第2讲 正态分布
最新人教版高中数学选修2-3《正态分布》知识讲解
2.4 正态分布1.正态曲线(1)函数______________,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数.我们称φμ,σ(x )的图象为正态分布密度曲线,简称________.(2)随机变量X 落在区间(a ,b ]的概率为P (a <X ≤b )≈__________,即由正态曲线,过点(a,0)和点(b,0)的两条x 轴的垂线,及x 轴所围成的平面图形的面积,就是X 落在区间(a ,b ]的概率的近似值.预习交流1(1)正态曲线φμ,σ(x )中参数μ,σ的意义是什么?(2)设随机变量X 的正态分布密度函数φμ,σ(x )=12πe -(x +3)24,x ∈(-∞,+∞),则参数μ,σ的值分别是( ).A .μ=3,σ=2B .μ=-3,σ=2C .μ=3,σ= 2D .μ=-3,σ= 22.正态分布一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=__________,则称X 服从________.正态分布完全由参数μ和σ确定,因此正态分布常记作________,如果随机变量X 服从正态分布,则记为________.3.正态曲线的特点(1)曲线位于x轴____,与x轴______;(2)曲线是单峰的,它关于直线____对称;(3)曲线在____处达到峰值______;(4)曲线与x轴之间的面积为__;(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“____”,表示总体的分布越集中;σ越大,曲线越“____”,表示总体的分布越分散,如图②.预习交流2设随机变量X~N(μ,σ2),且P(X≤C)=P(X>C),则C=().A.0B.σC.-μD.μ4.正态总体在三个特殊区间内取值的概率若X~N(μ,σ2),则对于任何实数a>0,概率P(μ-a<X≤μ+a)=__________.特别地有P(μ-σ<X≤μ+σ)=______,P(μ-2σ<X≤μ+2σ)=______,P(μ-3σ<X≤μ+3σ)=______.5.3σ原则正态变量在(-∞,+∞)内的取值的概率为1,正态总体几乎总取值于区间(μ-3σ,μ+3σ)之内,而在此区间以外取值的概率只有0.002 6,通常认为这种情况在一次试验中几乎不可能发生,因此在实际应用中通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值,简称为________.预习交流3(1)如何求服从正态分布的随机变量X在某区间内取值的概率?(2)正态总体N(4,4)在区间(2,6]内取值的概率为__________.答案:1.(1)φμ,σ(x)=12πσ22()2exμσ--正态曲线(2)∫b aφμ,σ(x)d x预习交流1:(1)提示:参数μ反映随机变量取值的平均水平的特征数,即若X~N(μ,σ2),则E(X)=μ.同理,参数σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.(2)提示:写成标准式φμ,σ(x)=12π2 e∴μ=-3,σ= 2.2.∫b aφμ,σ(x)d x正态分布N(μ,σ2)X~N(μ,σ2)3.(1)上方不相交(2)x=μ(3)x=μ1σ2π(4)1(6)瘦高矮胖预习交流2:提示:正态分布在x=μ对称的区间上概率相等,则C=μ.4.∫μ+aμ-aφμ,σ(x)d x0.682 60.954 40.997 45.3σ原则预习交流3:(1)提示:首先找出服从正态分布时μ,σ的值,再利用3σ原则求某一个区间上的概率,最后利用在关于x=μ对称的区间上概率相等求得结果.(2)提示:由题意知μ=4,σ=2,∴P(μ-σ<X≤μ+σ)=P(2<X≤6)=0.682 6.一、正态曲线的图象应用如图所示的是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.思路分析:给出一个正态曲线就给出了该曲线的对称轴和最大值,从而就能求出总体随机变量的期望、标准差以及解析式.如图是正态分布N(μ,σ21),N(μ,σ22),N(μ,σ23)(σ1,σ2,σ3>0)相应的曲线,那么σ1,σ2,σ3的大小关系是().A.σ1>σ2>σ3 B.σ3>σ2>σ1 C.σ1>σ3>σ2D.σ2>σ1>σ3(1)用待定系数法求正态变量概率密度曲线的函数表达式,关键是确定参数μ和σ的值,并注意函数的形式.(2)当x=μ时,正态分布的概率密度函数取得最大值,即f(μ)=12πσ为最大值,并注意该式在解题中的应用.二、利用正态曲线的对称性求概率已知随机变量X服从正态分布N(2,σ2),P(X<4)=0.84,则P(X≤0)=().A.0.16 B.0.32 C.0.68 D.0.84思路分析:画出正态曲线,结合其意义及特点求解.若随机变量ξ服从正态分布N(0,1),已知P(ξ<-1.96)=0.025,则P(|ξ|<1.96)=().A.0.025 B.0.050 C.0.950 D.0.975充分利用正态曲线的对称性及面积为1的性质求解.①熟记正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等.②P(X<a)=1-P(X≥a);P(X<μ-a)=P(X>μ+a).三、正态分布的应用在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110]内的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100]间的考生大约有多少人?思路分析:正态分布已经确定,则总体的期望μ和标准差σ就可以求出,这样就可以根据正态分布在三个常见的区间上取值的概率进行求解.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中属于正常情况的人数是().A.997 B.954 C.819 D.683求正态变量X在某区间内取值的概率的基本方法:(1)根据题目中给出的条件确定μ,σ的值;(2)将待求问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化;(3)利用上述区间求出相应的概率.答案:活动与探究1:解:从给出的正态曲线可知该正态曲线关于直线x=20对称,最大值是12π,所以μ=20,12πσ=12π,则σ= 2.所以概率密度函数的解析式是f(x)=12π2(20)4ex--,x∈(-∞,+∞).总体随机变量的期望是μ=20,方差是σ2=(2)2=2.迁移与应用:A活动与探究2:A解析:由X~N(2,σ2),可知其正态曲线如图所示,对称轴为x=2,则P(X≤0)=P(X≥4)=1-P(X<4)=1-0.84=0.16.迁移与应用:C解析:由已知正态曲线的对称轴为x=μ=0,∴P(ξ<-1.96)=P(ξ>1.96)=0.025.∴P(|ξ|<1.96)=1-P(ξ≥1.96)-P(ξ≤-1.96)=0.950.活动与探究3:解:∵ξ~N(90,100),∴μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ]内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110]内的概率就是0.954 4.(2)由μ=90,σ=10得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ]内取值的概率是0.682 6,所以考试成绩ξ位于区间(80,100]内的概率是0.682 6.一共有2 000名考生,所以考试成绩在(80,100]间的考生大约有2 000×0.682 6≈1 365(人).迁移与应用:D解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ<X≤μ+σ)=0.682 6,从而属于正常情况的人数是1 000×0.682 6≈683.1.正态曲线关于y轴对称,则它所对应的正态总体的均值为().A.1 B.-1 C.0 D.不确定2.设随机变量X ~N (1,22),则D ⎝⎛⎭⎫12X =( ).A .4B .2 C.12D .1 3.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ).A .0.447B .0.628C .0.954D .0.9774.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为__________.5.一批灯泡的使用时间X (单位:小时)服从正态分布N (10 000,4002),则这批灯泡使用时间在(9 200,10 800]内的概率是__________.答案:1.C 解析:由正态曲线关于y 轴对称,∴μ=0,均值为0.2.D 解析:因为X ~N (1,22),所以D (X )=4,所以D ⎝⎛⎭⎫12X =14D (X )=1.3.C 解析:∵随机变量ξ服从标准正态分布N (0,σ2),∴正态曲线关于x =0对称.又P (ξ>2)=0.023,∴P (ξ<-2)=0.023.∴P (-2≤ξ≤2)=1-2×0.023=0.954.4.0.8 解析:易得P (0<ξ<1)=P (1<ξ<2),故P (0<ξ<2)=2P (0<ξ<1)=2×0.4=0.8.5.0.954 4 解析:μ=10 000,σ=400,P (9 200<X ≤10 800)=P (10 000-2×400<X ≤10 000+2×400)=0.954 4.。
高二数学(理)正态分布人教实验版(A)知识精讲
高二数学(理)正态分布人教实验版(A )【本讲教育信息】一. 教学内容:正态分布二. 重点、难点:1. 正态分布密度曲线,简称,正态曲线222)(21)(σμμσσπϕ--⋅=x ex (x ∈R )2. 正态分布⎰=≤<dx x b x a P b a )()(μσϕ3. 特值(1)P (σμσμ+≤<-x )=68.26% (2)P (σμσμ22+≤<-x )=95.44% (3)P (σμσμ33+≤<-x )=99.74%【典型例题】[例1] 一台自动包装机向袋中装糖果,标准是每袋64克,但因随机性误差,每袋具体重量有波动、据以往资料认为:每袋糖果的重量q 服从正态分布)5.1,64(2N 试问随机抽一袋糖果其重量超过65克的概率是多少?不到62克的概率是多少?解:设5.164-=q t )65(>q P )67.0()5.16465(>=->=t P t P )67.0(1)67.0(1φ-=<-=t P 2514.07486.01=-=)33.1()5.16462()62(-<=-<=<t P t P q P)33.1(1<-=t P )33.1(1φ-=9082.01-=0918.0=∴ 超过65克概率为25.14%,不足62克……9.18%。
[例2] q ~N ),(2σμ045.0)5(=-≤q P 618.0)3(=≤q P ,求μ、σ?解:)5()5()5(σμφσμ--=--≤=-≤t P q P045.0)5(1=+-=σμφ∴955.0)5(=+σμφ∴7.15=+σμ①618.0)3()3()3(=-=-≤=≤σμφσμt P q P∴3.03=-σμ②由①②⎩⎨⎧==⇒48.1σμ[例3] q ~)2,1(2N(1)求)75(≤≤q P (2)若)(2)(b q P b q P <=≥ 解:(1))217215()75(-<<-=≤≤t P q P )2()3()32(φφ-=≤≤=P t P 0214.09772.09987.0=-=(2))(b q P >)(2b q P ≤=∴)21(2)21(-≤=->b t P b t P ∴31)21(=-<b t P ∵1<b ∴01<-b ∴667.032)21(≈=-<b t P∴667.0)43.0(=φ43.021=-b14.0=b[例4] 假设数学会考成绩q 近似服从正态分布)10,70(2N 现知第100名学生的成绩为60分,试问第20名的学生成绩为多少分。
专题17.5 二项分布与正态分布(精讲精析篇)(解析版)
专题17.5 二项分布与正态分布(精讲精析篇)提纲挈领点点突破热门考点01 独立重复试验的概率n次独立重复试验(1)定义一般地,在相同条件下重复地做n次试验,各次试验的结果相互独立,称为n次独立重复试验.(2)公式一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k,(k=0,1,2,…,n).【典例1】(2015·全国高考真题(理))投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【答案】A【解析】该同学通过测试的概率为,故选A.【典例2】(多选题)(2020·襄阳市第一中学月考)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为80243;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627. 则其中正确命题的序号是()A .①B .②C .③D .④【答案】ABD 【解析】一袋中有大小相同的4个红球和2个白球,①从中任取3球,恰有一个白球的概率是21423635C C p C ==故正确; ②从中有放回的取球6次,每次任取一球,每次抽到白球的概率为2163p ==,则恰好有两次白球的概率为4226218033243p C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故正确; ③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为1143114535C C C C =,故错误; ④从中有放回的取球3次,每次任取一球,每次抽到红球的概率为4263p ==:则至少有一次取到红球的概率为3031261327p C ⎛⎫=-= ⎪⎝⎭,故正确.故选:ABD. 【总结提升】 1独立重复试验的特点(1)每次试验中,事件发生的概率是相同的.(2)每次试验中的事件是相互独立的,其实质是相互独立事件的特例.2.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解;在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.3.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验; 4.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.热门考点02 二项分布及其应用1.