材料科学基础线缺陷位错
线缺陷和面缺陷
线缺陷和面缺陷在材料科学和工程中,缺陷是指材料在制造、加工或使用过程中出现的各种不规则形态。
这些缺陷可能影响材料的性能,如强度、电导率、热导率等。
根据存在的范围,缺陷可以分为线缺陷、面缺陷和体缺陷。
以下是关于线缺陷和面缺陷的详细解释。
一、线缺陷线缺陷是指沿着材料某一特定方向(通常是晶体结构中的某一方向)分布的缺陷。
这种缺陷可以在晶体内任何位置出现,影响材料的力学、电学和热学性能。
常见的线缺陷包括位错和层错。
1.位错位错是指晶体中某处的原子或离子偏离了正常的晶格位置,形成了一个“线状”的缺陷。
位错是金属材料中最常见的一种缺陷,它对材料的强度、硬度、塑性和韧性等力学性能都有重要影响。
根据形成机制,位错可以分为刃型位错、螺型位错和混合位错等。
2.层错层错是指晶体中相邻的两个原子平面之间出现的错位。
它通常发生在两个不同原子面的交界处,对材料的力学和电学性能有很大影响。
层错的形成与材料中的温度、压力和杂质等因素有关。
二、面缺陷面缺陷是指分布在材料表面或近表面的缺陷。
这类缺陷对材料性能的影响主要表现在表面效应和界面效应上。
常见的面缺陷包括晶界、相界和表面粗糙等。
1.晶界晶界是指多晶体材料中相邻晶粒之间的界面。
由于不同晶粒的晶体取向不同,晶界处会产生一定的应力集中。
晶界对材料的力学性能、电学性能和热学性能都有一定影响。
为了提高材料性能,可以通过优化晶粒尺寸和分布来减少晶界数量。
2.相界相界是指多相材料中不同相之间的界面。
相界处的原子结构和化学成分往往与主体材料不同,导致其性能具有各向异性。
相界对材料的力学性能、电学性能和热学性能都有重要影响。
优化相界结构可以提高材料的综合性能。
3.表面粗糙表面粗糙是指材料表面或近表面的微观不平整性。
它可能是由于加工过程中冷却速度不均匀、材料氧化等原因导致的。
表面粗糙会影响材料的表面能、润湿性、涂层附着力和摩擦学性能等。
通过表面处理技术(如抛光、喷砂等)可以改善表面粗糙度,提高材料的性能。
材料科学基础位错理论
1.1 点缺陷
一、点缺陷的形式与分类
• 金属晶体中,点缺陷的存在形式有:空位、间隙原子,置换原子。 • 半金属Si、Ge中掺入三价和五价杂质元素,晶体中产生载流子,得
到P型(空穴)和N型(电子)半导体材料。 • 离子晶体中,单一点缺陷的出现,晶体将失去电平衡。为了保持电
中性,将以复合点缺陷形式出现,形成能较高。
返回
• 半共格界面:(界面能中等) 当相邻晶粒的晶面间距相差较大时,将由若干位
错来补偿其错配,出现共格区与非共格区相间界面。
AB
半共格界面中的 共格区A +非共格区B
返回
• 非共格界面: (界面能高) 当两相邻的晶粒的晶面间距相差很大时,界面上的
原子排列完全不吻合,出现高缺陷分布的界面。
返回
二、界面结构
螺位错柏氏矢量的确定:
b
右旋闭合回路
完整晶体中回路
•
螺位错
∥
b
右螺
左螺
b b
b b
b
b
返回
混合型位错的柏氏矢量
b
bs
be
be b sin bs b cos
返回
2、柏氏矢量的意义
• 意义在于:通过比较反映出位错周围点阵畸变的总积 累(包括强度和取向)。位错可定义为柏氏矢量不为 零的晶体缺陷。
┻
返回
4、实际晶体中的柏氏矢量
• 实际晶体中位错的 b,通常用晶向表示。
b
a
uvw
n
ra b n
u2 v2 w2
b表示错排的程度,称为位错的强度。一般晶体的滑移是
在原子最密集的平面和最密集的方向上进行,所以沿该方
向造成的位错柏氏矢量,等于最短的滑移矢量。(称为初 基矢量)。这种位错称为单位位错。—— 为b最近邻的原子
