学习显示高动态范围的图像

合集下载

图像编码中的动态范围调整技术研究(三)

图像编码中的动态范围调整技术研究(三)

在图像编码技术中,动态范围调整是一项重要的研究领域。

它涉及到对图像的亮度和对比度进行调整,以便在不同的显示设备上达到最佳的显示效果。

一、图像动态范围的定义和作用动态范围是指图像中最亮和最暗部分之间的亮度差异。

在拍摄和显示图像的过程中,由于光照条件和摄像设备的限制,图像的动态范围常常会超出显示设备的范围,导致图像无法完整地显示出所有细节。

动态范围的调整可以提高图像的视觉效果,使得图像在各种显示设备上都能够准确传达出拍摄者的意图。

在摄影领域,摄影师经常使用HDR(High Dynamic Range)技术来拍摄高动态范围的照片,并通过后期处理将其转换为标准动态范围的图像。

二、动态范围调整的方法1. 色调映射色调映射是一种常用的动态范围调整方法。

它通过改变图像的亮度和对比度来调整图像的动态范围。

色调映射可以分为全局映射和局部映射两种。

全局映射是指将图像的整个动态范围按比例缩放,使得最亮部分变为最大亮度,最暗部分变为最小亮度。

这种方法简单直观,但往往无法处理复杂的光照条件和细节。

局部映射是指对图像的不同区域进行不同的亮度和对比度调整。

它可以根据图像的特征和需求,有选择性地调整图像的动态范围。

局部映射可以通过阈值分割、曲线调整等技术实现。

2. 色彩空间转换色彩空间转换是另一种常用的动态范围调整方法。

它通过将图像从RGB色彩空间转换到其他色彩空间,再进行调整后再转换回RGB色彩空间,以改变图像的亮度和对比度。

常用的色彩空间转换方法包括YUV、YCbCr、Lab等。

这些色彩空间通常将亮度分量和色度分量分开处理,可以更加灵活地调整图像的动态范围。

例如,可以通过调整亮度分量来改变图像的明暗程度,通过调整色度分量来改变图像的饱和度。

三、动态范围调整的应用领域动态范围调整技术在许多领域得到广泛应用。

1. 摄影领域在摄影领域,动态范围调整可以使得照片更加真实和生动。

通过HDR技术,摄影师可以拍摄到具有更高动态范围的照片,并通过后期处理将其转换为标准动态范围的图像。

图像编码中的高动态范围处理技巧(四)

图像编码中的高动态范围处理技巧(四)

图像编码中的高动态范围处理技巧随着数字摄影技术的不断发展,越来越多的摄影师和摄影爱好者开始使用高动态范围(High Dynamic Range,简称HDR)技术来捕捉图像。

HDR技术能够在一幅图像中同时保留高亮部分和暗部的细节,使得照片更加真实,更好地还原实景。

然而,在图像编码中,由于HDR图像的数据量巨大,如何高效地处理和编码HDR图像成为了一个值得探讨的问题。

本文将就图像编码中的高动态范围处理技巧进行深入论述。

1. 动态范围压缩技术为了更好地适应亮度范围广泛的HDR图像,我们需要将其动态范围压缩到合适的范围内。

传统的算法中,常使用的动态范围压缩方法有Tone Mapping和Gamma校正。

Tone Mapping是一种将高动态范围图像编码为低动态范围图像的技术。

它通过改变图像的亮度曲线和颜色映射方式,将亮度范围较宽的高动态范围图像映射到较窄的低动态范围图像。

这样做可以减小HDR 图像的数据量,并且保持照片的美感。

常用的Tone Mapping算法有Reinhard、Mantiuk等。

Gamma校正是一种将线性的输入图像映射为非线性的输出图像的技术。

人眼对亮度的感知是非线性的,而相机捕捉到的图像数据是线性变化的。

通过应用Gamma校正,可以使得图像在显示设备上显示出符合人眼感知的亮度。

常见的Gamma校正值有和。

2. 图像压缩算法在图像编码中,压缩是必不可少的环节。

对于HDR图像,由于其数据量巨大,传统的编码算法往往无法满足要求。

因此,我们需要将HDR图像进行压缩,以减小数据量,并且保持图像质量。

无损压缩算法在图像编码中得到了广泛的应用。

JPEG2000是一种常见的无损压缩算法,它在保持图像质量的前提下可将图像的数据量压缩到很小。

对于HDR图像的编码,可以使用基于JPEG2000的无损压缩算法来实现。

此外,还有一种常见的压缩算法是有损压缩算法。

有损压缩算法通过牺牲图像的一些细节来达到更小的数据量。

【计算机应用】_高动态范围图像_期刊发文热词逐年推荐_20140726

【计算机应用】_高动态范围图像_期刊发文热词逐年推荐_20140726

2013年 科研热词 高动态范围 图像处理 高动态范围图像 高低光 边缘保持滤波 视屏流 色阶映射 自适应retinex 算子 相机阵列 灰度范围 图像配准 图像增强 动态光照 光场合成孔径 二重曝光 推荐指数 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2014年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
科研热词 高动态范围图像 高斯混合模型 高动态范围 阶调映射 色阶映射 色调映射 自然度 细节调整 期望最大 映射函数 局部边缘保留滤波器 多尺度分解 双边滤波 动态系数 分层模型 retinex
推荐指数 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号
科研热词 1 高动态图像 2 色调映射算子 3 最新进展
推荐指数 1 1 1
2012年 序号 1 2 3 4 5
科研热词 高动态范围图像 非线性滤波器 局部极值 图像分解 保留边界
推荐指数 1 1 1 1 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2008年 序号
科研热词 1 高动态范围图像 2 调和映射 3 低动态09年 序号 1 2 3 4 5 6 7 8
科研热词 高动态范围显示 高动态范围 色调映射 最小二乘法 去除噪声 体数据 亮度响应曲线 不同程度曝光
推荐指数 1 1 1 1 1 1 1 1

HDR(高动态范围图片)

HDR(高动态范围图片)

HDR 是英⽂ High-Dynamic Range 的缩写,中⽂译名为⾼动态光照渲染。

HDR 可以令3D 画⾯更像真,就像⼈的眼睛在游戏现场中。

在HDR 的帮助下,我们可以使⽤超出普通范围的颜⾊值,因⽽能渲染出更加真实的3D 场景。

HDR (⾼动态范围图⽚)HDR百科名⽚⽬录数字图像处理中的HDR国内的HDR 软件HDR 特效展开编辑本段数字图像处理中的HDR简介 HDR 的全称是High Dynamic Range,即⾼动态范围,⽐如所谓的⾼动态范围图象(HDRI )或者⾼动态范围渲染(HDRR )。

动态范围是指信号最⾼和最低值的相对⽐值。

⽬前的16位整型格式使⽤从“0”(⿊)到“1”(⽩)的颜⾊值,但是不允许所谓的“过范围”值,⽐如说⾦属表⾯⽐⽩⾊还要⽩的⾼光处的颜⾊值。

在HDR 的帮助下,我们可以使⽤超出普通范围的颜⾊值,因⽽能渲染出更加真实的3D 场景。

也许我们都有过这样的体验:开车经过⼀条⿊暗的隧道,⽽出⼝是耀眼的阳光,由于亮度的巨⼤反差,我们可能会突然眼前⼀⽚⽩光看不清周围的东西了,HDR 在这样的场景就能⼤展⾝⼿了。

下⾯是由OpenEXR ⽹站提供的HDR 的⼀个简单例⼦。

OpenEXR 是由⼯业光魔(Industrial Light & Magic )开发的⼀种HDR 标准。

⼯业光魔则是⼀家世界闻名的加州⼯作室,该⼯作室创造过许多惊⼈的CG 和视觉效果,⽐如1977年版的电影《星球⼤战》中的很多特效。

最左边的是原始图⽚,树⽊⾮常暗因为整体曝光受到远处⾼亮光的影响;中间图⽚的亮度提⾼了3级;⽽右边图⽚的亮度提⾼了7级,树⽊的细节很容易辨别,⽽背景极度明亮。

总之简单来说,HDR 可以⽤3句话来概括: 1.亮的地⽅可以⾮常亮 2.暗的地⽅可以⾮常暗 3.亮暗部的细节都很明显 HDR 是⽬前追求画⾯逼真度最新最先进的⼿段。