若将事件A 发生的次数设为X ,发生的概率为P ,不发生的概率q =1-p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是P (X =k )=C k n p k qn -k(k =0,1,2,…,n ) 于是得到X 的分布列(q +p )n =C 0n p 0q n +C 1n p 1q n -1+…+C k n p k qn -k +…+C n n p n q 0各对应项的值,称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).【典例3】(2020·科尔沁左翼后旗甘旗卡第二高级中学高二期末(理))已知随机变量ξ服从二项分布14,3B ξ⎛⎫~ ⎪⎝⎭,则(3)P ξ==( ).A .3281B .1681C .2481D .881【答案】D 【解析】14,3B ξ⎛⎫~ ⎪⎝⎭表示做了4次独立实验,每次试验成功概率为13,则31341228(3)4338181P C ξ⎛⎫⎛⎫==⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.选D .【典例4】为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省于2018年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2 160度以下(含2 160度),执行第一档电价0.565 3元/度;第二阶梯电量:年用电量2 161至4 200度(含4 200度),执行第二档电价0.615 3元/度;第三阶梯电量:年用电量4 200度以上,执行第三档电价0.865 3元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:(1)试计算表中编号为10的用电户本年度应交电费多少元?(2)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列; (3)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k 户用电量为第一阶梯的可能性最大,求k 的值.【答案】见解析【解析】(1)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4 600度,则该户本年度应交电费为4 600×0.565 3+(4 200-2 160)×0.05+(4 600-4 200)×0.3=2 822.38(元).(2)由题表可知,10户中位于第二阶梯电量的有4户,设取到第二阶梯电量的用户数为ξ,则ξ可取0,1,2,3,4.P (ξ=0)=C 04C 46C 410=114,P (ξ=1)=C 14C 36C 410=821,P (ξ=2)=C 24C 26C 410=37,P (ξ=3)=C 34C 16C 410=435,P (ξ=4)=C 44C 06C 410=1210,故ξ的分布列为(3)由题意可知从全市中抽取10户,用电量为第一阶梯的户数满足X ~B ⎝⎛⎭⎫10,25,可知P (X =k )=C k 10⎝⎛⎭⎫25k ·⎝⎛⎭⎫3510-k (k =0,1,2,3,…,10).由⎩⎨⎧C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k +110⎝⎛⎭⎫25k +1⎝⎛⎭⎫359-k ,Ck 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k -110⎝⎛⎭⎫25k -1⎝⎛⎭⎫3511-k,解得175≤k ≤225.又k ∈N *,所以当k =4时概率最大,故k =4.【规律方法】1.判断随机变量X 服从二项分布的条件(X ~B (n ,p )) (1)X 的取值为0,1,2,…,n . (2)P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ,p 为试验成功的概率).提醒:在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布. 2. 二项分布满足的条件(1)每次试验中,事件发生的概率是相同的. (2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生. (4)随机变量是这n 次独立重复试验中事件发生的次数. 3.二项展开式的通项与二项分布的概率公式的“巧合”一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0p A p =>.我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.在n 次独立重复试验中,每次试验事件A 发生的概率均为()01p p <<,即()p A p =,()1p A p q =-=.由于试验的独立性,n 次试验中,事件A 在某指定的k 次发生,而在其余n k -次不发生的概率为k n kp q -.而在n 次试验中,事件A 恰好发生()0k k n ≤≤次的概率为()kkn kn n P k C p q-=,0,1,2,,k n =.它恰好是()np q +的二项展开式中的第1k +项.4. 牢记且理解事件中常见词语的含义: (1) A 、B 中至少有一个发生的事件为A B ;(2) A 、B 都发生的事件为AB ; (3) A 、B 都不发生的事件为AB ; (4) A 、B 恰有一个发生的事件为AB AB ; (5) A 、B 至多一个发生的事件为ABABAB .热门考点03 与二项分布有关的均值与方差二项分布的期望、方差: 若(),X B n p ,则()E X np =. 若(),XB n p ,则()()1D X np p =-.【典例5】(2019·天津高考真题(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(Ⅰ)见解析;(Ⅱ)20243【解析】(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23, 故2~3,3X B ⎛⎫ ⎪⎝⎭,从面()()33210,1,2,333k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以,随机变量X 的分布列为:X0 1 2 3P127 2949 827随机变量X 的数学期望2()323E X =⨯=. (Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫ ⎪⎝⎭. 且{3,1}{2,0}M X Y X Y =====.由题意知事件{}3,1X Y ==与{}2,0X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立, 从而由(Ⅰ)知:{}{}()()3,12,0P M P X Y X Y =====()()3,12,0P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 【典例6】(2019·河北高二期末(理))互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占23,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率; (2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望. 【答案】(1)291494;(2)440 【解析】(1)设事件A 表示至少有1人的年龄低于45岁,则()3303402911494C P A C =-=.(2)由题意知,以手机支付作为首选支付方式的概率为6031005=.设X 表示销售的10件商品中以手机支付为首选支付的商品件数,则3~10,5X B ⎛⎫ ⎪⎝⎭, 设Y 表示销售额,则()40501050010Y X X X =+-=-, 所以销售额Y 的数学期望35001050010104405EY EX =-=-⨯⨯=(元). 【总结提升】与二项分布有关的期望、方差的求法(1)求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B (n ,p ),则用公式E (ξ)=np ,D (ξ)=np (1-p )求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E (aξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (aξ+b ),同样还可求出D (aξ+b ).热门考点04 正态曲线及其性质1.正态曲线及其性质 (1)正态曲线:函数φμ,σ(x )=12πσe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值12πσ; ④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中,如图乙所示:甲 乙 2.正态分布一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x ,则称随机变量X 服从正态分布(normal distribution).正态分布完全由参数μ和σ确定,因此正态分布常记作N (μ,σ2).如果随机变量X 服从正态分布,则记为X ~N (μ,σ2). 3.正态总体三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=0.6826; ②P (μ-2σ<X ≤μ+2σ)=0.9544; ③P (μ-3σ<X ≤μ+3σ)=0.9974. 4.3σ原则通常服从正态分布N (μ,σ2)的随机变量X 只取(μ-3σ,μ+3σ)之间的值.【典例7】(2020·湖北十堰·期末)设某地胡柚(把胡柚近似看成球体)的直径(单位:)mm 服从正态分布(75,16)N ,则在随机抽取的1000个胡柚中,直径在(79,83]内的个数约为( ) 附:若2~(,)X N μσ,则()0.6827P X μσμσ-<+=,(22)0.9545P X μσμσ-<+=. A .134 B .136 C .817 D .819【答案】B 【解析】由题意,75μ=,4σ=,则1(7983)[(22)()]2P X P X P X μσμσμσμσ<=-<+-+<+1(0.95450.6827)0.13592=⨯-=. 故直径在(79,83]内的个数约为0.135********.9136⨯=≈. 故选:B .【典例8】(多选题)(2020·辽宁省本溪满族自治县高级中学高二期末)若随机变量()0,1N ξ,()()x P x φξ=≤,其中0x >,下列等式成立有( )A .()()1x x φφ-=-B .()()22x x φφ=C .()()21P x x ξφ<=- D .()()2P x x ξφ>=-【答案】AC 【解析】随机变量ξ服从标准正态分布(0,1)N ,∴正态曲线关于0ξ=对称,()(x P x φξ=,0)x >,根据曲线的对称性可得:A.()()1()x x x φφξφ-=≥=-,所以该命题正确;B.(2)(2),2()2()x x x x φφξφφξ=≤=≤,所以()()22x x φφ=错误;C.(||)=()12()12[1()]2()1P x P x x x x x ξξφφφ<-≤≤=--=--=-,所以该命题正确;D.(||)(P x P x ξξ>=>或)=1()()1()1()22()x x x x x x ξφφφφφ<--+-=-+-=-,所以该命题错误. 故选:AC . 【规律方法】1.求正态曲线的两个方法(1)图解法:明确顶点坐标即可,横坐标为样本的均值μ,纵坐标为12πσ. (2)待定系数法:求出μ,σ便可. 2.正态分布下2类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个. 3.正态总体在某个区间内取值概率的求解策略(1)充分利用正态曲线对称性和曲线与x 轴之间面积为1.(2)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值. (3)注意概率值的求解转化: ①P (X <a )=1-P (X ≥a ); ②P (X <μ-a )=P (X ≥μ+a );③若b <μ,则P (X <b )=1-P μ-b <X <μ+b2.特别提醒:正态曲线,并非都关于y 轴对称,只有标准正态分布曲线才关于y 轴对称.热门考点05 正态分布及其应用【典例9】(2020·开封模拟)某商场经营的某种包装的大米质量ξ(单位:kg)服从正态分布N (10,σ2),根据检测结果可知P (9.9≤ξ≤10.1)=0.96,某公司为每位职工购买一袋这种包装的大米作为福利,若该公司有1 000名职工,则分发到的大米质量在9.9 kg 以下的职工数大约为( )A .10B .20C .20D .40【答案】B【解析】由已知得P (ξ<9.9)=1-P 9.9≤ξ≤10.12=1-0.962=0.02,所以分发到的大米质量在9.9 kg 以下的职工数大约为1 000×0.02=20.故选B.【典例10】(2020·全国高三其他(理))某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测100株树苗的高度,经数据处理得到如图(1)所示的频率分布直方图,其中最高的16株树苗的高度的茎叶图如图(2)所示,以这100株树苗的高度的频率估计整批树苗高度的概率.(1)求这批树苗的高度高于1.60米的概率,并求图(1)中a ,b ,c 的值;(2)若从这批树苗中随机选取3株,记ξ为高度在(]1.40,1.60的树苗数量,求ξ的分布列和数学期望; (3)若变量S 满足()06826P S μσμσ-<≤+>.且()220.9544P S μσμσ-<≤+>,则称变量S 满足近似于正态分布()2,N μσ的概率分布.如果这批树苗的高度满足近似于正态分布()1.5,0.01N 的概率分布,则认为这批树苗是合格的,将顺利被签收,否则,公司将拒绝签收.试问:该批树苗能否被签收? 【答案】(1)概率为0.15,0.2a =, 1.3b =, 3.5c =;(2)分布列答案见解析,数学期望2.1;(3)被签收. 【解析】(1)由题图(2)可知,100株样本树苗中高度高于1.60米的共有15株, 以样本的频率估计总体的概率,可得这批树苗的高度高于1.60米的概率为0.15. 记X 为树苗的高度,结合题图(1)(2)可得:()()21.20 1.30 1.70 1.800.02100P X P X ≤≤=<≤==, ()()131.30 1.40 1.60 1.700.13100P X P X <≤=<≤==,()()()11.40 1.50 1.50 1.60120.0220.130.352P X P X <≤=<≤=-⨯-⨯=. 因为组距为0.1,所以0.2a =, 1.3b =, 3.5c =.