(x1)。
最后,我们计算两个点之间线段的差值:差值 = | f(x1) - y |其中 | | 表示取绝对值。
为了找到差值的最大值,我们可以使用微积分的方法。
首先,我们可以求出差值的函数关于 x 的导数,然后令导数为零,求解出 x 的值。
这个 x 的值就是使得差值最大的横坐标。
将这个 x 值代入差值函数,就可以得到最大的差值。
需要注意的是,有时候二次函数的顶点不在定义域内,此时我们可以选择定义域的端点作为顶点,然后按照以上的方法求解。
总而言之,二次函数线段差最大值问题是一个通过找到二次函数图像上两个点之间线段的最大差值来优化问题的数学问题。
这个问题可以通过求解顶点和定义域的端点来得到最优解。
中考数学中的二次函数的线段和差以及最值问题

二次函数与线段和差问题例题精讲:如图抛物线y=ax2+bx+c(a≠0与x轴交于A,B(1,0),与y轴x−2经过点A,C.抛物线的顶点为D,对称轴为直线l,交于点C,直线y=12(1)求抛物线解析式。
(2)求顶点D的坐标与对称轴l.(3)设点E为x轴上一点,且AE=CE,求点E的坐标。
(4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F 的坐标及△BCF周长的最小值,若不存在,说明理由。
(6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。
(7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d①求d关于h的函数关系式②求d的最大值及此时H点的坐标(8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?1.如图,矩形的边OA在轴上,边OC在轴上,点的坐标为(10,8),沿直线OD折叠矩形,使点正好落在上的处,E点坐标为(6,8),抛物线经过、、三点。
(1)求此抛物线的解析式。
(2)求AD的长。
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标。
2.如图,在平面直角坐标系中,抛物线412+=x y 与轴相交于点A ,点B 与点O 关于点A 对称。
(1)填空:点B 的坐标是 。
(2)过点的直线(其中)与轴相交于点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由。
(3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。
3.如图,抛物线与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,.(1)写出抛物线对应的函数解析式:△AOD的面积是(2)连结CB交EF于M,再连结AM交OC于R,求△ACR的周长.(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH垂直于直线EF并交于H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求点P的坐标;如果没有,请说明理由.4.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.y B O DCA x5.四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N . (1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.6.已知,如图,二次函数223y ax ax a=+-(0)a≠图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线:3l y x=+(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l 上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.7.如图,已知点A (-4,8)和点B (2,n )在抛物线2=y ax 上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2)平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.4x22A8 -2O -2 -4y6 BC D -448.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B 与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.9.在Rt △ABC 中,∠A=90°,AC=AB=4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ,线段CE 1的长等于 ;(直接填写结果)(2)如图2,当α=135°时,求证:BD 1= CE 1,且BD 1⊥CE 1;(3)①设BC 的中点为M ,则线段PM 的长为 ;②点P 到AB 所在直线的距离的最大值为 .(直接填写结果)E 1BCE D (D 1)A PE 1BCED D 1A。
中考数学中的二次函数的线段和差以及最值问题

二次函数与线段和差问题例题精讲:如图抛物线与x轴交于A,B(1,0),与y 轴交于点C,直线经过点A,C。
抛物线的顶点为D,对称轴为直线l,(1)求抛物线解析式.(2)求顶点D的坐标与对称轴l。
(3)设点E为x轴上一点,且AE=CE,求点E的坐标.(4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F的坐标及△BCF周长的最小值,若不存在,说明理由。
(6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。
(7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d①求d关于h的函数关系式②求d的最大值及此时H点的坐标(8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?1.如图,矩形的边OA 在轴上,边OC 在轴上,点的坐标为(10,8),沿直线OD 折叠矩形,使点正好落在上的处,E 点坐标为(6,8),抛物线经过、、三点。
(1)求此抛物线的解析式。
(2)求AD 的长.(3)点P 是抛物线对称轴上的一动点,当△PAD 的周长最小时,求点P 的坐标.2。
如图,在平面直角坐标系中,抛物线412+=x y 与轴相交于点A ,点B 与点O 关于点A 对称。
(1)填空:点B 的坐标是 。
(2)过点的直线(其中)与轴相交于点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由.(3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。
3.如图,抛物线与x 轴交于A,B 两点,与y 轴交于点C,点O 为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且OF=2,EF=3,.(1)写出抛物线对应的函数解析式: △AOD 的面积是(2)连结CB 交EF 于M ,再连结AM 交OC 于R ,求△ACR 的周长。
最新二次函数中的最值问题整理(中考数学必考知识点)