Crytek 已经准备把它加⼊Far Cry 的1.3补丁中,以及EPIC Games 的史诗⼤作Unreal Tournament 3。

了解电脑显示器的高动态范围(HDR)技术

了解电脑显示器的高动态范围(HDR)技术

了解电脑显示器的高动态范围(HDR)技术在当今数字化时代,电脑显示器在人们的生活和工作中起到了至关重要的作用。

不仅作为我们与电脑交互的窗口,同时也是我们欣赏照片、观看电影和玩游戏的媒介。

然而,随着科技的不断发展,我们对显示器的要求也越来越高。

高动态范围(HDR)技术应运而生,为我们带来了更为逼真和令人陶醉的视觉体验。

一、什么是高动态范围(HDR)技术?高动态范围(HDR)技术是一种提高显示器图像的亮度、对比度和色彩饱和度的技术。

传统的显示器技术在展现图像时有限的动态范围会导致画面细节不够清晰,并且在亮度和暗度的表现上有局限性。

而有了HDR技术之后,显示器能够呈现更广泛的动态范围,让画面的亮度和色彩更加逼真、生动。

二、HDR技术的工作原理HDR技术的核心是对图像信号进行编码和解码,以展现更广阔的动态范围。

当一个支持HDR的显示器接收到一个HDR格式的图像信号时,它会将信号解码后再进行渲染,以确保色彩的准确再现和更高的亮度对比度。

HDR技术通常使用扩展的色彩空间和高位深度来存储和处理图像信息,从而提供更多细节和更真实的色彩。

三、HDR技术的优势和应用1. 提供更真实的色彩和亮度对比度:HDR技术通过提高亮度和对比度,能够呈现更真实的色彩和更丰富的细节,让画面更加逼真。

2. 改善暗部和亮部细节:HDR技术能够准确地展示照片或视频中的暗部和亮部细节,使得观看者能够更清晰地辨认出细微差别。

3. 提升观影和游戏体验:有了HDR技术,观看电影和玩电子游戏将更加震撼人心。

细节更加清晰,色彩更加鲜艳,让人仿佛身临其境。

4. 专业图像处理和设计应用:对于从事图像处理和设计的专业人士来说,HDR技术能够准确地显示和编辑图像,提供更好的工作环境。

四、如何享受HDR技术的乐趣?要享受HDR技术带来的视觉盛宴,首先需要准备一个支持HDR的显示器。

确保显示器与操作系统和软件的兼容性,以便正常使用HDR功能。

同时,可以通过调整显示器设置来优化HDR效果,以适应不同的观看环境和个人喜好。

一种高动态范围图像可视化算法

一种高动态范围图像可视化算法

李 晓光 ,沈兰荪 ,林健文
(. 1 北京 工业 大学 信 号与信 息处理研 究室 , 北京 102 ;2 香 港理 工 大学 电子 工程 及 资讯 学 系 多媒 体 中心 , 00 2 .
香港 )

要 :提 出的 自 应 H R图像 可视 化 算法 中, 入 图像被 分 解 为基 本层 和 细 节层 。该 算 法将 整 体 明暗 效 果 适 D 输
维普资讯
第2 4卷 第 1 1期
20 0 7年 1 1月
计 算 机 应 用 研 究
Ap l a i n Re e r h o mp t r p i to s a c fCo u e s c
Vo. 4 No 1 12 ." 1
No .2 o v o 7
vs aiain ag r h wa e e s r h n d s ly n i l z t oi m sn c sa y w e ipa i g HDR g so h tn a d o t u e ie . n v l lo t m a e n u o l t i e n t e sa d r u p td v c s A o e g r h b s d o ma a i s aila d s t t a no ma in w sp o o e rte d s ly o p t n t i il i fr t a rp s d f ip a f a a sc o o h HDR g s T ea g rtm o l e i ep o lmso ・ i ma e . h o h c u d d a w t t r be f l i l hh O v r l i r si n p e e v t n a d v s a e al r p o u t n h a e of ew e h s w s e o l e a h e e a- e a mp e so rs r ai i l d ti r d ci .T e t d . f b t e n t e e t o i u sc u d b c iv d ab l o n u se o r s l a c h o g h d p iee h n e n fd ti .E p r n a e u t s o h u e o e o a c f h p ra h i r s n e tr u h t e a a t n a c me to ea l v s x e me tl s ls h w t e s p r r r r n eo e a p o c nt m i r i pfm t e o iu u l y f sa q ai . v l t

如何处理高动态范围的场景

如何处理高动态范围的场景

如何处理高动态范围的场景拍摄一副照片,如何从一幅静态的图像中传达出动态的感觉?如何捕捉到高动态范围的场景,让每一个细节都清晰可见?本文将为您详细介绍如何处理高动态范围(HighDynamicRange,简称HDR)的场景。

什么是高动态范围?高动态范围指的是相机或摄影所能捕捉到的光线范围之宽度。

在现实生活中,我们会经常遇到一些明暗对比很大的场景,比如夜晚的城市灯光与黑暗的天空,或者是室内明亮的光线与窗外的阳光。

这些场景的亮度差异很大,如果只使用普通的相机拍摄,很难同时捕捉到细节丰富的亮部和暗部。

如何处理高动态范围的场景?处理高动态范围的场景有多种方法,下面将为您介绍一些常用的技巧。

1.使用HDR模式拍摄现在的相机大多都内置了HDR模式,通过拍摄多张不同曝光度的照片,然后将它们合成成一张照片。

使用HDR模式可以更好地捕捉到高亮和低亮区域的细节,使得整个场景看起来更加平衡。

2.后期处理如果您使用的相机没有HDR模式,或者想要更好地控制照片的效果,那么后期处理是一个不错的选择。

现在市面上有很多专业的图像处理软件,比如AdobeLightroom和Photoshop等,它们提供了丰富的功能,可以帮助您调整照片的亮度、对比度和色彩等参数。

在后期处理中,可以使用曝光融合、色调映射和阴影/高光恢复等技术,将暗部和亮部的细节都呈现出来。

还可以通过调整饱和度和色彩平衡等参数,使得照片更加生动和自然。

3.使用滤镜除了HDR模式和后期处理,还可以使用滤镜来处理高动态范围的场景。

滤镜可以降低亮度,增加对比度,使得暗部和亮部都能够得到适当的展示。

常用的滤镜包括中灰滤镜和渐变灰滤镜等,它们可以帮助您在拍摄时就达到更好的动态范围。

处理高动态范围的场景需要一定的技巧和方法,无论是使用相机的HDR模式,还是通过后期处理或滤镜来调整照片,都可以让您的照片更加生动和细腻。

希望本文对您有所启发,让您在拍摄高动态范围的场景时能够做出更好的作品。

学习Photoshop中的高动态范围和HDR照片合成方法

学习Photoshop中的高动态范围和HDR照片合成方法

学习Photoshop中的高动态范围和HDR照片合成方法高动态范围(High Dynamic Range,简称HDR)照片合成是一种将不同曝光度的多张照片合成为一张高质量照片的技术。

