几种常见晶体结构的应用与拓展

合集下载

三种晶体结构的最密排晶面和最密排晶向

三种晶体结构的最密排晶面和最密排晶向

三种晶体结构的最密排晶面和最密排晶向1.引言1.1 概述晶体是具有长程有序排列的原子、离子或分子的固体物质。

晶体的结构是由最密排列的晶面和晶向构成的。

最密排晶面是指在晶体结构中,原子、离子或分子最紧密地靠近的面,而最密排晶向则指的是在晶体中最紧密地排列的方向。

本文将分析三种不同的晶体结构,探讨它们各自的最密排晶面和最密排晶向。

通过深入研究这些结构的排列方式,可以更好地理解晶体的性质和行为。

第一种晶体结构是立方晶系,也是最简单的晶体结构之一。

它的最密排晶面是(111)晶面,最密排晶向则是[110]晶向。

这些晶面和晶向在晶体中具有紧密的排列,使晶体的结构呈现出高度的对称性。

第二种晶体结构是六方晶系,它相对于立方晶系而言稍复杂一些。

在六方晶系中,最密排晶面是(0001)晶面,最密排晶向是[10-10]晶向。

与立方晶系不同,六方晶系具有六方对称性,呈现出更复杂的晶体结构。

第三种晶体结构是四方晶系,它也是一种常见的晶体结构。

在四方晶系中,最密排晶面是(100)晶面,最密排晶向是[110]晶向。

四方晶系的晶体结构与立方晶系相似,但具有更多的对称性和排列方式。

通过对这三种晶体结构的最密排晶面和最密排晶向进行研究,我们可以更好地理解晶体的基本结构和性质。

这对于材料科学、凝聚态物理和相关领域的研究具有重要意义,同时也有助于开发新材料和改进现有材料的性能。

1.2文章结构文章结构部分的内容可以包括以下几个方面的介绍:1.2 文章结构本文主要分为引言、正文和结论三个部分。

引言部分概述了晶体结构和最密排晶面、最密排晶向的研究背景和重要性,并提出了本文研究的目的和意义。

正文部分分为三个小节,分别介绍了三种晶体结构的最密排晶面和最密排晶向。

每个小节将首先介绍该种晶体结构的一般特点和常见应用,然后详细讨论最密排晶面和最密排晶向的确定方法和规律,并给出具体的实例和数据进行说明。

结论部分对于每种晶体结构的最密排晶面和最密排晶向进行总结和回顾,并指出各种晶体结构最密排晶面和最密排晶向的综合特点和应用前景。

14种晶体结构

14种晶体结构

14种晶体结构晶体是由原子、分子或福隔离子按照一定的空间规则排列而成的有序固体。

晶体结构是指晶体中原子、离子或分子排列的规则和顺序。

在固体物质中,晶体结构的种类有很多种,其中比较常见的有以下14种:1. 立方晶体结构:最简单的晶体结构之一,具有三个等长的边和六个等角,包括简单立方、体心立方和面心立方三种类型。

2. 六方晶体结构:其晶胞的基本结构是六方密堆,其中最典型的就是六方晶体和螺旋晶体。

3. 正交晶体结构:晶胞具有三个不相互垂直的晶轴,分别被称为a、b 和c 轴,是最常见的晶体结构之一。

4. 单斜晶体结构:晶胞具有两个不相互垂直的晶轴,是晶体结构中的一种。

5. 三方晶体结构:具有三个相等的轴,夹角为60度,最常见的晶体结构之一是石英。

6. 菱晶体结构:晶胞内部有四面体结构,是一种简单的晶体结构。

7. 钙钛矿晶体结构:一种具有钙钛矿结构的晶体,包括钙钛矿结构和螺旋钙钛矿结构。

8. 蜗牛晶体结构:晶胞的形状像一只蜗牛的壳,是晶体结构中的一种。

9. 立方密排晶体结构:晶胞的结构是立方密排,是晶体结构中的一种。

10. 体心立方晶体结构:晶体结构的晶胞中有一个原子位于晶体的中心,是晶体结构中的一种。

11. 面心立方晶体结构:晶体结构的晶胞的各个面的中心有一个原子,是晶体结构中的一种。

12. 钻石晶体结构:晶体结构的晶胞构成了一种钻石结构,是晶体结构中的一种。

13. 银晶体结构:晶体结构的晶胞构成了一种银结构,是晶体结构中的一种。

14. 锶钛矿晶体结构:晶体结构的晶胞构成了一种锶钛矿结构,是晶体结构中的一种。

晶体结构的种类繁多,每种晶体结构都有其独特的结构特点和性质,对晶体的物理和化学性质有着重要的影响。

研究晶体结构不仅可以帮助我们更好地了解晶体的构成和性质,还有助于我们在材料科学、物理化学等领域的应用和研究。

因此,对晶体结构的研究具有重要的科学意义和应用价值。

知识总结—— 晶体结构

知识总结—— 晶体结构

第七章 晶体结构第一节 晶体的基本概念一、晶体概述固态物质按其组成粒子(分子、原子或离子等)在空间排列是否长程有序分成晶体(Crystal )和非晶体(又称为无定形体、玻璃体等)两类。

所谓长程有序,是指组成固态物质的粒子在三维空间按一定方式周期性的重复排列,从而使晶体成为长程有序结构。

长程有序体现了平移对称性等晶体的性质。

与晶体相反,非晶体(Non-crystal )内部的粒子(分子、原子或离子等)在空间排列不是长程有序的,而是杂乱无章的排列。

例如橡胶、玻璃等都是非晶体。

晶体内部各部分的宏观性质相同,称为晶体性质的均匀性。

非晶体也有均匀性,尽管起因与晶体不同。

晶体特有的性质是异向性、自范性、对称性、确定的熔点、X 光衍射效应、晶体的缺陷等。

对于长程有序的晶体结构来说,若了解了其周期性重复单位的结构及排列方式,就了解了整个晶体的结构。

可见,周期性重复单位对认识晶体结构非常重要。

在长程有序的晶体结构中,周期性重复的单位(一般是平行六面体)有多种不同的选取方法。

按照对称性高、体积尽量小的原则选择的周期性重复单位(平面上的重复单位是平行四边形,空间中的重复单位是平行六面体),就是正当晶胞,一般称为晶胞(Crystal cell )。