二次函数中的最值问题归纳(中考数学必考知识点)一.线段和差最值1、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C,点D为BC的中点.(1)求该抛物线的函数表达式;(2)点G是该抛物线对称轴上的动点,若GA+GC有最小值,求此时点G的坐标;第二问解题思路:(1)根据点G是该抛物线对称轴上的动点可得当点G在直线BC与抛物线对称轴的交点上时,GA+GC最小,先求出点C的坐标.(2)再设直线BC的解析式为y=kx﹣4(k≠0),根据待定系数求得直线BC 的解析式为y=x﹣4,然后求出抛物线的对称轴为直线x=1,联立两解析式求解即可.2、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)点D为抛物线对称轴上的一个动点,求|DC﹣DB|的最大值;第二问解题思路:(1)作点C关于抛物线的对称轴的对称点N(2,4).(2)连接BN交抛物线的对称轴于点D,则点D为所求点,进而求解.二.线段最值3、如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,求线段MN的最大值;第二问解题思路:(1)用m可分别表示出N、M的坐标,则可表示出MN的长.(2)再利用二次函数的最值可求得MN的最大值.变式训练:如图,已知抛物线经过点A(﹣6,0),B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为该抛物线上一动点.当点P在直线AC下方时,过点P作PE∥x轴,交直线AC于点E,作PF∥y轴.交直线AC于点F,求EF的最大值;4、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)求PQ的最大值,并写出此时点P的坐标;第二问解题思路:由PQ=HP sin∠PHQ=PH知,当PH最大时,PG最大,进而求解变式训练:如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(﹣1,0)、B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.线段PQ的最大值;变式训练:如图,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.对称轴为直线x=﹣1.(1)a=;(2)点P为直线AC下方抛物线上的一动点,过P作PE⊥AC于点E,过P作PF⊥x轴于点F,交直线AC于点G,求PE+PG的最大值;5、如图,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的表达式;(2)D是直线AC上方抛物线上一动点,连接OD交AC于点N,求的最大值,并求出此时D的坐标.第二问解题思路:过点D作DH∥y轴,交AC于点H,由(1)设D(m,﹣m2+2m+3),直线AC的解析式为y=kx+n,然后可求出直线AC的解析式,则有H(m,﹣m+3),进而可得DH=﹣m2+3m,最后根据△OCN∽△DHN可进行求解.变式训练:如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;三.周长和面积6、如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?第二问解题思路:由抛物线的对称性得AE=OB=t,据此知AB=10﹣2t,再由x=t时BC=t2﹣t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得变式训练:如图1,抛物线y=ax2+bx+c与x轴相交于点B,C(点B在点C左侧),与y轴相交于点A(0,4),已知点C坐标为(4,0),△ABC面积为6.(1)求抛物线的解析式;(2)点M是直线AC下方抛物线上一点,过点P作直线AC的垂线,垂足为点H,过点P作PQ∥y轴交AC于点Q,求△PHQ周长的最大值及此时点P的坐标;7、如图,抛物线y=ax2+x+c经过坐标轴上A、B、C三点,直线y=﹣x+4过点B和点C.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上一动点,连接BE、CE,求△BCE面积的最大值及此时点E的坐标;第二问解题思路:过E点作EG∥y轴交BC于点G,设E(t,﹣t2+t+4),则G(t,﹣t+4),可得S=﹣(t﹣2)2+4,当t=2时,△BCE的面积有最大值4,此时E △BCE(2,4)变式训练:二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点.(1)求二次函数的表达式;(2)如图,连接P A,PC,AC,求S的最大值;△P AC变式训练:已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)直接写出抛物线的函数解析式;(2)点N是第一象限内抛物线上的一动点,连接NA分别交BC、y轴于D、E两点,若△NBD、△CDE的面积分别为S1、S2,求S1﹣S2的最大值;四.AP+kBP型8、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3),P是第四象限内这个二次函数的图象上一个动点,设点P的横坐标为m,过点P作PH⊥x轴于点H,与BC交于点M.(1)求这个二次函数的表达式;(3)求PM+2BH的最大值;第二问解题思路:设P点坐标为(m,m2﹣2m﹣3),则M点坐标为(m,m﹣3),H点坐标为(m,0),将PM+2BH转化为二次函数求最值即可变式训练:抛物线y=﹣x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C,点和点P都在抛物线上.(1)求出抛物线表达式;(2)如图,若点P在直线AD的上方,过点P作PH⊥AD,垂足为H,①当点P是抛物线顶点时,求PH的长,②求AH+PH的最大值;变式训练:如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.①求线段PM长度的最大值.②在①的条件下,若F为y轴上一动点,求PH+HF+CF的最小值.。
二次函数与相切、线段和差

考点一 二次函数与线段和差问题☞线段和差常见模型 I 、PAPB +最小同侧图1BlAB图2异侧II 、PA PB -最小图4同侧异侧图5AA图6异侧III 、PA PB -最大【变形】异侧时,也可以问:在直线l 上是否存在一点P 使的直线l 为APB ∠的角平分线Al同侧l异侧IV 、四边形周长最短类型一 类型二lNM类型三NMB'A'BAV、三角形周长最短类型一类型二ABPA'CBOA''A'A☞线段和差典型题型【例1】如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(—2,—4 )、O(0,0)、B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.图1【例2】如图1,在平面直角坐标系中,抛物线y=—x2+2x+3与x轴交于A.B两点,与y轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B.D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P的运动,在抛物线上是否存在点Q,使以A.P.Q.C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1(2012年山西省中考第26题)【例3】 已知抛物线2y ax bx c =++经过()43A -,、()20B ,两点,当3x =和3x =-时,这条抛物线上对应的纵坐标相等.经过点C ()02-,的直线l 与x 轴平行,O 为坐标原点. (1)求直线AB 和这条抛物线的解析式; (2)以A 为圆心,AO 为半径的圆记为圆A ,判断直线l 与圆A 的位置关系,并说明理由; (3)设直线AB 上的点D 的横坐标为1-,()P m n ,是抛物线2y ax bx c =++上的动点,当PDO △的周长最小时,求四边形CODP 的面积.【例4】 如图,直线y =-33x +2分别交x 轴、y 轴于C 、A 两点,将射线AM 绕点A 顺时针旋转45°得到射线A N ,D 为AM 上的动点,B 为AN 上的动点,点C 在∠MAN 的内部. (1)当AM ∥x 轴,且四边形ABCD 为梯形时,求△BCD 的面积; (2)求△BCD 周长的最小值;(3)当△BCD 的周长取得最小值,且BD = 523 时,求△BCD 的面积.