这种技术可以帮助摄影师捕捉到更大范围的亮度和色彩细节,从而创造出更加真实而丰富的图像效果。

在本篇教程中,我将向大家介绍使用PhotoShop软件进行HDR照片合成的方法和技巧。

首先,我们需要准备多张不同曝光度的照片。

这些照片应该覆盖到您想要呈现的整个亮度范围。

通常情况下,从一个过曝光的照片到一个欠曝光的照片应该有至少3-5个不同的曝光度级别。

您可以使用相机的曝光补偿功能来拍摄这些照片,或者使用不同快门速度拍摄同一场景。

确保在拍摄期间相机位置、对焦和白平衡等参数保持一致。

接下来,我们将打开PhotoShop软件并导入这些照片。

在PhotoShop主界面上,单击“文件”菜单,然后选择“脚本”和“图像处理器”选项。

在“图像处理器”对话框中,单击右上角的“浏览”按钮,选择您准备好的HDR照片。

确保选中“打开图像”复选框,这将帮助您在处理照片时自动打开它们。

然后单击“OK”按钮。

在接下来的对话框中,您可以选择处理照片的输出设置。

在“处理操作”下拉菜单中,选择“合并到HDR Pro”。

然后,您可以选择合适的色彩空间和位深度。

对于大多数普通照片,选择“ProPhoto RGB”色彩空间以及16位的位深度会给予您足够的灵活性。

单击“OK”按钮后,HDR Pro对话框将打开。

在此对话框中,您可以调整HDR照片的各种设置。

您可以尝试调整“曝光”、“恢复高光”、“恢复阴影”和“饱和度”等选项,以获得最佳的图像效果。

还可以使用“干扰消除”选项来减少图像中的噪点。

完成设置后,单击“OK”按钮,PhotoShop将会合成HDR照片,并将其显示在主界面上。

接下来,您可以对合成后的HDR照片进行进一步的调整和编辑。

例如,您可以使用曲线工具来调整图像的亮度和对比度。

高动态范围图像的生成与显示方法研究

高动态范围图像的生成与显示方法研究

像的生成及显示方面的论文,详细介绍他们的思路及实现过程, 非线性处理和伽马校正等处理对原始图像的破坏, 该系统使用
分析优劣,指出相关方法的优缺点。
RAW 格式图像进行后续处理。在每一步融合过程中,为了保证
1 高动态范围图像的生成
图像全局和局部稳定性, 该系统分别使用了全局稳定算法和局 部稳定算法,全局稳定算法自动检测并避开处于饱和态的像素,
图片的完整系统模型, 该系统首先融合几张不同曝光度的原始 图像获取场景的光强度信息, 并通过反复边缘检测来拓展图像 在不同的亮度等级下的细节信息, 然后利用色阶重建进行边缘 优化,最后通过局部对比度增强完善高动态图像。在原始低动态
图像的生成、显示和压缩等方面,本文将整理有关高动态范围图 图像获取过程中, 为了避免商用相机在拍摄过程中自带的色阶
低动态特性高动态范围图片的显示也十分棘手,本文将介绍并分析近年来有关高动态范围图像的生成及显示方法,比较其
优劣,并对典型方法进行详细论述。
关键词: 高动态范围图像; 曝光度; 全局算子; 局部算子
中图分类号: TP391
文献标识码: A
Abstract: The large dynamic range of high dynamic range (HDR) images make the capturing HDR image difficult using the typical
2008 年Wen-Chung Kao 提出了一个可以获取高动态范围
创 到烈日当空的正午,其动态范围可达亿级,然而普通的打印及显
示设备可表示的动态范围仅仅只有 100:1。因而高动态范围图
新 像的生成与显示都非常困难。近年来国内国外高度关注高动态
范围图像的研究,出现了大量的相关论文,尤其是在高动态范围

基于深度学习的高动态范围图像色调映射方法及其系统[发明专利]

基于深度学习的高动态范围图像色调映射方法及其系统[发明专利]

专利名称:基于深度学习的高动态范围图像色调映射方法及其系统
专利类型:发明专利
发明人:廖广森,罗鸿铭,侯贤旭,邱国平
申请号:CN201910340157.1
申请日:20190425
公开号:CN110197463A
公开日:
20190903
专利内容由知识产权出版社提供
摘要:本发明公开了基于深度学习的高动态范围图像色调映射方法及其系统,所述方法包括步骤:构建色调映射网络框架;输入高动态范围图像后进行预处理,并通过基于全局的感官特征损失函数和基于局部的直方图特征损失函数计算总的损失函数;根据总的损失函数对色调映射网络框架进行训练网络;当训练结果收敛时,停止训练并得到色调映射网络的输出。

由于本发明中的神经网络框架,既可以对基于直方图的两个代价函数进行优化,又能端对端地实现色调映射,解决小区域间的边界问题,直接获得高质量的低动态范围图像。

申请人:深圳大学
地址:518060 广东省深圳市南山区南海大道3688号
国籍:CN
代理机构:深圳市君胜知识产权代理事务所(普通合伙)
更多信息请下载全文后查看。