二、晶胞及以晶胞为基础的计算1. 晶胞的两个要素晶胞是代表晶体结构的最小单元,它有两个要素:一是晶胞的大小、型式,晶胞的大小可由晶胞参数确定,晶胞的型式是指素晶胞或复晶胞。

二是晶胞的内容,是指晶胞中原子的种类和位置,表示原子位置要用分数坐标。

晶体可由三个不相平行的矢量a , b , c 划分成晶胞,适量a , b , c 的长度a , b , c 及其相互之间的夹角α, β, γ称为晶胞参数,其中α是矢量b 和c 之间的交角,β是矢量a 和c 之间的交角,γ是矢量a 和b 之间的交角。

素晶胞是指只包含一个重复单位的晶胞,复晶胞是指只包含一个以上重复单位的晶胞。

分数坐标是指原子在晶胞中的坐标参数(x , y , z ),坐标参数(x , y , z )是由晶胞原点指向原子的矢量r 用单位矢量a , b , c 表达,即r = x a + y b + z c如图所示晶体,小球和大球的分数坐标分别为 小球:)21,21,21( ),21,0,0( ),0,21,0( ),0,0,21( 大球:)21,21,0( ),21,0,21( ),0,21,21( ),0,0,0( 2. 以晶胞为基础的计算(1)根据晶体的化学式计算密度:D =ZM/N A V ,M 是晶体化学式的相对式量,Z 是一个晶胞中包含化学式的个数,V 是晶胞的体积,N A 是阿佛加德罗常数。

铌酸锂晶体结构及应用

铌酸锂晶体结构及应用

铌酸锂晶体结构及应用铌酸锂(LiNbO3)是一种重要的无机晶体材料,具有优异的光学、电学和声学性能,因此在光学通信、光学传感、光学存储、光学调制等领域有广泛的应用。

下面将详细介绍铌酸锂的晶体结构及其应用。

铌酸锂的晶体结构属于三方晶系,空间群为R3c,晶胞参数为a=5.148Å,c=13.863Å。

晶体结构由Li+、Nb5+和O2-离子组成。

其中,Li+离子位于六配位的正八面体空位中,Nb5+离子位于六配位的正八面体空位中,O2-离子位于六配位的正八面体空位和三配位的三角形空位中。

铌酸锂晶体结构中的Li+和Nb5+离子通过共享氧原子形成八面体配位的氧八面体,这种氧八面体的堆积形成晶体的结构。

铌酸锂晶体具有优异的光学性能,主要表现在以下几个方面:1. 光学非线性效应:铌酸锂晶体具有较大的非线性光学系数,可用于频率倍增、光学调制、光学开关等光学器件的制备。

其中,频率倍增是指将输入的光信号通过非线性光学效应,使其频率加倍,从而实现光信号的频率转换。

光学调制是指通过改变光的强度或相位,实现对光信号的调制。

光学开关是指通过控制光的传输路径,实现对光信号的开关控制。

2. 光电效应:铌酸锂晶体具有较大的光电系数,可用于光电探测器、光电调制器等光电器件的制备。

光电探测器是指通过光电效应将光信号转换为电信号的器件。

光电调制器是指通过光电效应调制光信号的强度或相位。

3. 光波导效应:铌酸锂晶体具有较大的折射率差,可用于光波导器件的制备。

光波导是指通过改变光的传输路径,实现对光信号的传输和控制。

除了光学性能外,铌酸锂晶体还具有优异的电学性能,主要表现在以下几个方面:1. 压电效应:铌酸锂晶体具有较大的压电系数,可用于压电传感器、压电换能器等压电器件的制备。

压电传感器是指通过压电效应将压力信号转换为电信号的器件。

压电换能器是指通过压电效应将电信号转换为机械振动的器件。

2. 电光效应:铌酸锂晶体具有较大的电光系数,可用于电光调制器、光开关等光电器件的制备。

固体物理(第2课)常见晶格结构.

固体物理(第2课)常见晶格结构.

氯化钠型结构
氯化钠型结构
复式面心立方结构:KCl、LiH、PbS

美国在短波红外成像方面投入了很大力量 ,研制了 PbS 短波红外探测器用于“响尾蛇”空空导弹之后 又成功 研制了用于“响尾蛇 ”导弹改进型的 PbSe短中波红外
探测器。此外 ,最早研制的截止波长在大气水汽吸收
峰 2.7 μm的 6 000元 PbS短波红外焦平面探测器,已成
密勒指数的求法:(示意图)
举例
– 求出晶面在坐标轴X、Y、Z上的相应截距p、q、r ;
– 取截距倒数h,k,l,(h、k、l为晶面指数或密勒指
数); – 将h、k、l化为没有公约数的整数比h:k:l= – 将h、k、l加圆括号(hkl),即为晶面指数。
说明:
以格点为原点,以基矢为坐标轴,建立坐标系。 晶面在基矢上的截距为(x,y,z),则其倒数连比 可化为互质的整数(hkl),称为该族晶面的密勒指 数。 实际工作中,常以晶胞(不是原胞)的基矢a,b,c 为坐标轴来建立坐标系,a,b,c不一定正交。 密勒指数既表示一族晶面,也表示单个晶面。
生长时,可在熔融硅中掺 入杂质来获得期望的电阻 “切克劳斯基法”生长单晶硅 率 。
直拉单晶硅
Silicon Ingots (400mm)
大单晶棒能切成薄的圆片(wafer)
在大多数CMOS技术中,圆片的 电阻率为0.05到0.1Ω•cm,厚度 约为500到1000微米。
chip
中科院半导体所研制成功 我国最重最长6英寸液封直 拉法砷化鎵单晶 中科院半导体所研制成功我 国最重最长4英寸液封直拉法 砷化鎵单晶
负密勒指数表示: h k l 等效晶面表示:{h k l}