(2)以样本的频率估计总体的概率,可得:从这批树苗中随机选取1株,高度在(]1.40,1.60的概率为()()()1.40 1.60 1.40 1.50 1.50 1.600.7P X P X P X <≤=<≤+<≤=.因为从这批树苗中随机选取3株,相当于三次独立重复试验, 所以随机变量ξ服从二项分布()3,0.7B , 故ξ的分布列为()()330.30.70,1,2,3nnn P n C n ξ-==⨯⨯=,即ξ0 1 2 3()P ξ0.027 0.189 0.441 0.343()00.02710.18920.44130.343 2.1E x =⨯+⨯+⨯+⨯=(或()30.7 2.1E ξ=⨯=).(3)由()1.5,0.01N ,取 1.50μ=,0.1σ=,由(2)可知,()()1.40 1.600.70.6826P X P X μσμσ-<≤+=<≤=>, 又结合(1),可得()()22 1.30 1.70P X P X μσμσ-<≤+=<≤()()2 1.60 1.70 1.40 1.60P X P X =⨯<≤+<≤ 0.960.9544=>,所以这批树苗的高度满足近似于正态分布()1.5,0.01N 的概率分布, 应认为这批树苗是合格的,将顺利被该公司签收. 【规律方法】1.在解决有关问题时,通常认为服从正态分布N (μ,σ2)的随机变量X 只取(μ-3σ,μ+3σ)之间的值.如果服从正态分布的随机变量的某些取值超出了这个范围就说明出现了意外情况.2.求正态变量X 在某区间内取值的概率的基本方法: (1)根据题目中给出的条件确定μ与σ的值.(2)将待求问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化; (3)利用X 在上述区间的概率、正态曲线的对称性和曲线与x 轴之间的面积为1求出最后结果. 3.假设检验的思想(1)统计中假设检验的基本思想:根据小概率事件在一次试验中几乎不可能发生的原则和从总体中抽测的个体的数值,对事先所作的统计假设作出判断:是拒绝假设,还是接受假设.(2)若随机变量ξ服从正态分布N (μ,σ2),则ξ落在区间(μ-3σ,μ+3σ]内的概率为0.9974,亦即落在区间(μ-3σ,μ+3σ]之外的概率为0.0026,此为小概率事件.如果此事件发生了,就说明ξ不服从正态分布. (3)对于小概率事件要有一个正确的理解:小概率事件是指发生的概率小于3%的事件.对于这类事件来说,在大量重复试验中,平均每试验大约33次,才发生1次,所以认为在一次试验中该事件是几乎不可能发生的.不过应注意两点:一是这里的“几乎不可能发生”是针对“一次试验”来说的,如果试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,也有3%犯错的可能性.巩固提升1.(2020·山东济宁·期末)若随机变量()23,X N σ,且()50.2P X ≥=,则()15P X ≤≤等于( )A .0.6B .0.5C .0.4D .0.3【答案】A【解析】 由于()23,XN σ,则正态密度曲线关于直线3x =对称,所以()()15125120.20.6P X P X ≤≤=-≥=-⨯=,故选A.2.(2020·四川泸州·期末(理))设()()1122~,,~,X N Y N μσμσ,这两个正态分布密度曲线如图所示,则下列结论中正确的是( )A .1212,μμσσ><B .1212,μμσσ<<C .1212,μμσσ<>D .1212,μμσσ>>【答案】B 【解析】由图可得:X 的正态分布密度曲线更“瘦高”,且对称轴偏左, 结合正态分布密度曲线性质可得:1212,μμσσ<<. 故选:B3.(2020·江苏苏州·高二期末)现有5个人独立地破译某个密码,已知每人单独译出密码的概率均为p ,且112p <<,则恰有三个人译出密码的概率是( ) A .335C p B .2235(1)C p p -C .3325(1)C p p -D .2251(1)C p --【答案】C 【解析】由题意可知,恰有三个人译出密码的概率为3325(1)P C p p =-故选:C4.(2019·广东高二期末(理))从分别标有1,2,…,9的9张卡片中有放回地随机抽取5次,每次抽取1张.则恰好有2次抽到奇数的概率是( )A .235499⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ B .23255499C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .234599⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .32355499C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】每次抽到奇数的概率都相等,为59, 故恰好有2次抽到奇数的概率是25C •259⎛⎫ ⎪⎝⎭•349⎛⎫ ⎪⎝⎭, 故选:B .5.(多选题)(2020·江苏省海头高级中学高二月考)海头高级中学高二年级组织了一次调研考试,考试后统计的数学成绩服从正态分布,其密度函数2(100)200(),x P x x R --=∈,则下列命题正确的是( )A .这次考试的数学平均成绩为100B .分数在120分以上的人数与分数在90分以下的人数相同C .分数在130分以上的人数与分数在70分以下的人数大致相同D .这次考试的数学成绩方差为10 【答案】AC 【解析】因为数学成绩服从正态分布,其密度函数()2(100)200--=x P x ,x ∈R ,所以100μ=,22200σ=,即10σ=.所以这次考试的平均成绩为100,标准差为10,故A 正确,D 错误. 因为正态曲线的对称轴为100x =,所以分数在120分以上的人数与分数在90分以下的人数不相同,故B 错误; 分数在130分以上的人数与分数在70分以下的人数大致相同,故C 正确.6.(2020·黑龙江爱民·牡丹江一中开学考试(理))2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,已知某工厂生产口罩的质量指标()~15,0.0025N ξ,单位为g ,该厂每天生产的质量在()14.9,15.05g g 的口罩数量为818600件,则可以估计该厂每天生产的质量在15.15g 以上的口罩数量为( ) 参考数据:若()2~,N ξμσ,则()0.6827P μσξμσ-<<+=,()220.9545P μσξμσ-<<+=,()330.9973P μσξμσ-<<+=.A .158 700B .22 750C .2 700D .1 350【答案】D 【解析】由题意知,()~15,0.0025N ξ,即15μ=,20.0025σ=,即0.05σ=; 所以()()0.68270.954514.915.0520.81862P P ξμσξμσ+<<=-<<+==,所以该厂每天生产的口罩总量为8186000.81861000000÷=(件), 又()()10.997315.1532P P ξξμσ->=>+=, 所以估计该厂每天生产的质量在15.15g 以上的口罩数量为10.9973100000013502-⨯=(件). 故选:D7.(2020·营口市第二高级中学高二期末)荷花池中,有一只青蛙在成“品”字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A .23B .14C .13D .34【答案】C 【解析】设按照顺时针跳的概率为p ,则逆时针方向跳的概率为2p ,则p +2p =3p =1,解得p =13,即按照顺时针跳的概率为13,则逆时针方向跳的概率为23, 若青蛙在A 叶上,则跳3次之后停在A 叶上, 则满足3次逆时针或者3次顺时针,①若先按逆时针开始从A →B ,则对应的概率为23×23×23=827, ②若先按顺时针开始从A →C ,则对应的概率为13×13×13=127,则概率为827+127=927=13, 故选:C.8.(2020·江苏张家港·期中)某篮球运动员每次投篮投中的概率是45,每次投篮的结果相互独立,那么在他10次投篮中,记最有可能投中的次数为m ,则m 的值为( ) A .5 B .6C .7D .8【答案】D 【解析】记投篮命中的次数为随机变量X , 由题意,410,5XB ⎛⎫ ⎪⎝⎭, 则投篮命中m 次的概率为()10101010101044441155555mmm mm mm m C P X m C C --⋅⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅-=⋅⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 由1110101010111010101044554455m m m m m m m m C C C C ++--⎧⋅⋅≥⎪⎪⎨⋅⋅⎪≥⎪⎩得110101101044m m m m C C C C +-⎧≥⎨≥⎩,即1101011110101144m m m m m m m m m m mm A A A A A A A A +++---⎧≥⎪⎪⎨⎪≥⎪⎩,即()()4101141011m m m m ⎧-≥⎪⎪+⎨-+⎪≥⎪⎩, 解得394455m ≤≤,又m N ∈, 因此8m =时,()101045mmC P X m ⋅==取最大值. 即该运动员10次投篮中,最有可能投中的次数为8次. 故选:D.9.(2019·湖北高二期末)NBA 总决赛采用7场4胜制,2018年总决赛两支球队分别为勇士和骑士,假设每场比赛勇士获胜的概率为0.6,骑士获胜的概率为0.4,且每场比赛的结果相互独立,则恰好5场比赛决出总冠军的概率为_______. 【答案】0.2688 【解析】恰好5场比赛决出总冠军的情况有两种:一种情况是前4局勇士队3胜一负,第5局勇士胜, 另一种情况是前4局骑士队3胜一负,第5局骑士胜,∴恰好5场比赛决出总冠军的概率为:331344060.40.60.6040.40.2688p C C =⨯⋅⨯⨯+⨯⨯⋅⨯=.故答案为:0.2688.10.(2020·天津南开�高三一模)甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45;乙第一次射击的命中率为78,若第一次未射中,则乙进行第二次射击,射击的命中率为34,如果又未中,则乙进行第三次射击,射击的命中率为12.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为_____,乙射中的概率为_____. 【答案】125 6364【解析】甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45, 则甲击中的次数43,5XB ⎛⎫ ⎪⎝⎭, ∴甲三次射击命中次数的期望为()412355E X =⨯=, 乙第一次射击的命中率为78, 第一次未射中,则乙进行第二次射击,射击的命中率为34, 如果又未中,则乙进行第三次射击,射击的命中率为12, 乙若射中,则不再继续射击, 则乙射中的概率为:7131116388484264P =+⨯+⨯⨯=. 故答案为:125,6364.11.(2018·浙江下城·杭州高级中学高三其他)一个盒子中有大小形状完全相同的m 个红球和6个黄球,现从中有放回的摸取5次,每次随机摸出一个球,设摸到红球的个数为X ,若()3E X =,则m =________,(2)P X ==________.【答案】9 144625【解析】由题意知每次随机抽出1个球为红球的概率为6m m +,所以~5,6m X B m ⎛⎫ ⎪+⎝⎭,则由()3E X =,得536m m ⋅=+,解得9m =,所以365m m =+, 所以232533144(2)155625P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:9;14462512.(2019·浙江高三其他)已知随机变量()~X B n p ,,且X 的数学期望()2E X =,方差()23D X =,则p =____________,()2P X == ____________.【答案】23 49【解析】由二项分布的期望和方差的计算公式知,()2,2()(1),3E X np D X np p ==⎧⎪⎨=-=⎪⎩解得2,33,p n ⎧=⎪⎨⎪=⎩ 则223214(2)339P X C ⎛⎫==⨯= ⎪⎝⎭. 故答案为:23;49. 13.(2019·济南市学习质量评估)某医药公司研发生产一种新的保健产品,从一批产品中随机抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:(1)求a,并试估计这200盒产品的该项指标值的平均值.(2)①由样本估计总体,结合频率分布直方图认为该产品的该项质量指标值ξ服从正态分布N(μ,102),计算该批产品该项指标值落在(180,220]上的概率;②国家有关部门规定每盒产品该项指标值不低于150均为合格,且按该项指标值从低到高依次分为:合格、优良、优秀三个等级,其中(180,220]为优良,不高于180为合格,高于200为优秀,在①的条件下,设该公司生产该产品1万盒的成本为15万元,市场上各等级每盒该产品的售价(单位:元)如表,求该公司每万盒的平均利润.等级合格优良优秀售价102030附:若ξ~N(μ,δ2),则P(μ-δ<ξ≤μ+δ)≈0.682 7,P(μ-2δ<ξ≤μ+2δ)≈0.954 5.【答案】见解析【解析】(1)由10×(2×0.002+0.008+0.009+0.022+0.024+a)=1,解得a=0.033,则平均值x=10×0.002×170+10×0.009×180+10×0.022×190+10×0.033×200+10×0.024×210+10×0.008×220+10×0.002×230=200,即这200盒产品的该项指标值的平均值约为200.(2)①由题意可得μ=x=200,δ=10,则P(μ-2δ<ξ≤μ+2δ)=P(180<ξ≤220)≈0.954 5,则该批产品指标值落在(180,220]上的概率为0.954 5.②设每盒该产品的售价为X元,由①可得X的分布列为X 102030P 0.022 750.954 50.022 75则每盒该产品的平均售价为E(X)=10×0.022 75+20×0.954 5+30×0.022 75=20,故每万盒的平均利润为20-15=5(万元).14.(辽宁高考真题(理))一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; (2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ). 【答案】(1)0.108.(2) 1.8,0.72. 【解析】(1)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯=. 2()0.003500.15P A =⨯=. ()0.60.60.1520.108P B =⨯⨯⨯=.(2)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=, 123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为因为()~3,0.6X B ,所以期望为()30.6 1.830.610.60.72E X D X =⨯==⨯⨯-=,方差()().15.(2020·浙江)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每21 次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率; (2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算?【答案】(1)114400;(2)选择第二种方案更合算.【解析】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则()21213101120C C P A C ==,所以两位顾客均享受到免单的概率为()()114400P P A P A =⋅=;(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0、500、700、1000.()212131010120C C P X C ===,()21273107500120C C P X C ===,()12173********C C P X C ===,()177911000112012040120P X ==---=.故X 的分布列为,所以()0500700100091012012040120E X =⨯+⨯+⨯+⨯=(元).若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~3,10Y B ⎛⎫ ⎪⎝⎭,故()3931010E Y =⨯=,所以()()()10002001000200820E Z E Y E Y =-=-=(元).因为()()E X E Z >,所以该顾客选择第二种抽奖方案更合算.。