材料科学基础第二章晶体结构缺陷(三)
位错的观察
位错在晶体表面的露头 抛光后的 试样在侵蚀时,由于易侵蚀而出现 侵蚀坑,其特点是坑为规则的多边 型且排列有一定规律。只能在晶粒 较大,位错较少时才有明显效果。
薄膜透射电镜观察 将试 样减薄到几十到数百个原 子层(500nm以下),利用透 射电镜进行观察,可见到 位错线。
按照完整晶体滑移模型,使晶体滑移所需的临界切应力, 即使整个滑移面的原子从一个平衡位置移动到另一个平衡位 置时,克服能垒所需要的切应力,晶面间的滑移是滑移面上 所有原子整体协同移动的结果,这样可以把晶体的相对滑移
简化为两排原子间的滑移,晶体的理论切变强度m为: Gx/a=msin(2x/)=m2x/
2. 位 错 密 度 : 单 位 体 积 内 位 错 线 的 总 长 度
ρ=L/V
nl n
S l S
式中 L为晶体长度,n为位错线数目,S晶 体截面积。
一般退火金属晶体中为104~108cm-2数量级, 经剧烈冷加工的金属晶体中,为
1012~1014cm-2
(三)、位错线的连续性及位错密度
图 2-13
(三)、混合位错
在外力作用下,两部分之间发生相对
滑移,在晶体内部已滑移和未滑移部分的 交线既不垂直也不平行滑移方向(伯氏矢 量b),这样的位错称为混合位错。如图 2-14所示。
位错线上任意一点,经矢量分解后, 可分解为刃位错和螺位错分量。晶体中位 错线的形状可以是任意的,但位错线上各 点的伯氏矢量相同,只是各点的刃型、螺 型分量不同而已。
(一)完整晶体的塑性变形方式
1.晶体在外力作用下的滑移(图2-6) 滑移的定义 滑移的结果 滑移的可能性(滑移系统):在最密排晶面(称为滑移 面)的最密排晶向(称为滑移方向)上进行 晶体滑移的临界分切应力(c) :开动晶体滑移系统所需 的最小分切应力 2.晶体在外力作用下的孪生
材料科学基础四大强化机制
材料科学基础四大强化机制材料科学是研究材料的结构、性能、制备和应用的学科,是现代科学技术的重要基础。
为了提高材料的性能和功能,材料科学基础研究通常会采用一系列的强化机制。
本文将介绍材料科学基础中的四大强化机制,并分别进行详细解析。
一、晶体缺陷强化机制晶体缺陷是指晶体内部的缺陷或畸变,包括点缺陷、线缺陷和面缺陷等。
晶体缺陷强化机制是通过引入和控制晶体缺陷,来提高材料的力学性能和稳定性。
点缺陷可以通过合金元素的掺杂来引入,从而改变晶体的结构和性能。
线缺陷可以通过外加应力或热处理来引入,从而阻碍晶体的滑移和变形,提高材料的强度和硬度。
面缺陷可以通过晶粒细化和相界强化来实现,从而提高材料的塑性和韧性。
二、相变强化机制相变是指材料在温度、压力或组分等条件改变下发生的结构转变。
相变强化机制是通过控制材料的相变行为,来调控材料的性能和结构。
例如,通过合金化和热处理,可以控制材料的相变温度和相变速率,从而改变材料的硬度、强度和韧性。
此外,相变还可以引发材料的形状记忆效应和超弹性等特殊性能。
三、晶界强化机制晶界是指晶体之间的界面或界面区域,是晶体内部的缺陷和畸变的集中位置。
晶界强化机制是通过控制和调控晶界的结构和性质,来提高材料的力学性能和稳定性。
晶界可以通过晶粒尺寸控制和晶界工程来实现强化。
晶粒尺寸的减小可以提高材料的塑性和韧性,而晶界工程可以通过合金元素的添加和热处理来调控晶界的能量和结构,从而提高材料的强度和硬度。
四、位错强化机制位错是材料中晶格的缺陷和畸变,是材料塑性变形的基本单位。
位错强化机制是通过控制和调控位错的密度和类型,来提高材料的力学性能和稳定性。