在立方晶系中密勒指数和晶向指数相同的晶面、 晶列互相垂直。

1.3几种常见的晶体结构

1.3几种常见的晶体结构

CsCl晶体中,Cs离子的最近邻是 8个Cl离子, 而Cl离子的最近邻则是 8个Cs离子,NaCl晶体中, Na离子的最近邻是 6个Cl离子,Cl离子的最近邻则是 6个Na离子。
元素晶体也不都是简单晶格, 例如密堆六方(hcp)晶体Be, Mg,Zn,Gd等,它的基元包 A层 含 2个原子,虽是同种原子, 但它们的几何环境是不等价的, B层 从一个A层原子看上下两层原 子的三角形,和从一个B层原 子看上下两层原子的三角形是 不同的。它是复式晶格,它的 A层 基元有2个原子。
下图标出了简立方点阵的几组最重要的晶面系的晶面 指数和晶向指数。从中可以明显看出晶面指数最简单 的晶面族面间距最大,它们也是以后经常讨论到的最 重要的晶面。
六角晶系晶面 指数的表示与其它 晶系不同,晶体学 中往往采用四轴定 向的方法,这样的 晶面指数可以明显 地显示出 6 次对称 的特点。
晶面指数小结
Miller指数
如晶面在基矢轴上的截距分别是u、 v、w,其倒数比的互质的整数比就 是表示晶面方向的晶面指数
wc
c b ua
1 1 1 h : k : l : : , (hkl) u v w
a
如果基矢是晶胞的基矢,指数就是 Miller指数,一组Miller指数(h,k,l) 代表无穷多互相平行的晶面。
NaCl结构中的原子排列
NaCl晶体为八面体群的说明:Oh,
它的每个原子都处在不同原子组成的8面体体心位 置。考虑它的晶场时就要注意到这个特点。
点群对称操作: 体对角线是3重轴; 3 条棱边是4重轴; 棱对角线是2重轴, 体心是反演中心。
原子位置的表示:绘制晶胞时需要明确指出基元中各 原子的位置。基元中第 j 个原子的中心位置相对于作 为坐标原点的格点位置可以表示为: rj x j a y jb z jc 如果以晶胞各边长度做单位,0 x j , y j , z j , 1

第二章--节晶体结构与常见晶体类型

第二章--节晶体结构与常见晶体类型
25
2r-+2r+= a0
2r-=x
2r- x
2r 2r 2x
2r 2r 2x
2r
x
r 0.414 r
正负离子相互 接触状态
26
当r+/r-=0.414时,正负离子刚好处于相互接触状态(临界 状态); 当r+/r-<0.414时,负离子间相接触,而正、负离子相脱 离,负离子间斥力大,能量高,使结构不稳定; 当r+/r->0.414时,正、负离子间相接触,而负离子间相 脱离,这时正、负离子引力较大,负离子间斥力小,能 量较低,结构仍是稳定的。
对于面心立方晶胞,原子半径=R,
a 2 2R
V a3 16 2R3
V球
4 4 R3
3 100 % 74.05%
V晶胞 16 2R3
15
名称
堆积方式
配位 数
密排面
空隙
堆积 系数
六方密 堆积
ABAB……
12
∥ 四面体空隙 (0001) 八面体空隙
0.74
立方密 ABCABC…… 堆积 Nhomakorabea12
r + /r 0~0.155 0.155 ~0.225 0.225 ~0.414 0.414 ~0.732 0.732 ~1
1
配位数 2 3 4 6 8 12
配位多面体 直线 三角形 四面体 八面体 立方体
立方八面体
P29
23 23
※分析:对于NaCl晶体,Na+的配位数是6;对于CsCl晶 体 , Cs+ 的 配 位 数 是 8 。 这 是 由 于 rCs+ > rNa+ (0.182nm>0.110nm)。Cs+填入的空隙比八面体更大些, 即Cs+周围比Na+周围能排列更多的Cl-。所以,Cs+离子 的配位数大于Na+的配位数。

几种常见晶体结构分析

几种常见晶体结构分析

几种常见晶体结构分析河北省宣化县第一中学 栾春武 邮编 075131栾春武:中学高级教师,张家口市中级职称评委会委员。

河北省化学学会会员。

市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。

联系电话: E-mail :一、氯化钠、氯化铯晶体——离子晶体由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。

阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。

离子的配位数分析如下:离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。

1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。

每个Na +周围与其最近且距离相等的Na +有12个。

见图1。

| 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。

2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与一个Cs +距离最近且相等的Cs +有6个。

晶胞中平均Cs +个数:1;晶胞中平均Cl -个数:8×18 = 1。

因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。

二、金刚石、二氧化硅——原子晶体1.金刚石是一种正四面体的空间网状结构。

每个C 原子以共价键与4个C 原子紧邻,因而整个晶体中无单个分子存在。

由共价键构成的最小环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6×112 = 12 ,平均C —C 键数为6×16 = 1。

第一章晶体结构

第一章晶体结构

➢ 点阵:由等同点系所抽象出来的一系列在空间 中周期排列的几何点的集合体
➢格 ➢基
点:空间点阵中周期排列的几何点 元:一个格点所代表的物理实体
晶体是由结构基元(可以是原子、分子或 离子)在空间呈不随时间变化的规则的三 维周期排列而成,这是晶体的本质特征。 为了研究结构基元排列的规律,先撇开结 构基元,从每个结构基元的等同点抽象出 空间点阵,研究空间点阵的阵点排列规律 性。不同种类的结构基元有可能具有相同 的排列方式。因此晶体结构可视为
比较
固体物理学原胞往往不能直观的反映点 阵的宏观对称性,但能完全反映点阵的平 移对称性;
WS原胞既能完全反映点阵的平移对称 性,又能充分反映点阵的宏观对称性,但 是其图形复杂,不好直观想象;
晶胞能直观的反映点阵的宏观对称性, 但有时不能完全反映点阵的平移对称性。
常用的几种晶胞简介
➢简单立方(sc)
晶胞:
av
r ai
v v
基矢
b cv
aj v
ak
体积 V a3
原子个数 2
BCC Lattice
原胞:
av 1
基矢
av
2
a 2 a 2
r (i
r ( i
v j
v j
v k)
v k)
av
3
a 2
r (i
v j
v k)
体积
V
av1
av2
av3
a3 2
原子个 1 数
由一个顶点向三个体心引 基矢。
原胞是体积单元。
一个原胞只有一个基元
➢ Wigner-Seitz原胞(WS原胞)(对称原胞):与基矢的选 择没有关系,且能反应晶体的宏观对称性。