正态分布-讲义(学生版)
正态分布一、课堂目标1.理解正态曲线的概念,掌握正态曲线的性质.2.理解正态分布和标准正态分布的概念.3.熟练掌握利用正态曲线的对称性和原则求随机变量在某一范围内的概率.4.掌握正态分布的实际应用问题.二、知识讲解现实中,除了离散型随机变量外,还有大量问题中的随机变量不是离散型的,它们的取值往往充满某个区间甚至整个实轴,但取一点的概率为0,我们称这类随机变量为连续型随机变量.1. 正态曲线知识精讲(1)正态曲线的概念如下图,对应的函数解析式为:,(其中实数和为参数).显然,对于任意的称,,它的图象在轴的上方.我们称为正态密度函数,称它的图像为正态密度曲线,简称正态曲线.(2)正态曲线的性质①曲线位于轴上方,与轴不相交;②曲线是单峰的,它关于直线对称;③曲线在处达到峰值(最大值);④曲线与轴之间的面积为;⑤当一定时,曲线的位置由确定,曲线随着的变化而沿轴平移,如图所示;⑥当一定时,曲线的形状由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散,如图所示.经典例题1.关于正态曲线的性质:①曲线关于直线对称,并且曲线在轴上方;②曲线关于轴对称,且曲线的最高点的坐标是;③曲线最高点的纵坐标是,且曲线无最低点;④越大,曲线越“高瘦”;越小,曲线越“矮胖”.A.①②B.②③C.③④D.①③其中正确的是().巩固练习A.B.C.D.2.如图是当取三个不同值,,时的三种正态曲线,那么,,的大小关系是().2. 正态分布知识精讲(1)正态分布的概念若随机变量的概率分布密度函数为:,(其中实数和为参数),则称随机变量服从正态分布,记为.正态分布完全由参数和确定,其中参数是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.注意:若,则.若,如下图所示,取值不超过的概率为图中区域的面积,而为区域的面积.(2)原则若,则对于任何实数,为下图阴影部分的面积,对于固定的和而言,该面积随着的减小而变大.这说明越小,落在区间的概率越大,即集中在周围概率越大.特别有,①,②,③.由知,正态总体几乎总取值于区间之内.而在此区间以外取值的概率只有.,通常认为这种情况在一次试验中几乎不可能发生.在实际应用中,通常认为服从于正态分布的随机变量只取之间的值,并简称之为原则.经典例题3.已知随机变量服从正态分布,若,则 .4.设随机变量,则服从的总体分布可记为 .巩固练习A.B.C.D.5.随机变量服从正态分布,且,则( ).A.B.C.D.6.设随机变量服从正态分布,若,则与的值分别为( ).,,,,经典例题(1)(2)7.已知随机变量,且正态分布密度函数在上是增函数,在上为减函数,.求参数,的值.求.A.人B.人 C.人D.人8.某校高三年级的名学生在一次模拟考试中,数学考试成绩服从正态分布,则该年级学生数学成绩在分以上的学生人数大约为( ).(附数据:,)巩固复习A. B.C.D.9.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外,据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则果实直径在内的概率为().附:若 ,则,.10.某市高二名学生参加市体能测试,成绩采用百分制,平均分为,标准差为,成绩服从正态分布,则成绩在的人数为.参考数据:,,.经典例题11.新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人类中发现的新型冠状病毒,即新型冠状病毒.年月日,国家卫健委决定将“新型冠状病毒感染的肺炎”暂命名为“新型冠状病毒肺炎”,简称“新冠肺炎”.患者初始症状多为发热、乏力和干咳,并逐渐出现呼吸困难等严重表现.基于目前的流行病学调查,潜伏期为天,潜伏期具有传染性,无症状感染者也可能(1)(2)成为传染源.某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取人,答题成绩统计如图所示.频率组距成绩分由直方图可认为答题者的成绩服从正态分布,其中,分别为答题者的平均成绩和成绩的方差,那么这名答题者成绩超过分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)如果成绩超过分的民众我们认为是“防御知识合格者”,用这名答题者的成绩来估计全市的民众,现从全市中随机抽取人,“防御知识合格者”的人数为,求.(精确到)附:①,;②,则,;③,.12.年春节期间,武汉市爆发了新型冠状病毒肺炎疫情,在党中央的坚强领导下,全国人民团结一心,众志成城,共同抗击疫情.某中学寒假开学后,为了普及传染病知识,增强学生的防范意识,提高自身保护能力,校委会在全校学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分分),竞赛奖励规则如下,得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获一等奖,其他学生不得奖.教务处为了解学生对相关知识的掌握情况,随机抽取了名学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图.(1)12(2)频率组距竞赛成绩(分)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率.若该校所有参赛学生的成绩近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:若该校共有名学生参加了竞赛,试估计参赛学生中成绩超过分的学生数(结果四舍五入到整数).若从所有参赛学生中(参赛学生数大于)随机抽取名学生进行座谈,设其中竞赛成绩在分以上的学生数为 ,求随机变量 的分布列和均值.附:若随机变量服从正态分布,则,,.巩固练习(1)(2)13.从某公司生产线生产的某种产品中抽取件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:质量指标值频率组距求这件产品质量指标的样本平均数 和样本方差(同一组中的数据用该组区间的中点值作代表).12由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数 ,近似为样本方差.利用该正态分布,求.已知每件该产品的生产成本为元,每件合格品(质量指标值的定价为元;若为次品(质量指标值,除了全额退款外且每件次品还须赔付客户元.若该公司卖出件这种产品,记表示这件产品的利润,求.附:.若,则,.(1)12(2)14.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取个零件,并测量其尺寸(单位:).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.假设生产状态正常,记表示一天内抽取的个零件中其尺寸在之外的零件数,求及的数学期望.一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.试说明上述监控生产过程方法的合理性.下面是检验员在一天内抽取的个零件的尺寸:附:若随机变量服从正态分布,则,,.用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到).经计算得,,其中为抽取的第个零件的尺寸,.3. 标准正态分布知识精讲若随机变量,则当,时,称随机变量服从标准正态分布,简称标准正态分布.标准正态分布的密度函数为,,其相应的密度曲线称为标准正态曲线.如图所示:由于标准正态总体在正态总体的研究中占有非常重要的地位,专门制作了“标准正态分布表”.在这个表中,相应于的值是指总体取值小于的概率,即,如图左边的部分所示.由于标准正态曲线关于轴对称,标准正态分布表中仅给出了对应于非负值的值,因此,如果,那么由下图根据面积相等知.知识点睛一般的正态分布均可以化成标准正态分布来进行研究.事实上,可以证明,对任一正态分布来说,取值小于的概率.所以,可以利用公式可将非标准正态分布问题转化为标准正态分布问题.经典例题15.随机变量服从标准正态分布,如果,则.巩固练习16.设随机变量服从标准正态分布,在某项测量中,已知,则在内取值的概率为.A.B.C.D.17.已知随机变量,记,则下列结论不正确的是().三、思维导图你学会了吗?画出思维导图总结本课所学吧!四、出门测18.已知随机变量服从正态分布,且,则.A.B.C.D.19.设两个正态分布和的密度曲线如图所示,则有( ).,,,,A. B.C.D.20.某小区有户居民,各户每月的用电量(单位:度)近似服从正态分布,则用电量在度以上的居民户数约为( ).(参考数据:若随机变量服从正态分布,则,,)21.11频率组距质量指标值(1)(2)从某企业的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图求这件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.①利用该正态分布,求;②某用户从该企业购买了件这种产品,记表示这件产品中质量指标值位于区间的产品件数,利用(Ⅰ)的结果,求.附:.若~,则,.。
正态分布数理介绍培训讲学
✓ 若某一随机变量X,其总体均数μ=0,总体标准差σ=1, 即X~N(0,1),则称变量X服从标准正态分布。习惯 把服从标准正态分布的变量用字母U或Z表示,此时,
我们把U或Z称为标准正态变量。
✓ 标准正态分布是正态分布中的一个典型分布,数理统
计上证明:对一服从正态分布的随机变量(X),若
进行特定的变量变换,可将任何一服从正态分布的随
N(μ1 ,σ2)、N(μ2 ,σ2)
N(μ,0.52)、N(μ,12)、N(μ,22)
m ax
σ =0.5
f(x)
f(x)
σ =1 σ =2
0
0
µ1
µ2
µ
➢ 正态曲线下面积分布有一定的规律性。
✓ 对于服从正态分布的随机变量(X),随机变量值出现在 某在一该区区间间(所围x1,成x2)的的区概域率的与面正积态大分小布相概对率应密(度相曲等线)与。横轴
Ux
求服从标准正态分布N (0,1)的随机变量
U在区间(u1,u2)所对
应的面积。
通过查标准正态分布 面积分布表,分别求 Ф(u2) 、Ф(u1)的大 小。
Ф(u2) -Ф(u1)即为
该随机变量 U 在区间
(u1,u2)所对应的面 积。
Ф(u2) -Ф(u1)即为
该随机变量 U 在区间
(u1,u2)所对应的面 积。
144~
25
145.5
147~
20
148.5
150~
9
151.5
153~
3
154.5
156~
2
157.5
159~162
1
160.5
合计
118
—
频数
正态分布的数学公式
正态分布的数学公式正态分布可是数学里一个相当重要的概念呀!说起正态分布的数学公式,那可得好好说道说道。
咱先来讲讲啥是正态分布。
想象一下,你在学校里考试,大多数同学的成绩都在一个中等水平附近,只有少数同学成绩特别好或者特别差,这种成绩的分布情况就有点像正态分布。
正态分布的数学公式看起来有点复杂,它是这样的:f(x) = (1 / (σ *√(2π))) * e^(-(x - μ)^2 / (2σ^2)) 。
这里面的μ表示均值,就是平均水平;σ表示标准差,它反映了数据的分散程度。
我记得有一次,我给学生们讲这个公式的时候,有个调皮的小家伙瞪着大眼睛问我:“老师,这一堆符号看着就头疼,学这个有啥用啊?”我笑着跟他们说:“这用处可大啦!就好比你们将来要去超市买东西,知道商品价格的分布规律,就能更好地判断啥时候能买到便宜又实惠的东西。
”咱们再仔细瞅瞅这个公式。
均值μ就像是一个中心点,数据大多围绕着它分布。
标准差σ越大,曲线就越“胖”,说明数据越分散;σ越小,曲线就越“瘦”,数据就更集中。
举个例子哈,比如说咱们统计一个班级同学的身高。
如果均值是160 厘米,标准差是 5 厘米,那大部分同学的身高就会在 155 厘米到165 厘米之间。
要是标准差变成了 10 厘米,那身高的范围就更广啦,从 150 厘米到 170 厘米的同学都会更多。
在实际生活中,正态分布到处都有。
像人的智商、身高、体重等等,很多都符合正态分布。
比如说工厂生产零件,零件的尺寸也往往呈现正态分布。
要是标准差太大,那就说明生产质量不稳定,得找找原因改进啦。
而且,正态分布在统计学里用处可大了。
做抽样调查、质量控制,都离不开它。
比如说要检验一批产品合不合格,通过对抽取样本的分析,利用正态分布的知识,就能对整批产品的质量有个大概的了解。
总之啊,正态分布的数学公式虽然看起来有点让人头大,但只要咱们好好理解,就能发现它在很多地方都能派上用场,帮助咱们解决不少实际问题呢!。
正态分布 课件
总之,正态分布广泛存在于自然界、生产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
4、正态曲线的性质
(1)曲线在x轴的上方,与x轴不相交.