位错可以通过外加应力和热处理来引入和操控,从而阻碍材料的滑移和变形,提高材料的强度和硬度。
位错还可以引发材料的弹性形变和塑性形变等特殊性能。
总结起来,材料科学基础中的四大强化机制分别是晶体缺陷强化、相变强化、晶界强化和位错强化。
这些强化机制通过引入和控制材料的缺陷、相变、晶界和位错等结构特征,可以有效地提高材料的力学性能和稳定性,为材料科学和工程提供了重要的理论和实践基础。
材料科学基础第三章晶体缺陷
够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。
材料科学基础位错理论
材料科学基础位错理论位错理论是材料科学领域中的重要概念之一、它是位错理论与晶体缺陷之间相互关联的核心。
本文将从位错的定义、分类和特征出发,进一步介绍位错理论的基本原理和应用。
首先,位错是固体晶体结构中的一种缺陷。
当晶体晶格中发生断裂、错位或移动时,就会形成位错。
位错可以被看作是晶体中原子排列的异常,它具有一定的形态、构型和特征。
根据位错发生的方向和类型,位错可分为直线位错、面位错和体位错。
直线位错是沿晶体其中一方向上的错排,常用符号表示为b。
直线位错一般由滑移面和滑移方向两个参数来表征。
滑移面是指位错的平移面,滑移方向是位错在晶体中的移动方向。
直线位错可以进一步分为边位错和螺位错。
边位错的滑移面为滑移方向的垂直面,螺位错则是在滑移面上存在沿位错线方向扭曲的位错。
面位错是晶体晶格上的一次干涉现象,即滑移面上的两部分之间发生错排。
面位错通常由面位错面和偏移量来描述。
面位错可以是平面GLIDE面位错、垂直GLIDE面位错或螺脚面位错。
体位错是沿体方向上的排列不规则导致的位错。
体位错通常是由滑移面间的晶体滑移产生的。
位错理论的基本原理是通过研究位错在晶体中的移动机制和相互作用,来理解材料的塑性变形和力学行为。
位错理论最早由奥斯勒(Oliver)于1905年提出,他认为材料的塑性变形是由于位错在晶体中游走和相互作用所引起的。
这一理论为后来的位错理论奠定了基础。
位错理论的应用非常广泛。
在材料加工和设计中,位错理论被广泛用于控制材料的力学性能和微观结构。
通过控制位错的生成、运动和相互作用,可以获得理想的材料性能。
同时,位错理论也被用于研究材料的磁性、电子输运和热传导性能等方面。
此外,位错理论也在材料的缺陷工程和腐蚀研究中发挥着重要作用。
通过控制位错的形态和分布,在材料中引入有利于抵抗腐蚀的位错类型,可以提高材料的抗腐蚀性能。
位错理论也可以用于解释材料的断裂行为和疲劳寿命等方面。
总结起来,位错理论是材料科学基础中的重要内容。
材料科学基础基本概念-名词解释
材料科学基础基本概念-名词解释单晶体:是指在整个晶体内部原子都按照周期性的规则排列。
多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。
在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。
包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes等。
线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。
主要为位错dislocations。
面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。
包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。