常见九种典型的晶体结构_图文

常见九种典型的晶体结构_图文
具有反CaI2结构的物质有: Ag2F,B2O, Ni2C
4 萤石结构
空间群:Fm3m,立方面心结构。 Ca分布于晶胞的角顶及面心;F分布在晶胞8等分 之后每个小立方体的中心。
萤石结构可以理 解为:Ca2+ 做立 方最紧密堆积,F充填在其中全部的 四面体孔隙中。N 个球最紧密堆积有 2N个四面体空隙 ,所以Ca:F= 1:2 ,故得其分子式为 CaF2。
α-铁(Iron-alpha) ---(奥氏体) --立方体心 γ-铁(Iron-gama) --(马氏体)--立方面心 ε-铁(Iron- Epsilon) --六方结构
2 氯化铯(CsCl)结构
空间群:Pm3m,立方原始格子。
阴离子分布在晶胞的8个角顶,阳离子充填 在其所形成的立方体空隙中。立方体共面连 接。
如果金刚石晶胞沿一个L3立起来,金刚石似乎显示出层状结 构特征,虽然不是很特征,但金刚石的确平行{111}存在中等 解理。
由于C-C键的键能大(347 kJ/mo),价电子都参与了共价 键的形成,使得晶体中没有自由电子,所以金刚石是自然界中 最坚硬的固体,熔点高达3550 ℃。
金刚石及其等结构物质比较
具有该结构的物质主要有:KCl, NaCl, TiCl, RbF, CsN, NbN, NbO, AgI, TiTh等物质。
3 CaI2结构
空间群:P-3m,三方原始格子。
在单位晶胞中,阳离子分布在8个角顶,阴离子分 布中由上下各3个阳离子构成的正三方柱中,并间 隔地在上半部的中心和下半部的中心。
闪锌矿的晶体结构:球键图(左)、配位多面体连接图(右)
结构中,S2- 和Zn2+配位数都是4,配位多面体都 是四面体。四面体共角顶相联。

晶体结构

晶体结构

《金属晶体》
一、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
金属为什么具有这些共同性质呢?
二、金属的结构
问题:构成金属晶体的粒子有哪些?
组成粒子:金属阳离子和自由电子
1.“电子气理论”(自由电子理论) 金属原子脱落来的价电子形成遍布整
个晶体的“电子气”,被所有原子所共用, 从而把所有的原子维系在一起。
1、什么是晶体?什么是非晶体?
定义:晶体——具有规则几何外形的固体
非晶体——没有规则几何外形的固体
2、晶体有什么特点和性质?
特点和性质: (1) 晶体有自范性(几何外形和内部质点排
列的高度有序性,非晶体没有) (2)晶体具有各向异性(非晶体不具有各向异
性) (3)晶体具有固定的熔点(非晶体不具有固定
《分子晶体与原子晶体》
交流·讨论
雪花、冰糖、食盐、水晶 和电木(酚醛树脂)这些固体 是否属于晶体?若不是晶体, 请说明理由。
观察与思考: 下列两种晶体有什么共同点?
干冰晶体结构
碘晶体结构
一、分子晶体
1、概念
构成晶体的粒子是分子,粒子 间以分子间作用力(范德华力, 氢键)相互作用的晶体叫分子晶 体。
故其熔点金刚石高。
金刚石 3550
沸点 (℃)
4827 4827
(3)石墨属于哪类晶体?为什么?
石墨为混合键型晶体。
4. 只认识到冰中含有共价键(即氢元素和 氧元素之间的共价键),而没有认识冰晶 体中水分子与其他水分子之间的作用力是 范德华力和氢键,不是化学键,所以误认 为冰是原子晶体。
5.属于分子晶体的有:干冰、冰、硫磺、 C60、碘、白磷、苯甲酸、稀有气体的晶体 、氧的晶体、氮的晶体; 属于原子晶体的有:金刚石、石英、金刚砂