(μ-σ,μ+σ]
0.6826
(μ-2σ,μ+2σ]
0.9544
(μ-3σ,μ+3σ]
0.9974
(2)曲线是单峰的,它关于直线x=μ对称.
(4)曲线与x轴之间的面积为1.
(3)曲线在x=μ处达到峰值(最高点)
(5)若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数
(6)当μ一定时,曲线的形状由σ确定 .σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
5、特殊区间的概率:
m-a
m+a
x=μ
若X~N ,则对于任何实数a>0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。
4
0.04
[0.5,1)
8
0.08
[1,1.5)
15
0.15
[1.5,2)
22
0.22
[2,2.5)
25
0.25
[2.5,3)
14
0.14
[3,3.5)
6
0.06
[3.5,4)
4
0.04
[4,4.5)
2
0.02
11
高尔顿钉板实验的 频率分布直方图
这条曲线具有 “中间高,两头低” 的特征,像这种类型的曲线, 就是(或近似地是)以下函数的图像:
选修2 第二章 正态分布和线性回归讲义
1
2
e
x 2 2 x 1 4
1
( x 1) 2 2( 2 )2
2 1 2 1 ( ) ( 2 2 (1) (1) 2(1) 1 2 0.8413 1 0.6826 。 又 P(1 2 x 1 2 2 ) F (1 2 2 ) F (1 2 ) F ( 1 2 )F (1 2 ) 2 2 1 2 1 ( ) ( ) (2) (1) 2 2 (2) (1) 1 0.9772 0.8413 1
王新敞
奎屯 新疆
新疆
源头学子 小屋
/wxc/
特级教师 王新敞
wxckt@
新疆
源头学子 小屋
/wxc/
特级教师 王新敞
wxckt@
0( x 0) f ( x) kx 1(0 x 2) ,且 f(x) ≥0,求常数 k 的值,并计算概率 P(1.5≤ <2.5)。 0( x 2) 分析:凡是计算连续型随机变量 的密度函数 f(x)中的参数、概率 P(a≤ ≤b)都需要通过求面积来转化而求 得。若 f(x) ≥0 且在[a,b]上为线性,那么 P(a≤ ≤b)的值等于以 b-a 为高,f(a)与 f(b)为上、下底的直角梯形 1 的面积,即 P(a b) [ f (a) f (b)](b a) 。 2 解: ∵ 1 P( ) P( 0) P(0 2) P(2 ) 1 0 P(0 2) 0 [ f (0) f (2)](2 0) f (0) f (2) 2 2k 2 1 ∴k ; 2 1 ∴ P(1.5 2.5) P(1.5 2) P(2 2.5) P(1.5 2) 。 16 2 例 2 设 X ~ N ( , ) ,且总体密度曲线的函数表达式为:
正态分布课件
2.(2010 山东卷)已知随机变量 服从正态分布N (0, 2 ), 若P 2 0.023,则P(2 2) ( ) A. 0.477 B. 0.625 C. 0.954 D. 0.977
1
-2 -1
y
0
1
2
3
x
正态曲线
σ 一定 μ =-1
, ( x)
μ =1 μ =0
1 e 2
( x )2 2 2
σ=0.5
μ 一定
σ= 1 σ= 2
O
x
O
x
(5)当s 一定时,曲线随着m 的变化而沿x轴平移; (6)当m一定时,曲线的形状由s 确定, s 越小,曲线越“瘦高”,表示总体的分布越集中; s 越高,曲线越“矮胖”,表示总体的分布越分散。
正态分布
二、本专题知识体系的构建
两点分布 离散型随机变量 二项分布 独立事件概率 分布列 条件概率
随 机 变 量
均值
超几何分布
方差 正态分布密度曲线
正态分布
3
原则
三、本专题的重点知识
从近几年的高考试题来看,高考命题通常以超几何分布、 二项分布为命题对象,综合排列组合、互斥事件、独立事件等 概念设计题目,主要考查随机变量的概念、分布列的性质、超 几何分布、二项分布的计算、互斥事件的概念及互斥事件概率的 计算、独立事件的概率及计算、独立重复试验的概率计算、条件 概率的计算,注意概念的理解与运用。研究近年高考试题,概率与 其他知识的综合仍会受到高考命题者的青睐,仍会成为高考应用问 题命题的主流。 常见的题型有:
条件概率、二项分布及正态分布(讲解部分)
考法二 正态分布问题的解题方法
例2 (2018河北石家庄新华模拟,19)“过大年,吃水饺”是我国不少地方 过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某 种品牌的速冻水饺,检测其某项质量指标值,所得频率分布直方图如下:
(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数 x(同一组中 的数据用该组区间的中点值作代表);
∴E(X)=4×1 =2.
2
方法总结 1.对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知 (1)P(X≥μ)=P(X≤μ)=0.5; (2)对任意的a有P(X<μ-a)=P(X>μ+a); (3)P(X<x0)=1-P(X≥x0); (4)P(a<X<b)=P(X<b)-P(X≤a). 2.服从N(μ,σ2)的随机变量X在某个区间内取值的概率的求法: (1)利用P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值直接求; (2)充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质 求解.
(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),
利用该正态分布,求Z落在(14.55,38.45)内的概率; ②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4 包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数 学期望. 附:计算得所抽查的这100包速冻水饺的质量指标值的标准差为σ= 142.75 ≈11.95; 若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.682 6,P(μ-2σ<ξ≤μ+2σ)=0.954 4. 解题导引
数学-2017届高二-数学正态分布2-课件(讲课)
) (
a
),
然后,通过查标准正态 分布表中 a b x ,x 的( x)值.(课本P58页)
从而,可计算服从( , )的正态分布
2
的随机变量 取值在a与b之间的概率.
(1.90) [1 (1.90)] 2(1.90) 1 0.9426 P( 5 0.8) P( 4)
C 4 5 (0.9426) 4 0.0574 (0.9426) 5 0.9707
例7.一 投 资 者 在 两 个 投 资 案 方中选择一个, 这两个投资方案的利X 润 (万元)分布 服从正态分布 N(8, 3 2 ) 和N(6, 2 2) 投 资 者要求“利润超过 5万 元 ” 的 概 率 尽 量 地 大,那么他应该选择一 哪个方案?
例9.一 建 桥 工 地 所 需 要 的 筋 钢的长度服从 正态分布 N(8, 4) , 质 量 员 在 检 查 一 批 大钢 筋的质量时,发现有钢 的筋长度少于 2, 他 是 让钢筋工继续用钢筋割 切机截割钢筋呢? 还是让钢筋工停止生, 产检修钢筋切割机?
小于1%, ~ N (175,36), P( x) 1 P( x)
x 175 ( ) 0.99, 6
x 175 1( ) 0.01, 也就是 6
x 175 x 175 ( ) 0.99, 查表得 2.33即x 188 .98. 6 6
在这种情况下应走第二 条路线.