空位:晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。
弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。
晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。
从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。
热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。
过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。
材料科学基础结构缺陷详解
第一节 点缺陷
1-2 点缺陷的平均浓度
Material
以空位平均浓度为例:
C Aexp( Ev kT)
式中:C —— 空位的平均浓度; A —— 缺陷形成的自由能; k —— 波尔兹曼常数; T —— 温度;
上式说明:点缺陷的平均浓度与温度密切相关,温度越高,C以指数 规律急剧增大。
b
a
uvw,其
n
中n是与点阵类型有关的常数。柏氏矢量的模
a b
u2 v2 w2
。
n
四、位错的柏氏矢量( b )
7. 位错密度
Material
位错的密度包括以下两种: •体密度(ρv ) •面密度( ρs )
第一节 点缺陷
1-1 点缺陷的类型及形成(续)
Material
有动 画哦
(a)Schottky空位形成示意图
(b)Frankel空位形成示意图
第一节 点缺陷
1-1 点缺陷的类型及形成(续)
Material
④点缺陷形成能: 点缺陷形成能=电子能+畸变能
(空位形成能中,电子能是主要的;间隙原子形成能,畸变能是主 要的。) 间隙原子形成能 > 空位形成能 Frankel 空位形成能=空位形成能 + 间隙原子形成能(约为4ev),
材料科学基础
第一讲 晶体中的结构缺陷
缺陷在空间的分布情况
缺陷在空间的分布有如下三种情况:
Guidelines
①点缺陷: 是零维缺陷,包括空位、间隙原子、置换原子等;
②线缺陷: 是一维缺陷,即位错;
③面缺陷: 是二维缺陷,包括晶界、相界、孪晶界、堆垛层错等;
缺陷在空间的分布情况
无机材料科学基础--4位错
2. 螺型位错
设想在简单立方晶体右端施加一切应力,使右端ABCD滑移面 上下两部分晶体发生一个原子间距的相对切变,在已滑移区与未 滑移区的交界处,两侧的上下两层原子发生了错排和不对齐现象, 这个过渡区内的上下二层的原子相互移动的距离小于一个原子间 距,因此它们都处于非平衡位置。这个过渡区就是螺型位错,也 是晶体已滑移区和未滑移区的分界线。之所以称其为螺型位错, 是因为如果把过渡区的原子依次连接起来可以形成“螺旋线”。 此种晶格缺陷被称为螺型位错。螺旋位错分为左旋和右旋。 以大拇指代表螺旋面前进方向,其他四指代表螺旋面的旋转 方向,符合右手法则的称右旋螺旋位错,符合左手法则的称左旋 螺旋位错。
混合位错
2. 位错的攀移 刃型位错还可以在垂直滑移面的方向上运 动即发生攀移。攀移的实质是多余半原子 面的伸长或缩短。
(a)正攀移
刃型位错的攀移 (b)原始位置
(c)负攀移
攀移伴随物质迁移,需要较高能量; 作用于攀移面的正应力、过饱和空位等都有助于攀移。
攀移与滑移区别:
1)攀移伴随物质的迁移,需要空位的扩散,需要热激话, 比滑移需更大能量。 2)低温攀移较困难,高温时易攀移。在许多高温过程如蠕 变、回复、单晶拉制中,攀移却起着重要作用。 3)攀移通常会引起体积的变化,故属非保守运动。 4)作用于攀移面的正应力有助于位错的攀移。 压应力将促进正攀移,拉应力可促进负攀移。 5)晶体中过饱和空位也有利于攀移。
2.位错的增殖 在晶体塑性变形过程中,有大量的位错滑移出 晶体表面而消失,晶体中位错数量按理将越来越少, 但是实验表明,塑性变形过程中位错的数量不仅没 有减少,反而大大增加了,这表明,位错在以某种 方式进行增殖,这个能增殖位错的地方就是位错源。 位错增殖模型: ①L型位错滑移增殖 ②F-R源增殖 ③双交滑移增殖模型 ④位错攀移增殖模型(正攀移 负攀移)
晶体缺陷-线缺陷讲解
(2)刃型位错线可理解为晶体中已滑 移区与未滑移区的边界线;
(3)滑移面必定是同时包含有位错线 和滑移矢量的平面,在其他面上不 A 能滑移;
(4)晶体中存在刃型位错之后,位错 周围的点阵发生弹性畸变;
(5)在位错线周围的过渡区(畸变区 )每个原子具有较大的平均能量。
H D
错中心附近的原子沿柏氏矢量方向在滑移面上不断 地作少量的位移(小于一个原子间距)而逐步实现 的。(刃型位错和螺型位错均可发生) 4.2 位错的攀移
刃型位错在垂直于滑移面的方向上运动,即发 生攀移。实质上就是构成刃型位错的多余半原子面 的扩大或缩小。(螺型位错没有多余的半原子面, 因此不会发生攀移运动)
12
三.柏氏矢量
(a) 实际晶体
(a) 理想晶体
13
三.柏氏矢量
3.2 右手法则(确定刃型位
错的正负): 先人为的规定位错线方向,
用右手的拇指、食指和中指构 成直角坐标,以食指指向位错 线的方向,中指指向柏氏矢量 的方向,则拇指的指向代办多 余半原子面的位向,且规定拇 指向上者为正刃型位错;反之 为负刃型位错。
(2)线缺陷:特征是在两个方向上尺寸很小,另外一 个方向上延伸较长。如各种位错;
(3)面缺陷:特征是在一个方向上尺寸很小,另外两 个方向上扩展很大。如晶界、孪晶界等。
5
二.位错(dislocation)
2.1 位错的定义:晶体的线缺陷表现为各种
类型的位错。即晶体中某处一列或若干列原 子有规律的错排。
3.1 柏氏矢量的确定:柏氏矢量可通过
柏氏回路(Burgers circuit)来确定。 在含有位错的实际晶体中作一个包含位 错发生畸变的回路,然后将这同样大小 的回路置于理想晶体中,此时回路将不 能封闭,需引一个额外的矢量b连接回路 ,才能使回路闭合,这个矢量b就是实际 晶体中位错的柏氏矢量。如图所示: a )实际晶体(b) 完整晶体
材料科学基础I 7-2 线缺陷——位错的基本概念
五、位错密度
晶体中位错的量(多少)通常用位错密度来表示:
S (cm/ cm3)
V
V——晶体的体积,cm3 S——该晶体中位错线的总长度,cm
为了简便,把位错线当成直线,而且是平行地从晶体的一面 到另一面,这样上式可变为:
n l n 1/ cm2 lA A
n——面积A中见到的位错数目,个、条 l ——每根位错线长度,近似为晶体厚度。
3、左、右旋螺型位错的规定
左旋螺型位错:符合左手定则(上图) 右旋螺型位错:符合右手定则(下图)
三、柏氏矢量(Burgers vector) 1、柏氏矢量b的确定方法
2、柏氏矢量b的物理意义
柏氏矢量b是描述位错实质的重要物理量。它反映了柏氏回 路包含位错所引起点阵畸变的总积累,通常将柏氏矢量称为位 错强度。位错的许多性质,如位错的能量、应力场、位错反应 等均与其有关。它也表示出晶体滑移的大小和方向。
滑移面——位错线l与柏氏矢量b构成的平面(l ×b)。