【例5】 已知,如图1,二次函数()2230y ax ax a a =+-≠的图像的顶点为H ,与x 轴交于A B 、两点(B 在O yxAxy1O D212 M NB 3 4C Ax y1O 2123 4C 备用图Axy1 O212 3 4 C 备用图A 的右侧),点H B 、关于直线l:y + (1)求A B 、两点的坐标,并证明点A 在直线l 上; (2)求二次函数的解析式;(3)过点B 作BK AH ∥交直线l 于点K ,M N 、分别为直线AH 和直线l 上的两个动点,连结HN NM MK 、、,求HN NM MK ++的最小值.图1【例6】直线143235y x =-+交x 轴于A 点交y 轴于B 点,直线275y kx =+过A 点交y 轴于C 点.(1)抛物线2y x bx c =++过C 点,且与x 轴正半轴有唯一交点,则抛物线的解析式为________ (2)若(1)中抛物线与直线143235y x =-+交与点P (P 在第一象限),M 是y 轴上一动点,N是直线275y kx =+上一动点,求PM PN +的最小值;(3)若MPN ∠的大小始终与PM PN +取得最小值时MPN ∠的大小一致,且120BMP ∠=︒时,直接写出PM PN +的值.考点二 二次函数与面积产生的函数关系【例7】 如图1,抛物线213922y x x =--与x 轴交于A .B 两点,与y 轴交于点C ,联结BC .AC . (1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A .B 不重合),过点E 作BC 的平行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,联结CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).图1(2012年广东省中考第22题)【例8】 如图1,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O .C 两点,点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O —C —B 相交于点M .当P .Q 两点中有一点到达终点时,另一点也随之停止运动,设点P .Q 运动的时间为t 秒(t0),△MPQ 的面积为S .(1)点C 的坐标为____________,直线l 的解析式为____________;(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围. (3)试求题(2)中当t 为何值时,S 的值最大?最大值是多少?图1(2011年山西省中考第26题)【例9】 如图,矩形ABCD 中,AB =6,BC =2错误!未找到引用源。
二次函数线段和差最值的存在性问题解题策略

中考数学压轴题解题策略(8)线段和差最值的存在性问题解题策略专题攻略两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.图1 图2 图3例题解析例如图1-1,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C,点P是抛物线对称轴上的一个动点,如果△PAC的周长最小,求点P的坐标.图1-1【解析】如图1-2,把抛物线的对称轴当作河流,点A与点B对称,连结BC,那么在△PBC中,PB+PC总是大于BC的.如图1-3,当点P落在BC上时,PB+PC最小,因此PA+PC最小,△PAC的周长也最小.由y=x2-2x-3,可知OB=OC=3,OD=1.所以DB=DP=2,因此P(1,-2).图1-2 图1-3 例如图,抛物线21442y x x =-+与y 轴交于点A ,B 是OA 的中点.一个动点G 从点B 出发,先经过x 轴上的点M ,再经过抛物线对称轴上的点N ,然后返回到点A .如果动点G 走过的路程最短,请找出点M 、N 的位置,并求最短路程.图2-1【解析】如图2-2,按照“台球两次碰壁”的模型,作点A 关于抛物线的对称轴对称的点A ′,作点B 关于x 轴对称的点B ′,连结A ′B ′与x 轴交于点M ,与抛物线的对称轴交于点N .在Rt △AA ′B ′中,AA ′=8,AB ′=6,所以A ′B ′=10,即点G 走过的最短路程为10.根据相似比可以计算得到OM =83,MH =43,NH =1.所以M (83, 0),N (4, 1).图2-2例 如图3-1,抛物线248293y x x =-++与y 轴交于点A ,顶点为B .点P 是x 轴上的一个动点,求线段PA 与PB 中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P 的坐标.图3-1【解析】题目读起来像绕口令,其实就是求|PA-PB|的最小值与最大值.由抛物线的解析式可以得到A(0, 2),B(3, 6).设P(x, 0).绝对值|PA-PB|的最小值当然是0了,此时PA=PB,点P在AB的垂直平分线上(如图3-2).解方程x2+22=(x-3)2+62,得416x=.此时P41(,0)6.在△PAB中,根据两边之差小于第三边,那么|PA-PB|总是小于AB了.如图3-3,当点P在BA的延长线上时,|PA-PB|取得最大值,最大值AB=5.此时P3(,0)2-.图3-2 图3-3例如图4-1,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD 上的任意一点,求PK+QK的最小值.图4-1【解析】如图4-2,点Q关于直线BD的对称点为Q′,在△KPQ′中,PK+QK总是大于PQ′的.如图4-3,当点K落在PQ′上时,PK+QK的最小值为PQ′.如图4-4,PQ′的最小值为Q′H,Q′H就是菱形ABCD的高,Q′H3这道题目应用了两个典型的最值结论:两点之间,线段最短;垂线段最短.图4-2 图4-3 图4-4例如图5-1,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙B和⊙A上的动点,求PE+PF的最小值.图5-1【解析】E、F、P三个点都不确定,怎么办BE=1,AF=2是确定的,那么我们可以求PB+PA-3的最小值,先求PB+PA的最小值(如图5-2).如图5-3,PB+PA的最小值为AB′,AB′=6.所以PE+PF的最小值等于3.图5-2 图5-3例如图6-1,已知A(0, 2)、B(6, 4)、E(a, 0)、F(a+1, 0),求a为何值时,四边形ABEF 周长最小请说明理由.图6-1【解析】在四边形ABEF 中,AB 、EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图6-2,将线段BF 向左平移两个单位,得到线段ME .如图6-3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小. 由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.图6-2 图6-3例 如图7-1,△ABC 中,∠ACB =90°,AC =2,BC =1.点A 、C 分别在x 轴和y 轴的正半轴上,当点A 在x 轴上运动时,点C 也随之在y 轴上运动.在整个运动过程中,求点B 到原点的最大距离.图7-1【解析】如果把OB 放在某一个三角形中,这个三角形的另外两条边的大小是确定的,那么根据两边之和大于第三边,可知第三边OB 的最大值就是另两边的和.显然△OBC 是不符合条件的,因为OC 边的大小不确定.如图7-2,如果选AC 的中点D ,那么BD 、OD 都是定值,OD =1,BD 2.在△OBD 中,总是有OB <OD +BD .如图7-3,当点D 落在OB 上时,OB 21.图7-2 图7-3例如图8-1,已知A(-2,0)、B(4, 0)、(5,33)D-.