第六章 狭义相对论
第六章狭义相对论
![第六章狭义相对论](https://img.taocdn.com/s3/m/03877675561252d380eb6e8b.png)
2
l
l0
l0
u 1 2 c
运动长度 l l0
★ 注意:长度收缩只发生在速度方向
例4(4357)在O参照系中,有一个静止的正方
形,其面积为100cm2。观测者O’以0.8C的
匀速度沿正方形的对角线运动求O’所测得
的该图形的面积。 解:在O参照系中A、B间对角线长度
在O’参照系中A、B间长 度 ★ O’所测得的该图形的面积
u
例5(4370)在K惯性系中,相距 的两个地方发生两事件,时间间隔 而在相对于K系沿正 方向匀速运动的K’系中 观测到这两事件却是同时发生的。试计算:在 K’系中发生这两事件的地点间的距离是多少? 解1 :
解2 :
作业:P339~340 6.1 6.3
6.4
6.5 6.6
练习(5616)一列高速火车以速度 驶过车站时, 固定在站台上的两只机械手在车厢上同时划 出两个痕迹,静止在站台上的观察者同时测 出两痕迹之间的距离为1m,则车厢上的观察 者应测出这两个痕迹之间的距离为多少? 解:车上观察者测的两痕迹之间的距离 =原长 l0 静止在站台上的观察者同时测出两痕迹之间 的距离 =运动长 l
5 4 u2 1 2 c
0
(2)乙测得这两个事件发生的地点的距离
例2(4167) 子是一种基本粒子,在相对于它静 止的坐标系中测得其寿命为 ,如 果 子相对于地球的速度为 ( 为真空中光速),则在地球坐标系中测 出的 子的寿命 解:设:相对于 子静止的参照系为 S’
★ 在地球坐标系中测出的 子的寿命
两个事件的空间间隔 事件二:测量尺子(棒) 右端坐标
长度 右端坐标 — 左端坐标
★
在相对于尺子(棒)运动的参照系中要 条件: 同时记录尺子(棒)两端的坐标。 (如:相对于尺子(棒)运动的参照系是S’ 系 则: t1’ ) t2’ l x’ x ’
第六章狭义相对论
![第六章狭义相对论](https://img.taocdn.com/s3/m/29cbaff7770bf78a652954f9.png)
′ = αλν αµσTνσ 二阶张量: Tλµ
对称张量: Tµν = Tνµ ,有10个独立分量(四维) 例如三维空间中对称张量:电四极矩张量Qij;转动惯量 张量I;材料力学中的应力张量 ;Maxwell应力张量;电 磁场动量流密度张量Tij等等。
Tµν = −Tνµ 只有6个独立分量,因为 Tµ µ=0 反对称张量:
三阶张量有43=64个分量:Tµνλ
三阶全反对称张量:Tµνλ ,若对每两个脚标都是反对称的 称之为三阶全反对称张量。即有二个及二个以上脚标相同 时矩阵元为零,共40个0元素,24个非零元素。 24个非零元素中只有4个独立元素T234,T314,T412 和 T123. 它们可用一个4维矢量表示。
A′ µ = α µν A ν
同意味着求和。
约定脚标希腊字母从1取到4,英文字母从1取到3,脚标相 这种约定求和的脚标如上式中ν称为“哑标”,对不参加求和 的脚标,如上式中的μ称为“自由脚标”。 等式两边的自由脚标必须对应。 由于哑标只表示对该脚标从1到4求和的一个约定,所以哑 脚标的字母可以更换,如上式中 A′ µ = α µν A ν = α任意一个二阶张量总可以分解为一个二阶对称张量和一个 二阶反对称张量之和”。 证明:设Tµ σ 为任意一个二阶张量,
Tµ σ = Tµ σ + Tσµ 2 + Tµ σ − Tσµ 2 = Sµ σ + Aµ σ
式中 S µ σ = S σµ 是对称张量,
A µ σ = − A σ µ 是反对称张量,证毕。
三维空间中反对称张量是两矢量叉乘出来的,又叫赝矢 r r r r r r r r r r r υ = ω× r,L = r × F , J = r × p 量。例如 B = ∇ × A , r r r r B, ω, L, J 构成三维空间的二阶反对称张量,因只有三个独 立分量故可用一矢量表示,叫赝矢量。 在坐标变换时不能当矢量处理,否则会出错。 在四维空间二阶反对称张量有六个独立分量,比空间维数 多2,不能用4-矢量表示。 坐标变换时必须还物理量的本来面目。 顺便指出:在正交变换下,对称张量保持为对称;反对称张量 保持为反对称。
第6章 狭义相对论简介
![第6章 狭义相对论简介](https://img.taocdn.com/s3/m/87a3ae71a45177232f60a2a4.png)
v
A B
闪光 同时 到达A 、B镜子; 小兰看到: 闪光 先 到达A镜子, 后 达到B镜子; 小红看到: 由此可见:不同地点的“同时”是相对性(与惯性系有关)
闪 电
闪 电
先 发 生
v
若小红看到:两束闪电(闪光) 同时 击中车头和车尾; 车头 ,后击中_______ 则小兰看到:闪电先击中_______ 车尾 ; 所以:不同地点的“同时”是相对性(与惯性系有关)
◆相对惯性系做匀速直线运动的另一个参考系也是惯性系。
2、推论: ◆推论1: 通过任何力学实验,都不可能 证明惯性系是处于绝对静止还是 在做绝对匀速直线运动状态。
◆推论2:
任何惯性参考系都是平权的。
二、经典时空观、伽利略速度变换
1、经典时空观: (绝对时空观) 长度L 是 时间和空间彼此独立、互不关联, 时间t 是 且不受物质或运动的影响。 质量m 是 同时性是 2、伽利略速度变换: 绝对的 绝对的 绝对的 绝对的
若地面上小红观察到A、B两地有两个事件同时发生,对于 坐在火箭中沿A、B连线飞行的小兰来说,哪个事件先发生?
A事件先发生
A B
v
二、时间的相对性 (动钟变慢)
u t0
u
u
t
思考:小红测得的时间t 和小兰测得的时间t0 相等吗?