滑移方向v、位错线l 、柏氏矢量b之间的关系: 滑移方向与柏氏矢量方向相同,与位错线垂直:v // b ⊥ l
2、攀移
只有刃型位错才能发生攀移运动,即位错在垂直于滑移面 的方向上运动。其实质是构成刃型位错的多余半原子面的扩 大或缩小,它是通过物质迁移即原子或空位的扩散来实现的。 通常把半原子面向上运动称为正攀移,向下运动称为负攀移。
分界面, l×v所指向的那部分晶体必沿着b方向运动。
这个规则对刃型位错、螺形位错、混合型位错的任何运动
(滑移、攀移)都适用。
l
v
二、螺型位错的运动
螺型位错只能滑移,不能攀移。
动画
螺型位错的运动方向v与位错线l、柏氏矢量b垂直: v⊥ l // b
材料科学基础I__7-2___线缺陷——位错的基本概念
b)中:AB、CD段与柏氏矢量b垂直,所以是单纯的刃型位错, AC、BD段与柏氏矢量b平行,所以是单纯的螺型位错。
即,晶体滑移方向与位错运动方向垂直。
2、螺型位错的结构
如右图所示,上半部分晶体的右 边相对于它下面的晶体移动了一个 原子间距。在晶体已滑移和未滑移 之间存在一个过渡区,在这个过渡 区内的上下二层的原子相互移动的 距离小于一个原子间距,因此它们 都处于非平衡位置。这个过渡区就 是螺型位错,也是晶体已滑移区和 未滑移区的分界线。之所以称其为 螺型位错,是因为如果把过渡区的 原子依次连接起来可以形成“螺旋 线”。螺位错用环形箭头或用s表 示。
的柏氏矢量也是由这二个柏氏
矢量合成的。或者说,混合型 位错的柏氏矢量可以分解成二
个矢量:一个和位错线垂直,
是刃型位错的柏氏矢量;一个 和位错线平行,是螺型位错的
柏氏矢量。
五、位错密度
晶体中位错的量(多少)通常用位错密度来表示:
S V
V——晶体的体积,cm3
(cm / cm 3 )
S——该晶体中位错线的总长度,cm 为了简便,把位错线当成直线,而且是平行地从晶体的一面 到另一面,这样上式可变为:
分界面, l×v所指向的那部分晶体必沿着b方向运动。
这个规则对刃型位错、螺形位错、混合型位错的任何运动 (滑移、攀移)都适用。 l
v
二、螺型位错的运动
螺型位错只能滑移,不能攀移。 动画
螺型位错的运动方向v与位错线l、柏氏矢量b垂直: v⊥ l // b
三、混合位错的运动
混合位错只有一个柏氏矢量,
§7-2 线缺陷——位错的基本概念
线缺陷(linear defects)又称为位错(dislocation)。也就是说,
大学材料科学基础第四章晶体缺陷
Point defects: (a) vacancy, (b) interstitial atom, © small substitutional atom, (d) large substitutional atom, (e) Frenkel defect-ionic cystals (f) Schottky defect- ionic crystals. All of these defects disrupt the perfect arrangement of the surrounding atoms.
第一节 点缺陷
一、点缺陷的类型 1.点缺陷的概念 指在三维方向上尺寸都很小的原子错排区 域,不能理解为一个几何点。
(1) vacancy; (2) selfinterstitial; (3) interstitial impurity; (4), (5) substitutional impurities. The arrows show the local stresses introduced by the point defects.