晶体材料及其用途

晶体材料及其用途

晶体材料及其用途晶体材料是指具有规则的原子、分子或离子排列的固体材料。

其具有许多独特的物理、化学和电学性质,因此被广泛应用于各个领域。

下面将重点介绍几种常见的晶体材料及其主要用途。

1.硅晶体材料:硅是一种常见的半导体材料,具有良好的导电性能和稳定性。

它广泛应用于集成电路、太阳能电池、传感器等各种电子设备中。

硅晶体材料的主要用途是制造半导体器件,如晶体管、二极管和集成电路芯片。

此外,硅晶体材料还用于制造光纤通信和光电子器件。

2.铝晶体材料:铝是一种轻质、高强度和耐腐蚀的金属,广泛用于建筑、航空航天、汽车、电子等行业。

铝晶体材料的主要用途是制造铝合金材料,如铝合金结构件、铝合金轮毂、铝合金外壳等。

铝合金具有良好的机械性能和可塑性,可满足不同领域的需求。

3.钢晶体材料:钢是一种含有铁元素的合金,具有良好的硬度、强度和耐腐蚀性。

钢晶体材料广泛应用于建筑、机械、电力等领域。

钢晶体材料的主要用途是制造结构件、机械零件和工具。

不同种类的钢材具有不同的性能特点,如高速钢具有良好的耐磨性和切削性能,不锈钢具有耐腐蚀性能等。

4.锂离子电池材料:锂离子电池是目前最常用的电池类型之一,广泛应用于手机、电动车、笔记本电脑等电子产品中。

锂离子电池材料包括正极材料、负极材料和电解质材料。

其中,正极材料主要是由锂化合物组成的晶体材料,如锂铁磷酸盐和锂钴酸盐。

负极材料主要是由碳材料组成的晶体材料,如石墨和石墨烯。

电解质材料主要是由聚合物或液态材料组成的晶体材料,如聚合物电解质和液态电解质。

锂离子电池材料具有高能量密度、长寿命和快速充放电性能。

5.光学晶体材料:光学晶体材料具有良好的光学性能,广泛应用于光学仪器、激光技术和光通信等领域。

例如,硅晶体材料可用于制造光学器件,如透镜、棱镜和窗口。

氧化锌晶体材料可用于制造激光二极管和LED器件。

光学晶体材料的选择和设计对于提高光学设备的性能至关重要。

以上只是晶体材料的一部分应用,晶体材料在材料科学和工程领域具有广泛的应用前景。

柱状晶 等轴晶 平面晶

柱状晶 等轴晶 平面晶

柱状晶等轴晶平面晶
柱状晶、等轴晶和平面晶是固体材料中常见的晶体结构形态。

它们在材料科学和工程中起着重要作用,影响着材料的性能和应用。

本文将介绍这三种晶体结构形态的特点和应用。

首先,柱状晶是一种晶体结构形态,其晶粒呈长条状,具有明
显的纵向延伸特征。

柱状晶常见于一些金属合金和陶瓷材料中,其
结构紧密、强度高,因此在工程领域中被广泛应用。

例如,航空航
天领域中的高强度合金材料常具有柱状晶结构,能够满足高温高压
环境下的工作要求。

其次,等轴晶是另一种晶体结构形态,其晶粒呈近似球形,没
有明显的延伸方向。

等轴晶在一些塑性较好的金属材料中常见,如
铝合金和镁合金。

这种结构形态使得材料具有较好的塑性和变形能力,适用于一些需要弯曲和拉伸的工程应用。

最后,平面晶是指晶体结构中的平面排列规整、呈现出明显的
平面特征。

平面晶常见于一些晶体材料中,如硅晶体和石英晶体。

这种结构形态使得材料具有良好的光学性能和电子性能,被广泛应
用于半导体和光电子器件的制造中。

总之,柱状晶、等轴晶和平面晶是材料科学中常见的晶体结构形态,它们各自具有独特的特点和应用。

深入了解这些晶体结构形态对于材料的设计和改性具有重要意义,有助于提高材料的性能和拓展其应用领域。

金属结晶知识点总结

金属结晶知识点总结

金属结晶知识点总结一、金属结晶概述金属是由金属元素组成的单一晶体或是由几种金属元素组成的合金。

金属晶体的结构是由金属原子以一定的方式排列组合而成,而金属的结晶结构则是由晶体结构决定的,晶体结构又受到原子间的相互作用力的影响。

金属的结晶结构对金属的性能起着决定性的影响,因此,对金属结晶的研究具有重要的理论和实际意义。

二、金属晶体结构金属的晶体结构可以按照原子排列的周期性进行分类,目前已知的金属结晶结构有十四种。

其中,最常见的金属结晶结构有立方晶系、六方晶系和逆六方晶系。

不同的金属晶体结构对金属的性能影响也不尽相同。

1. 立方晶结构立方晶结构是最简单的金属结晶结构,它的晶胞是一个立方体。

在立方晶结构中,原子的排列是最为紧密的,因此具有较高的密度和硬度。

常见的具有立方晶结构的金属有铝、铜、镁等。

2. 六方晶系结构六方晶系结构也称为六角密堆结构,其晶胞形状为六方柱体。

六方晶系结构中的原子排列方式具有特殊性,因此具有优异的性能。

六方晶系结构的常见金属有锌、钛、镉等。

3. 逆六方晶系结构逆六方晶系结构是六方晶系结构的变体,其晶胞结构类似于六方晶系结构,但是原子的排列方向不同。

逆六方晶系结构中金属的性能与六方晶系结构类似,也具有较好的性能。

三、金属晶体缺陷金属晶体不可避免地存在着各种缺陷,这些缺陷对金属的性能、性质以及应用产生重要的影响。

金属晶体缺陷主要包括晶界、点缺陷和线缺陷。

1. 晶界晶界是指晶粒之间的分界面,是晶体中晶粒之间的分界面。

晶界是金属晶体中的一种特殊结构,具有较高的能量和活性。

晶界对金属的塑性变形和强韧性有着重要的影响,因此研究晶界对金属材料的性能改善具有重要的科学意义。

2. 点缺陷点缺陷是指晶体中原子位置的缺失或错位,包括空位、间隙原子、间隙偏移原子等。

点缺陷对晶体的塑性变形、相变和力学性能具有重要的影响。

点缺陷在金属材料的强化、退变形、晶界迁移等方面起着重要的作用。