(不相等,t > t0)
狭义相对论的时间变换公式 发生在同一地点的参考系内 所测量的时间 t 称为固有时
v人地 v人车 v车地
3、狭义相对论产生的背景:
v人车
v车地
光速问题
三、狭义相对论的两个基本假设:
(爱因斯坦相对性原理) 1、第一条假设: 在任何惯性系参考系中,物理规律(包括力学和电磁学) 都是一样的。
大学物理第6章 狭义相对论基础
![大学物理第6章 狭义相对论基础](https://img.taocdn.com/s3/m/a0626eca4028915f804dc264.png)
第6章
狭义相对论基础
1905年6月, A. Einstein发表 了长论文《论动体的电动力学》, 完整地提出了狭义相对性理论,即 狭义相对论。它是区别于牛顿时空 观的一种新的时空理论。
狭义(特殊)——只适用于惯 性参照系。 相对论和量子论是近代物理学的两大基础理论。
第6章 狭义相对论基础
狭义相对论的产生背景
3
x' x
Δt t2 t1
S' 系 (车厢参考系 )
y'
1
( x'1 , y '1 , z '1 , t '1 ) ( x '2 , y '2 , z '2 , t '2 )
u
12
2
12
o'9
3 6
9 6
3
x'
在一个惯性系同 时发生的两个事件, 在另一个惯性系是 否同时?
u Δt Δx c Δt 1
设 S系中x1、x2两处发生两事件,时间 间隔为 Δt t2 t1 .问 S′系中这两事件 发生的时间间隔是多少?
S 系 ( 地面参考系 ) 事件 1
( x1, y1, z1, t1 )
y
y'
1
12
u
12
事件 2
2
12
( x2 , y2 , z2 , t2 )
o o'9
3 6
9 6
3
9 6
例3 设想一光子火箭以 u 0.95c 速率相对地球作直线运动 ,火箭上宇航 员的计时器记录他观测星云用去 10 min , 则地球上的观察者测此事用去多少时间 ? 解 设火箭为 S 系、地球为 S 系
第六章 狭义相对论
![第六章 狭义相对论](https://img.taocdn.com/s3/m/e7515ba0700abb68a982fbb5.png)
x1 ut1 1 u2 c2
[(x2 x1) u(t2 t1)]
因为需同时测得杆两端长度,所以t1=t2
L
x2 x1 1 u2 c2
L 1 u2 c2
L 1 u2 c2 L
观测者与被测物体相对静止时,长度的测量值最大,
叫固有长度(L0),观测者与被测物体有相对运动时,测
得的长度等于其固有长度的 缩效应。
( x2,t2)
解:设地面为S系,火车为S´系
在S´系中观测
t1'
t1
u c2
x1
1 u2 c2
(x1 ,t1)
( x2,t2)
t
' 2
t2
u c2
x2
1 u2 c2
t
' 2
t1'
(t2
t1 )
u c2
( x2
1 u2 c2
x1 )
∵ t1 = t2 x1 < x2 ∴ t1´ > t2´
c2 t2 t1
x2 x1 为子弹飞行的速率,小于c t2 t1
所以
t2' t1' 0
飞船上的观察者也看到子弹先出膛,后击中靶子
由于真空中的光速c是物体运动或信息传递速度 的极限,因此对于有因果关系的两个事件,不会 因参考系的不同而使因果顺序颠倒。
二 时间膨胀(动钟变慢)
u
y
y'
S
S'
质量乘光速的平方 E = mc2 。
本章内容提要
第一节 伽利略变换和经典力学时空观 第二节 狭义相对论的基本假设
洛仑兹变换 第三节 狭义相对论的时空观 第四节 狭义相对论动力学
第一节 伽利略变换和经典力学时空观
大学物理曲晓波-第6章 狭义相对论
![大学物理曲晓波-第6章 狭义相对论](https://img.taocdn.com/s3/m/84077348da38376baf1faee9.png)
x
x u t 1 u2 /c2
洛 仑
y
y
兹 z z
逆 变 换
t
t
ux c2
1 u2 /c2
洛伦兹逆变换只是把洛伦兹变换中的u→ - u,x与x’,
y与y’,z与z’交换位置。
说明:
①洛伦兹变换表示同一事件在不同惯性系中时空坐标的变换关系。 规定每个惯性系使用对该系统为静止的时钟和尺进行量度。
在所有惯性系中,物理定律的表达形式都相同。这就是爱因 斯坦相对性原理,即相对性原理。
此原理说明所有惯性系对于描述物理规律都是等价的,不存 在特殊的惯性系。可以看出,爱因斯坦相对性原理是力学相对 性原理的推广。
由此可得出,在任何惯性系中进行物理实验,其结果都是一 样的,运动的描述只有相对意义,而绝对静止的参考系是不存 在的。因此不论设计力学实验,还是电磁学实验,去寻找某惯 性系的绝对速度是没有意义的。
S 系v 中 x d d x t,v y d d y t,v z d d z t
v
x
vx 1
u
uvx c2
速 度 变 换
v
y
vy
1 u2 /c2
1
uvx c2
v
z
vz
1 u2 /c2
1
uvx c2
vx
v
x
1
u
u v x c2
速 度 逆 变 换
v
y
v
y
1 u2 /c2Biblioteka 1u v x c2
vz
v
z
1 u2 /c2
1
u v x c2
讨论:
①当u,v(vx,vy,vz)远小于光速c时,相对论速度变换式退化
第6章狭义相对论基础
![第6章狭义相对论基础](https://img.taocdn.com/s3/m/3abbc5d5172ded630b1cb6be.png)
设相对S’系静止有一光脉冲仪
Mo
d
发射光信号与接受光信号时间差 o
t' 2d
X’
c
发射与接受在同一地点
t ' 称之为固有时或本征时,常用 o
在S系中观察,光脉冲仪以 u 向右运动
光脉冲走的是一个三角形的两边,每边长为
d 2 ( ut )2 2
Su Y
t 2 2 d 2 ( ut )2
由洛仑兹逆变换
t
t
u c2
x
1
u2 c2
t
1
u2 c2
x 0
t
1
>1
1
u2 c2
t
原时最短
长度缩短
对运动长度的测量问题。 怎么测? 同时测。
S S
u
l0
原长:棒静止时测得的它的长度 也称静长
棒静止在 S 系中, l0 静长
S
事件1:测棒的左端 事件2:测棒的右端
1
u2 c2
同时性的相对性
x2 x1 t2 t1
5) 时序,因果关系
x2 x1 t2 t1
6) 由洛仑兹变换看时间膨胀 长度缩短
时间膨胀 研究的问题是: 在某系中,同一地点先后发生的两个事件的时间 间隔(同一只钟测量) ,与另一系中,两个地点发 生的两个事件的时间间隔(两只钟分别测量)的关系。
零结果
c
1
u2 c2
1
u2 c2
b 2
否定以太存在 否定伽利略变换
M2
cu
a2 a1 M1
1 b1
C2 u2
b 1
狭义相对论
![狭义相对论](https://img.taocdn.com/s3/m/15414490af45b307e87197df.png)
坐标位置无关,时间间隔与时空位置无关.
2.间隔不变性:
事件p1和p2:在 :(x1, y1, z1,t1), (x2 , y2 , z2 ,t2 )
: (x1, y1, z1,t1), (x2, y2 , z2 ,t2)
两朵小乌云: 迈克耳逊——莫雷“以太漂移”实验
黑体辐射实验
狭义相对论 量子力学
近代物理学的两大 支柱,逐步建立了 新的物理理论。
强调:
近代物理不是对经典理论的补充,是全新的理论。
近代物理不是对经典理论的简单否定。
§6.1相对论的实验基础
一.伽利略的相对性原理
1.伽利略变换:
设以v相对于运动,t=0时,两坐标系原点重合
2.光速不变原理:真空中的光速在任意惯性系中沿各
个方向均为c,与光源运动无关.