设F为线段BD上一点(不含端点),连结AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD 以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少图8-1【解析】点B(4, 0)、(5,33)D-的坐标隐含了∠DBA=30°,不由得让我们联想到30°角所对的直角边等于斜边的一半.如果把动点M在两条线段上的速度统一起来,问题就转化了.如图8-2,在Rt△DEF中,FD=2FE.如果点M沿线段FD以每秒2个单位的速度运动到点D时,那么点M沿线段FE以每秒1个单位的速度正好运动到点E.因此当AF+FE最小时,点M用时最少.如图8-3,当AE⊥DE时,AF+FE最小,此时F(2,23)-.图8-2 图8-3例如图9-1,在Rt△ABC中,∠C=90°,AC=6,BC=8.点E是BC边上的点,连结AE ,过点E 作AE 的垂线交AB 边于点F ,求AF 的最小值.图9-1【解析】如图9-2,设AF 的中点为D ,那么DA =DE =DF .所以AF 的最小值取决于DE 的最小值.如图9-3,当DE ⊥BC 时,DE 最小.设DA =DE =m ,此时DB =53m . 由AB =DA +DB ,得5103m m +=.解得154m =.此时AF =1522m =.图9-2 图9-3例 如图10-1,已知点P 是抛物线214y x =上的一个点,点D 、E 的坐标分别为(0, 1)、(1, 2),连结PD 、PE ,求PD +PE 的最小值.图10-1【解析】点P 不在一条笔直的河流上,没有办法套用“牛喝水”的模型.设P 21(,)4x x ,那么PD 2=2222211(1)(1)44x x x +-=+.所以PD =2114x +. 如图10-2,2114x +的几何意义可以理解为抛物线上的动点P 到直线y =-1的距离PH .所以PD =PH .因此PD +PE 就转化为PH +PE .如图10-3,当P、E、H三点共线,即PH⊥x轴时,PH+PE的最小值为3.高中数学会学到,抛物线是到定点的距离等于到定直线的距离的点的集合,在中考数学压轴题里, 如果要用到这个性质,最好铺垫一个小题,求证PD=PH.图10-2 图10-3。
二次函数线段差最大值问题

二次函数线段差最大值问题引言二次函数是高中数学中的一个重要概念,它在许多数学领域都有广泛的应用。
本文将探讨一个与二次函数相关的问题,即二次函数线段差最大值问题。
问题的提出假设有一个二次函数:f(x)=ax2+bx+c,其中a、b、c为任意实数。
现在我们要求在某个区间[a, b]上,找到一个点x,使得该点与函数f(x)图像上的任意点形成的线段的差值最大。
换言之,要求找到一个x值,使得线段差最大。
解答思路要求线段差最大,可以将函数分成两部分:向上凸的部分和向下凸的部分。
我们只需要找到二次函数极值点的x坐标,并将区间[a, b]分成两部分,分别求出两段函数图像的最大值,再计算两者之间的差值即可。
具体步骤一、找到极值点1.对二次函数f(x)求导,得到f′(x)=2ax+b。
2.将导函数f′(x)置零,解方程得到极值点的x坐标。
3.将极值点的x坐标带入原函数f(x),得到极值点的y坐标。
二、将区间分为两部分1.根据极值点的x坐标,将区间[a, b]分为[a, x]和[x, b]两部分。
三、求两段函数图像的最大值1.对于区间[a, x],可以将f(x)看成开口向上的抛物线。
通过求导,找到函数在该区间上的最大值。
2.对于区间[x, b],可以将f(x)看成开口向下的抛物线。
通过求导,找到函数在该区间上的最大值。
四、计算线段差的最大值1.分别计算两段函数图像的最大值。
2.将两者之间的差值与已有的最大差值进行比较,更新最大差值。
3.最终得到线段差的最大值。
结论通过以上步骤,我们可以找到二次函数线段差的最大值。
需要注意的是,这个最大值可能因为函数本身的性质而不存在,即函数可能是单调递增或单调递减的,此时线段差的最大值为0。
因此,在实际问题中,我们需要对函数进行分析,确保线段差最大值存在。
参考资料1.高中数学教材2.“二次函数” - 维基百科3.“求二次函数在指定区间上的最大值和最小值” - CSDN博客致谢感谢您阅读本文,希望能对二次函数线段差最大值问题有一个更深入的理解。
二次函数中线段和、差最值问题

二次函数中线段和、差最值问题姓名:1、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;并求出周长的最小值;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.2、如图,△ABC的三个顶点坐标分别为A(-2,0)、B(6,0)、C(0,32-),抛物线y=ax2+bx+c (a≠0)经过A、B、C三点。
(1)求直线AC的解析式;(2)求抛物线的解析式;(3)若抛物线的顶点为D,在直线AC上是否存一点P,使得△BDP的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。
3、如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0)。
⑴求该抛物线的解析式;⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。
⑶在抛物线的对称轴上找一点M,使||AM MC-的值最大,求出点M的坐标。
4、如图8,对称轴为直线x =2的抛物线经过点A (-1,0),C (0,5)两点,与x 轴另一交点为B ,已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点.(1)求此抛物线的解析式.(2)当a =1时,求四边形MEFP 面积的最大值,并求此时点P 的坐标.(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.图8O A E F B MCPxy备用图A O M C E F xB y P5、如图,已知抛物线 经过A(3,0),B(0,4),(1).求此抛物线解析式(2)若抛物线与x 轴的另一交点为C ,求点C 关于直线AB 的对称点C ’ 的坐标(3) 若点D 是第二象限内点,以D 为圆心的圆分别与x 轴、y 轴、直线AB 相切于点E 、F 、H ,问在抛物线的对称轴上是否存在一点一点P ,使得|PH -PA |的值最大?若存在,求出该最大值;若不存在,请说明理由。
二次函数线段差最值问题

二次函数线段差最值问题好啦,今天咱们聊聊二次函数的线段差最值问题。
这听上去好像有点高深莫测,但其实呢,咱们可以把它拆解得简单明了,就像剥洋葱一样,层层剥开,保留最精华的部分。
你要是觉得这数学问题有点枯燥,那咱们就试着让它活泼起来,像个调皮的小孩子,给它加点趣味。
二次函数,嘿,这个词听起来就像是某种魔法,对吧?它的标准形式就是 (y = ax^2 + bx + c),其中的 (a)、(b)、(c) 都是数字。
简单来说,二次函数的图像是一个优雅的抛物线,它要么向上开口,要么向下开口,像是在告诉我们生命的各种起伏。
想象一下,咱们在这个抛物线上,找一找那条线段的差最值,简直就像是在找宝藏!如果咱们设定了两个点,分别是 (A(x_1, y_1)) 和 (B(x_2, y_2)),那么线段的长度就可以通过公式来算。
不过,咱们要找的可不是这条线段的长度,而是它与抛物线之间的差,哦,没错,就是那个“差”。
这个差啊,可能是正的,也可能是负的,反正就是一种心情的起伏,就像今天的天气,忽冷忽热。
咱们可以把这个问题变得有趣点。
你们有没有过这样的经历,走在街上,看到一片美丽的风景,心里突然一阵感慨,仿佛生活就是一场抛物线,而每一次的高低起伏都是生活的馈赠。
咱们就从这个角度来分析,首先要计算出 (y) 值,也就是说,把 (x_1) 和(x_2) 代入二次函数里,看看它们的 (y) 值。
就可以轻松搞定差的计算啦。
嘿,你一定会发现,数学原来也可以这么诗意。
有趣的是,咱们不仅仅是想找一个简单的结果,而是希望能够找到最值。
说到这里,你是不是想起了“寻宝”这个词?在数学的海洋里,咱们就是那位勇敢的探险者,披荆斩棘,寻找那个最闪亮的宝石。
咱们可以用导数的方法来找到这个最值。