关于HDRI的较全面介绍

关于HDRI的较全面介绍

关于HDRI的较全面介绍HDRI(High Dynamic Range Imaging)是一种用于捕捉和呈现广泛动态范围的图像的技术。

它涉及通过使用一种特殊的相机或多个曝光不同的图像来捕获广泛的亮度范围,并将这些图像合成为单个高动态范围图像。

这种技术在许多领域中都得到了广泛的应用,包括摄影、电影制作、虚拟现实和计算机图形学等。

在传统的数字图像中,每个像素只能保存固定范围的颜色和亮度值。

这导致当场景的亮度范围超过相机的感光范围时,图像中的部分区域将变得过暗或过曝光,丧失了细节和信息。

HDRI的目标是通过捕捉比传统图像更广泛亮度范围的数据,提供更逼真和真实的图像。

HDRI的基本原理是通过在不同的曝光值下拍摄多个图像来捕获场景的各个部分的细节。

这通常包括低曝光的图片来捕捉暗部细节,中等曝光的图片来捕捉中间亮度的细节,和高曝光的图片来捕捉亮部细节。

然后,通过将这些图像合成为一个高动态范围图像,可以将细节从不同的曝光级别中整合到一个图像中。

HDRI图像可以用于多种目的,包括照片合成、虚拟现实环境生成和计算机图形渲染。

在照片合成方面,可以将HDRI背景与前景的人物或物体合并,以创建逼真的图像。

虚拟现实环境生成中,HDRI可用于创建真实的光照环境,以增强用户在虚拟环境中的体验。

在计算机图形渲染中,使用HDRI可以模拟真实世界的光照和材质反射,使生成的图像更加真实和逼真。

除了拍摄HDRI图像外,还有一种常用的技术叫做HDRI照明。

这种方法使用预先拍摄的HDRI图像来模拟真实世界的光照条件。

通过在渲染中应用HDRI照明,可以更加准确地模拟光源和反射,使生成的图像看起来更加真实。

总的来说,HDRI是一种用于捕获和呈现广泛动态范围图像的技术。

它通过拍摄和合成多个曝光级别的图像,提供了更真实和逼真的图像,并广泛应用于摄影、电影制作、虚拟现实和计算机图形学等领域。

通过使用HDRI,我们可以创建更加真实和生动的图像,使用户能够更好地体验到丰富的光照和场景细节。

摄影技巧教程拍摄高动态范围场景的技巧

摄影技巧教程拍摄高动态范围场景的技巧

摄影技巧教程拍摄高动态范围场景的技巧摄影技巧教程:拍摄高动态范围场景的技巧摄影是一门艺术,也是一项技术。

在不同的场景下,摄影师需要运用不同的技巧和知识来捕捉和表达真实世界的美。

其中,拍摄高动态范围(High Dynamic Range,简称HDR)场景是一项具有挑战性的任务。

本文将介绍一些技巧,帮助你在摄影中有效地捕捉高动态范围场景。

一、选用合适的设备首先,选择合适的设备是拍摄HDR场景的基础。

相机的动态范围越大,拍摄HDR场景的效果就越好。

因此,推荐使用具有较高动态范围的全画幅相机或中画幅相机。

此外,使用一支稳定的三脚架能够确保拍摄的稳定性,避免图像模糊。

二、合理设置曝光在拍摄HDR场景时,最重要的是合理设置曝光。

由于高动态范围场景的亮度差异较大,单张照片很难捕捉到全部细节。

因此,我们需要进行多张曝光拍摄。

常用的方法是进行三张或五张曝光拍摄,分别曝光于过曝、适中和欠曝的区域。

通过后期合成,可以得到一张完整细节的图像。

三、使用RAW格式拍摄拍摄HDR场景时,使用RAW格式拍摄能够提供更大的后期处理空间。

RAW格式文件包含了原始的感光元数据,可以在后期调整曝光、白平衡和对比度等参数,更好地还原场景的细节。

四、适当使用滤镜滤镜是摄影师在拍摄高动态范围场景时的有力工具。

渐变中性密度滤镜和偏振镜是两种常用的滤镜。

渐变中性密度滤镜可以帮助控制场景的动态范围,使暗部和亮部的细节都能够得到保留。

偏振镜可以减少反射和提高色彩饱和度,增强拍摄效果。

五、合理运用后期处理技巧后期处理是拍摄HDR场景的重要环节。

在选择合适的后期处理软件时,可以考虑使用功能强大的HDR软件,如Photomatix、Adobe Lightroom等。

通过调整曝光、对比度、曲线和色彩平衡等参数,可以进一步提升图像的质量,并使得整个场景更加真实。

六、拍摄细节和构图除了技术方面的要求,拍摄HDR场景还需要注意细节和构图。

合理选择主题,并通过角度选择、明暗对比和线条组合等手法,创造一个吸引人的画面。

高动态范围图像的原理与应用

高动态范围图像的原理与应用

高动态范围图像原理与应用摘要:主要阐述了高动态范围图像的概念、编码方式、合成方式、合成原理以及显示方式。

关键字:高动态范围图像、HDR第一章概要1.1数字图像成像传统胶片成像过程是基于光化学理论。

在相机拍摄时,光线通过相机镜头到达胶片的感光晶体卤化银上,引起胶片的光学密度发生变化,曝光量越大,光学密度越小,呈现非线性关系。

再经过扫描、数字化等非线性处理转换成数字图像。

与胶片成像不同,现在普遍使用的数码相机是利用影像传感器(一般是CCD和CMOS)把接收到的光信号通过图像传感器上的光敏单元离散成正比于曝光量的成千上万个像素点,并转换成模拟电压信号,再经过模拟/数字转换处理后变成数字信号,最后经过微处理器的非线性运算转换成图像的标准存储格式如BMP、JPEG、TIFF等存储在物理介质上(如图1-1所示)。

图1-1数字图像成像流程图1-1描述了典型的现代数码相机成像的流程。

流程图中一系列的转换过程可是看作非线性的映射关系,最后形成了每通道8位表示的图像。

1.2数字图像中的动态范围动态范围(Dynamic Range)在很多领域用来表示某个变量最大值与最小值的比率。

在数字图像中,动态范围也被称为对比度,表示了在图像可显示得范围内最大灰度值和最小灰度值之间的比率。

对真实世界中的自然在场景来说,动态范围代表了最亮的光照亮度和最暗光照亮度的比。

目前大部分的彩色数字图像中,R、G、B各通道分别使用一个字节8位来存储,也就是说,各通道的表示范围是0~255灰度级,这里的0~255就是图像的动态范围。

由于真实世界中同一场景中动态范围变化很大,我们称之为高动态范围(high dynamic range, HDR),相对的普通图片上的动态范围为低动态范围(low dynamic range,LDR)。

数码相机的成像过程实际上就是真实世界的高动态范围到相片的低动态范围的映射。

这往往是一个非线性的过程(图1-2)。

图1-2动态范围映射1.3高动态范围图像获取方式及其编码方式传统数字图像各通道256个等级灰度所表示的色差范围十分有限。

如何处理高动态范围的场景

如何处理高动态范围的场景

如何处理高动态范围的场景在摄影和电影制作中,我们经常会面临高动态范围(High Dynamic Range,简称HDR)的场景。

这些场景通常是指光照条件极其复杂、光亮和阴暗区域共存的情况。

处理好这些场景对于产生高质量的图像和视频至关重要。

本文将介绍如何处理高动态范围的场景,包括拍摄技巧和后期处理方法。

拍摄技巧使用逆光补偿在面对高动态范围的场景时,使用逆光补偿是一种常见的技巧。

通过调整相机的曝光补偿值,我们可以抑制过亮或过暗的区域,以获得更好的画面表现。

对于过亮区域,逆光补偿可以减小曝光时间,使得细节更加清晰可见;对于过暗区域,逆光补偿可以增大曝光时间,提升细节的呈现。

利用滤镜另一种处理高动态范围场景的方法是使用滤镜。

适当选择合适的滤镜可以有效地平衡明暗部分的亮度差异。

例如,使用渐变灰镜可以降低天空部分的亮度,使得整个画面更加均衡;使用极性滤镜可以减少反射和增强颜色饱和度。

多次曝光合成对于特别复杂的场景,多次曝光合成是一种很有效的处理方法。

通过在不同曝光下拍摄多张照片,并在后期将这些照片合成一张,我们可以同时捕捉到亮部和暗部的细节。

这种方法需要使用三脚架或稳定器以确保每次拍摄时相机位置保持一致。

后期处理方法使用HDR软件在后期处理高动态范围场景时,一个常见的方法是使用专门设计用于处理HDR图像的软件。

这些软件通常具有丰富的工具和算法,能够将多个曝光下的照片合并成一张具有更广泛动态范围的图像。

通过调整软件中提供的参数和算法,我们可以根据个人需求调整最终输出结果。

融合多张曝光另一种后期处理高动态范围场景的方法是通过融合多张曝光来达到更好的效果。

这种方法需要使用图像编辑软件,将不同曝光下拍摄得到的照片进行层叠或混合处理。

通过调整每个图层的透明度或使用蒙版工具,我们可以选择保留或隐藏特定区域,以达到最佳结果。

色调映射色调映射是一种非常实用的后期处理技术,用于将高动态范围图像转换为低动态范围输出(如显示器或打印机所能显示)。

monitor hdr metadata处理 -回复

monitor hdr metadata处理 -回复

monitor hdr metadata处理-回复HDR(High Dynamic Range)是指高动态范围的图像显示技术,它能够捕捉和显示比标准图像(SDR)更广泛的亮度范围和色彩深度。

随着HDR 技术在电视、电影和游戏中的应用越来越普遍,处理HDR元数据(HDR Metadata)成为一个重要的话题。

本文将一步一步回答如何处理HDR元数据。

第一步:了解HDR元数据的作用和类型HDR元数据是一组描述高动态范围图像的参数,它指导显示设备对图像进行适当的调整和显示。

通过HDR元数据,可以实现对画面的亮度、对比度、颜色空间和色彩深度等方面的精确控制。

常见的HDR元数据类型包括静态元数据和动态元数据。

静态元数据是预定义的参数,适用于整个视频或图像,而动态元数据则可以根据内容的不同进行调整。

第二步:了解常见的HDR元数据格式HDR元数据可以使用多种格式存储和传输,常见的格式包括SMPTE ST 2086、CEA 861.3和Dolby Vision等。

SMPTE ST 2086是一种广泛采用的HDR元数据格式,它定义了视频的最大和最小亮度值、参考白点和参考黑点等参数。

CEA 861.3是针对HDMI接口的HDR元数据格式,它补充了SMPTE ST 2086中的一些参数,并添加了一些额外的参数。

而Dolby Vision是一种封装了HDR元数据的高级格式,它不仅包含图像处理的参数,还包括了动态元数据和场景分析信息。

第三步:理解HDR元数据的处理流程在处理HDR元数据时,需要进行以下几个步骤:1. 元数据解析:首先,需要解析出HDR元数据中的各种参数,包括亮度范围、颜色空间和色彩深度等。