3830 6480 10960 2630
0.786 0.49 2.75 0.393
2.位错学说的提出
图5 位错滑动模型
位错理论发展进程 1934年,Talay和Orowa 度低于理论强度的现象。 1939 1939年,Burgers提出用柏氏矢量来表征位错 Burgers 类型,为用数学方法处理位错奠定了基础。 1947年,Cottrell提出柯氏气团钉扎模型,成 功地解释了低碳钢的屈服现象。 1950年,Frank和Read提出金属塑性变形中位 错增殖机制,即Frank-Read位错源学说。
刃型位错柏氏矢量确定
材料科学基础重点总结 2 空位与位错
第2章晶体缺陷晶体缺陷实际晶体中某些局部区域,原子排列是紊乱、不规则的,这些原子排列规则性受到严重破坏的区域统称为“晶体缺陷”。
晶体缺陷分类:1)点缺陷:如空位、间隙原子和置换原子等。
2)线缺陷:主要是位错。
3)面缺陷:如晶界、相界、层错和表面等。
2.1 点缺陷空位——晶体中某结点上的原子空缺了,则称为空位。
点缺陷的形成:肖特基空位:脱位原子迁移到晶体表面或者内表面的正常结点位置,从而使晶体内部留下空位,这样的空位称为肖特基(Schottky)空位。
(内部原子迁移到表面)肖特基(Schottky)空位弗仑克耳(Frenkel)空位弗仑克耳空位:脱位原子挤入点阵空隙,从而在晶体中形成数目相等的空位和间隙原子,称为弗仑克耳(Frenkel)空位。
(由正常位置迁移到间隙)外来原子:外来原子也可视为晶体的点缺陷,导致周围晶格的畸变。
外来原子挤入晶格间隙(间隙原子),或置换晶格中的某些结点(置换原子)。
空位的热力学分析:空位是由原子的热运动产生的,晶体中的原子以其平衡位置为中心不停地振动。
对于某单个原子而言,其振动能量也是瞬息万变的,在某瞬间原子的能量高到足以克服周围原子的束缚,离开其平衡位置从而形成空位。
空位是热力学稳定的缺陷点缺陷的平衡浓度系统自由能F=U- TS (U为内能,S为总熵值,T为绝对温度)平衡机理:实际上为两个矛盾因素的平衡a 点缺陷导致弹性畸变使晶体内能U增加,使自由能增加,降低热力学稳定性b 使晶体中原子排列混乱度增加,熵S增加,使自由能降低,增加降低热力学稳定性熵的变化包括两部分:①空位改变它周围原子的振动引起振动熵,Sf。
②空位在晶体点阵中的存在使体系的排列方式大大增加,出现许多不同的几何组态,使组态熵Sc增加。
空位浓度,是指晶体中空位总数和结点总数(原子总数)的比值。
随晶体中空位数目n的增多,自由能先逐渐降低,然后又逐渐增高,这样体系中在一定温度下存在一个平衡空位浓度,在平衡浓度下,体系的自由能最低。
材料科学基础-5
(3)位错线不可能中断于晶体内部,这种性质称为位 错的连续性。
• 利用柏氏矢量b与位错线t的关系,可判定 位错类型。 若 b∥t 则为螺型位错。 若 b⊥t 为刃型位错。 若既不垂直也不平行,为混合型位错
位错线
正刃型位错
负刃型位错
刃型位错的结构特点:
• 刃型位错有一个多余半原子面。一般把多余半原子面在滑 移面以上者,称为正刃型位错,以“”号标示;反之, 则为负刃型位错,以“”号标示。刃型位错的正、负之 分只具相对意义,而无本质区别。 • 刃型位错线与形成位错的晶体滑移矢量和滑移方向垂直。 • 刃型位错是以位错线为中心轴、半径为23个原子间距的
刃型 位错
螺型 位错 混合 位错
⊥位错线
∥位错线
⊥位错线本身 与b一致
⊥位错线本身 与b一致
与b一致 唯一 确定 与b一致 多个 与b一致
成角度
⊥位错线本身 与b一致
(1) 可以通过柏氏矢量和位错线的关系来判断位错 特征。b⊥t时为刃型位错,b∥t为螺型位错,对于混合 型位错,b和t的角度在0°和90°。
练习2 晶面上有一位错环,确定其柏氏矢量,该位错环在切应 力作用下将如何运动?