• 说明: • ⑴它否定了经典速度公式,即否定伽利略变换。 • ⑵光的速度大小与参照系无关,但方向在不同参照系中
可以不同。 • ⑶光速数值不变,则不同参照系中时间、空间、尺度关系
不同。
狭义相对论原理与经典时空的不同:
'
按照二事件间隔将相对论时空划分为三个区域. (1)类时区域(类时间隔):
s2 0,即c2t2 x2
x 2
二事件可用小于光速的信号联系,信号速度 u
c
t
(2)类空区域: s2 0,即c2t2 x2 ,u c,这种讯号不存在
(3)类光区域:s2 0, u c
类空
类时 类空
类时
系中静止。 • 在以太中静止的物体为绝对静止,相对以太运动的物体为
绝对运动。
二.相对论实验基础:
第6章狭义相对论
![第6章狭义相对论](https://img.taocdn.com/s3/m/28f028b3c77da26925c5b041.png)
1. 物理规律对所有惯性系都是一样的。
这后来被称为爱因斯坦相对性原理。
2. 任何惯性系中,真空中光的速率都为 c 。
这一规律称为光速不变原理。 光速不变原理与伽利略变换是彼此矛盾的, 若保持光速不变原理,就必须抛弃伽利略变换, 也就是必须抛弃绝对时空观。
力学相对性原理的另一种表述: 在一个惯性系内部 所作的任何力学的实验都不能区分这一惯性系本身 是在静止状态还是在作匀速直线运动状态。
6
2. 经典力学的绝对时空观
(1)同时性是绝对的。
S系:两事件同时发生,S 系:也是同时发生。 (2)时间间隔是绝对的。
t1 t 2 t1 或写为 t t t2
8
—— 常量
根据伽利略变换,光在不同惯性系中速度不同。
那么在哪个参考系中才是标准光速? 经典理论中认为光在以太中传播,于是以太可以 被视为“绝对静止参考系”。也即通过光学实验, 可以区分惯性系的运动状态。
9
于是必然导致以下结论之一: 一、麦克斯韦方程组不正确。
二、麦克斯韦方程组在伽利略变换下不满足力 ? 学相对性原理。
ux 22 ) t 2 (t 2 c ux1 2 ) t1 ( t1 c
23
ux 22 ) t 2 (t 2 c ux1 2 ) t1 ( t1 c t t u2 1 2 c
ux t ( t 2 ) c ( x 0 )
u 1 2 c
2
1
2
19
1 u 1 2 c
2
1 1
2
如果u≥c,则 就变为无穷大或有虚数值,这显然 是没有物理意义的。 因而得出推论:任何物体相对于另一物体的速 度不可能等于或大于真空中的光速。即真空中的光 速c是一切物体运动速度的极限。 这一推论与实验符合,也符合因果律的要求。
第六章 狭义相对论
![第六章 狭义相对论](https://img.taocdn.com/s3/m/964a5fc0bb4cf7ec4afed07b.png)
二、爱因斯坦相对性原理和光速不变原理 (Einsteins principle of relativity and principle of constant speed of light)
1905年爱因斯坦在《论动体的电动力学》一书中提 出如下两条基本原理: 1. 物理规律对所有惯性系都是一样的。 这后来被称为爱因斯坦相对性原理。 2. 任何惯性系中,真空中光的速率都为 c 。
21
22
23
t — 原时(proper time) 原时:同一地点两事件的时间间隔
u t t 1 2 t, c
2
∴ 原时最短 。
一个运动的钟C 和一系列静止的钟C1、C2… 比较,运动的钟C 变慢了。 一个运动时钟的“1秒”比一系列静止时钟的
“1秒”长,这称为运动时钟的“时间延缓”。 时间延缓完全是一种相对效应。
两朵令人不安的乌云,----”
2
这两朵乌云是指什么呢? 迈克尔逊莫雷实验
热辐射实验
后来的事实证明,正是这两朵乌 云掀起了一场物理界的革命风暴,乌 云落地化为一场春雨,浇灌着两朵鲜 花。
3
量子力学诞生
爱因斯坦的相对论问世
经典 力学
高速领域 微观领域
相对论 量子力学
4
相对论由爱因斯坦(Albert Einstein)创立, 它包括了两大部分: 狭义相对论(Special Relativity)(1905)
当 u << c 时t = t ,这就回到绝对时间了。
26
结论:
1)运动的钟变慢:
t
0
1 u / c
2 2
2)运动参照系中所有物理过程的节奏都变慢了。
27
第6章 狭义相对论课件
![第6章 狭义相对论课件](https://img.taocdn.com/s3/m/e434ed2ae2bd960590c677e5.png)
2mc M 0c M 0 2m
2 2
五、相对论的能量、动量关系
由 m
m0 v 1 2 c
2
两边 平方
2 2
m (c v ) m c
2 2 2 2 0 2 2 2 0 2
2
m (c v ) c m c c
2 2 2 2 2
2
(mc ) m v c (m0c )
2 16
27
12
1kg这种核燃料所释放的能量为:
E 2.79910 14 3.3510 J/kg 27 m1 m2 8.348610
这相当于同质量的优质煤燃烧所释放热量的1千多万倍!
