第四章 时间序列分析预测法

合集下载

spss教程第四章---时间序列分析

spss教程第四章---时间序列分析

第四章时间序列分析由于反映社会经济现象的大多数数据是按照时间顺序记录的,所以时间序列分析是研究社会经济现象的指标随时间变化的统计规律性的统计方法。

.为了研究事物在不同时间的发展状况,就要分析其随时间的推移的发展趋势,预测事物在未来时间的数量变化。

因此学习时间序列分析方法是非常必要的。

本章主要内容:1. 时间序列的线图,自相关图和偏自关系图;2. SPSS 软件的时间序列的分析方法−季节变动分析。

§4.1 实验准备工作§4.1.1 根据时间数据定义时间序列对于一组示定义时间的时间序列数据,可以通过数据窗口的Date菜单操作,得到相应时间的时间序列。

定义时间序列的具体操作方法是:将数据按时间顺序排列,然后单击Date →Define Dates打开Define Dates对话框,如图4.1所示。

从左框中选择合适的时间表示方法,并且在右边时间框内定义起始点后点击OK,可以在数据库中增加时间数列。

图4.1 产生时间序列对话框§4.1.2 绘制时间序列线图和自相关图一、线图线图用来反映时间序列随时间的推移的变化趋势和变化规律。

下面通过例题说明线图的制作。

例题4.1:表4.1中显示的是某地1979至1982年度的汗衫背心的零售量数据。

试根据这些的数据对汗衫背心零售量进行季节分析。

(参考文献[2])表4.1 某地背心汗衫零售量一览表单位:万件解:根据表4.1的数据,建立数据文件SY-11(零售量),并对数据定义相应的时间值,使数据成为时间序列。

为了分析时间序列,需要先绘制线图直观地反映时间序列的变化趋势和变化规律。

具体操作如下:1. 在数据编辑窗口单击Graphs→Line,打开Line Charts对话框如图4.2.。

从中选择Simple单线图,从Date in Chart Are 栏中选择Values of individual cases,即输出的线图中横坐标显示变量中按照时间顺序排列的个体序列号,纵坐标显示时间序列的变量数据。

时间序列平滑预测法1

时间序列平滑预测法1
j t j =0 t −1 (1) 0
=0
S t(1 ) = α ∑ (1 − α ) j y t − j
j=0
n
ˆ y t +1 = S ˆ ˆ y t +1 = α y t + (1 − α ) y t
(1 ) t
有关α的讨论
1 2 3 α值越大修匀的作用越大,反之越小 如果时间序列波动不大,比较平稳,则 α应取小一点(0.1~0.3) 如果时间序列具有明显快速的变动趋势,则α值应取得大一点 (0.6~0.8) 4 实践中.可多取几个α值进行试算,看一下那个误差比较小,就用 哪个α值
二次指数平滑法
1) S t(1 ) = α y t + (1 − α ) S t(−1
S
(2) t
= αS
(1 ) t
+ (1 − α ) S
(2) t −1
ˆ y t + T = a t + btT a t = 2 S t( 1 ) − S t( 2 ) bt =
α
1−α
( S t( 1 ) − S t( 2 ) )
yt − M
(1 ) t
( n − 1) = bt 2
yt − M
(1 ) t
( n − 1) = bt 2 ( n − 1) = bt 2
(1) t
y t −1 − M
(1 ) t −1
yt − yt −1 = M
M t( 2 )
−M
(1) t −1
= bt
1) 1 M t(1) + M t(−1 + ... + M t(−)n +1 = n
α
2
[(6 − 5α )S