这一步通常由显示设备或播放软件完成。

2. 参数映射:接下来,需要将解析出的元数据参数映射到显示设备的能力范围内。

例如,如果显示设备的最大亮度低于视频中定义的最大亮度,就需要进行动态调整。

3. 图像处理:根据元数据参数,对输入图像进行适当的处理。

高动态范围图像技术相关介绍与应用前景

高动态范围图像技术相关介绍与应用前景

高动态范围图像技术相关介绍与应用前景作者:王祥骏 2009301760019作者单位:武汉大学印刷与包装系摘要: 高动态范围图像技术用于解决通过显示设备显示时,遇到的动态范围不匹配的问题。

高动态范围图像的获取方式以及色阶映射算子。

关键词: HDR 图像; 阶调映射算法; 色阶映射算子。

引言高动态范围图像(High dynamic range image,HDRI) 技术用于解决通过显示设备显示时,遇到的动态范围不匹配的问题. 电子影像采集设备所能正确再现的影像亮度范围通常有限,会导致被采集景物影像的部分阶调层次损失。

高动态范围图像则能较好再现被摄对象在大亮度范围内的阶调层次。

目前主流的CRT 显示器所能产生的亮度范围大约是1 cd/m2 .100 cd/m2, 虽然动态范围很窄, 但是已经足以应付大多数低动态范围图像的显示要求, 并且效果也基本令人满意. 而相对于高动态范围图像的亮度范围(0.001 cd/m2 .100 000 cd/m2), 显示器所能产生的亮度范围显得过于狭窄, 如果将图像的动态范围线性压缩到显示器的响应范围来显示, 所得到的观赏效果跟原始场景相去甚远.高动态范围图像的获取高动态范围图像的获取一般有两种方式: 1) 用图像传感器捕获的方式; 2) 图像合成的方式. 在计算机图形学领域, 整体光照度方法(辐射度方法, 光线跟踪算法等) 大多计算的是场景的真实辐射值, 而不是最终的显示亮度值, 因而动态范围会非常宽广.下面主要讨论如何通过摄像手段来捕获高动态范围图像.多次曝光图像序列Mann和Debevec意识到虽然目前的传感器动态范围有限, 但是通过对同一个场景使用不同的曝光量拍摄多幅图像, 高曝光图像采集场景中暗的部分, 低曝光图像采集场景中亮的部分, 再通过特定的算法就可以从这一系列图像中大致恢复出真实场景的动态范围. 在这个过程中, 首先要恢复底片或数码相机的响应曲线, 这是因为底片的光响应曲线是非线性的, 而数码相机的感光器件在动态范围内的光响应虽然是线性的, 但通常得到的图像却是传感器原始输出图像的非线性变换. 不过现在的大多数数码相机都能够提供原始像素格式(RAW pixel)的图像, Madden就是通过RAW pixel 图像直接恢复出了原始的高动态范围场景. 假定一幅图像I1,其中等亮度的细节能很好地分辨, 而明亮部分曝光过度呈现全白, 阴暗部分曝光不足无法分辨, 适当增加和减小曝光量再各拍一幅图像I2 和I3. 对于I2,I1 中曝光不足的部分得到了明显的改善; 同样对于I3, I1 中曝光过度的部分细节也能够分辨. 而在传感器线性响应范围内, 图像像素点的亮度与曝光量和该点的场景辐射强度成线性关系, 对于同一场景点,辐射强度是不变的, 那么根据曝光量综合I1, I2 和I3 的可分辨区域, 进行简单的线性运算就能恢复出整个场景的细节. 由于这种方法需要拍摄多幅图像,成像速度很慢, 所以只适合于拍摄静态的场景.光束分离Aggarwal在2001 年提出了光束分离的方法,并且研制出了原理性样机, 这种方法的原理和上述的多次曝光图像序列基本一致, 也是采用对同一场景的多个不同曝光的图像来恢复原始场景. 不过前者采集的过程有先有后, 是一个时间序列; 而后者由于采用了特定的光路, 使所有的图像能够一次性获得, 从而大大提高了成像速度, 可以用于动态场景的拍摄.使用一个6 面的分光棱镜将光线分成6 束, 每个分光面对应一个传感器, 这样就可以通过设定每个传感器的曝光时间或者采用非均匀的分光方式得到一组曝光量各不相同的图像.1.1.3 高动态范围图像传感器常见的8 bit 灰度图像的动态范围只有48 db,这一方面是因为传感器本身的动态范围低, 另一方面是为了降低成本, A/D 转换器的分辨力也只有8位. 近年来半导体技术的发展使图像传感器动态范围有了很大的提高, 比如Dlasa公司的高性能CCD, 线性动态响应范围达到了72 db (4 000 : 1),Fairchild 公司的科学级CCD的动态范围达到了83 db (14 000 : 1), 而Hamamatsu 公司的S10140/10141系列, 标称的动态范围达到了90 db(30 000 : 1). 但是这仍然不足以捕捉真正的高动态范围图像, 于是一些新型的传感器应运而生.人类视觉系统(Human visual system, HVS)有一整套完整高效的自动调节机制, 瞳孔会自动根据光线的强弱变大或变小以调节通过的光通量, 此外视网膜能根据投射到该区域的辐射强度自动调节视锥细胞的敏感度. 受到这一机理的启发, Chen 和Ginosar开发了一种Adaptive SensitivityTM CCD图像传感器, 这种传感器每个像素的灵敏度都是可以控制的(通过控制曝光时间), 并且研制出了9£16的试验性芯片.Nayar和Mitsunaga提出了一种空域变曝光像素(Spatially varying pixel exposures, SVE)的方法, 如图2 所示的像素阵列中有灰度不同的四种方格(e0; e1; e2; e3), 分别代表四种不同敏感度的像素, 越亮的表示敏感度越高(e0 < e1 < e2 < e3). 当某个像素饱和时, 可能它邻近的某个像素没有饱和,反之,当某个像素输出为零时, 它邻近的某个像素可能输出为非零. 像素敏感度在空间域变化的同时对动态范围进行了采样, 这样就可以利用邻近像素的信息估算出当前像素的实际值, 从而得到真实场景的高动态范围图像.高动态范围图像的编码格式高动态范围图像由于具有极广的灰阶和色域,传统的24-bit RGB 图像编码格式已经不足以描述如此之多的信息量, 简单地用浮点数来表示又需要很大的存储空间, 因此急需开发一种简单高效的编码方式. 不同的研究领域为了特定的应用需求采用了不同的格式, 如计算机图形学领域的RGBE 和OpenEXR格式, 摄影领域的RAW 格式, 医学成像领域的DICOM 格式, 电影摄影学领域的DPX 格式. 即使是同一种格式(例如RAW 格式), 不同厂家的标准也不太一样, 这样不利于信息的交流, 给使用者造成了很大的不便. 最具代表性的编码格式有如下几种:1) Pixar 33-bit log-encoded TIFF;2) RGBE and XYZE radiance 32-bit;3) IEEE 96-bit TIFF & portable FloatMap;4) 16-bit/sample TIFF;5) LogLuv TIFF;6) ILM 48-bit OpenEXR format.色阶映射算子为了解决真实场景和显示设备动态范围不匹配的矛盾, 近年来国外的许多学者提出了各种各样所谓的色阶映射算子(Tone mapping operator,TMO).HDR 图像是一种与真实场景相关,包含了更多颜色信息的图像类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pattern Recognition 40(2007)2641–2655/locate/prLearning to display high dynamic range imagesGuoping Qiu a ,∗,Jiang Duan a ,Graham D.Finlayson ba School of Computer Science,The University of Nottingham,Jubilee Campus,Nottingham NG81BB,UKb School of Computing Science,The University of East Anglia,UKReceived 27September 2005;received in revised form 10April 2006;accepted 14February 2007AbstractIn this paper,we present a learning-based image processing technique.We have developed a novel method to map high dynamic range scenes to low dynamic range images for display in standard (low dynamic range)reproduction media.We formulate the problem as a quantization process and employ an adaptive conscience learning strategy to ensure that the mapped low dynamic range displays not only faithfully reproduce the visual features of the original scenes,but also make full use of the available display levels.This is achieved by the use of a competitive learning neural network that employs a frequency sensitive competitive learning mechanism to adaptively design the quantizer.By optimizing an L 2distortion function,we ensure that the mapped low dynamic images preserve the visual characteristics of the original scenes.By incorporating a frequency sensitive competitive mechanism,we facilitate the full utilization of the limited displayable levels.We have developed a deterministic and practicable learning procedure which uses a single variable to control the display result.We give a detailed description of the implementation procedure of the new learning-based high dynamic range compression method and present experimental results to demonstrate the effectiveness of the method in displaying a variety of high dynamic range scenes.᭧2007Pattern Recognition Society.Published by Elsevier Ltd.All rights reserved.Keywords:Learning-based image processing;Quantization;High dynamic range imaging;Dynamic range compression;Neural network;Competitive learning1.IntroductionWith the rapid advancement in electronic imaging and com-puter graphics technologies,there have been increasing interests in high dynamic range (HDR)imaging,see e.g.,Ref.[1–17].Fig.1shows a scenario where HDR imaging technology will be useful to photograph the scene.This is an indoor scene of very HDR.In order to make features in the dark areas visible,longer exposure had to be used,but this rendered the bright area saturated.On the other hand,using shorter exposure made features in the bright areas visible,but this obscured features in the dark areas.In order to make all features,both in the dark and bright areas simultaneously visible in a single image,we can create a HDR radiance map [3,4]for the ing the technology of Ref.[3],it is relatively easy to create HDR maps for high dynamic scenes.All one needs is a sequence of low∗Corresponding author.Fax:+441159514254.E-mail address:qiu@ (G.Qiu).0031-3203/$30.00᭧2007Pattern Recognition Society.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.patcog.2007.02.012dynamic range (LDR)photos of the scene taken with different exposure intervals.Fig.2shows the LDR display of the scene in Fig.1mapped from its HDR radiance map,which has been created using the method of [3]from the photos in Fig.1.It is seen that all areas in this image are now clearly visible.HDR imaging technology has also been recently extended to video [13,14].Although we can create HDR numerical radiance maps for high dynamic scenes such as those like Fig.1,reproduction devices,such as video monitors or printers,normally have much lower dynamic range than the radiance map (or equivalently the real world scenes).One of the key technical issues in HDR imaging is how to map HDR scene data to LDR display values in such a way that the visual impressions and feature details of the original real physical scenes are faithfully reproduced.In the literature,e.g.,Refs.[5–17],there are two broad categories of dynamic range compression techniques for the dis-play of HDR images in LDR devices [12].The tone reproduc-tion operator (TRO)based methods involve (multi-resolution)spatial processing and mappings not only take into account the2642G.Qiu et al./Pattern Recognition 40(2007)2641–2655Fig.1.Low dynamic range photos of an indoor scene taken under different exposureintervals.Fig.2.Low dynamic display of high dynamic range map created from the photos in Fig.1.The dynamic range of the radiance map is 488,582:1.HDR radiance map synthesis using Paul Debevec’s HDRShop software (/HDRShop/).Note:the visual artifacts appear in those blinds of the glass doors were actually in the original image data and not caused by the algorithm.values of individual pixel but are also influenced by the pixel spatial contexts.Another type of approaches is tone reproduc-tion curve (TRC)based.These approaches mainly involve the adjustment of the histograms and spatial context of individual pixel is not used in the mapping.The advantages of TRO-based methods are that they generally produce sharper images when the scenes contain many detailed features.The problems with these approaches are that spatial processing can be computa-tionally expensive,and there are in general many parameters controlling the behaviors of the operators.Sometimes these techniques could introduce “halo”artifacts and sometimes they can introduce too much (artificial)detail.TRC-based methods are computationally simple.They preserve the correct bright-ness order and therefore are free from halo artifacts.These methods generally have fewer parameters and therefore are eas-ier to use.The drawbacks of this type of methods are that spa-tial sharpness could be lost.Perhaps one of the best known TRC-based methods is that of Ward and co-workers’[5].The complete operator of Ref.