12
大亚湾核电站夜景
例
两全同粒子以相同的速率相向运动,碰后复合
解:设复合粒子质量为M ,速度为 V v1 v2 m1 m2 V 0 碰撞过程,动量守恒 m1v1 m2v2 MV
四、相对论能量 质能关系
动能 总能量
静止能量
2
EK mc m0c
2
除动能以外的能量
1.静能
当物体静止时,尽管EK=0,仍有能量 2 E0 m0c m0c2,称为物体的静能量E0(分子间势 能、分子热运动能量等)。
虽然静止物体不存在整体运动,动能EK=0,但在其内部 仍有很大的能量m0c2 。例m0=1Kg的任何物体,它的静止 能量E0=1×(3 × 108)2=9 × 1016(J) ,直到目前为止,人 们还无法把这么巨大的静止能量全部释放出来,为人类 服务。
S系
u v
x
§6
狭义相对论动力学基础
高速运动时动力学概念如何? 基本出发点: 基本规律在洛仑兹变换下形式不变;
第六章狭义相对论
![第六章狭义相对论](https://img.taocdn.com/s3/m/37a3dff0534de518964bcf84b9d528ea81c72fdd.png)
第六章狭义相对论6.1相对论的基本原理和时空理论认为时空和质量的测量有绝对意义,与观测者所处的参考系⽆关,这种绝对时空和绝对质量观念是经典⼒学的“公理”基础,其集中反映便是伽俐略变换.但从19世纪末年起,⼈们发现这种观念与电磁现象和⾼速运动的实验事实不符.在迈克尔孙等⼈光速测量实验的基础上,爱恩斯坦于1905年创⽴了狭义相对论.这⼀理论的两个基本假设是:相对性原理——物理定律在所有惯性系都有相同的形式;光速不变原理——真空中的光速在所有惯性系沿任何⽅向都是常数c,与光源的运动⽆关.间隔不变性间隔不变性是相对性原理与光速不变原理的数学表述.设惯性系中,任意两事件的空时坐标为和,定义两事件的间隔为(6.1)在另⼀惯性系中,这两事件的空时坐标为,,间隔为(6.2)惯性系概念要求空时坐标变换必须是线性变换,即,,⽽当两个惯性系的相对速度时,这两个惯性系将等同于⼀个惯性系.因⽽对任何两个惯性系,应当有(6.3)洛伦兹变换设惯性系以速度沿惯性系的x轴正向运动,两参考系相应坐标轴平⾏,时两参考系的原点重合(⼀个事件),由(6.3)式,可导出任⼀事件的空时坐标从系到系的变换——洛伦兹变换,,, (6.4)其中 , (6.5)将(6.4)式中的换为,可得逆变换.当, (6.4)过渡到伽俐略变换.因果律与相互作⽤的最⼤传播速度洛伦兹变换表明,时空的测量有相对意义,即测量结果与观测者所处的参考系有关,这是相对论时空观的⼀个⽅⾯.另⼀⽅⾯,是认为事物发展变化的因果关系有绝对意义,即因果关系不因参考系的变换⽽改变,从时间次序来说,就是在⼀个惯性系中,作为结果的事件必定发⽣在作为原因的事件之后,变换到任何其它惯性系,都必须保持这⼀时间次序.从这⼀要求出发,由间隔不变性或洛伦兹变换,可得出推论——真空中的光速c是⾃然界⼀切相互作⽤传播速度的极限.间隔分类在任何⼀个惯性系中,任何两事件的间隔只能属于如下三种分类之⼀:类时间隔;类光间隔;类空间隔.在⼀个惯性系中有因果关系的两事件,两者之间必定存在某种相互作⽤,其传播速度只能⼩于c或等于c,因⽽有因果关系的两事件之间隔必定类时或类光,变换到任何其它惯性系,绝对保持因果关系,相互作⽤的传播速度仍然⼩于c或等于c,即间隔仍然类时或类光.在⼀个惯性系中⽆因果关系的两事件,间隔必定类空,变换到任何其它惯性系,绝对保持⾮因果关系,间隔仍然类空.同时相对性在某个惯性系中,如果两事件于不同地点同时发⽣,即这两事件⽆因果关系,由洛伦兹变换可推知,在其它惯性系看来,这两事件的发⽣不同时.这意味着,在某个惯性系不同地点对准的时钟,在其它惯性系看来没有对准.时钟延缓效应在物体静⽌的参考系中,测得任⼀过程进⾏的时间,称为这过程的“固有时”.由洛伦兹变换,在其它惯性系中,测得这过程进⾏的时间变慢了:(6.6)这效应对于两个惯性系来说是相对的,即在系上看系的时钟变慢,在系上看系的时钟也变慢.但是在有加速运动的情形,时间延缓效应是绝对效应.尺度缩短效应当物体以速度相对于惯性系运动,若在平⾏于运动⽅向上这物体的静⽌长度为,由洛伦兹变换,在系中测得这长度缩短为(6.7)这效应对于两个惯性系来说,也是相对的.但在垂直于运动的⽅向,这⼀效应不会发⽣.时钟延缓与尺度缩短效应,是在不同参考系中观察物质运动在时空关系上的客观反映,是统⼀时空的两个基本属性,与具体过程和物质的具体结构⽆关.速度变换由洛伦兹变换(6.4),可导出物体速度从惯性系到之间的变换, ,(6.8)将换为-,可得逆变换.可以证明,若在⼀个参考系中物体的速度,变换到任何其它参考系仍有.仅当,(6.8)式才过渡到经典速度变换.6.2 洛伦兹变换的四维形式四维协变量相对论认为时空是统⼀的.为此将三维空间与第四维虚数坐标统⼀为四维复空间(6.9)于是当系以速度沿系的轴正向运动时,洛伦兹变换(6.4)可表为, (6.10)重复指标(上式中右⽅的)意味着要对它从1⾄4求和.变换系数构成的矩阵为(6.11)由于洛伦兹变换(6.10)满⾜间隔不变性(6.3),亦即不变量 (6.12)因此,洛伦兹变换是四维时空中的正交变换,即变换矩阵满⾜(6.13)(6.10)的逆变换为(6.14)在洛伦兹变换下,按物理量的变换性质分类为:标量(零阶张量,不变量) (6.15)四维⽮量(⼀阶张量) (6.16)四维⼆阶张量 (6.17)例如,间隔和固有时就是洛伦兹不变量.可以证明,每⼀类四维协变量的平⽅都是洛伦兹变换下的不变量.利⽤这⼀普遍规律,可将物体的速度和光速,能量和动量,电荷密度和电流密度,标势和⽮势,电场和磁场等物理量统⼀为四维协变量,由此可以清楚地显⽰出被统⼀起来的物理量之间的内在联系,并将描写物理定律的⽅程式表⽰成相对性原理所要求的协变形式.6.3 相对论⼒学相对论⼒学⽅程在低速运动情形下,经典⼒学⽅程在伽利略变换下满⾜协变性.为使⾼速运动情况下⼒学⽅程也满⾜协变性,构造四维速度 (6.18)四维动量 (6.19)四维⼒ (6.20) (四维加速度 ),其中是三维速度,是三维⼒,是⼒的功率,是四维⼒的空间分量.由于固有时和静⽌质量是洛伦兹不变量,因此、和都是按(6.16)⽅式变换的四维协变⽮量,于是相对论⼒学⽅程(6.21)在洛伦兹变换下满⾜协变性.