别担心,导数听起来像是个难懂的名词,但实际上,它就是告诉我们函数变化的速度。
就像开车,油门一踩,速度就上来了,放慢一点,车子就慢下来了。
当咱们计算出导数并把它设为零的时候,嘿,这就是咱们要找的关键点!这个点的(x) 值,就是咱们寻找的“最佳时机”。
二次函数中最值问题(教师版)

二次函数与几何综合专题----线段最值问题将军饮马:这个将军饮的不是马,是数学!原理:两点间线段最短;点到直线的垂直距离最短;对称(翻折)、平移.策略:对称(翻折)→化同为异、化异为同;化折为直.两村一路(异侧)和最小两村一路(同侧)和最小两路一村和最小两村两路和最小两村一路和最小两村一路(同侧)差最大两村一路(异侧)差最大例:如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,3OA OC ==,顶点为D ,对称轴交x 轴于点E . (1)求抛物线的解析式、对称轴及顶点D 的坐标.PN y轴交AC于N,求线段PN的最大值及此时点P (2)直线AC下方的抛物线上有一动点P,过点P作//的坐标.于H,求线段PH的最大值及此时点P的坐标.(3)直线AC下方的抛物线上有一动点P,过点P作PH AC(4)直线AC 下方的抛物线上有一动点P ,过点P 作//PN y 轴交AC 于N ,过点P 作PH AC 于H ,求PNH △周长的最大值及此时点P 的坐标.(5)在抛物线对称轴上找一点N ,使得BCN △的周长最小,求BCN △周长的最小值及此时点N 的坐标.⊥交AC于点M,求CM的最小值.(6)在线段OA上找一点N,连接NC,作NM NCMN=,求四边形BNMC周长的最小值及(7)在抛物线对称轴上有两动点N、M(点N在点M上方),且1此时M的坐标.(8)在对称轴上找一点N ,使得NA NC -最大,求点N 的坐标.【答案】(1)223y x x =+-,对称轴为:直线x =-1,顶点坐标为:D (-1,-4);(2)PN 的最大值为94,此时P (-32,154-);(3)当PN 最大为94时,PH 92P (-32,154-);(4)当PNH △周9294,此时P (-32,154-);(5)1032N (-1,-2);(6)1262-(7)6105(8)10131,M (713-,-);(9)N 的坐标为:(-1,-6). 【详解】(1)解:∵3OA OC ==, ∴A (-3,0),C (0,-3),∴()20333b c c ⎧=--+⎪⎨-=⎪⎩,解得:23b c =⎧⎨=-⎩,∴抛物线的解析式为:223y x x =+-,对称轴为:直线x =-1,顶点坐标为:D (-1,-4). (2)解:设P (x ,223x x +-),则N (x ,-x -3),∴PN =-x -3-(223x x +-)=23x x --=23924x ⎛⎫-++ ⎪⎝⎭,∴当x =-32时,PN 的最大值为94,此时P (-32,154-).(3)解:过点P 作PN ∥y 轴,交AC 于点N , ∵OA =OC =3, ∴∠ACO =45°, ∵PN ∥y 轴,∴∠PNH =45°,即:PNH 是等腰直角三角形,∴PH 2PN , 设P (x ,223x x +-),则N (x ,-x -3),∴PN =-x -3-(223x x +-)=23x x --=23924x ⎛⎫-++ ⎪⎝⎭,∴当x =-32时,PN 的最大值为94,∴当PN 最大为94时,PH 最大值=94×22=928,此时P (-32,154-).(4)解:∵OA =OC =3, ∴∠ACO =45°, ∵PN ∥y 轴,∴∠PNH =45°,即:PNH 是等腰直角三角形, ∴PH =NH 2, ∴PNH △周长= PH +NH +PN 22PN 22PN + PN =(21)PN , 设P (x ,223x x +-),则N (x ,-x -3),∴PN =-x -3-(223x x +-)=23x x --=23924x ⎛⎫-++ ⎪⎝⎭,∴当x =-32时,PN 的最大值为94,∴当PN 最大为94时,PNH △周长最大值=94×)219294,此时P (-32,154-).(5)解:连接AC 交对称轴于点N ′,∵A、B关于对称轴对称,∴AN′=BN′∴BCN△的周长=BC+CN′+BN′=BC+CN′+AN′=BC+AC,∴此时BCN△的周长最小值=BCN'的周长=BC+AC222213331032++∵直线AC的解析式为:y=-x-3,∴当x=-1时,y=-2,即N(-1,-2).(6)解:由题意得:点N在以CM为直径的圆上,设CM的中点为E,连接EN,则当圆E与x轴相切时,即:EN⊥x轴时,EN最小,此时CM=2EN最小,设M(x,-x-3),则E(622x x--,),∴EN=62x+,CM()222332x x x+--+=∴2×62x +22x 662x =-62x =+, ∴M (662-629), ∴CM ()()2266262931262-+-+-(7)解:过点N 作作NQ ∥MC 交y 轴于点Q ,连接AQ 交DE 于点N ′,连接BN ′,则Q (-2,0),∵NQ ∥MC ,MN ∥CQ , ∴四边形MNQC 是平行四边形, ∴CM =QN ,∴四边形BNMC 的周长=BC +BN +MN +CM =BC +BN +1+QN 101+BN +QN , ∵B 、A 关于DE 对称, ∴AN ′=BN ′,∴四边形BNMC 101+BN ′+QN ′101+AN ′+QN 101+AQ 101+222310131+,∵直线AQ 的解析式为:223y x =--,∴N ′(413-,-),∴此时M (713-,-).(8)解:连接BC ,并延长交ED 于点N ′,连接BN ,∵A 、B 关于DE 对称, ∴AN =BN ,∴NA NC -=NB NC -≤BC =N B N C ''-, ∵B (1,0),C (0,-3), ∴直线BC 的解析式为:33y x =-, 令x =-1代入33y x =-得:y =-6, ∴N ′(-1,-6),∴NA NC -最大时,N 的坐标为:(-1,-6).二次函数与几何综合专题---- 胡不归和阿氏圆问题【胡不归最值问题】 求BC +kAC 的最小值.解决思路:构造射线AD 使得sin ∠DAN=k ,即CHk AC,CH=kAC .将问题转化为求BC+CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC+CH 取到最小值,即BC+kAC 最小.1.已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连结BC ,且tan ∠CBD =43,如图所示. (1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连结FB 、FC ,求△BCF 的面积的最大值;②连结PB ,求35PC +PB 的最小值.CH=kACsin α=CH AC=kHDαA BCM MCBAαDH2.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M 为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+14OQ的最小值.3.如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,−83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AE AB的值.(3)在(2)的条件下,点F (0,y )是y 轴上一动点,当y 为何值时,√55FC +BF 的值最小.并求出这个最小值.(4)点C 关于x 轴的对称点为H ,当√55FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A,B两点(A在B左边),与y轴交于点C.连接AC,BC.且△ABC的面积为8.(1)求m的值;(2)在(1)的条件下,在第一象限内抛物线上有一点T,T的横坐标为t,使∠ATC=60°.求(t﹣1)2的值.(3)如图2,点P为y轴上一个动点,连接AP,求CP+AP的最小值,并求出此时点P的坐标.