[5]also included sophisticated models that exploit the limita-tions of human visual system.According to Ref.[5],if one just wanted to produce a good and natural-looking display for an HDR scene without regard to how well a human ob-server would be able to see in a real environment,histogram adjustment may provide an “optimal”solution.Although the histogram adjustment technique of Ref.[5]is quite effective,it also has drawbacks.The method only caps the display contrast(mapped by histogram equalization)when it exceeds that of the original scene.This means that if a scene has too low contrast,the technique will do nothing.Moreover,in sparsely populated intensity intervals,dynamic range compression is achieved by a histogram equalization technique.This means that some sparse intensity intervals that span a wide intensity range will be com-pressed too aggressively.As a result,features that are visible in the original scenes would be lost in the display.This un-satisfactory aspect of this algorithm is clearly illustrated in Figs.9–11.In this paper,we also study TRC-based methods for the dis-play of HDR images.We present a learning-based method to map HDR scenes to low dynamic images to be displayed in LDR devices.We use an adaptive learning algorithm with a “conscience”mechanism to ensure that,the mapping not only takes into account the relative brightness of the HDR pixel val-ues,i.e.,to be faithful to the original data,but also favors the full utilization of all available display values,i.e.,to ensure the mapped low dynamic images to have good visual contrast.The organization of the paper is as follows.In the next section,we cast the HDR image dynamic range compression problem in an adaptive quantization framework.In Section 3,we present a solution to HDR image dynamic range compression based on adaptive learning.In Section 4,we present detailed imple-mentation procedures of our method.Section 4.1presents re-sults and Section 4.2concludes our presentation and briefly discusses future work.2.Quantization for dynamic range compressionThe process of displaying HDR image is in fact a quantiza-tion and mapping process as illustrated in Fig.3.Because there are too many (discrete)values in the high dynamic scene,we have to reduce the number of possible values,this is a quantiza-tion process.The difficulty faced in this stage is how to decide which values should be grouped together to take the same value in the low dynamic display.After quantization,all values that will be put into the same group can be annotated by the group’s index.Displaying the original scene in a LDR is simply to rep-resent each group’s index by an appropriate display intensity level.In this paper,we mainly concerned ourselves with the first stage,i.e.,to develop a method to best group HDR values.Quantization,also known as clustering,is a well-studied subject in signal processing and neural network literature.Well-known techniques such as k -means and various neural network-based methods have been extensively researched [18–21].Let x(k),k =1,2,...,be the intensities of the luminance compo-nent of the HDR image (like many other techniques,we only work on the luminance and in logarithm space,also,we treatG.Qiu et al./Pattern Recognition 40(2007)2641–26552643QuantizationInputHigh dynamic range data (real values)1x xMappingDisplaying Intensity LevelsFig.3.The process of display of high dynamic range scene (from purely anumerical processing’s point of view).each pixel individually and therefore are working on scalar quantization).A quantizer is described by an encoder Q ,which maps x(k)to an index n ∈N specifying which one of a small collection of reproduction values (codewords)in a codebook C ={c n ;n ∈N }is used for reconstruction,where N in our case,is the number of displayable levels in the LDR image.There is also a decoder Q −1,which maps indices into reproduction values.Formally,the encoding is performed as Q(x(k))=n if x(k)−c n x(k)−c i ∀i (1)and decoding is performed as Q −1(n)=c n .(2)That is (assuming that the codebook has already been de-signed),an HDR image pixel is assigned to the codeword that is the closest to it.All HDR pixels assigned to the same code-words then form a cluster of pixels.All HDR pixels in the same cluster are displayed at the same LDR level.If we order the codewords such that they are in increasing order,that is c 1<c 2<···<c N −1<c N ,and assign display values to pixels belonging to the clusters in the order of their codeword values,then the mapping is order preserving.Pixels belonging to a clus-ter having a larger codeword value will be displayed brighter than pixels belonging to a cluster with a codeword having a smaller value.Clearly,the codebook plays a crucial role in this dynamic range compression strategy.It not only determines which pix-els should be displayed at what level,it also determines which pixels will be displayed as the same intensity and how many pixels will be displayed with a particular intensity.Before we discuss how to design the codebook,lets find out what require-ments for the codebook are in our specific application.Recall that one of the objectives of mapping are that we wish to preserve all features (or as much as possible)of the HDR image and make them visible in the LDR reproduction.Because there are fewer levels in the LDR image than in the HDR image,the compression is lossy in the sense that there will be features in the HDR images that will be impossible to reproduce in the LDR images.The question is what should bepreserved (and how)in the mapping (quantization)in order to produce good LDR displays.For any given display device,the number of displayable lev-els,i.e.,the number of codewords is fixed.From a rate dis-tortion’s point of view,the rate of the quantizer is fixed,and the optimal quantizer is the one that minimizes the distortion.Given the encoding and decoding rules of Eqs.(1)and (2),the distortion of the quantizer is defined asE =i,ki (k) x(k)−c i where i (k)=1if x(k)−c i ≤ x(k)−c j ∀j,0otherwise .(3)A mapping by a quantizer that minimizes E (maximizes rate distortion ratio)will preserve maximum relevant information of the HDR image.One of the known problems in rate distortion optimal quan-tizer design is the uneven utilization of the codewords where,some clusters may have large number of pixels,some may have very few pixels and yet others may even be empty.There may be two reasons for this under utilization of codewords.Firstly,the original HDR pixel distribution may be concentrated in a very narrow range of intensity interval;this may cause large number of pixels in these densely populated intervals to be clustered into a single or very few clusters because they are so close together.In the HDR image,if an intensity interval has a large concentration of pixels,then these pixels could be very important in conveying fine details of the scene.Although such intervals may only occupy a relatively narrow dynamic range span because of the high-resolution representation,the pixels falling onto these intervals could contain important de-tails visible to human observers.Grouping these pixels together will loose too much detail information.In this case,we need to “plug”some codewords in these highly populated intensity intervals such that these pixels will be displayed into different levels to preserve the details.The second reason that can cause the under utilization of codewords could be due to the opti-mization process