3. 线缺陷线缺陷是指晶体中排列有序的原子排列序列中出现的缺陷,包括蠕滑带、蠕滑线、夹层等。

常见的晶体结构高中化学

常见的晶体结构高中化学

常见的晶体结构高中化学晶体是由原子、分子或离子等按照一定的规则排列组成的固体物质。

晶体结构是指晶体中原子、分子或离子的排列方式和空间位置的有序性。

以下是一些常见的晶体结构:1.立方晶系:立方晶系是最简单的晶体结构类型,具有最高的对称性。

立方晶系包括以下几种晶体结构:-简单立方结构:最简单的晶体结构,如钠金属。

-面心立方结构:每个立方格点上除了原子所在的角点外,还有一个原子位于正方形面的中心,如铝、铜等。

-体心立方结构:每个立方格点上除了原子所在的角点外,还有一个原子位于立方体的中心,如铁、锂等。

-体心立方密堆结构:在体心立方结构的基础上,每个体心立方顶点上还有各自的三个原子,如铬、铤等。

2.六方晶系:六方晶系的晶体结构相对复杂,具有六重轴对称性。

六方晶系包括以下几种晶体结构:-六方最密堆积结构:最密堆积的晶体结构,如铝合金、硬质合金等。

3.正交晶系:正交晶系的晶体结构具有三个相互垂直的轴和互相垂直的面,没有对称轴。

正交晶系包括以下几种晶体结构:-基心正交结构:每个顶点上有原子以外,还有一个原子位于底面的中点,如锌等。

-面心正交结构:每个顶点上原子以外,还有一个原子位于两个邻接底面的中点和两个对称角上的原子,如镍。

4.单斜晶系:单斜晶系的晶体结构具有一个二重轴和一组不对称的轴,没有对称轴。

单斜晶系包括以下几种晶体结构:-单斜底心结构:每个顶点上有原子以外,还有一个原子位于两个底面的中点,如铅、镀镍等。

5.斜方晶系:斜方晶系的晶体结构没有对称轴,具有两个相等且垂直的轴。

-斜方单斜结构:具有一个反射面,如黄铁矿、菱铁矿等。

6.三斜晶系:三斜晶系的晶体结构没有对称轴,也没有垂直的轴。

三斜晶系包括以下几种晶体结构:-无底心三斜结构:没有底心原子,如铜酸亚锌等。

这些晶体结构是根据晶体的对称性进行分类的,每一种晶体结构都有其独特的排列方式和空间位置。

通过研究晶体结构,可以揭示物质的物理和化学性质以及材料的制备和应用方面的特点。

高中化学竞赛——常见金属晶体的结构

高中化学竞赛——常见金属晶体的结构

高中化学竞赛——常见金属晶体的结构金属是一种特殊的物质,不像非金属那样具有明确的原子、分子结构,而是由大量的金属离子组成的。

金属晶体是由金属离子通过静电力相互吸引、排列而成的有序三维排列结构。

金属晶体具有许多独特的性质,如良好的导电性、导热性、延展性和机械性能等。

以下是几种常见金属的晶体结构的介绍。

1.面心立方结构(FCC)面心立方结构是一种常见的金属晶体结构,也称为充分面心立方结构。

在FCC晶体中,金属离子位于一个面心立方格子的顶点和面心上,形成四方紧密堆积的结构。

银(Ag)、铝(Al)、铜(Cu)和金(Au)都具有FCC结构。

2.体心立方结构(BCC)体心立方结构是另一种常见的金属晶体结构,也称为充分体心立方结构。

在BCC晶体中,金属离子位于一个体心立方格子的顶点和体心上,形成六方紧密堆积的结构。

铁(Fe)、钴(Co)、钨(W)和钠(Na)都具有BCC结构。

3.紧密堆积结构(HCP)紧密堆积结构是一种相对稳定的金属晶体结构。

在HCP晶体中,金属离子位于六方密排的顶点和六角面上,形成堆积的结构。

锌(Zn)、钛(Ti)和镁(Mg)都具有HCP结构。

4.单斜结构单斜结构是一种稀有的金属晶体结构,通常在少数金属中存在。

在单斜结构中,金属离子位于不同的位置上,形成不规则的结构。

例如,铬(Cr)和钽(Ta)具有单斜结构。

5.其他结构除了上述常见的金属晶体结构外,还存在一些特殊的金属晶体结构。

例如,钻石(C)具有金刚石结构,锌矿石(ZnS)具有闪锌矿结构。

这些结构更加复杂,但仍然是由金属离子有序排列而成的。

总结起来,金属晶体的结构多种多样,常见的包括面心立方结构、体心立方结构和紧密堆积结构。

每种结构都具有不同的特点和性质,这些特点和性质决定了金属的物理、化学性质和用途。

通过研究和了解金属晶体结构,可以更好地理解金属材料的性质和应用。

几种常见的晶体模型

几种常见的晶体模型
几种常见的晶体模型
探索世界上几种常见的晶体模型,了解它们的基本结构以及在自然界和工业 中的应用。
晶体的基本结构
晶体是由原子、离子或分子有序排列而成的固体,拥有规则的几何形状和结构。它们具有高度的对称性和透明 度。
点阵模型
点阵模型是描述晶体结构的一种方式,通过将原子或离子视为均匀分布的点 来表示晶体的结构。它用于解释周期性结构和晶体缺陷。
NaCl型晶体
NaCl型晶体是一种典型的离子晶体结构,由正负离子按照体心立方排列而成。它具有高熔点、脆性和良好的 电导性。
锌伯氏体晶体
锌伯氏体晶体是由锌原子构成的金属晶体,具有紧密堆积的结构方晶体
面心立方晶体是一种常见的金属晶体结构,原子位于正八面体的每个面心上。 它具有高熔点和良好的可塑性。
立方氧化物型晶体
立方氧化物型晶体是一类由氧化物组成的晶体,通常具有高硬度、抗磨损和 高熔点。它们在电子、陶瓷和光学领域得到广泛应用。
金红石型晶体
金红石型晶体是一种复杂的氧化物晶体,具有六方最密堆积结构。它们在宝石和电子器件中常被用作材料。
花岗岩型晶体
花岗岩型晶体是一种以石英、长石和云母等矿物组成的岩石。它们在建筑和装饰领域得到广泛应用,具有多样 的颜色和纹理。