【阿氏圆最值问题】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: ①如图,将系数不为1的线段两端点与圆心相连即OP ,OB ②计算出这两条线段的长度比OPk OB= ③在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB=,PC k PB = ④则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值1.如图,抛物线2y ax bx c =++与x 轴交于(3A 0),B 两点(点B 在点A 的左侧),与y 轴交于点C ,且33OB OA OC ==,OAC ∠的平分线AD 交y 轴于点D ,过点A 且垂直于AD 的直线l 交y 轴于点E ,点P 是x 轴下方抛物线上的一个动点,过点P 作PF x ⊥轴,垂足为F ,交直线AD 于点H . (1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH HP =时,求m 的值; (3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作H ,点Q 为H 上的一个动点,求14AQ EQ +的最小值.2.如图1,抛物线y=ax2+bx+c与x轴正半轴交于点A,点B(点A在点B的左侧),与y轴交于点C.若线段AB绕点A逆时针旋转120°,点B刚好与点C重合,点B的坐标为(3,0).(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在一点P,使△ACP为直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,以点B为圆心,以1为半径画圆,若点Q为⊙B上的一个动点,连接AQ,CQ,求AQ+CQ 的最小值.3.如图,已知抛物线y=﹣x2+2x+3与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.(1)如图①,若点D为抛物线的顶点,以点B为圆心,3为半径作⊙B.点E为⊙B上的动点,连接A,DE,求DE+AE的最小值.(2)如图②,若点H是直线AC与抛物线对称轴的交点,以点H为圆心,1为半径作⊙H,点Q是⊙H 上一动点,连接OQ,AQ,求OQ+AQ的最小值;(3)如图③,点D是抛物线上横坐标为2的点,过点D作DE⊥x轴于点E,点P是以O为圆心,1为半径的⊙O上的动点,连接CD,DP,PE,求PD﹣PE的最大值.4.如图1,抛物线y=ax2+bx﹣4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),抛物线的对称轴是直线x=.(1)求抛物线的解析式;(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,点Q为⊙C 上的一个动点,求BQ+FQ的最小值.【课后训练】1.如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB交于点M.(1)当四边形CODM是菱形时,求点D的坐标;(2)若点P为直线OD上一动点,求△APB的面积;′(3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M上一动点,求QB'+QB的最小值.2.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M的坐标.如果不存在,请说明理由;(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.3.抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.(1)试求二次函数及一次函数的解析式;(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD,求点P的坐标;(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x轴于点G,交直线BC于点F,当EF+√22CF的值最大时,求点E的坐标.4.如图①,直线y=﹣x﹣3分别与x轴、y轴交于点B,C,抛物线y=ax2+bx+c经过B,C两点,且与x轴的另一交点为A(1,0).(1)求抛物线的函数解析式;(2)如图①,点P在第三象限内的抛物线上.①连接AC,PB,PC,当四边形ABPC的面积最大时,求点P的坐标;②在①的条件下,G为x轴上一点,当PG+√55AG取得最小值时,求点G的坐标;(3)如图②,Q为x轴下方抛物线上任意一点,D是抛物线的对称轴与x轴的交点,直线AQ,BQ分别交抛物线的对称轴于点M,N.问:DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.21Math唐老师22。
二次函数中的最值问题(解析版)

二次函数中的最值问题目录题型一【铅垂高系列】2023·四川凉山·中考真题2022·天津·中考真题2022·湖北襄阳·统考中考真题2023·湖南娄底·中考真题2023·湖南中考真题2023·青海西宁·中考真题2023·四川广安·中考真题2023·湖南永州·中考真题2022·四川广元·中考真题题型二【线段和差最值篇】2023·湖南张家界中考真题2022·山东淄博·统考中考真题2022·四川遂宁中考真题2023·山东东营·中考真题2023·四川巴中·中考真题2023·湖南张家界中考真题2023·山东聊城·中考真题2022·湖北襄阳中考真题2023·湖北荆州中考真题2022·江苏连云港中考真题2022·湖南岳阳·中考真题2023·宁夏·中考真题2023·湖北襄阳中考真题题型四【加权线段最值】2023·四川内江·中考真题2023·黑龙江绥化·中考真题题型五 【几何构造最值篇】2022·天津·统考中考真题满分*技巧母题:如图,已知抛物线过A (4,0)、B (0,4)、C (-2,0)三点,P 是抛物线上一点 (1) 求抛物线解析式【答案】2142y x x =++【铅垂高系列】本来这个属于构造二次函数型最值问题,但是比较特殊所以单独拿出来 (2) (☆)若P 在直线AB 上方,求四边形PBCA 面积最大值,【答案】16 补充二级结论212max 2x x PD a − =⋅【思路分析】先分离出面积为定值的△ABC ,△ABC 面积为12 设P 21(,4)2m m m −++,()4H m m −+,2122PH m m =−+(上面的点减去下面的点)当22b m a=−=时,PH 取最大值2,此时△APB 面积为:1=42S PH AO ⋅=(AO 是△PBH ,△PAH 两个三角形高之和)(3) (☆)若P 在直线AB 上方,作PF ⊥AB ,F 在线段AB 上,求PF 最大值H【思路分析】过P作PH平行y轴,H在AB上导角可知△PFH~△AOB为等腰直角三角形,PH取最大时,PF也取到最大(4)(★)若P在直线AB上方,作PF⊥AB,交线段AB于F,作PE∥y轴交AB于E,求△PEF 周长和面积的最大值【答案】2+和1【思路分析】△PEF形状固定,PF FE PE==(5)若P在直线AB上方,连接OP,交AB于D,求PDOD的最大值【答案】【思路分析】化斜为直,平行线,构造8字相似转换PD PH OD BO=(6) (★☆)若P 在直线AB 上方,连接CP ,交AB 于D ,△PDA 面积为S 1,△CDA 面积为S 2,求21S S 的最小值【答案】13【思路分析】化斜为自第一步:面积比转换为共线的边之比21S CDS PD=第二步:构造,共线的边之比转换成平行边之比6CD CG PD PH PH==(7) (★☆)点D 是点B 关于关于x 轴的对称点,连接CD ,点P 是第一象限上一点,求△PCD 面积最大值【答案】12 【思路分析】过动点P 作y 轴平行线交对边(延长)于点H2112538222PCD PCH PDM S S S PH CO PH m m =−=⋅==−++≤△△△ 推导过程如下:以PH 为底,设△PHC 的高为h 1,△PDH 的高为2h12121111()2222PH h PM h PH h h PH CO ⋅−⋅=⋅−=⋅【几何构造最值篇】(8) (☆)点E 是对称轴与x 轴交点,过E 作一条任意直线l ,(点B 、C 分别在直线l 的异侧),设C 、B 两点到直线l 的距离分别为m 、n ,求m +n 的最大值x【答案】【思路分析】m n BC ≥+特殊位置时有最小值,大多数题目都是共线时有最值,所以要重点去分析共线时的情况(9) (☆)已知线段BC 上有两点E (1,3),F (3, 1),试在x ,y 轴上有两动点M 和N ,使得四边形FMNE 周长最小。