being trapped in a local minimum.In order to produce a good LDR display,the pixels have to be reasonably evenly distributed to the codewords.If we assign each code-word the same number of pixels,then the mapping is histogram equalization which has already been shown to be unsuitable for HDR image display [5].If we distribute the pixel popula-tion evenly without regarding to their relative intensity values,e.g.,grouping pixels with wide ranging intensity values just to ensure even population distribution into each codeword,then we will introduce too much objectionable artifacts because compression is too aggressive.In the next section,we intro-duce a learning-based approach suitable for designing dynamic range compression quantizers for the display of HDR images.3.Conscience learning for HDR compressionVector quantization (VQ)is a well-developed field [16](although we will only design a scalar quantizer (SQ),we will borrow techniques mainly designed for VQ.There are2644G.Qiu et al./Pattern Recognition40(2007)2641–2655 many methods developed for designing vector quantizers.Thek-means type algorithms,such as the LBG algorithm[18],and neural network-based algorithms,such as the Kohonenfeature map[19]are popular tools.As discussed in Section2,our quantizer should not only be based on the rate distortioncriterion,but also should ensure that there is an even spreadof pixel population.In other words,our quantizer should min-imize E in Eq.(3)and at the same time the pixels should beevenly distributed to the codewords.Therefore the design algo-rithm should be able to explicitly achieve these two objectives.In the neural network literature,there is a type of consciencecompetitive learning algorithm that will suit our application.Inthis paper,we use the frequency sensitive competitive learning(FSCL)algorithm[20]to design a quantizer for the mappingof HDR scenes to be displayed in low dynamic devices.Tounderstand why FSCL is ideally suited for such an application,wefirst briefly describe the FSCL algorithm.The philosophy behind the FSCL algorithm is that,when acodeword wins a competition,the chance of the same codewordwinning the next time round is reduced,or equivalently,thechance of other codewords winning is increased.The end effectis that the chances of each codeword winning will be equal.Putin the other way,each of the codewords will be fully utilized.In the context of using the FSCL for mapping HDR data tolow dynamic display,the limited number of low dynamic levels(codewords)will be fully utilized.The intuitive result of fullyutilized display level is that the displayed image will have goodcontrast,which is exactly what is desired in the display.How-ever,unlike histogram equalization,the contrast is constrainedby the distribution characteristics of the original scene’s inten-sity values.The overall effect of such a mapping is thereforethat,the original scenes are faithfully reproduced,while at thesame time,the LDR displays will have good contrast.FSCL algorithmStep1:Initialize the codewords,c i(0),i=1,2,...,N,to ran-dom numbers and set the counters associated with each code-word to1,i.e.f i(0)=1,i=1,2,...,NStep2:Present the training sample,x(k),where k is thesequence index,and calculate the distance between x(k)andthe codewords,and subsequently modify the distances usingthe counters valuesd i(k)= x(k)−c i(k) d∗i(k)=f i(k)d i(k)(4)Step3:Find the winner codeword c j(k),such thatd∗j(k) d∗i(k)∀iStep4:Update the codeword and counter of the winner asc j(k+1)=c j(k)+ (x(k)−c j(k))f j(k+1)=f j(k)+1where0< <1(5)Step5:If converged,then stop,else go to Step2.The FSCL process can be viewed as a constrained optimiza-tion problem of the following form:J=E+iki(k)−|x(k)|N2,(6)where is the Lagrange multiplier,|x(k)|represents the totalnumber of training samples(pixels),N is the number of code-words(display levels),E and are as defined in Eq.(3).Minimizing thefirst term ensures that pixel values close toeach other will be grouped together and will be displayed asthe same single brightness.Minimizing the second term facil-itates that each available displayable level in the mapped im-age will be allocated similar number of pixels thus creating awell contrast display.By sorting the codewords in an increasingorder,i.e.,c1<c2<···<c N−1<c N,the mapping also ensuresthat the brighter pixels in the original image are mapped to abrighter display level and darker pixels are mapped to a darkerdisplay level thus ensuring the correct brightness order to avoidvisual artifacts such as the“halo”phenomenon.Because the mapping not only favors an equally distributedpixel distribution but also is constrained by the distancesbetween pixel values and codeword values,the current methodis fundamentally different from both traditional histogramequalization and simple quantization-based methods.His-togram equalization only concerns that the mapped pixels haveto be evenly distributed regardless of their relative brightness,while simple quantization-based mapping(including many lin-ear and nonlinear data independent mapping techniques,e.g.,Ref.[2])only takes into account the pixel brightness valuewhile ignoring the pixel populations in each mapped level.As a result,histogram equalization mapping will create visu-ally annoying artifacts and simple quantization-based methodwill create mappings with under utilized display levels whichoften resulting in many features being squashed and becomeinvisible.With FSCL learning,we could achieve a balancedmapping.4.Implementation detailsBecause the objective of our use of the FSCL algorithm inthis work is different from that of its ordinary applications,e.g.,vector quantization,there are some special requirementsfor its implementation.Our objective is not purely to achieverate distortion optimality,but rather should optimize an ob-jective function of the form in Eq.(6)and the ultimate goalis,of course,to produce good LDR displays of the HDR im-ages.In this section,we will give a detailed account of itsimplementation.4.1.Codebook initializationWe work on the luminance component of the image only andin logarithm space,from thefloating point RGB pixel valuesof the HDR radiance map,we calculateL=log(0.299∗R+0.587∗G+0.114∗B),L max=MAX(L),L min=MIN(L).(7)In using the FSCL algorithm,we found that it is very importantto initialize the codewords to linearly scaled values.Let thecodebook be C={c i;i=1,2,...,N},N is the number ofcodewords.In our current work,N is set to256.The initialG.Qiu et al./Pattern Recognition 40(2007)2641–26552645020004000600080001000012000133659712916119322505000100001500020000250000326496128160192224petitive learning without conscience mechanism will produce a mapping close to linear scaling.Left column:competitive learning without conscience mechanism.Right column:linear scaling.Radiance map data courtesy of Fredo Durand.values of the codewords are chosen such that they are equally distributed in the full dynamic range of the luminance:c i (0)=L min +i256(L max −L min ).(8)Recall that our first requirement in the mapping is that the dis-play should reflect the pixel intensity distribution of the original image.This is achieved by the optimization of E in Eq.(3)with the initial codeword values chosen according to Eq.(8).Let us first consider competitive learning without the conscience mechanism.At the start of the training process,for pixels falling into the interval c i (0)±(L max −L min )/512,the same code-word c i will win the competitions regardless of the size of pixel population falling into the interval.The pixels in the intensity intervals that are far away from c i will never have the chance to access it.In this case,distance is the only criterion that de-termines how the pixels will be clustered and pixel populations distributed into the codewords are not taken into account.Af-ter training,the codewords will not change much from their initial values because each codeword will only be updated by pixels falling close to it within a small range.In the encodingor mapping stage,since the codewords are quite close to their corresponding original positions which are linearly scattered in the FDR,the minimum distortion measure will make the map-ping approximately linear and extensive simulations demon-strate that this is indeed the case.As a result,the final mapped image will exhibit the pixel intensity distribution characteris-tics of the original image.Fig.4(a)shows a result mapped by competitive learning without the conscience mechanism,com-pared with Fig.4(b),the linearly scaled mapping result,it is seen that both the images and their histograms are very similar which demonstrate that by initializing the codewords according Eq.