常见的三种晶体结构

常见的三种晶体结构

常见的三种晶体结构聊起晶体的结构,就像是走进了大自然的微观魔法世界,里头藏着三种常见的“魔法石”——金属晶体、离子晶体和分子晶体。

每一种都有着自个儿的独特魅力和不为人知的秘密。

先说金属晶体吧,它们就像是闪闪发光的宝藏,拥有着令人眼馋的“硬实力”。

想想那些金属块儿,钢铁的坚固、黄金的耀眼、铜的沉稳,这些都是金属晶体的功劳。

金属晶体内部,原子们手挽手,肩并肩,排成了紧密的队列,这种紧密的排列让金属有了超群的导电性和导热性。

冬天里,铁炉子烧得旺旺的,那就是金属晶体在悄悄发力,把热量传遍每一个角落。

要是你是个电子迷,那么你肯定知道,手机、电脑里的电线、电路板,也都离不开金属晶体的功劳。

它们就像是电线里的“守护神”,保证电流畅通无阻。

再说离子晶体,它们就像是水晶宫殿里的宝石,美丽中带着点神秘。

离子晶体里头,正离子和负离子像是一对欢喜冤家,互相吸引,又互相制约。

你想象一下,把盐粒儿放到显微镜下,你会发现那里有个微观的“仙境”。

钠离子和氯离子你中有我,我中有你,整齐排列,形成了一个坚固的“水晶阵”。

这就是离子晶体的奥秘,它们像是自然界的建筑师,用最精确的设计,造出了既坚硬又美丽的结构。

我们平日里吃的盐、用的洗衣粉,甚至身体里不可或缺的矿物质,都是离子晶体的功劳。

它们像是小小的魔法师,悄悄地维护着这个世界的平衡。

最后说说分子晶体,它们就像是森林里的小精灵,活泼又可爱。

分子晶体里,分子们自由自在地飘荡,像是一群欢快的舞者,随时准备跳出最优美的舞蹈。

比如说,冰块儿就是水分子们的杰作。

它们排成了整齐的队列,就像是军队的士兵,一个个昂首挺胸。

但是一旦温度升高,这些“士兵”就开始松懈,最后变成了自由自在的水分子,到处乱跑。

还有咱们吃的糖、闻到的花香,也都是分子晶体的功劳。

它们像是大自然的调香师,用最小的分子,调出了世界的多彩。

这三种晶体,就像是自然界的三大魔法家族,各自掌握着不同的魔法,却共同守护着这个世界的奥秘。

金属晶体,它们坚韧不拔,是这个世界上的“硬汉”;离子晶体,它们美丽坚固,是自然界中的“建筑师”;分子晶体,它们自由自在,是微观世界里的“小精灵”。

硫酸锌晶体

硫酸锌晶体

硫酸锌晶体
硫酸锌晶体是一种常见的无机化合物,具有许多有趣的性质和应用。

本文将从晶体的结构、物理性质和应用方面进行介绍。

硫酸锌晶体的结构是由锌离子(Zn2+)和硫酸根离子(SO42-)组成的。

锌离子与硫酸根离子通过离子键相互结合,形成晶体的排列结构。

这种结构使硫酸锌晶体具有良好的稳定性和结晶性。

硫酸锌晶体的物理性质也非常特殊。

首先,它具有良好的透明性,可以在可见光范围内传播光线。

其次,硫酸锌晶体具有较高的折射率和光学非线性效应,这使得它在光学器件中具有广泛的应用。

此外,硫酸锌晶体还具有较高的热导率和电导率,可以被用于制备热敏元件和电子器件。

硫酸锌晶体还具有许多重要的应用。

其中之一是在光学领域。

由于硫酸锌晶体具有良好的光学性能,它可以用于制备激光器、光学透镜和光学滤波器等光学器件。

此外,硫酸锌晶体还可以用于制备光纤放大器和光纤通信器件,为光通信技术的发展做出了重要贡献。

除了光学领域,硫酸锌晶体还在其他领域有着广泛的应用。

例如,在电子领域,硫酸锌晶体可以用于制备电池、太阳能电池和电子传感器等设备。

此外,硫酸锌晶体还可以用作催化剂、吸附剂和储能材料等。

硫酸锌晶体是一种重要的无机化合物,具有丰富的物理性质和广泛
的应用。

它在光学、电子和催化等领域都有着重要的地位。

随着科学技术的不断发展,相信硫酸锌晶体的应用还将得到进一步拓展和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种常见晶体结构的应用与拓展中学课本中列举了NaCl、CsCl、金刚石、石墨、干冰、二氧化硅等典型晶体的结构示意图。

它们的结构都是立体的,如何从平面图想像出三维实物的结构形态,这是解决有关问题的关键。

首先可以利用直观结构模型,逐步建立起准确、清晰的立体形象,提高空间想像力。

其次还需掌握基本的解题技巧:在晶体结构中切割一个基本结构单元,弄清该单元中点、边、面为多少个基本结构单元所共有。

构成晶体的结构粒子是按着一定的排列方式所形成的固态群体。

在晶体结构中具有代表性的最小重复单位叫晶胞。

根据晶体的晶胞,求粒子数的方法:①处于顶点上的粒子:同时为8个晶胞共有,每个粒子有1/8属于晶胞。

②处于棱上的粒子:同时为4个晶胞共有,每个粒子有1/4属于晶胞。

③处于面上的粒子;同时为2个晶胞共有,每个粒子有1/2属于晶胞。

④处于体心的粒子:则完全属于该晶胞。

中学阶段所需掌握的几种晶体结构类型及有关问题:图3 干冰晶体图1 N aCl晶体图2 CsCl晶体图4 金刚石晶体 图5 SiO2晶体图6 石墨晶体一、离子晶体NaCl型(如图1)1.在晶体中,每个Na+同时吸引个Cl-,每个Cl-同时吸引着个Na+,阴、阳离子数目之比是。

2.在晶体结构中,每个晶胞由个小立方体构成,每个小立方体的8个顶点分别由个Na+、个Cl-相邻占据,每个小立方体含Na+:个、含Cl-:个。

故每个晶胞有NaCl微粒个。

3.在晶体中,经过立方体的中心Na+的平面有三个,每个平面的四个顶点上的Na+都同晶体中与中心Na+最接近且距离相等。

所以,在晶体中,每个Na+周围与它最接近的距离相等的Na+的个数共有个。

同理,每个Cl-周围与它最接近且距离相等的Cl-的个数也有个。

CsCl型(如图2)1.在晶体中,每个Cl-吸引个Cs+,每个Cs+吸引个Cl-,Cs+与Cl-的个数比为。

2.每个基本结构单元中(小立方体)含Cl-:个,含Cs+个。

3.在晶体中,每个Cs+周围与它最接近且距离相等的Cs+的个数共有个。

同理,每个Cl-周围与它最接近的且距离相等的Cl-共有个。

[拓展练习]1.在高温超导领域中,有一种化合物叫钙钛矿,其晶体结构中有代表性的最小单位结构如图所示试回答:(1)在该晶体中每个钛离子周围与它最近且相等距离的钛离子有多少个?(2)在该晶体中氧、钙、钛的粒子个数化是多少?2.某物质的晶体中含A、B、C三种元素,其排列方式如图所示(其中前后两面心上的B原子未能画出),晶体中A、B、C的中原子个数之比依次为A.1:3:1B.2:3:1C.2:2:1D.1:3:33.2001年曾报道,硼镁化合物刷新了金属化合物超导温度的最高记录。

该化合晶体结构中的晶胞如右图所示。

镁原子间形成正六棱柱,六个硼原子位于棱柱内。

则该化合物的化学式可表示为A Mg14B6B Mg2BC MgB2D Mg3B24.如图是氯化铯晶体的晶胞(晶体中最小的重复单元),已知晶体中2个最近的Cs+离子核间距为a cm,氯化铯的式量为M,NA为阿伏加德罗常数,则氯化铯晶体的密度为A.8Ma3N Ag/cm3 B.M8a3N Ag/cm3C.Ma3N Ag/cm3 D.Ma3N Ag/cm35.某离子晶体晶胞结构如图所示,x位于立方体的顶点,Y位于立方体中心。

试分析:(1)晶体中每个Y同时吸引着__________个X,每个x同时吸引着__________个Y,该晶体的化学式为__________ 。

(2)晶体中在每个X周围与它最接近且距离相等的X共有__________个。

(3)晶体中距离最近的2个X与1个Y形成的夹角∠XYX的度数为__________。

(4)设该晶体的摩尔质量为M g·mol-1,晶体密度为ρ·cm-3,阿伏加德罗常数为N A则晶体中两个距离最近的X中心间的距离为__________ 。

6.晶体具有规则的几何外型、晶体中最基本的重复单位称为晶胞。

NaCl晶体结构如图所示。

已知Fe x O晶体晶胞结构为NaCl型,由于晶体缺陷,x值小于1测知Fe x O晶体密度为ρ=5.71 g·cm-3,晶胞边长为4.28×10-10 m。

(1)Fe x O中x值(精确至O.01)为(2)晶体中的Fe分别为Fe2+、Fe3+,在Fe2+和Fe3+的总数中,Fe2+所占分数(用小数表示,精确至0.001)为______________。