2020中考数学复习分类汇编专题3:二次函数与线段及其最值问题(含答案)

专题:二次函数中的线段问题(含最值问题)1. 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A ,B (1,0),与y 轴交于点C ,直线y = x -2经过点A 、C .抛物线的顶点为D ,对称轴为直线l .(1) 求抛物线的表达式、顶点D 的坐标及对称轴l ; (2) 设点E 为x 轴上一点,且AE =CE ,求点E 的坐标;(3) 设点G 是y 轴上一点,是否存在点G ,使得GD +GB 的值最小,若存在,求出点G 的坐标;若不存在,请说明理由;(4) 在直线l 上是否存在一点F ,使得△BCF 的周长最小,若存在,求出点F 的坐标及△BCF 周长的最小值;若不存在,请说明理由;(5) 点S 为y 轴上任意一点,K 为直线AC 上一点,连接BS ,BK ,是否存在点S ,K 使得△BSK 的周长最小,若存在,求出S ,K 的坐标,并求出△BSK 周长的最小值;若不存在,请说明理由;(6) 在y 轴上是否存在一点S ,使得SD -SB 的值最大,若存在,求出点S 的坐标;若不存在,请说明理由; (7) 若点H 是抛物线上位于AC 上方的一点,过点H 作y 轴的平行线,交AC 于点K ,设点H 的横坐标为h ,线段HK =d .①求d 关于h 的函数关系式; ②求d 的最大值及此时H 点的坐标.122. 如图,抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点D(m,0)为线段OA上一个动点(与点A,O不重合),过点D作x轴的垂线与线段AC交于点P,与抛物线交于点Q,连接BP,与y轴交于点E.(1)求A,B,C三点的坐标;(2)当点D是OA的中点时,求线段PQ的长;(3)在点D运动的过程中,探究下列问题:①是否存在一点D,使得PQ+22PC取得最大值?若存在,求此时m的值;若不存在,请说明理由;②连接CQ,当线段PE=CQ时,直接写出m的值.3. 如图,直线y =-34x +1与x 轴、y 轴分别交于A 、B 两点,抛物线y =-12x 2+bx +c 经过点B ,且与直线AB 的另一交点为C (4,n ).(1)求该抛物线的表达式及点C 的坐标;(2)设抛物线上的一个动点P 的横坐标为t (0<t <4),过点P 作PD ⊥AB 交直线AB 于点D ,作PE ∥y 轴交直线AB 于点E .①求线段PD 的长的最大值; ②当t 为何值时,点D 为BE 的中点.4. 已知抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,过点P 作PF ⊥x 轴,垂足为点F ,交AQ 于点N .(1)求抛物线的表达式;(2)如图①,在点P 运动过程中,当PN =2NF 时,求点P 的坐标;(3)如图②,线段AC 的垂直平分线交x 轴于点E ,垂足为点D ,点M 为抛物线的顶点,在直线DE 上是否存在一点G ,使△CMG 的周长最小?若存在,请求出点G 的坐标;若不存在,请说明理由.参考答案1. (1)解:对于直线y =21x -2, 令y =0,得x =4,令x =0,得y =-2, ∴点A (4,0),点C (0,-2),抛物线的解析式为y = -21x 2+25x -2 ∴顶点D 的坐标为(25,98 ),对称轴l 为直线x = 25(2)要求点E 的坐标,已知AE =CE ,设E 点坐标为(e ,0),用含e 的式子分别表示出AE 和CE ,建立等量关系求解即可.点E 的坐标为( 23,0)(3)要使GD +GB 的值最小,一般是通过轴对称作出对称点来解决. 解:存在.如解图②,要使GD +GB 的值最小,取点B 关于y 轴的对称点B ′,点B ′的坐标为(-1,0).连接B ′D ,直线B ′D 与y 轴的交点G 即为所求的点,点G 的坐标为(0, 289);(4)要使△BCF 周长最小,BC 长为定值,即要使CF +BF 的值最小.△BCF 周长的最小值为BC +AC =3 √5 ;(5)要求△BSK 周长的最小值,可分别作点B 关于y 轴和直线AC 的两个对称点B ′、B ″,连接B ′B ″与y 轴和直线AC 交点即为使得△BSK 的周长最小的点S 、K ,最小值即线段B ′B ″的长.存在点S (0,-43 ),点K (1, - 23 )使得△BSK 的周长最小,最小值为4;(6)当点S 在DB 的延长线上时,SD -SB 最大,最大值为BD , 即当点S 的坐标为(0,-43)时,SD -SB 的值最大;(7)平行于y 轴的直线上两点之间的距离为此两点的纵坐标之差的绝对值,如此问,由题可得点H 的横坐标为h ,①求出点H ,K 的纵坐标,再由点H 在点K 的上方,可得到d 关于h 的函数关系式;②利用二次函数的性质求最值,即可得d 的最大值及H 点的坐标.(1)d 关于h 的函数关系式为d =-21h 2+2h ; (2)当h =2时,d 最大,最大值为2,此时点H 的坐标为(2,1).参考答案2. 解:(1)在y =-x 2-2x +3中, 令y =0,得-x 2-2x +3=0, 解得x 1=-3,x 2=1. ∵点A 在点B 的左侧, ∴A (-3,0),B (1,0). 令x =0,得y =3, ∴点C 的坐标为(0,3);(2)设直线AC 的表达式为y =kx +b .将A ,C 两点的坐标(-3,0),(0,3)代入表达式,得⎩⎪⎨⎪⎧-3k +b =0,b =3,解得⎩⎪⎨⎪⎧k =1,b =3,∴直线AC 的表达式为y =x +3.(4分) ∵点D 是OA 的中点,∴OD =12OA =32,∴点D 的横坐标m =-32.∵PQ ⊥x 轴,∴把m =-32分别代入y =x +3和y =-x 2-2x +3,得P ,Q 两点的坐标分别为(-32,32)、(-32,154),∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P . ∴PQ =154-32=94;(3)①存在点D ,使得PQ +22PC 取得最大值. 理由:∵点D 的横坐标为m ,PQ ⊥x 轴,且点P ,Q 分别在直线AC 和抛物线上, ∴P ,Q 两点的坐标分别为(m ,m +3),(m ,-m 2-2m +3). ∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P ,∴PQ =-m 2-2m +3-(m +3)=-m 2-3m . 如解图,过点P 作PF ⊥y 轴于点F ,则PF =-m . 在Rt △AOC 中,OA =OC =3, ∴∠CAO =∠OCA =45°.∴sin ∠OCA =PF PC =22.∴PF =22PC ∴PQ +22PC =-m 2-3m -m =-m 2-4m =-(m +2)2+4, ∵PQ +22PC 是m 的二次函数,其中a =-1<0,而-3<m <0. ∴当m =-2时,PQ +22PC 取得最大值;②m =-1或m =- 5.【解法提示】∵△PFE ∽△BOE ,∴PF BO =EFEO.∵PF =-m ,OF =m +3,OB =1,∴EF =-mOE .∵OF =EF +OE ,∴m +3=(-m +1)OE ,则OE =m +3-m +1,EF =-m (m +3)-m +1,又∵CQ =PE ,PQ ∥CE ,∴|y Q -y C |=|y P -y E |=EF .