时间序列分析——基于R(王燕)第四章

时间序列分析——基于R(王燕)第四章

第四章:非平稳序列的确定性分析题目一:()()()()()()()12312123121231ˆ14111ˆˆ2144451.1616T T T T T T T T T T T T T T T T T T T T T xx x x x xx x x x x x x x x x x x x x x -------------=+++⎡⎤=+++=++++++⎢⎥⎣⎦=+++ 题目二:因为采用指数平滑法,所以1,t t x x +满足式子()11t t t x x x αα-=+-,下面式子()()11111t t t t t tx x x x x x αααα-++=+-⎧⎪⎨=+-⎪⎩ 成立,由上式可以推导出()()11111t t t t x x x x αααα++-=+-+-⎡⎤⎣⎦,代入数据得:2=5α. 题目三:()()()21221922212020192001ˆ1210101113=11.251ˆ 1010111311.2=11.04.5ˆˆˆ10.40.6.i i i xxxx x x x x αα-==++++=++++===+-=⋅∑(1)(2)根据程序计算可得:22ˆ11.79277.x= ()222019181716161ˆ2525xx x x x x =++++(3)可以推导出16,0.425a b ==,则425b a -=-. 题目四:因为,1,2,3,t x t t ==,根据指数平滑的关系式,我们可以得到以下公式:()()()()()()()()()()()()()()()221221 11121111 1111311. 2t t t t t tt x t t t x t t αααααααααααααααααααα----=+-------=-+---+--+++2+, ++2+用(1)式减去(2)式得:()()()()()221=11111.t t tt x t αααααααααααα-------------所以我们可以得到下面的等式:()()()()()()122111=11111=.t t t tt x t t αααααααα+-----------------()111lim lim 1.ttt ttxt tααα+→∞→∞----==题目五:1. 运行程序:最下方。

时间序列分析预测法

时间序列分析预测法
34.52 21.88 33.50 0.43 5.87
19.24
9.3.3 三次指数平滑
二次指数平滑既解决了对有明显呈趋势变动的时 间序列的预测,又解决了一次指数平滑只能预测 一期的不足。但如果时间序列呈非线性趋势时, 就需要采用更高次的指数平滑方法。
三次指数平滑(Triple Exponential Smoothing)
2003 444.84 430.55 416.24 444.86
2004 496.23 483.09 469.72 496.46
2006
平均绝 对误
b
0 22.08 36.08 57.52 57.24 53.48
Y
243.29 298.51 355.59 455.27 502.10 603.42
绝对 误差
a22S2 1S2 22*6 56.5 26.5 7 b21 aa(S2 1S2 2)1 0.0 5.5*(6 56.5 2)2.5
通过趋势方程对3月份进行预测:
Y 2 1 a 2 b 2 ( 1 ) 6 . 5 2 . 5 7 * 1 7 0
案例
预测某省农民家庭人均食品支出额,假如a取0.8。
按照时间的顺序把随机事件变化发展的过程记录 下来就构成了一个时间序列。对时间序列进行观 察、研究,找寻它变化发展的规律,预测它将来 的走势就是时间序列分析。
时间序列预测方法,是把统计资料按时间发生的 先后进行排序得出的一连串数据,利用该数据序 列外推到预测对象未来的发展趋势。一般可分为 确定性时间序列预测法和随机时间序列预测法。
a取0.4和0.8时的均方误差。
年份
1991 1992 1993 1994 1995 1996 1997 合计 均方误差

时间序列分析及预测方法

时间序列分析及预测方法

时间序列分析及预测方法时间序列分析是一种用来研究时间序列数据的统计方法,它可以帮助我们了解数据的趋势、周期性和随机性。

在各个领域中,时间序列分析被广泛应用于经济学、金融学、气象学等。

本文将介绍时间序列分析的基本概念和常用的预测方法。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列观测值的集合。