( 2).走第一条路线及时赶到 的概率为: 65 50 P( 0 65 ) ( ) 10 ( 1.5 ) 0.9332
正态分布完整课件
正态分布完整课件一、教学内容本节课的教学内容选自人教版小学数学六年级下册第117页至119页,主要学习了正态分布的概念及其图形表示。
通过本节课的学习,让学生能够理解正态分布的特点,学会绘制正态分布图,并能够运用正态分布解决实际问题。
二、教学目标1. 理解正态分布的概念,掌握正态分布图的绘制方法。
2. 能够运用正态分布解决实际问题,提高解决问题的能力。
3. 培养学生的观察能力、动手操作能力和团队协作能力。
三、教学难点与重点重点:正态分布的概念及其图形表示。
难点:正态分布图的绘制方法和在实际问题中的运用。
四、教具与学具准备教具:PPT、黑板、粉笔、正态分布图模板。
学具:笔记本、尺子、圆规、剪刀、彩笔。
五、教学过程1. 情景引入:教师通过展示一组身高数据,引导学生观察数据的分布情况,引发学生对分布图的兴趣。
2. 自主学习:学生自主阅读教材,了解正态分布的概念,并尝试绘制正态分布图。
3. 课堂讲解:教师通过PPT讲解正态分布的特点,演示正态分布图的绘制方法,并解释正态分布在实际生活中的应用。
4. 动手操作:学生分组合作,根据给定的数据绘制正态分布图,并交流分享绘制心得。
5. 例题讲解:教师通过PPT展示典型例题,讲解解题思路,引导学生运用正态分布解决实际问题。
6. 随堂练习:学生独立完成随堂练习题,巩固所学知识。
8. 课后作业:学生完成课后作业,进一步巩固正态分布的知识。
六、板书设计板书内容:正态分布的特点、正态分布图的绘制方法、正态分布的应用。
七、作业设计数据:一组学生的身高(单位:cm):140, 145, 150, 155, 160, 165, 170, 175, 180。
答案:略答案:略八、课后反思及拓展延伸1. 课后反思:本节课通过引导学生观察实际数据,激发学生对正态分布的兴趣。
在课堂讲解过程中,注意运用PPT和黑板辅助教学,使学生更好地理解正态分布的概念和图形表示。
同时,通过分组合作和动手操作,培养学生的团队协作能力和观察能力。
7.5正态分布(教师版) 讲义-2021-2022学年人教A版(2019)高中数学选择性必修三
正态分布一正态曲线及其性质1.我们称f(x)=()2221e2xμσσ--π,x∈R,其中μ∈R,σ>0为参数,为正态密度函数,称它的图象为正态密度曲线,简称正态曲线.2.若随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布,记为X~N(μ,σ2).特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.3.若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.4.正态曲线的特点:(1)非负性:对∀x∈R,f(x)>0,它的图象在x轴的上方.(2)定值性:曲线与x轴之间的面积为1.(3)对称性:曲线是单峰的,它关于直线x=μ对称.(4)最大值:曲线在x=μ处达到峰值1σ2π.(5)当|x|无限增大时,曲线无限接近x轴.(6)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①.(7)当μ一定时,曲线的形状由σ确定,σ较小时曲线“瘦高”,表示随机变量X的分布比较集中;σ较大时,曲线“矮胖”,表示随机变量X的分布比较分散,如图②.5.正态分布的几何意义:若X~N(μ,σ2),如图所示,X取值不超过x的概率P(X≤x)为图中区域A的面积,而P(a≤X≤b)为区域B的面积.二利用正态分布的性质求概率正态总体在三个特殊区间内取值的概率值P(μ-σ≤X≤μ+σ)≈0.682_7;P(μ-2σ≤X≤μ+2σ)≈0.954_5;P(u-3σ≤X≤μ+3σ)≈0.997_3.三正态分布的应用解题时,应当注意零件尺寸应落在[μ-3σ,μ+3σ]之内,否则可以认为该批产品不合格.判断的根据是小概率事件在一次试验中几乎是不可能发生的,而一旦发生了,就可以认为这批产品不合格.考点一 正态分布的特征【例1】(1)(2021·黑龙江鹤岗市·鹤岗一中高二期末(理))若随机变量()23,X N σ,且()50.2P X ≥=,则()15P X ≤≤等于( )A .0.6B .0.5C .0.4D .0.3(2)(2021·黄石市有色第一中学高二期末)设随机变量ξ服从正态分布()4,3N ,若()()51P a P a ξξ<-=>+,则实数a 等于( )A .7B .6C .5D .4【答案】(1)A(2)B【解析】(1)由于随机变量()23,X N σ,则()()15P X P X <=>, 因此,()()()()151********.20.6P X P X P X P X ≤≤=-<->=->=-⨯=.故选:A.(2)∵随机变量ξ服从正态分布N(4,3),∵P(ξ<a ﹣5)=P(ξ>a+1),∴x=a ﹣5与x=a+1关于x=4对称,∴a ﹣5+a+1=8,∴2a=12,∴a=6,故选:B .【练1】(2021·江苏常州市·高三期末)设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是0.5,则()01P ξ<≤=( )附:若()2,N ξμσ,则()0.6826P X μσμσ-<≤+≈,()220.9544P X μσμσ-<≤+≈.A .0.1587B .0.1359C .0.2718D .0.3413【答案】B 【解析】函数()22f x x x ξ=+-没有零点,∴二次方程220x x ξ+-=无实根,44()0ξ∴∆=--<,1ξ∴<-, 又()22f x x x ξ=+-没有零点的概率是0.5,(1)0.5P ξ∴<-=,由正态曲线的对称性知:1μ=-,()1,1N ξ∴-,1,1μσ∴=-=,2,0,23,21μσμσμσμσ∴-=-+=-=-+=,(20)0.6826P ξ∴-<<=,(31)0.9544P ξ-<<=,[][]11(01)(31)(20)0.95440.68260.135922P P P ξξξ∴<≤=-<<--<<=-=, 故选:B.考点二 正态分布的实际应用【例2】(2021·安徽池州市)2020年新冠疫情以来,医用口罩成为防疫的必需品.根据国家质量监督检验标准,过滤率是生产医用口罩的重要参考标准,对于直径小于5微米的颗粒的过滤率必须大于90%.为了监控某条医用口罩生产线的生产过程,检验员每天从该生产线上随机抽取10个医用口置,检测其过滤率,依据长期生产经验,可以认为这条生产线正常状态下生产的医用口罩的过滤率Z 服从正态分布()2,N μσ.假设生产状态正常,生产出的每个口罩彼此独立.记X 表示一天内抽取10个口罩中过滤率小于或等于3μσ-的数量.(1)求()1P X ≥的概率;(2)求X 的数学期望()E X ;(3)一天内抽检的口罩中,如果出现了过滤率Z 小于3μσ-的口罩,就认为这条生产线在这一天的生产过程中可能出现了异常情况,需要对当天的生产过程进行检查维修,试问这种监控生产过程的方法合理吗?附:若随机变量()2,Z N μσ~,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=,()330.9974P Z μσμσ-<≤+=,100.99870.9871≈.【答案】(1)0.0129;(2)0.013;(3)这种监控生产过程的方法合理.【解析】(1)抽取口罩中过滤率在(]3,3μσμσ-+内的概率()330.9974P Z μσμσ-<≤+=,所以()10.997430.00132P Z μσ-≤-==, 所以()310.00130.9987P Z μσ>-=-=,故()()1011010.998710.98710.0129P X P X ≥=-==-=-=(2)由题意可知()~10,0.0013X B ,所以()100.00130.013E X =⨯=.(3)如果按照正常状态生产,由(1)中计算可知,一只口罩过滤率小于或等于3μσ-的概率()10.997430.00132P Z μσ-≤-==,一天内抽取的10只口覃中,出现过滤率小于或等于3μσ-的概率()0.11029P X ≥=,发生的概率非常小,属于小概率事件.所以一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程中可能出现了异常情况,需要对当天的生产过程进行检查维修.可见这种监控生产过程的方法合理.【练2】(2020·全国高三专题练习)标准的医用外科口罩分三层,外层有防水作用,可防止飞来进入口罩里面,中间层有过滤作用,对于直径小于5微米的颗粒阻隔率必须大于90%,近口鼻的内层可以吸湿,根据国家质量监督检验标准,过滤率是重要的参考标准,为了监控某条口罩生产线的生产过程,检验员每天从该生产线上随机抽取10个口罩,并检验过滤率.根据长期生产经验,可以认为这条生产线正常状态下生产的口罩的过滤率z 服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的10个口罩中过滤率小于3μσ-的数量,求()1P X ≥及X 的数学期望;(2)下面是检验员在一天内抽取的10个口罩的过滤率: 1 2 3 4 5 6 7 8 9 10 0.9376 0.9121 0.9424 0.9572 0.9518 0.9058 0.9216 0.9171 0.9635 0.9268经计算得:10110.933510i i x x ===∑,()102110.018910i i s x x ==-≈∑(其中i x 为抽取的第i 个口罩的过滤率)用样本平均数x 作为μ的估计值,用样本标准差s 作为σ的估计值,利用该正态分布,求().09524P z ≥(精确到0.001)(附:若随机变量X 服从正态分布()2,N μσ,则①() 0.6826P X μμσσ-<<+=;②()220.9544P X μσμσ-<<+=;③()330.9974P X μσμσ-<<+=;另:100.99870.9871≈)【答案】(1)()0.11029P X ≥=,()0.013E X =;(2)0.1587.【解析】(1)已知检验率服从正态分布()2,N μσ,则事件()10.997430.00132P X μσ-<-== 当生产状态正常时,重复不放回的取10个口罩属于独立重复事件,10n =,0.0013p =,故有:().1000013003.1E X np ==⨯=,而()()()100010101101110.99870.0129P X P X C p p ≥=-==--=-=. (2)由题意知:由平均数近似估计μ,则有()()10.68260.95240.15872P z P z x s -≥=≥+==. 考点三 正态分布与其他知识的综合运用【例3】(2021·内蒙古赤峰市)疫情防控期间,为了让大家有良好的卫生习惯某校组织了健康防护的知识测试(百分制)活动,活动结束后随机抽取了200名学生的成绩,并计算得知这200个学生的平均成绩为65,其中5个低分成绩分别是30、33、35、38、38;而产生的10个高分成绩分别是90、91、91、92、92、93、95、98、100、100.(1)为了评估该校的防控是否有效,以样本估计总体,将频率视为概率,若该校学生的测试得分近似满足正态分布()2,N μσ(μ和2σ分别为样本平均数和方差),则认为防控有效,否则视为效果不佳.经过计算得知样本方差为210,请判断该校的疫情防控是否有效,并说明理由.(参考数据:21014.5≈)规定:若()220.9544P X μσμσ-<<+>,()330.9974P X μσμσ-<<+>,则称变量X “近似满足正态分布()2,N μσ的概率分布”. (2)学校为了鼓励学生对疫情防控的配合,决定对90分及以上的同学通过抽奖的方式进行奖励,得分低于94分的同学只有一次抽奖机会,不低于94分的同学有两次抽奖机会.每次抽奖获得50元奖金的概率是34,获得100元的概率是14.现在从这10个高分学生中随机选一名,记其获奖金额为Y ,求Y 的分布列和数学期望.【答案】(1)该校的疫情防控是有效的,理由见解析;(2)分布列见解析,87.5.【解析】(1)据该校的疫情防控是有效的,理由如下: 21014.5≈,265214.536μσ∴-=-⨯=,265214.594μσ+=+⨯=, 365314.521.5μσ-=-⨯=,365314.5108.5μσ+=+⨯=,得分小于36分的学生有3个,得分大于94分的有4个,()72210.9650.9544200P X μσμσ∴-<<+=-=>, 学生的得分都在[]30,100间,()3310.9974P X μσμσ∴-<<+=>. ∴学生得分近似满足正态分布()65,210N 的概率分布,因此该校的疫情防控是有效的;(2)设这名同学获得的奖金为Y ,则Y 的可能值为50、100、150、200,()6395010420P Y ==⨯=,()2614331001041048P Y ⎛⎫==⨯+⨯= ⎪⎝⎭, ()124313*********P Y C ==⨯⨯⨯=,()241120010440P Y ⎛⎫==⨯= ⎪⎝⎭, 故Y 的分布列为: Y 50 100 150 200 P 920 38 320 140()93315010015020087.52082040E Y ∴=⨯+⨯+⨯+⨯=. 【练3】(2021·江西南昌市)2020年国庆节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作[20,40)、9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100),例如:10点04分,记作时刻64.(Ⅰ)估计这600辆车在9:20~10:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(Ⅱ)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列;(Ⅲ)根据大数据分析,车辆在每天通过该收费站点的时刻T 服从正态分布()2~,N μσ,其中μ可用3日数据中的600辆车在9:20~10:40之间通过该收费站点的时刻的平均值近似代替,2σ用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).附:若随机变量T 服从正态分布()2,N μσ,则()0.6827P T μσμσ-<≤+=,(22)0.9545P T μσμσ-<≤+=,(33)0.9973P T μσμσ-<≤+=.【答案】(Ⅰ)10:04;(Ⅱ)答案见解析;(Ⅲ)819.【解析】(Ⅰ)这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值为:(300.005500.015700.020900.010)2064⨯+⨯+⨯+⨯⨯=,即10∶04(Ⅱ)由频率分布直方图和分层抽样的方法可知,抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在20,60这一区间内的车辆数,即(0.0050.015)20104+⨯⨯=,所以X 的可能的取值为0,1,2,3,4.所以()464101014C P X C ===,()31644108121C C P X C ===,()2264410327C C P X C ===, ()136********C C P X C ===,()4441014210C P X C ===. 所以X 的分布列为: X0 1 2 3 4 P 114 821 37 435 1210 (Ⅲ)由(1)得64μ=,22222(3064)0.1(5064)0.3(7064)0.4(9064)0.2324σ=-⨯+-⨯+-⨯+-⨯=车辆 所以18σ=,估计在9:46~10:40之间通过的车辆数也就是在46,100通过的车辆数,由()2~64,18T N ,得()(22)(641864218)0.818622P T P T P T μσμσμσμσ-<≤+-<≤+-≤≤+⨯=+=,所以估计在在9:46~10:40之间通过的车辆数为10000.8186819⨯≈.课后练习1.(2020高二上·天津期末)在某次高三联考数学测试中,学生成绩服从正态分布(100,σ2)(σ>0),若ξ在(85,115)内的概率为0.75,则任意选取一名学生,该生成绩高于115的概率为()A.0.25B.0.1C.0.125D.0.5【答案】C【考点】正态分布曲线的特点及曲线所表示的意义【解析】由题意得,区间(85,115)关于μ=100对称,=0.125,所以P(ξ≥115)=1−P(85<ξ<115)2即该生成绩高于115的概率为0.125.故答案为:C.【分析】根据题意由正态分布表曲线的对称性即可得出该生成绩高于115的概率。
正态分布 课件
;
• 特别地有:P(μ-σ<X≤μ+σ)= 0.6862 ;
• P(μ-2σ<X≤μ+2σ)= 0.9544 ;
• P(μ-3σ<X≤μ+3σ)= 0.9974 .