由,这⽅程包含的两个⽅程为(6.22)(6.23)相对论质量、动量和能量由⽅程(6.22)和(6.23)可知,⾼速运动情形下物体的质量、动量和能量分别为(6.24)(6.25)(6.26)质速关系(6.24)表明,物体的质量随其运动速度的增⼤⽽增加,即质量测量与时空测量⼀样,存在相对论效应.仅当,才有,此时相对论动量(6.25)过渡到经典动量.质能关系(6.26)中,是运动物体或粒⼦的总能量,是其静⽌能量,是其相对论动能.仅当物体或粒⼦的速度,才有,即⾮相对论动能.质能关系的重要意义在于它表明,⼀定的质量来源于⼀定的相互作⽤能量.由可推知,静⽌质量的粒⼦,必定有静⽌能量,因⽽应当存在某种深层次的内部结构,物体或粒⼦的静⽌质量,来源于其内部存在的相互作⽤能量.由多粒⼦组成的复合物之所以出现质量亏损,便是这复合物内部的粒⼦存在⼀定相互作⽤能(结合能)的反映.(6.19)式表⽰的四维动量,是将相对论动量和能量统⼀起来的协变⽮量:(6.27)在物体或粒⼦静⽌的参考系中,其动量,能量,在任⼀惯性系中,设其动量为,能量为,由的平⽅是洛伦兹变换下的不变量,可得能量、动量和质量的普遍关系式(6.28)由(6.26)和(6.28),可得粒⼦静⽌质量的⼀种表达式(6.29)即通过测量粒⼦的动量和动能,可计算其静⽌质量.光⼦的能量和动量由质能关系(6.26)可推知,以速度运动的粒⼦,例如光⼦,其静⽌质量应当为零,即这类粒⼦应当没有内部结构.由波粒⼆象性,光⼦能量为,其中为⾓频率,,为普朗克常数.因光⼦,由(6.28)式,其动量为,为波⽮量,表⽰光⼦运动⽅向的单位⽮量.6.4 电动⼒学的相对论协变性相对论电动⼒学⽅程定义四维算符(6.30)(6.31)是协变⽮量算符,是标量算符.电流是电荷的运动效应,⽽电荷电流是电磁势和电磁场的激发源.因此,有理由将电荷密度与电流密度,标势与⽮势 ,电场E与磁场B ,统⼀为四维协变量.四维电流密度 (6.32)四维势 (6.33)其中,带电体静⽌时的电荷密度是洛伦兹标量,和均按(6.16)变换.由,构造电磁场张量(6.34)它按(6.17)变换.这是⼀个反对称张量,其矩阵形式为(6.35)构造四维洛伦兹⼒密度(6.36)它按(6.16)变换,其中是三维洛伦兹⼒密度,是电场对电荷作的功率密度.于是,电动⼒学的基本⽅程电荷守恒定律 (6.37)洛伦兹规范 (6.38)达朗贝尔⽅程 (6.39)麦克斯韦⽅程(6.40)能量动量守恒定律 (6.41)都满⾜相对论协变性.(6.41)式中,是将电磁场的能量密度,能流密度S,动量密度g和动量流密度统⼀起来的协变张量:(6.42)矩阵形式为(6.43)势和场的相对论变换在参考系变换下,电荷与电流存在相对性,电磁势和电磁场必然也存在相对性.当惯性系以速度沿系x 1轴的正向运动时,电磁势按变换,即, , , (6.44)电磁场按变换,即,, (6.45)其中下标∥表⽰与运动⽅向平⾏的分量,⊥表⽰垂直分量.将(6.44)式和(6.45)式中的改为-,即得逆变换.在参考系变换下,电磁波的相位是不变量.构造四维波⽮量(6.46)它与四维时空的乘积反映了相位不变性.因此,四维波⽮量必定按变换.当光源沿系x 1轴的正向以速度运动时,便有, , , (6.47)由此可得相对论多普勒效应与光⾏差的表达式, (6.48)其中,为光源静⽌参考系系中的辐射频率,是波⽮即辐射⽅向与x 1轴正向的夹⾓;是在系中观测到的频率,是这参考系中辐射⽅向与光源运动⽅向的夹⾓.6.5电磁场中带电粒⼦的拉格朗⽇量和哈密顿量静⽌质量为,电荷为e的带电粒⼦在电磁场中以速度相对于系运动时,粒⼦的相对论运动⽅程为(6.49)为粒⼦的动量.由, ,可导出粒⼦的拉⽒量(6.50)⽽和作⽤量S都是洛伦兹变换下的不变量:(6.51)(6.52)由⼴义动量的定义 ,可得粒⼦的正则动量和哈密顿量H:(6.53)(6.54)于是拉格朗⽇⽅程(6.55)和正则运动⽅程, (6.56)均与⽅程(6.49)等价.哈密顿量(6.54)第⼀项是粒⼦的相对论能量,故可构造四维正则动量(6.57)由此可得相对论正则运动⽅程, (6.58)。
6狭义相对论基础
![6狭义相对论基础](https://img.taocdn.com/s3/m/6380b3a0aff8941ea76e58fafab069dc5022478e.png)
系无关。质量的测量与运动无关。
牛顿力学的回答: 对于任何惯性参照系 , 牛顿力学的规律都具有
相同的形式 . 这就是经典力学的相对性原理 .
或 牛顿力学规律在伽利略变换下形式不变 或 牛顿力学规律是伽利略不变式
三.伽利略变换的困难
对于不同的惯性系,电磁现象基本规律的形式 是一样的吗 ?
真空中的光速
y
s
x1
o 12
9
3
6
12
9
3
6
d
x2
12 x
93
6
t (t' ux')
c2
x' 0
t t2 t1 t'
t t'
1 2
固有时间 :同一地点发生的两事件的时间间隔 .
t t' t0 固有时间
时间延缓 :运动的钟走得慢 .
注意 1)时间延缓是一种相对效应 .
2)时间的流逝不是绝对的,运动将改变 时间的进程.(例如新陈代谢、放射性的衰变、 寿命等 . )
c
d
v
t1 t2
结果:观察者先看到投出后的球,后看到投出前的球.
900 多年前(公元1054年5月)一次著名的超新星 爆发, 这次爆发的残骸形成了著名的金牛星座的蟹状 星云。北宋天文学家记载从公元 1054年 ~ 1056年均能 用肉眼观察, 特别是开始的 23 天, 白天也能看见 .
当一颗恒星在发生超新星爆发时, 它的外围物质向 四面八方飞散, 即有些抛射物向着地球运动, 现研究超 新星爆发过程中光线传播引起的疑问 .
*
(x', y', z'
x'
x
ma'
第06章 狭义相对论
![第06章 狭义相对论](https://img.taocdn.com/s3/m/abff9144a8956bec0975e308.png)
t2
M2 2l
G
30 30
M2
M1
s
T
G
T
s
G M1
M2
N
2Δ
v
v
2
v 2l 2 c
4
l 10m, 500 nm, v 3 10 m/s
N 0.4
实验结果
仪器可测量精度
N 0.01
N 0
31
未观察到地球相对于“以太”的运动.
以后又有许多人在不同季节、时刻、 方向上反复重做迈克尔孙-莫雷实验.近年 来,利用激光使这个实验的精度大为提高, 但结论却没有任何变化. 迈克尔孙-莫雷实验测 到以太漂移速度为零,对以 太理论是一个沉重的打击, 被人们称为是笼罩在9世纪 物理学上空的一朵乌云.