它可以是连续的,也可以是离散的。

时间序列分析的目标是通过对历史数据的分析,揭示出数据中的规律性,并用这些规律性来预测未来的发展趋势。

时间序列分析的核心是对数据的分解。

分解可以将时间序列数据分为趋势、周期性和随机性三个部分。

趋势表示数据的长期变化趋势,周期性表示数据的周期性波动,随机性则是数据中的随机噪声。

二、时间序列分析的方法1. 平滑法平滑法是最简单的时间序列分析方法之一。

它通过计算一系列数据的移动平均值或加权平均值,来消除数据中的随机噪声,揭示出数据的趋势和周期性。

常用的平滑法有简单平滑法、指数平滑法和加权移动平均法。

2. 季节性分解法季节性分解法是一种用来分解时间序列数据中季节性变化的方法。

它通过计算同一季节的数据的平均值,来揭示出数据的季节性变化。

季节性分解法可以帮助我们了解数据的季节性规律,并用这些规律来预测未来的季节性变化。

3. 自回归移动平均模型(ARMA)ARMA模型是一种常用的时间序列分析方法,它结合了自回归模型(AR)和移动平均模型(MA)。

AR模型用过去的数据来预测未来的数据,MA模型则用过去的误差来预测未来的数据。

ARMA模型可以帮助我们揭示数据的趋势和周期性,并用这些规律来预测未来的发展趋势。

4. 自回归积分移动平均模型(ARIMA)ARIMA模型是在ARMA模型的基础上引入了积分项,用来处理非平稳时间序列数据。

非平稳时间序列数据指的是数据中存在趋势或季节性变化的情况。

ARIMA模型可以帮助我们将非平稳时间序列数据转化为平稳时间序列数据,从而揭示出数据的规律性,并用这些规律性来预测未来的发展趋势。

第四章 混沌时间序列分析及相空间重构

第四章 混沌时间序列分析及相空间重构

Lyapunov Exponents
f
• Quantifies separation in time between trajectories, assuming rate of growth (or decay) is exponential in time, as: n
1 i lim ln( eig J(p)) n n p 0
估计吸引子维数的算法,需要大量的数据点作为输入,当这些点的 输入被选择为最大化的包含吸引子信息情况下,输入数据点的数量可以减 少。(由Holzfuss和Mayer—kress 1986年提出) 重构相空间所需要解决的关键问题,就是确定重构维数m。 在重构相空间维数未知的情况下,可用以下方法获得: 令 nr 为重构空间的维数。首先把nr (或m)设置为1,计算重构吸引子 的维数Dcap,然后增加 nr (或m)的大小,并重复计算重构吸引子的维数 Dcap,直到Dcap不再改变为止(如曹书p103),最后的Dcap是正确的相 关维数,产生正确的Dcap的最小 nr (m) 即重构空间的最小维数m.
Time delay embedding
Differs from traditional experimental measurements
Provides detailed information about degrees of freedom beyond the scalar measured Rests on probabilistic assumptions - though not guaranteed to be valid for any particular system Reconstructed dynamics are seen through an unknown “smooth transformation” Therefore allows precise questions only about invariants under “smooth transformations” It can still be used for forecasting a time series and “characterizing essential features of the dynamics that produced it”

第四章 平稳时间序列模型预测 《应用时间序列分析》PPT课件

第四章 平稳时间序列模型预测 《应用时间序列分析》PPT课件

❖容易知道,yˆt1 关于t 的条件期望
y t 1|t
E
yt1 | t
是 yt1关于 t 的最小均方误差预测。
❖ 这种预测具有许多优良性质,但其计算比较复杂。
在许多的实际应用问题,我们更感兴趣于在的线
性函数类中寻求的预测。
5
❖例如t yt , yt1,
yˆt1 α'Yt
, ytn1 Yt' 时,可选取:
……………..
17
yˆtq 1yˆtq1 2 yˆtq2 p xtqp qt
………………..
yˆth 1yˆth1 2 yˆth2 p yˆth p ,
hq
❖ 分析上面的公式可知,ARMA(p,q)模型的最佳计
算具有以下特点:
(1)当 h q 时,预测计算公式中包含了 t ,t1,
…, t1q 这 q 个值,与MA模型的预测计算一
28
Sample 1960Q1 1990Q4
Observations 124 24
Mean
62.77419
20
Median
56.60000
16
Maximum
116.2000
Minimum
30.50000
12
Std. Dev.
30.24356
Skewness
0.307981
8
Kurtosis
1.416508
❖ 设随机序列适合一个ARMA模型,即
yt 1yt1 p ytp at 1t1 qtq ❖在已知 t 的条件下,很自然会考虑到 yt , yt1,
的线性函数 yˆth C0 yt C1 yt1 ❖ 这是一种比较容易处理而在使用中最有广泛意义

时间序列平滑预测法PPT教学课件

时间序列平滑预测法PPT教学课件
第四章 时间序列平滑预测法
§1.时间序列概述 时间序列——指将预测对象的历史数据按照时 间顺序排列的序列,就称为时间序列。
时间序列的因素分解:
Yt f (Tt , St ,Ct , It )
不规则变动 周期变动 季节变动 长期趋势
时间序列的组合形式
加法形式: Yt Tt St Ct It 乘法形式: Yt Tt • St • Ct • It 混合形式: Yt Tt • St Ct • It
Yt St Tt • Ct • It
时间序列平滑预测法
一、一次移动平均法
1、移动平均值
设时间序列为 x1, x2,, xn
M t
1 N
( xt
xt1 xtN 1)
1 N
t
xi
it N 1
2、逆推公式
Mt
xt N
1 N
( xt 1
xt 2
xtN )
1 N
xt N
( xt
xtN N
)
M t1
Ftm St bt m
bt (St St1) (1 )bt1
六、布朗二次多项式指数平滑法Leabharlann Ftm at btm ctm2
at 3St 3St St
bt
2(1 )2
(6
5 )St
(10
8 )St
(4
3 )St
ct
2 (1 )2
(St 2St
St
)
差分——指数平滑法
较大

3.萃取 (1)分类 萃取包括液—液萃取和固—液萃取. (2)原理 ①液—液萃取原理:利用有机物在两种互不相溶的溶剂 中的 溶解性 的不同,将有机物从一种溶剂转移到另一 种溶剂中的过程.常用玻璃仪器是分液漏斗 . ②固—液萃取原理:用有机溶剂 从固体物质中溶解 出有机物的过程.