∵|y Q -y C |=|-m 2-2m +3-3|=|m 2+2m |,∴-m (m +3)-m +1=|m 2+2m |.又∵-3<m <0,解得m =-1或m =- 5.3. 解:(1)把x =4,y =n 代入y =-34x +1中,得n =-34×4+1=-2∴点C 的坐标为(4,-2).将点C (4,-2)和点B (0,1)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧-8+4b +c =-2,c =1, 解得⎩⎪⎨⎪⎧b =54,c =1,∴抛物线的表达式为y =-12x 2+54x +1;(2)①∵PE =-12t 2+54t +1-(-34t +1)=-12t 2+2t ,如解图,过点E 作QE ⊥y 轴于点Q ,则QE =t , QB =1+34t -1=34t ,BE =QB 2+QE 2=(34t )2+t 2=54t ∵PE ∥y 轴, ∴∠PEB =∠EBQ , ∵∠BQE =∠PDE =90°, ∴△PED ∽△EBQ ,∴PE EB =PD EQ ,得-12t 2+2t 54t =PDt, PD =-25t 2+85t .∵-25<0,∴PD 有最大值, PD 最大=0-(85)24×(-25)=85;②∵点D 为BE 的中点,∴由PE EB =DE QB ,DE =12BE ,得12BE 2=PE ·QB ,代入得12×(54t )2=(-12t 2+2t )×34t ,整理得2532=-38t +32,解得t =2312,∴当t =2312时,点D 为BE 的中点.4. 解:(1)∵抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),∴将点A 和点B 的坐标代入得⎩⎪⎨⎪⎧a -b +2=0,4a +2b +2=0,解得⎩⎪⎨⎪⎧a =-1,b =1,∴抛物线的表达式为y =-x 2+x +2;(2)直线y =mx +12交抛物线于A 、Q 两点,把A (-1,0)代入解析式得m =12,∴直线AQ 的表达式为y =12x +12.设点P 的横坐标为n ,则P (n ,-n 2+n +2),N (n ,12n +12),F (n ,0),∴PN =-n 2+n +2-(12n +12)=-n 2+12n +32,NF =12n +12.∵PN =2NF ,即-n 2+12n +32=2×(12n +12),解得n =-1或n =12,当n =-1时,点P 与点A 重合,不符合题意舍去.∴点P 的坐标为(12,94);(3)在直线DE 上存在一点G ,使△CMG 的周长最小;此时G (-38,1516).理由如下:∵y =-x 2+x +2=-(x -12)2+94,∴M (12,94).如解图,连接AM 交直线DE 于点G ,连接CG 、CM ,此时,△CMG 的周长最小. 设直线AM 的函数表达式为y =kx +b ,且过A (-1,0),M (12,94).根据题意得⎩⎪⎨⎪⎧-k +b =0,12k +b =94,解得⎩⎨⎧k =32,b =32.∴直线AM 的表达式为y =32x +32.∵D 为AC 的中点,∴D (-12,1).设直线AC 的表达式为y =kx +2,将点A 的坐标代入得-k +2=0,解得k =2, ∴AC 的表达式为y =2x +2.设直线DE 的表达式为y =-12x +c ,将点D 的坐标代入得:14+c =1,解得c =34,∴直线DE 的表达式为y =-12x +34.联立⎩⎨⎧y =-12x +34,y =32x +32,解得⎩⎨⎧x =-38,y =1516.∴在直线DE 上存在一点G ,使△CMG 的周长最小,此时G (-38,1516).。
初中复习方略数学微专题四 二次函数中几何图形线段、周长、面积的最值

抛物线对称轴为直线 x=- 2
=1,
2×(-1)
3k+c=0
设直线 AC 的解析式为 y=kx+c,将 A(3,0),C(0,3)代入,得:
,
c=3
k=-1
解得:
,
c=3
∴直线 AC 的解析式为 y=-x+3,∴P(1,2);
(3)存在.设 P(1,t),①以 AC 为边时,如图 2,∵四边形 ACPQ 是菱形, ∴CP=CA, ∴12+(3-t)2=32+32,解得:t=3± 17 , ∴P1(1,3- 17 ),P2(1,3+ 17 ), ∴Q1(4,- 17 ),Q2(4, 17 ),
1.(2021·天津中考)已知抛物线 y=ax2-2ax+c(a,c 为常数,a≠0)经过点 C(0,- 1),顶点为 D. (1)当 a=1 时,求该抛物线的顶点坐标; (2)当 a>0 时,点 E(0,1+a),若 DE=2 2 DC,求该抛物线的解析式; (3)当 a<-1 时,点 F(0,1-a),过点 C 作直线 l 平行于 x 轴,M(m,0)是 x 轴上 的动点,N(m+3,-1)是直线 l 上的动点.当 a 为何值时,FM+DN 的最小值为 2 10 ,并求此时点 M,N 的坐标.
(2021·常德中考)如图,在平面直角坐标系 xOy 中,平行四边形 ABCD 的 AB 边与 y 轴交于 E 点,F 是 AD 的中点,B、C、D 的坐标分别为(-2,0),(8,0),(13, 10). (1)求过 B、E、C 三点的抛物线的解析式; (2)试判断抛物线的顶点是否在直线 EF 上; (3)设过 F 作与 AB 平行的直线交 y 轴于 Q,M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P,当△PBQ 的面积最大时,求 P 的坐标.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中线段和、差最值问题
姓名:
1、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;并求出周长的最小值;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.
2、如图,△ABC的三个顶点坐标分别为A(-2,0)、B(6,0)、C(0,3
2
-),抛物线y=ax2+bx+c (a≠0)经过A、B、C三点。
(1)求直线AC的解析式;(2)求抛物线的解析式;(3)若抛物线的顶点为D,在直线AC上是否存一点P,使得△BDP的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。
3、如图,已知直线
1
1
2
y x
=+与y轴交于点A,与x轴交于点D,抛物线2
1
2
y x bx c
=++与直
线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。
⑴求该抛物线的解析式;
⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。
⑶在抛物线的对称轴上找一点M,使||
AM MC
-的值最大,求出点M的坐标。
4、如图8,对称轴为直线x =2的抛物线经过点A (-1,0),C (0,5)两点,与x 轴另一交点为B ,已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点.(1)求此抛物线的解析式.(2)当a =1时,求四边形MEFP 面积的最大值,并求此时点P 的坐标.(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.
图8
O A E F B M
C
P
x
y
备用图
A O M C E F x
B y P
5、如图,已知抛物线 经过A(3,0),B(0,4),(1).求此抛物线解析式(2)若抛物线与x 轴的另一交点为C ,求点C 关于直线AB 的对称点C ’ 的坐标(3) 若点D 是第二象限内点,以D 为圆心的圆分别与x 轴、y 轴、直线AB 相切于点E 、F 、H ,问在抛物线的对称轴上是否存在一点一点P ,使得|PH -PA |的值最大?若存在,求出该最大值;若不存在,请说明理由。
A B
C O x
y
A B C O x y D E F H。