大学物理3
10
热力学和经典统计力学—热力学第一、第二 及第三定律及分子运动论
成功地解释了热现象。 经典电磁理论—麦克斯韦电磁理论 成功地解释了波动光学及许多电磁现象
大学物理3
11 11
•
有一个故事很可以说明在人们心目中,古 典物理学的完善程度。 德国著名的物理学家普朗克年轻时曾向他的 老师表示要献身于理论物理学,老师劝他说: “年轻人,物理学是一门已经完成了的科学, 不会再有多大的发展了,将一生献给这门学科, 太可惜了!”
凭直觉,爱因斯坦给出的答案是:
爱因斯坦说: “只有大胆的思辨而不是经验的堆积,才能 使我们进步。”
36
二、爱因斯坦的两个重要假设
⑴ 物理规律对所有惯性系都是一样的,不存在任 何一个特殊的(例如“绝对静止”的)惯性系
——爱因斯坦相对性原理
⑵ 在任何惯性系中,光在真空中的速率都相等
高一物理章节内容课件 第六章狭义相对论
![高一物理章节内容课件 第六章狭义相对论](https://img.taocdn.com/s3/m/3e802f327cd184254b3535d6.png)
在地球坐标系中测出的 子的寿命
解:
例3(4378)火箭相对于地面以V=0.6C (C
为真空中光速)的匀速度飞离地球。在
火箭发射
秒钟后(火箭上的
钟),该火箭向地面发射一导弹,其速
度相对于地面为V1=0.3C,问火箭发射 后多长时间,导弹到达地球?(地球上
的钟)计算中假设地面不动。
解:火箭飞离地球到发射 导弹经历的时间间隔
中,两个事件同地发生)
4. 长度收缩(条件:在相对棒运动的参照 系中,要同时纪录棒两端的 坐标)
5. 相对论质量 6. 相对论能量 7. 相对论动量 8. 质点系动量守恒
9. 核反应的总能量守恒、释放的能量、质量 亏损
10 .相对论动量与能量的关系
例一(4604)设快速运动的介子的能量约为
E=3000MeV,而这种介子在静止时的
的速率V沿隧道长度方向通过隧道,若 从列车上观测:
(1)隧道的尺寸如何? (2)设列车的长度为 ,它全部通过隧
道的时间?
1.(4720)解答 (1) 从列车上观察,隧道的长度缩短, 其他尺寸不变。隧道长度为
(2)列车全部通过隧道的时间为
2.(4373)静止的 子的平均寿命约
为
,今在8Km的高空,由于
能量为E0=100MeV。若这种介子的固有
寿命是
,求它运动的
距离。
例二(4733)已知一静止质量为m0的粒子, 其固有寿命为实验室测量到的寿命的
1/n,则此粒子的动能是多少?
例一(4604)解答
例二(4733)解答
例三(4735)已知 子的静止能量为
105.7MeV ,平均寿命为
。
试求动能为150MeV的子的速度是多少?
第6章狭义相对论
![第6章狭义相对论](https://img.taocdn.com/s3/m/bf46908583d049649b665852.png)
绝对时空观念只适用于低速运动; 绝对时空观念只适用于低速运动;而在 低速运动 高速运动中,它的缺陷就明显表现出来了。 高速运动中,它的缺陷就明显表现出来了 四 . 伽利略变换的困难 电磁现象总结出来的麦克斯韦方程组,给出电磁 电磁现象总结出来的麦克斯韦方程组, 波(光) 以恒定速度 在真空中传播 光 以恒定速度c在真空中传播
2. 经典力学的绝对时空观 (1)同时性是绝对的。 同时性是绝对的。 同时性是绝对的 S系:两事件同时发生, 两事件同时发生, S′ 系:两事件也是同时 发生的。 发生的。 (2)时间间隔是绝对的。 时间间隔是绝对的。 时间间隔是绝对的
x′ = x ut
y′ = y z′ = z t′ = t
S′
x′ = γ ( x ut )
逆 y = y′ 变 z = z′ 换 t = γ ( t′ + ux′ ) 2
c
x = γ ( x′ + ut′ )
γ=
1 u 1 2 c
2
18
(1) 当u<<c时,洛仑兹 时 洛仑兹 变换式就变成伽利略变 换式: 换式:
S′
S
x′ = γ ( x ut )
ux t′ = γ ( t 2 ) c
S
′ ′ t2 t1 = t2 t1
或写为
t′ = t
7
(3)空间间隔 距离 是绝对的。 空间间隔(距离 是绝对的。 空间间隔 距离)是绝对的
d′ = ( x′ ) + ( y′ ) + ( z′ )
2 2
y′ = y z′ = z 2 2 2 = ( x ) + ( y ) + ( z ) = d t′ = t
2
x′ = x ut
电动力学-第六章-狭义相对论
![电动力学-第六章-狭义相对论](https://img.taocdn.com/s3/m/a8211bd9b14e852459fb5705.png)
2.相互作用最大传播速度
既然同时是相对的,那因果关系是否会发生颠倒呢?当 然,这种因果关系是不能发生颠倒的!即因果关系是绝对 的。这就对相对论提出了要求。 由洛伦兹变换:
t2 t1
t2 t1 x2 x1 / c 2
1 2 / c2
若两事件有因果关系,即若t2 - t1 0,则必有t2 - t1 0。
x1 x, x2 y, x3 z , x4 ict
另外:
/c
1 1 2
18
物理与电子工程学院 张福恒
电动力学
第六章 狭义相对论
2.物理量按空间变换性质分类
变换规律:
所有物理量称为张量:
1)零阶张量称为标量,经坐标变换后保持不变的量;
2)一阶张量称为矢量; 3)二阶张量称为二阶张量;等等。
24
物理与电子工程学院 张福恒
电动力学
第六章 狭义相对论
3.电磁场张量
25
物理与电子工程学院 张福恒
电动力学
第六章 狭义相对论
4.电磁场的不变量
26
物理与电子工程学院 张福恒
电动力学
第六章 狭义相对论 §6 相对论力学
1.能量-动量四维矢量
27
物理与电子工程学院 张福恒
电动力学
第六章 狭义相对论
4.运动的尺子缩短了
在系中有一位于x轴的尺子,测得其长度为l0(静 止长度)。由洛伦兹变换得:
x2 x1
即:
x2 x1 t2 t1 / c 2 1 2 / c2
l 1 2 / c2
l l0 1 2 / c2
即有:
l l0
6狭义相对论
![6狭义相对论](https://img.taocdn.com/s3/m/ddc44c60caaedd3383c4d340.png)
实验装置:
M2
v
l S M
l
M1
T
说明:由光源S发出的光线在半反射镜M上分为两 束,一束通过M,被M1反射回到M,再被M反射而
达到目镜T;另一束被M反射到M2,再反射回M而 直达目镜T。 调整两臂长度使有效光程为MM1=MM2=l. 设地 球相对于以太的绝对运动速度 v 沿MM1方向,则 由于光线MM1M与MM2M的传播时间不同,因而有 光程差,在目镜T中将观察到干涉效应。 当地球相对于以太的速度为v运动时,可看出 光线MM1和M1M间犹为如顺水和逆水行舟,它相对 于仪器的速度应各自为(c-v)和(c+v),如果MM1的长 度为l时,那么光通过距离MM1+M1M所需的时间为
y ∑
r
y’ ∑’
v
P (x, y, z, t, x’, y’,z’,t’) x, x’
r
0 z z’
0’
设在P点站着一人,按了一个闪光灯,在∑系中 观察者看来,按灯的这个现象发生于t 时刻、(x,y,z) 点;在 系中观察者看来,按灯这个现象发生于t’ 时 刻、(x’,y’,z’)点;这两组数(x,y,z,t)与(x’,y’,z’,t’) 之间的关系是与时空观有关的。 根据经典时空观,得到