(8),optimizing the distortion function E in Eq.(3)has the strong tendency to preserve the original data of the original im-age.However,like linear compression,although the resulting image reflects the data distribution of the scene,densely pop-ulated intensity intervals are always over-quantized (too much compression)which causes the mapped image lacking contrast.With the introduction of the conscience mechanism,in the training stage,competition is based on a modified distance measure,d ∗in Eq.(4).Note that if a codeword wins the competitions frequently,its count and consequently its modi-2646G.Qiu et al./Pattern Recognition 40(2007)2641–2655σ = 0.05, η(0) = 0.1 σ = 0.05, η(0) = 0.2 010002000300040005000600070008000900006412819210002000300040005000600070008000064128192100020003000400050006000700006412819210002000300040005000600070000641281921000200030004000500060007000064128192σ = 0.05, η(0) = 0.3σ = 0.05, η(0) = 0.4σ = 0.05, η(0) = 0.5Fig.5.Final mapped images and their histograms for fixed and various (0).Radiance map data courtesy of Fredo Durand.fied distance increases,thus reducing its chance of being the winner and increasing the likelihood of other codewords with relatively lower count values to win.This property is exactly what is desired.If a codeword wins frequently,this means that the intensity interval it lies in gathers large population of pixels.In order to ensure the mapped image having goodG.Qiu et al./Pattern Recognition 40(2007)2641–26552647η(0) = 0.2, σ= 0.05 020004000600080000641281922000400060008000064128192100020003000400050006000700006412819210002000300040005000600070000641281921000200030004000500060007000064128192η(0) = 0.2, σ = 0.04 η(0) = 0.2, σ = 0.02η(0) = 0.2, σ = 0.0087η(0) = 0.2, σ = 0.002Fig.6.Final mapped images and their histograms for fixed (0)and various .Radiance map data courtesy of Fredo Durand.contrast,these densely populated intensity intervals should be represented by more codewords,or equivalently,more dis-play levels.The incorporation of the conscience mechanism makes the algorithm conscience of this situation and passes the chances to codewords with lower count values to win the com-petitions so that they can be updated towards the population dense intensity intervals and finally join in the quantization of these intervals.2648G.Qiu et al./Pattern Recognition40(2007)2641–2655 The training starts from linearly scattered codewords,withthe introduction of the conscience mechanism,the code-words are moved according to both their values and the pixelpopulation distribution characteristics.At the beginning of thetraining phase,the mapping is linear,and the mapped image’shistogram is narrow,as training progresses,the mapped im-age’s histogram is gradually wider,and when it reaches anequilibrium,it achieves an optimal mapping that preserves theappearance of the original scene and also has good visibilityand contrast.Although initializing the codewords according to Eq.(8)may lead to largerfinal distortion E than other(random)meth-ods for codeword initialization,this does not matter.Unlike conventional use of FSCL,our objective is not to achieve rate distortion optimality,but rather,the aim is to cluster the HDR image pixels in such a way that the groupings not only reflect the pixel distribution of the original scene,the pixel populations are also evenly distributed to the codewords such that the im-age can be displayed in LDR devices with good visibility and contrast.Because of the special way in which the initial values of the codewords are set,some codewords may scatter far away from densely populated intensity intervals where more codewords are needed to represent the pixels.In order to achieve this,we let the fairness function,f i’s in Eq.(5)of the FSCL algorithm,accumulate the counts throughout the entire training process,thus increasing the chances to obtain more contrast.4.2.Setting the training rateThe training rate in Eq.(5)is an important parameter in the training of the quantizer.It not only determines the convergence speed but also affects the quality of thefinal quantizer.In the neural network literature,there are extensive studies on this subject.In our work,we use the following rule to set the training rate as a function training iterations(k)= (0)exp(− k)),(9) where (0)is the initial value set at the beginning of the training, is a parameter controlling how fast the training rate decadesas training progresses.In the experiments,we found that larger initial training rate values and slower decreasing speeds(smaller in Eq.(9)) led to higher contrast images when the algorithm achieved an equilibrium state.The result is rger initial val-ues and slower decreasing speed of the training rate make remain relatively large throughout.Once a codeword,which may be far away from densely populated intensity intervals, wins a competition,the larger training rate would drag it closer to the densely populated intensity intervals and thus increasing its chance to win again the next time round.Thefinal result is that densely populated intensity intervals are represented by more codewords or more display levels and the displayed im-ages will have more details.The effects for smaller training rates are almost the opposite,small training rate will result in1214161811011211411611810.20.30.40.50.6η(0)=EIterationsFig.7.Training curves forfixed =0.05and various (0)corresponding to those in Fig.5.the image having a narrower histogram(lower contrast)and more similar to the effect of linear compression.This is again expected.Because we initialize the codewords by linear scal-ing and small will make thefinal codewords closer to their initial values when the training achieves an equilibrium.Fig.5 shows examples of mapped images and their histograms with different (0)andfixed .Fig.6shows examples of mapped images and their histograms with different andfixed (0). By changing the training rate settings,the mapped image’s his-togram can be controlled to have narrower shapes(lower con-trast images)or broader shapes(higher contrast images).This property of the training rate provides the users with a good guidance to control thefinal appearance of the mapped HDR images.According to the above analysis,in order to control the final appearance of the mapped image,we canfix one param-eter and change the other.To achieve the same contrast for the final mapping,we can either use a smaller (0)and a smaller , or,a larger (0)and a larger .However in the experiments we found that,with a smaller (0)and a smaller ,the algorithm took longer to converge to an equilibrium state.Fig.7shows the training curves for the training rate settings corresponding to those in Figs.5and8shows the training curves for the train-ing rate settings corresponding to those in Fig.6.The image in Fig.5mapped with (0)=0.5and =0.05and the image in Fig.6mapped with (0)=0.2and =0.002have similar contrast.However,as can be seen from the training curves in Figs.7and8,for (0)=0.5and =0.05,the training con-verged within100iterations and for (0)=0.2and =0.002 the training took more than400iterations to converge.Thus as a guide for the use of the training algorithm,we recom-mend that the control of thefinal image appearance be achieved byfixing a relatively aggressive and adjusting (0)because of the fast convergence speed under such conditions.Setting (0)=0∼1and =0.05,and train the quantizer for100 iterations worked very well for all images we have tried.After 50iterations,E changed very little by further iterations,there-fore for most images,less than50iterations suffice.Through experiments,we also found that it was only necessary to use。

相关文档
最新文档