[答案] B
[解析] 仔细对照正态分布密度函数:f(x)= 21πσe-
(x-μ)2
2σ2 (x∈R),注意指数 σ 和系数的分母上的 σ 要一致,以及
正态分布
• 1.当样本容量无限增大时,它的频率分 布直方图 无限接近于 一条总体密度曲 线,在总体所在系统相对稳定的情况下, 总体密度曲线就是或近似地是以下函数的 图象:
• 其中μ和σ(σ>0)为参数.我们称φμ,σ(x)的图 象为 正态分布密度曲线,简称 正态曲线 .
• (4)曲线与x轴之间的面积为 1 ;
• (5) 当 σ 一 定 时 , 曲 线 随 μ 的 变 化而沿 x 轴 平移;
• (6)当μ一定时,曲线的形状由σ确定:σ越小,
曲线越“
瘦高”,表示总体的分布越
集中 ;σ越大,曲线越“
矮胖 ”,表示
总体的分布越 分散 .
• 4.若X~N(μ,σ2),则对任何实数a>0,概
率P(μ-a<X≤μ+a)=
称 性 得 P(3<X≤4) = P(6<X≤7) , 所 以
P(6<X≤7)=
=0.1359.
• [点评] 解此类题首先由题意求出μ及σ的
值,然后根据三个特殊区间上的概率值及
正态曲线的特点(如对称性,与x轴围成的 面积是1等)进行求解.
• [例5] 某年级的一次信息技术测验成绩近 似服从正态分布N(70,102),如果规定低于 60分为不及格,求:
正态分布讲解(含标准表)
2.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,1(),(,)2x x e x μσμσϕπσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)2(),(,)2x f x e x π-+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题: xy对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5 2.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ. 3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:68.3%2σx 95.4%4σx 99.7%6σx在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分 例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的 其密度函数可写成:22()21(),(,)2x f x e x μσπσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 常把它记为),(2σμN 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。
正态分布知识点总结正态分布运算法则正态分布μ和σ代表什么
正态分布知识点总结正态分布的定义:如果随机变量的总体密度曲线是由或近似地由下面的函数给定:xR,则称服从正态分布,这时的总体分布叫正态分布,其中表示总体平均数,叫标准差,正态分布常用来表示。
当=0,=1时,称服从标准正态分布,这时的总体叫标准正态总体。
叫标准正态曲线。
正态曲线xR的有关性质:(1)曲线在x轴上方,与x轴永不相交;(2)曲线关于直线x=对称,且在x=两旁延伸时无限接近x 轴;(3)曲线在x=处达到最高点;(4)当一定时,曲线形状由的大小来决定,越大,曲线越矮胖,表示总体分布比较离散,越小,曲线越瘦高,表示总体分布比较集中。
在标准正态总体N(0,1)中:高中数学关于正态分布知识总结【2】二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k=0,1,2,n,此时称随机变量X服从二项分布,记作X~B(n,p),并记独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.二项分布的判断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n 次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,在相同条件下等价于各次试验的结果不会受其他试验的影响,即2,,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有恰好恰有字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k 的意义。
人教高中数学A版选修23第2章正态分布教学设计
人教高中数学A版选修23第2章正态分布教学设计一、传授目标剖析连合课程标准的要求,学生的实际环境,本节课的传授目标如下:知识与技术目标:(1)学习正态漫衍密度函数剖析式;(2)明白正态曲线的特点及其表示的意义;历程与要领目标:(1)设置课前自主学习学案,使学生在课前自学;(2)讲堂采取小组合作探究,进步讲堂效率;(3)课后设置课后查阅要求,将讲堂学习延伸至课外学习。
情绪、态度与代价观:(1)以情境引入,以实验作载体,激发学生的学习兴趣,变动学生的学习热情;(2)运用讨论探究形式,增强学生的合作意识。
二、传授内容剖析正态漫衍是人教A版选修2-3第二章第四节的内容,该内容共一课时。
之前,学生已经学习了频率漫衍直方图、离散型随机变量等相关知识,这为本节课学习奠定了基础,而正态漫衍研究是一连型随机变量,既是对火线内容的补充、拓展,又为学生初步应用正态漫衍知识办理实际标题提供了理论依据。
三、传授标题诊断学生已在必修三中学习过频率漫衍直方图、总体密度曲线,但隔断时间较长,有些遗忘,可能会影响讲堂进度。
正态曲线的特性较多,证明也较为纷乱,要是比及讲堂上才开始思考,必定影响讲堂容量。
本班学生为理科名校班,学生能力较强,要给学生发挥主观能动性的空间。
传授重点:(1)正态漫衍密度函数剖析式;(2)正态曲线的特点及其所表示的意义。
传授难点:正态曲线的特点四、传授对策剖析议决两个概念温习题,让学生熟悉本节课需要用到的知识。
设计了很多学生发言的环节,让学生充分的展现自己的能力。
为完成传授使命,西席需要在课前为学生提供学案,讲堂中引导学生,掌控学习进度。
五、传授基本流程课前自主学习情境引入高尔顿板实验总体密度曲线正态曲线与函数讲堂练习正态漫衍正态曲线特点讲堂检测条件及举例讲堂小结课后查阅六、传授历程设计(1)课前自主学习:1.频率漫衍直方图用什么表示频率?2.由频率漫衍直方图得到总体密度曲线的历程是:首先绘制样本的频率漫衍折线图,然后随着 的无穷增加,作图时 的减小、 的增加,频率漫衍折线图越来越靠近一条腻滑曲线,这条曲线便是 曲线。
高中数学全套讲义 选修2-3 正态分布 基础学生版
目录第九讲:正态分布.......................................................................................................... 错误!未定义书签。
考点一:正态分布 (2)题型一、正态分布综合题型 (3)课后综合巩固练习 (5)考点一:正态分布(1)概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. (2)正态分布定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ.正态变量的概率密度函数的图象叫做正态曲线.标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. 重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.(1)q p =-.题型一、正态分布综合题型1.(2016•绵阳模拟)设随机变量(,1)N ξμ-,若不等式20x -对任意实数x 都成立,且1()2P a ξ>=,则μ的值为( ) A .0B .1C .2D .32.(2016•抚州模拟)设随机变量2~(,)N ξμσ,对非负数常数k ,则(||)P k ξμσ-的值是( ) A .只与k 有关B .只与μ有关C .只与σ有关D .只与μ和σ有关3.(2019春•邢台期末)现对某次大型联考的1.2万份成绩进行分析,该成绩ξ服从正态分布2(520,)N σ,已知(470570)0.8P ξ=,则成绩高于570的学生人数约为( ) A .1200B .2400C .3000D .15004.(2019春•河南期末)某军工企业为某种型号的新式步枪生产了一批枪管,其口径误差(单位:微米)服从正态分布(1N ,23),从已经生产出的枪管中随机取出一只,则其口径误差在区间(4,7)内的概率为(附:若随机变量ξ服从正态分布2(,)μσ,则()68.27%P μσξμσ-<<+=,(22)95.45%)(P μσξμσ-<<+= )A .31.74%B .27.18%C .13.59%D .4.56%5.(2019春•顺德区期末)某玻璃工厂生产一种玻璃保护膜,为了调查一批产品的质量情况,随机抽取了10件样品检测质量指标(单位:分)如下:38,43,48,49,50,53,57,60,69,70.经计算得101153.710i i x x ===∑,9.9s == 生产合同中规定:质量指标在62分以上的产品为优质品,一批产品中优质品率不得低于15%.(Ⅰ)以这10件样品中优质品的频率估计这批产品的优质品率,从这批产品中任意抽取3件,求有2件为优质品的概率;(Ⅱ)根据生产经验,可以认为这种产品的质量指标服从正态分布2(,)N μσ,其中μ近似为样本平均数,2σ近似为样本方差,利用该正态分布,是否有足够的理由判断这批产品中优质品率满足生产合同的要求?附:若2~(,)X N μσ,(0.6827)P X μσμσ-<+≈,(22)0.9544P X μσμσ-<+≈课后综合巩固练习1.(2019春•上高县校级月考)已知两个正态分布密度函数22()2()(2i i x i ix e x R μσϕπσ--=∈,1i =,2)的图象如图所示,则( )A .12μμ<,12σσ<B .12μμ>,12σσ>C .12μμ<,12σσ>D .12μμ>,12σσ>2.(2019春•南昌期末)某中学组织了“自主招生数学选拔赛”,已知此次选拔赛的数学成绩X 服从正态分布(75,121)N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.(参考数据()0.6826P X μσμσ-<<+=,(22)0.9544)P X μσμσ-<<+= A .261B .341C .477D .6833.(2019春•许昌期末)某次高二数学联考测试中,学生的成绩X 服从正态分布(100,2)(0)σσ>,若X 在(85,115)内的概率为0.75,任意选取一名学生,则该生数学成绩高于115的概率为 .4.(2019春•五华区校级月考)某工厂抽取了一台设备A 在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.(1)计算该样本的平均值x ,方差2s ;(同一组中的数据用该组区间的中点值作代表) (2)根据长期生产经验,可以认为这台设备在正常状态下生产的产品的质量指标值服从正态分布2(,)N μσ,其中μ近似为样本平均值,2σ近似为样本方差2s .任取一个产品,记其质量指标值为X .若||X μσ-,则认为该产品为一等品;||2X σμσ<-,则认为该产品为二等品;若||2X μσ->,则认为该产品为不合格品.已知设备A 正常状态下每天生产这种产品1000个.()i 用样本估计总体,问该工厂一天生产的产品中不合格品是否超过3%?()ii 某公司向该工厂推出以旧换新活动,补足50万元即可用设备A 换得生产相同产品的改进设备B .经测试,设备B 正常状态下每天生产产品1200个,生产的产品为一等品的概率是70%,二等品的概率是26%,不合格品的概率是4%.若工厂生产一个一等品可获得利润50元,生产一个二等品可获得利润30元,生产一个不合格品亏损40元,试为工厂做出决策,是否需要换购设备B ?参考数据:①()0.6826P X μσμσ-<+=;②(22)0.9544P X μσμσ-<+=;③(33)0.9974P X μσμσ-<+=12.2≈.5.(2019春•龙岩期末)《福建省高考改革试点方案》规定:从2018年秋季高中入学的新生开始,不分文理科;2021年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成,将每门选考科目的考生原始成绩从高到低划分为A 、B +、B 、C +、C 、D +、D 、E 共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%、7%、18%、22%、22%、18%、7%、3%,选考科目成绩计人考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71.80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩某校高一年级共2000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩ξ基本服从正态分布(70,169)N . (1)求化学原始成绩在区间(57,96)的人数;(2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记X 表示这3人中等级成绩在区间[71,90]的人数,求事件2X ”的概率(附:若随机变量2~(,)N ξμσ,则()0.682P μσξμσ-<<+=,(22)0.954P μσξμσ-<<+=、(33)0997)P μσξμσ-<<+=。