时间序列分析与预测模型

时间序列分析与预测模型

时间序列分析与预测模型时间序列分析是指对按时间顺序排列的观测数据进行分析的一种方法。

该方法可以帮助我们理解和解释数据的时间相关性,并且可以利用这种相关性进行预测。

时间序列分析在很多领域都有广泛的应用,如经济学、金融学、天气预测等。

1.数据收集:收集包含时间顺序的数据。

这些数据可以是连续的,如每天、每月或每年的数据,也可以是离散的,如每小时或每分钟的数据。

2.数据可视化:绘制时间序列图,将收集到的数据可视化。

通过观察时间序列图,我们可以发现数据的趋势、周期性和季节性。

3.数据平稳性检验:对时间序列数据进行平稳性检验。

平稳性是指数据的均值、方差和自协方差不随时间变化。

平稳性是许多时间序列模型的前提条件。

4.模型拟合:根据时间序列数据的特点选择合适的模型。

常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归集成移动平均模型(ARIMA)和季节性自回归集成移动平均模型(SARIMA)等。

5.模型诊断:对拟合的模型进行诊断检验。

诊断检验可以判断模型是否良好地拟合了数据,并确定是否需要进行模型调整。

6.模型预测:利用已经拟合好的模型进行未来值的预测。

预测可以是单点预测,也可以是预测一段时间内的趋势。

时间序列分析的预测模型可以帮助我们预测未来的趋势,并且可以在实际决策中指导我们采取相应的行动。

例如,我们可以利用时间序列分析预测未来销售量,从而帮助我们制定合适的生产计划和库存策略。

在金融领域,时间序列分析可以帮助我们预测股价的涨跌,从而指导我们的投资决策。

总之,时间序列分析是一种重要的数据分析方法,它可以帮助我们理解和预测按时间顺序排列的数据。

在实际应用中,我们可以根据时间序列数据的特点选择合适的模型,并进行模型拟合和预测。

通过时间序列分析,我们可以获得有关未来趋势的信息,从而在实际决策中作出更准确的预测。

第四章 时间序列趋势外推预测

第四章  时间序列趋势外推预测

统计学专业课
统计预测决策
第一节 移动平均预测法
4、加权移动平均法的预测公式: 加权移动平均法的预测公式: 1 ˆ = nXt + (n −1) Xt −1 + (n − 2) Xt −2 +⋯ × Xt −n+1 Xt +1 n + (n −1) + (n − 2) +⋯ 1
4- 5
统计学专业课
4- 3
ˆ = Xt + Xt −1 + Xt −2 +⋯Xt −n+1 Xt +1 n
统计学专业课
统计预测决策
第一节 移动平均预测法
例如:某商场2003年1-6各月的实际销售额如下, 2003年 例如:某商场2003 各月的实际销售额如下, 预测7月份的销售额(简单平均法) 单位: 预测7月份的销售额(简单平均法) 单位:万元 月份 1 2 3 4 5 6 4-7 4 实际销售额 预测值(n=3) 预测值(n=5) 预测值(n=3) 预测值(n=5) 25.6 — — 22.8 — — 24.9 — — 24.7 24.4 — 25 24.1 — 23.9 24.9 24.6 24.5 24.3
第一节 移动平均预测法
某机械厂用二次移动平均预测法预测销售量
n=3 年份 1995 1996 1997 1998 1999 2000 2001- 12 4 销售量 1527 1596 1668 1740 1815 1886 M t(1) — — 1597 1668 1741 1814 M t(2) — — — — 1669 1741 at — — — — 1813 1887 bt — — — — 72 73 单位:台 单位: 预测值 — — — — — 1885 1960