2.2.4 运动位错的交割
• 当位错在其滑移面上滑移时,会与穿过滑移面的 其他位错相遇。当外力足够大时,两个相遇的位 错便会交叉通过,继续向前滑移。位错间交叉通 过的行为即称为位错交割。
• 发生位错交割后,位错线常常变成折线,即形成 折线线段。此扭折线段在位错滑移过程中可以消 失,则为位错扭折,如果位错滑移过程中不能消 失,就称为位错割阶。
混合位错示意图
材料科学基础位错部分知识点
材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。
螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。
刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。
B.位错线:位错产生点阵畸变区空间呈线状分布。
对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。
为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。
C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。
(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。
晶体中位错线的形状可以是任意的。
)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。
(金属中位错密度通常在106~8—1010~121/c㎡之间。
)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Complexes decompose
Vacancy annihilation
Equilibrium grain boundary segregation
– In solid solutions, solute atoms cause lattice distortion, leading to an increase in the energy of the system
Mixed dislocation
• Burgers vector
– Used to indicate the direction and magnitude of the lattice distortion caused by a dislocation
– Denoted as b
– For edge dislocations, b is perpendicular to the dislocation line; for screw dislocations, b is parallel to the dislocation line; for mixed dislocations, b is neither perpendicular nor parallel to the dislocation line
Classification of grain boundary segregation
• Equilibrium segregation
– Thermodynamic process – Driving force: solute-boundary binding energy (the
difference in energy caused by a solute atom between staying in the grain interior and on the grain boundary
Edn
Mixed dislocation
• Effects of dislocations on the properties of materials
– Play a crucial role in the plastic deformation of materials
Linear Defect – Dislocations
Features: one dimensional
• Classification and formation
– Edge dislocation and screw dislocation
Edge dislocation
Compressive stresses
Segregation thermodynamics
At a certain temperature, T, there is an equilibrium segregation concentration, C(T)
C (T ) 1 C (T )
Cg
exp( G ) RT )
where G is the free energy of segregation (J/mol), R is the gas constant (8.314 J/(mol.K)), T is the absolute temperature, and Cg is the bulk concentration
• Features of grain boundaries
– 2~3 atomic layers thick (0.5~1 nm)
– Within the boundary, there is some atomic mismatch and the density is lower, so the grain boundary is in a higher energy state, leading to a grain boundary energy
Effects of grain boundary segregation on the properties of materials
Mechanical, corrosion, electrical, and magnetic properties
e.g. in structural materials, such as steel and Ni alloys
d
where Ds is the solute diffusion coefficient, d is the boundary thickness, and is the
enrichment ratio
Boundary concentration
Time
Equilibrium segregation kinetic curve
• To reduce the surface energy, the materials tend to minimize the total surface area
Grain Boundaries
In polycrystalline materials, a grain boundary is the boundary between two adjacent grains which have different orientations
• Non-equilibrium segregation
– Kinetic process – Driving force: supersaturated point defect-solute
complex concentration gradient between the grain centre and the boundary
– One dislocation just has one b
– For metals, b normally points in a close-packed crystal direction and its magnitude is the interatomic spacing because the slip direction is normally in the close-packed direction
– Dislocation strengthening is one of the major strengthening mechanisms for metallic materials
– The properties of LED depend considerably on the dislocation density in light emission materials such as GaN and SiC (the lower, the better)
– To reduce the energy of the system, grains tend to grow to reduce the total grain boundary area.
– Degree of misorientation – low angle boundary (<10o) and high angle boundary (>15o). Low angle boundaries are composed of dislocations
Non-equilibrium grain boundary segregation
Non-equilibrium segregation mechanism
Grain
Excess vacancies Thermal equilibrium vacancies
Grain
Thermal Supersaturated equilibrium complexes vacancies
Undersized solute
Oversized solute
The lattice near the solute atom The lattice near the solute atom is is exerted by a tensile stress exerted by a compressive stress
– Grain boundary area is porous and can accept solute atoms without causing apparent lattice distortion
– Migration of solute atoms from grain interiors to grain boundaries (segregation) can result in a decrease in the energy of the system (driving force). Therefore, thermodynamically, the segregation is a spontaneous process
Segregation of detrimental elements such as S, P, Sn, and Sb – decreasing the grain boundary cohesion – grain boundary weakening
Segregation of beneficial elements such as B, C and Be – increasing the grain boundary cohesion – grain boundary strenthening
• Observation of dislocations
Dark lines - dislocations
Plane Defects
Features: two dimensional