正态分布-人教版高中数学
知识图谱-正态分布正态分布的概念正态分布的性质与应用第04讲_正态分布错题回顾正态分布知识精讲一. 正态分布密度函数如果随机变量的概率密度函数,,我们称其图象为正态分布密度曲线. 其中是圆周率;是自然对数的底;是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为.二. 正态分布如果随机变量落在区间上的概率为,则称随机变量满足正态分布.正态分布由参数唯一确定,如果随机变量,根据定义有:.三. 正态曲线的性质正态曲线具有以下性质:(1)曲线在轴的上方,与轴不相交.(2)曲线关于直线对称.(3)曲线在时位于最高点.(4)当时,曲线上升;当时,曲线下降.并且当曲线向左、右两边无限延伸时,以轴为渐近线,向它无限靠近.(5)当一定时,曲线的形状由确定.越大,曲线越“矮胖”,表示总体越分散;越小,曲线越“瘦高”,表示总体的分布越集中.四. 标准正态曲线当时,正态总体称为标准正态总体,其相应的函数表示式是,,其相应的曲线称为标准正态曲线,标准正态分布记做.记,指总体取值小于的概率,则.任何正态分布的概率问题均可利用公式转化为标准正态分布的概率问题.五. 正态分布在三个特殊区间的概率值1. 原则在实际应用中,通常认为服从正态分布的随机变量只取之间的值,并简称为原则. 在此区间以外取值的概率只有0.0026,此为小概率事件.2. 三个特殊区间的概率值三点剖析一. 注意事项1. 参数是反映随机变量取值的平均水平的特征数,可以用样本均值去估计;是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.把的正态分布叫做标准正态分布;2. 正态分布是自然界中最常见的一种分布,许多现象都近似地服从正态分布,如长度测量误差,正常生产条件下各种产品的质量指标等;3. 一般的,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似地服从正态分布.题模精讲题模一正态分布的概念例1.1、设随机变量,若,则=()A、B、pC、D、例1.2、设随机变量X~N(μ,62),Y~N(μ,82).记p1=p(X≤μ-6),p2=p (Y≥μ+8),则有()A、p1=p2B、p1>p2C、p1<p2D、p1,p2大小关系无法判断例1.3、设有一正态总体,它的概率密度曲线是函数的图象,且,则这个正态总体的均值与标准差分别是( )A、10与8B、10与2C、8与10D、2与10例1.4、证明若服从()则一定有:.题模二正态分布的性质与应用例2.1、正态总体为,时,概率密度函数是:,.(1)证明是偶函数;(2)求的最大值;(3)利用指数函数的性质说明的增减性.例2.2、若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在以下设计的,如果某地成年男子的身高(单位:cm),则该地公共汽车门的高度应设计为多高?例2.3、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表Φ(x0)=P(x<x0)例2.4、从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z-N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.随堂练习随练1.1、若正态曲线函数为,则( )A、有最大值,也有最小值B、有最大值,没有最小值C、无最大值,也无最小值D、没有最大值,但有最小值随练1.2、若随机变量,且,,则等于()A、B、C、D、随练1.3、已知,若,则()A、0.2B、0.3C、0.7D、0.8随练1.4、设服从,试求:(1)(2)(3)(4)随练1.5、某校在模块考试中约有1000人参加考试,其数学考试成绩ξ~N(90,a2),(a>0试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的学生人数约为()A、200B、300C、400D、600随练1.6、某县农民平均收入服从元,元的正态分布.求:(1)此县农民年均收入在500元~520元之间的人数的百分比.(2)若要使农民的年均收入在()内的概率不小于0.95,则的值应至少为多大?随练1.7、一投资者在两个投资方案中选择一个,这两个投资方案的利润(万元)分别服从正态分布和,投资者要求利润超过5万元的概率尽量地大,那么他应选择哪一个方案?自我总结课后作业作业1、设随机变量,则的值为()A、1B、2C、D、4作业2、已知随机变量服从正态分布N(2,1),且P(1≤x≤3)=0.6826,则P(x <1)=()A、0.1588B、0.1587C、0.1586D、0.1585作业3、设随机变量ξ服从正态分布N(μ,σ2),且函数f(x)=x2+4x+ξ没有零点的概率为,则μ为()A、1B、4C、2D、不能确定作业4、以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于()A、Φ(μ+σ)-Φ(μ-σ)B、Φ(1)-Φ(-1)D、2Φ(μ+σ)C、Φ()作业5、在下列命题中,①“”是“”的充要条件;②的展开式中的常数项为2;③设随机变量,若,则.其中所有正确命题的序号是()A、②B、③C、②③D、①③作业6、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在90分以上(含90分)的学生有12名.(1)试问此次参赛学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表作业7、某厂生产的零件外直径(mm),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9 mm和7.5 mm,则可认为()A、上、下午生产情况均为正常B、上、下午生产情况均为异常C、上午生产情况正常,下午生产情况异常D、上午生产情况异常,下午生产情况正常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论
正态分布函数的性质
1. 概率密度函数在x 的上方,即f (x)>0
2. 正态曲线的最高点在均值,它也是分布的中位数和众数 3. 正态分布是一个分布族,每一特定正态分布通过均值和
标准差来区分。 决定曲线的左右位置,决定曲线的
胖瘦
4. 曲线f(x)相对于均值对称,尾端向两个方向无限延伸,
x ab
概率论
三、标准正态分布(P145)
一般正态分布
Z X
标准正态分布
1
x
Z概率论标准正态源自布的重要性1. 一般的正态分布取决于均值和标准差;
2. 计算概率时,每一个正态分布都需要有自己的 正态概率分布表,这种表格是无穷多的;
3. 若能将一般的正态分布转化为标准正态分布, 计算概率时只需要查一张表。
79.5-89.5
89.5-99.5
概率论
类似于此种曲线的分布,就是正态分布, 如:
一片森林中各树木的高度 学生成绩 产品规格 人的智商 人的体重
概率论
二、概率密度函数
f (x)
1
1 x 2
e 2 2
,
x
2
•f(x) = 随机变量 X 的频数 • = 总体方差 • =3.14159; e = 2.71828 •x = 随机变量的取值 (- < x < )
概率论
第二讲 正态分布
概率论
导言:正态分布的重要性
• 1. 描述连续型随机变量的最重要、最常见的分布 • 2. 可用于近似离散型随机变量的分布 • 3. 统计推断的基础(概率即面积) • 根据下图想一想正态分布图形有哪些特点?
f (x)
x
概率论
一、从实例进入概念
如以下为某班42名同学的统计学成绩表
成绩
49.5-59.5 59.5-69.5 69.5-79.5 79.5-89.5 89.5-99.5
人数
4
8
18
8
4
18
16
14
12
49.5-59.5
10
59.5-69.5
8
69.5-79.5
79.5-89.5
6
89.5-99.5
4
2
0
概率论
18
16
14
12
49.5-59.5
10
59.5-69.5
2. 计算概率时 ,查标准正态概率分布表
3. 对于负的 x ,可由 (-x)1 x得到 4. 对于标准正态分布,即X~N(0,1),有
P (a X b) b a P (|X| a) 2 a 1
5. 对于一般正态分布,即X~N( , ),有
P(a
X
b)
b
a
标准正态分布函数:P(ξ ≤Z)=Φ(Z)
概率论
标准正态分布函数
1. 任何一个一般的正态分布,可通过下面的线性 变换转化为标准正态分布
X
Z
~ N (0,1)
2. 标准正态分布的概率密度函数
(x)
1
x2
e2
,
x
2
3. 标准正态分布的分布函数
x
x
(x) (x)dt
1
t2 -
e 2 dt
2
概率论
标准正态分布表的使用
1. 将一个一般的正态分布转换为标准正态分布
将上述结论推广到一般的正态分布,
概率论
X : N (, 2 ) 时,
P(| X | ) 0.6827 P(| X | 2 ) 0.9545 P(| X | 3 ) 0.9973
可以认为,X的取值几乎全部集中在
[ 3 , 3 ] 区间内.
这在统计学上称作“3 准则” .
概率论
例3. 设ξ∽N(1,1) 求 P(ξ≤2.3)
概率论
5o 3 准则
由标准正态分布的查表计算可以求得,
当X~N(0,1)时,
P(|X| 1)=2(1)-1=0.6827
P(|X| 2)=2(2)-1=0.9545
P(|X| 3)=2 (3)-1=0.9973
这说明,X的取值几乎全部集中在[-3,3]区间 内,超出这个范围的可能性仅占不到0.3%.
8
69.5-79.5
79.5-89.5
6
89.5-99.5
4
2
0
概率论
连接直方图顶端中点,可得如下密度曲线
20
18
16
14
12
10
8
6
4
2
0
49.5-59.5
59.5-69.5
69.5-79.5
下面进行曲线性质和状态分析
• 单峰 • 一条对称轴 • 一条渐近线 • 众值、均值、中位值三线合一
49.559.5 59.569.5 69.579.5 79.589.5 89.599.5
概率论
概率论
例1. 已知ξ服从标准正态分布N(0,1),求 P( ξ ≤1.3) P( ξ ≥1.3) P( ξ ≤-1.3) P( 1.3≤ ξ ≤2.3) P( -1.3≤ ξ ≤2.3) P( -2.3≤ ξ ≤-1.3)
概率论
例2. P( ξ ≤λ)=0.975 P( ξ ≥λ)=0.05
0.6827
0.9545
-σ σ
x
-2σ -σ x
0.9973
x
概率论
结 束, 谢谢
且理论上永远不会与横轴相交(多么极端的情况都存在) 5. 正态曲线下的总面积等于1 6. 随机变量的概率由曲线下的面积给出
概率论
正态分布 N (, 2 ) 的图形特点
决定了图形的中心位置和高度, 决定了图
形中峰的陡峭程度和宽窄.
概率论
正态分布的概率
概率是曲线下的面积!(值在其间的几率有多少) f(x)