电磁现象不服从传统的相对性原理。历史上,把这 个在绝对时间和绝对空间(长度)假设下得出的、 Maxwell’s equations和电磁波传播速度各向同性定律 在其中成立的特殊参考系,称为绝对参考系。 然而,绝对参考系是对哪个参照物建立的呢? 当时人们认为传播电磁波的媒质是以太,电磁波传 播速度c是对以太这一特殊参考系而言的。也就是 说,以太就是那个绝对参考系。 为了找出或证明这个绝对惯性系的存在,迈克 尔逊(michelson)和莫雷(Morley)于1887年利用 灵敏的干涉仪,企图用光学方法测定地球的绝对运 动。假定以太相对太阳静止,这个运动就是地球绕 太阳的运动。
第六章-狭义相对论基础
![第六章-狭义相对论基础](https://img.taocdn.com/s3/m/bb5259714028915f814dc219.png)
c
1 2
1 2
得
l l 12
(5)
空间间隔(或称物体长度)是相对的,和 物体一起运动的惯性系中测得的长度最长,而 与物体相对运动的惯性系中测得的长度就短 些,即运动物体沿其运动方向的长度变短了。
尺缩效应动画
6.4 洛仑兹变换 相对论时空观的再讨论
6.4.1 洛仑兹变换 两个惯性系
S 和 S′,因二者只 沿 x 方向有相对
(3)长度缩短(尺缩效应)
t2 t1 2lc (3) •
l
入射段:
o
图1
lVt1ct1
t1
l c V
V t1
••
o o
l
图2
反射段:
lV t2ct2
t2
l c V
V(t1t2)
•
•
o
o
l
图3
M
V
M
M
tt1t2c lVc lV12 lc2
由 (2)式 ,得
t t
1 2
(4)
于是有
2l
2l
c
物体的速度不能超过真 空中的光速。
6.4.2 相对论时空观的再讨论
(1)同时的相对性
S S V
a l •
O (x1,t1) O
( x1 , t1 )
M l b
•
•
x (x2,t2 )
x ( x2 , t2 )
在S'系看
t2 t1
x2x1 2l
在S系看,由洛仑兹变换
t1
t1 Vx1 1V 2
c2 c2
由洛仑兹变换
xa
xa Vta
1 2
b(xb ,tb ) x
第六章 狭义相对论
![第六章 狭义相对论](https://img.taocdn.com/s3/m/fb3df5bbfd0a79563c1e72fb.png)
12
R
例8(
V
)解答
o
B A
(转台+二人)对转轴 角动量守恒
2V
台
1 2 L台 mR 0 2
1 1 LA rA ( m )VA地 mR 20 2 2
1 1 1 2 LB rB ( m )VB 地 m( R ) 0 2 2 2
13
走动前
成的摩擦阻力矩)
4
解:
(1)子弹击中圆盘后,圆盘 所获得的角速度
R
v0
m
子弹和圆盘在碰撞前后角动量守恒
1 mv0 R ( MR 2 mR 2 ) 2
mv0 1 ( 2 M m)R
5
(2)经过多少时间后,圆盘停止转动 解一:据定轴转动定律 根
d M J J dt
27
1887 年 , 体 现 上 面 思 想 的 迈 克 耳 孙 — 莫 雷 (Michelson-Morlay)实验却得到了“零”结 果! 地球就是“绝对静止”的参考系? 用各种企图保持绝对参考系的假说来解 释该实验结果,均遭到失败。典型的有: 发射说:光速要叠加上光源的速度。 双星观测否定了发 c + u1 双 射说,即实际上观测 地球 星 u2 不到双星位置的扭曲, 不能同时 c u2 m2 到达地球 28 而是符合力学规律。 应观察到双星位置的扭曲
7
例7( )一匀质细棒长为2L,质量 为m。以与棒长方向相垂直 的速度 V0在光滑水平面内平动时与前方一 固定的光滑支点O发生完全非弹性 A 碰撞。碰撞点位于棒 L 2 o 中心的一方L/2处, L 2 如图所示。 L 求棒在碰撞后的瞬时绕 O点转动时的角速度 B V0
8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
Bx = 0 By = −γυ p ( 2 z ′2 − x′2 − y′2 ) 4πε 0 c x′ + y ′ + z ′ 3γυ pz ′x′
2 2 2 2 5 2
,
Bz =
4πε 0 c x′ + y ′ + z ′
在 ∑ 系中看 ∑ ′ 中原点 O′ 走过的距离:
1 ′ = x(1 + ) L0 r ′ L0 t= = t′ t
⋅ v 9.火箭由静止状态加速到 υ ′ = 0.9999c ,设瞬时惯性系得加速度为 υ = 20m ⋅ s 2 ,问按照
静止系的时钟和火箭内的时钟加速火箭各需要多少时间? 解:设 ∑ ′ 系是相对静止系以 υ ′ = 0.9999c 运动的坐标系
l =
(1 −
)
2
=
l 1−
2uυ u 2υ 2 u 2 2uυ υ 2 υ2 u2 + 4 − 2 + 2 − 2 l (1 − 2 )(1 − 2 ) 2 c c c c c = c c 2 2 u u uυ u2 (1 − 2 ) 1 − 2 (1 − 2 ) 1 − 2 c c c c
=
l 1− 1−
thy =
thy ′ + thy ′′ = th (y ′ + y ′′) 1 + thy ′thy ′′
y = y ′ + y ′′
r r r r 12.电偶极子 p 0 以速度 υ 做匀速运动,求它产生的电磁势和场 ϕ , A , E , B 。
解:在电偶极子静止坐标系 ∑ ′ 系中,设其沿 x 轴运动,
(2)对应速度合成公式
β=
可快速表为
β ′ + β ′′ 1 + β ′β ′′
y = y ′ + y ′′
解: (1)由 tany= β , 可得
γ =
1 1− β 2
= chy ,
iβγ = itanhychy = ishy
(2)由
β=
β ′ + β ′Leabharlann , 1 + β ′β ′′
-9-
可得
均为 l 0 , 它们以相同速度 υ 相对于某一参考系运动, 但运动方 向相反,且平行于尺子,求站在一根尺子上测量另一根尺的 长度。 解:
-1-
Σ系 ∆x = l , ∆t = 0,
Σ ′系 ∆x′ = l0 1− − ,
① ②
υ2
c2 c l
③
υ
∆t′ =
1−
υ2
c2
④
Σ′′系 ∆x′′ = ∆x′ − υ∆x′ 1−
进方向一致,铁塔到建筑物的地面距离已知都是 l0 。 解:
Σ系 ∆t = 0 ∆x = 2l 0
Σ′系
υ
2 ∆t ′ = c
∆x
=
2l0υ c2 1 −
1−
υ2
c2
υ2
c2
5.光源 S 与接收器 R 相对静止,距离为 l0 , S − R 装置浸在均匀无限的液体介质(静 5. 止折射率 n )中,诚对下列三种情况计算光源发出讯号到接收器到讯号所经历时间, (1).液体介质相对于 S − R 装置静止。 (2).液体沿着 S − R 连线方向以速度 υ 流动。 (3). 液体垂直于 S − R 连线方向以速度 υ 流动。 解: (1)由于介质的存在,所以光速为 c u′ x = n 所以
c
再联立
c
2 − (1 + 2 )cosθ1 cosθ 2 = c 2 c υ υ 1 + 2 − 2 cosθ1 c c
υ
υ
sin 2θ 2 = 1 − [
2β − (1 + β 2 )cosθ 2 ] 1 + β 2 − 2β cosθ
1− β 2 ⇒ sinθ 2 = sinθ1 1 + β 2 − 2 β cosθ1
υ2
c2
⑤
将 ③ ④ 代入 ⑤ 得
l (1 + 1−
υ2
∆x′′ =
υ
) c2 = l 0 2
c2
∴l = l
1− 1+
υ2 υ2
c2 c2 .