(3)此晶体的化学式为 _____________。

(4)与某个Fe2+(或Fe3+)距离最近且等距离的O2-围成的空间几何形状是_____________。

(5)在晶体中,铁元素间最短距离为_____________cm7.1986年,瑞士两位科学家发现一种性能良好的金属氧化物超导体,使超导工作取得突破性进展,为此两位科学家获得了1987年的Nobel物理学奖。

其晶胞结构如图。

(1)根据图示晶胞结构,推算晶体中Y,Cu,Ba和O原子个数比,确定其化学式(2)根据(1)所推出的化合物的组成,计算其中Cu原子的平均化合价[该化合物中各元素的化合价为Y(+3),Ba(+2),Cu(+2)和Cu(+3)]试计算化合物中这两种价态Cu原子个数比。

二、分子晶体干冰型(如图3)在干冰晶体中每个CO2分子周围紧邻的 CO2分子有_________个在晶体中截取一个最小的正方形;使正方形的四个顶点落到CO2分子的中心,则在这个正方形的平面上有___________个C02分子。

[拓展练习]1.最近发现一种由钛(Ti)原子和碳原子构成的气态团簇分子,如右图所示,顶角和面心的原子是钛原子,棱的中心和体心的原子是碳原子,它的化学式是______。

2.已知白磷是由P 4分子形成的分子 晶体,每个P 4分子是正四面体结 构。

分子中的四个磷原子位于正四面体的四个顶点。

则P 4分子中共有___________个P —P 键。

3.磷在空气中充分燃烧后生成结构如图所示的分子。

图中圆圈表示原子、实线表示化学键。

试回答: (1)请从图中找出磷原子,并在图上将其涂黑。

(2)形成化合物的化学式为 ________________。

(3)分子内的磷原子排列成______________形。

(4)每个磷原子处于______________中心。

(5)在用实线表示的化学键中,两原子间单线表示 的是 _________(填写非极性键或极性键)。

三、原子晶体正四面体型 (金刚石、硅、二氧化硅)(如图4、图5)1.金刚石晶体中,每个碳原子与4个相邻的碳原子形成4个C—C键。

2.在金刚石晶体中,由于一个碳原子所形成的4个键共有C42=6种两两相邻的组合,每个 键可形成两个近似垂直的六元环,故每个碳原子最多可形成6×2=12个六元环,一个六元环实际拥有6×(1/12)=(1/2)个碳原子。

3.在金刚石晶体中,固定一个C—C键,其余三键与该键有C31=3种两两相邻的组合,故一个C —C 最多可形成3×2=6个六元环,每个六元环拥有6×(1/6)=1个C—C键。

4.硅晶体结构与金刚石晶体结构相同。

5.由上述推导过程可知:在二氧化硅晶体中,最小环为12元环(6个硅原子和6个氧原子),每个12元环实际拥有6×(1/12)=(1/2)个硅原子,拥有(1/6)×6=1个氧原子,故硅、氧原子个数比为1∶2。

四、混合型晶体石墨型(如图6)1.石墨晶体为层状结构。

每一层中碳原子排列成六边形,一个个六边形(六元环)排列成平面的网状结构,键角120°。

2.每一个碳原子都跟相邻的碳原子以共价键相结合。

因此,每个六元环拥有碳原子(1/3)×6=2个,每个环拥有C—C键(1/2)×6=3个。

3.mg石墨中,正六边形数目为(m/12)NA÷2=(mNA/24)。

[拓展练习]1.石墨晶体(属混合型晶体)是层状结构,在每一层内;每一个碳原 子都跟其他3个碳原子相结合,如图是其晶体结构的俯视图,则图 中7个六元环完全占有的碳原子数是( ) A.10个 B.18个 C.24个 D.14个2.石英晶体的平面示意图如图所示,实际上是立体网 状结构,其中硅,氧原子个数比为____________P PP POOOO O O OO OO O O OO3.有一种多聚硼酸盐为无限网状结构(如右图):其结构的基本单元可表示为(B5On)m-,则m=、n=。

4.5.单质硼有无定形和晶体两种,参考下表数据金刚石晶体硅晶体硼熔点>3823 1683 2573沸点5100 2628 2823硬度10 7.0 9.5①晶体硼的晶体类型属于____________晶体,理由是________________________ 。

②已知晶体硼结构单元是由硼原子组成的正二十面体,其中有20个等边三角形的面和一定数目的顶点,每个顶点上各有1个B原子。

通过视察图形及推算,此晶体体结构单元由____________________个硼原子构成。

其中B—B键的键角为____________。

6.β-羧乙基锗倍半氧化物(即Ge-132)是与人体健康有关的最重要的有机锗化合物。

其片层结构如图,每个结构相同的基团都是由六个锗原子和六个氧原子构成的十二元环,每个锗原子还同时与三个氧原子相连结,形成可以任意延伸的片层,每个锗原子连接一个羧乙基(-CH2CH2COOH),各片层间存在相互作用,连结成三维网状结构。

(1) 平均每个正六边形拥有_____个锗原子, _____个氧原子.(2) 化学式为:____________________7.1996年诺贝化学奖授予对发现C60有重大贡献的三位科学家.C60分子是形如球状的多面体(如图),该结构的建立基于以下考虑:①C60分子中每个碳原子只跟相邻的3个碳原子形成化学键;②②C60分子只含有五边形和六边形;③多面体的顶点数、面数和棱边数的关系,遵循欧拉定理:据上所述,可推知C60分子有12个五边形和20个六边形,C60分子所含的双键数为30.请回答下列问题:(1)固体C60与金刚石相比较,熔点较高者应是____________,理由是:_________________________________________________________.(2)试估计C60跟F2在一定条件下,能否发生反应生成C60F60(填“可能”或“不可出能”)_________________________,并简述其理由:________________________________________________________.(3)通过计算,确定C60分子所含单键数.C60分子所含单键数为_______________.(4)C70分子也已制得,它的分子结构模型可以与C60同样考虑而推知.通过计算确定C70分子中五边形和六边形的数目.C70分子中所含五边形数为____________,六边形数为_________.。

相关文档
最新文档