0
3.静止长度为 l0 的车厢,以速度 υ 相对于地面 S 运行,车厢的后壁以速度 u0 向前推
出一个小球,求地面观察者看到小球从后壁到前壁的运动时间。 解:
若垂直入射
θ1 = 0 cosθ1 = 1 cosθ 2 = 1 c −υ ω2 = ω1 c +υ
11.在洛仑兹变换中,若定义快速度 y 为 tanhy= β , (1)证明洛仑兹变换矩阵可写为:
aµν
chy 0 = 0 −ichy
0 0 ichy 1 0 0 0 1 0 0 0 chy
′) ω = γ (ω ′ + υ k x
r r ′ ,入射角 θ 0′ , 在 ∑ ′ 系中,入射波矢 k1′ ,反射波矢 k2
由静止系中反射定律:
′ = π − θ 0′ , ω2 ′ = ω1′ 反射角 θ 2
-7-
′ = cosθ 0′ ∴ cosθ 2
在两系中,
k1x = k 2x =
ω1 ω2
ω 0 ,与水平成 θ 0 夹角的平面光波自右向左入射到镜面
上,求反射光波的频率 ω 及反射角 θ 。垂直入射情况如 何? 解:坐标系建立如图: 因为
r i kµ = (k , ω ) c
且
′ = aµν kν kµ
所以
′+ k x = γ (k x ′ ky = ky ′ kz = kz
υ
c2
ω)
c
cosθ1
cosθ 2 c ω′ k1′x = 1 cosθ1′ c ′ ω2 ′x = ′ k2 cosθ 2 c 将其代入 可得 cos θ1′ = cosθ1 −
υ
c
1 − cosθ1 c cosθ 2 −
υ
υ
c ,
′= cosθ 2
1 − cosθ 2 c
υ
υ ω1′ = ω1γ (1 − cosθ1 ) υ ω2′ = ω2γ (1 − cosθ 2 )
在 ε ′ 系有:
r r r r r r r ∂B ∂B ∂x′ ∂E ′ ∂E ′ ∂x′ ⋅ , ∇ × B ′ = µ 0 J ′ + µ 0ε 0 + ∇′ × E = − + ∂t ′ ∂x′ ∂t ′ ∂t ′ ∂x′ ∂t ′ r ρ′ r ∇ ⋅ E ′ = , ∇ ⋅ B′ = 0 ε0 麦克斯韦方程在伽利略变换下不是协变的。 2.设有两根互相平行的尺, 在各自静止的参考系中的长度
-5-
x′ = γ ( x − υ t ) y′ = y z′ = z t ′ = γ (t − υ x) c2
逆变换为
①
t ′ = γ (t +
①②可得
υ
c2
x)
②
t = t ′ , x = − x′
由②得:
x′ = −
2 c2 t 1 − 1 − υ 2 c υ
(∆t )1 =
(2)由速度变换公式
nl 0 c
ux =
得:
u′ x +υ u ′υ 1 + x2 c
c +υ n ux = υ 1+ nc
( ∆t ) 2 =
∴ =
l0 ux (1 +
υ
nc
)l0
c +υ n
-3-
(3)光的传播速度为 因为
c n
u′ y = −υ , u t′ = 0,
因此
u x′ =
r r p⋅R pz ′ ϕ′ = = , 3 4πε 0 R 4πε 0 R′
r E ′ = −∇′ϕ ′ =
r r r r 1 3( p ⋅ R) R′ p − 3 4πε 0 R5 R
r r B′ = 0 , A′ = 0
在 ∑ 系中, t 时刻电磁场用(5.23)
Ex =
c −υ 2 n2
6.在坐标系 Σ 中,有两个物体都以速度 u 沿 x 轴运动,在 Σ 系看来,它们一直保持 r 距离 l 不变,今有一观察者以速度 υ 沿 x 轴运动,他看到这两个物体的距离是多少? 解:
Σ
Σ′
Σ ′′
l
l′ ∆t ′ = 0
l ′′
从 Σ 到 Σ ′′ 有:
l ′′ =
l u2 1− 2 c
tgθ 1−
∆y ′ ∆x ′
⑥
′ ∴ tgθ ′ = ∆y = ∆x′
υ2
c2
υ2
c2
8.两个惯性系 ∑ 和 ∑ ′ 中 各放置若干时钟,统一惯性系中的诸时钟同步, ∑ ′ 相对于
′ = 0 ,问处于 ∑ 系中某点 ∑ 以速度 υ 沿 x 轴方向运动,设两点系统圆点相遇时, t0 = t0
(x,y,z)处的时钟与 ∑ ′ 系中何处的时钟相遇时,指示的时刻相同?读数是多少? 解:两时钟相遇时,
3px′z ′
2 2 2 4πε 0 x′ + y ′ + z ′ 5 2
,
Ey =
3γ pz ′x′ 4πε 0 x′ + y ′ + z ′
2 2 2 5 2
,
Ez =
γ p ( 2 z ′2 − x ′ 2 − y ′ 2 )
2 2 2 4 πε 0 x′ + y ′ + z ′ 5 2
υ2
c2
u2 c2