机器学习技术中的时间序列分析与预测方法

机器学习技术中的时间序列分析与预测方法

机器学习技术中的时间序列分析与预测方法时间序列分析与预测是机器学习技术中的重要分支之一。

它主要关注通过对过去的数据进行分析,识别和理解数据中的时间依赖关系,并据此预测未来的趋势和模式。

在各个领域中,时间序列分析和预测都具有广泛的应用,例如金融市场预测、气象预报、销售预测等等。

在机器学习中,我们通常使用时间序列数据作为模型训练和预测的输入。

时间序列数据是按时间顺序记录的数据集合,其中每个数据点都与其对应的时间相关联。

时间序列数据经常表现出一定的趋势、季节性和周期性等模式。

因此,在进行时间序列分析和预测时,我们需要应用一些特定的技术和方法,如下所述:首先,我们需要对时间序列数据进行可视化和探索性分析。

可视化时间序列数据可以帮助我们了解数据的整体趋势、季节性和异常值等特征。

常用的可视化方法包括折线图、散点图和自相关图等。

通过这些可视化方法,我们可以初步了解时间序列数据的特征,为后续的分析和建模提供基础。

其次,我们可以利用统计方法进行时间序列分析。

统计方法可以帮助我们识别时间序列数据中的趋势、季节性和周期性等模式。

常用的统计方法包括移动平均法、指数平滑法和自回归移动平均法等。

这些方法可以用来拟合时间序列数据,提取其中的模式以及对未来进行预测。

除了统计方法,我们还可以应用机器学习算法进行时间序列分析和预测。

机器学习算法可以根据数据的特征自动学习并构建模型,进而对未来进行预测。

常用的机器学习算法包括支持向量机、随机森林和神经网络等。

这些算法可以根据时间序列数据的特点,自动进行模式识别,并对未来进行预测。

此外,我们还可以利用深度学习算法进行时间序列分析和预测。

深度学习算法可以通过多层神经网络来提取数据中的复杂特征,并进行更准确的预测。

常用的深度学习算法包括循环神经网络和长短期记忆网络等。

这些算法可以捕捉时间序列数据中的长期依赖关系,提高模型的预测准确性。

此外,在进行时间序列分析和预测时,我们还需要考虑数据的处理和模型的评估。

时间序列分析预测法

时间序列分析预测法

时间序列分析预测法时间序列分析是一种用于预测未来值的统计方法,它基于历史数据的模式和趋势进行推断。

时间序列分析预测法常用于经济学、金融学、市场营销等领域,在这些领域中,准确预测未来趋势对决策制定非常重要。

时间序列分析预测法的核心思想是根据已有的时间序列数据,预测未来一段时间内的值。

该方法假设未来的模式和趋势与过去是一致的,因此通过分析过去的数据变化,可以推测未来的变化。

时间序列分析预测法主要包括以下几个步骤:首先,需要收集并整理历史数据,确保数据的准确性和完整性。

历史数据通常是按照时间顺序排列的,如每月销售额、每周股票收盘价等。

收集数据的时间跨度越长,分析的结果越准确。

其次,根据数据的特征进行时间序列分析。

时间序列数据通常包含趋势、季节性和周期性等特征。

趋势描述了数据的长期变化趋势,季节性和周期性描述了数据的短期变化。

通过统计方法和图表分析,可以揭示数据中的这些特征。

然后,选择合适的时间序列模型进行预测。

常用的时间序列模型包括移动平均法、指数平滑法和自回归移动平均模型等。

模型的选择应根据数据的特征和分析结果来确定,不同模型适用于不同类型的数据。

最后,使用已选定的时间序列模型进行预测。

根据历史数据和模型的参数,可以得出未来一段时间内的预测值。

预测的精度和可靠性取决于模型的选择和数据的准确性。

时间序列分析预测法的优点是简单直观、易于理解和实施。

它可以帮助决策者更好地了解数据的变化规律,做出合理的决策。

然而,时间序列分析也有一些局限性,比如无法处理非线性和非平稳的数据,对异常值和缺失值敏感等。

总之,时间序列分析是一种常用的预测方法,能够帮助我们理解和预测未来的数据变化。

在实际应用中,我们需要根据数据的特征选择合适的模型,并不断验证和修正预测结果,以提高预测的准确性和可靠性。

时间序列分析预测法是一种基于历史数据的统计方法,通过分析过去的数据变化模式和趋势,来预测未来一段时间内的数值。

它在经济学、金融学、市场营销等领域发挥着重要作用,为决策者提供了有价值的信息和参考。

时间序列预测法

时间序列预测法

第3章时间序列预测法§3.1 时间序列分析的基本问题3.1.1时间序列时间序列是指同一变量按发生时间的先后排列起来的一组观察值或记录值。

例如:1953~2001年的国民收入;1958~2001年全国汽车的产量;某物资公司1996~2001年逐月的机电产品月销售量;某省1962~2001年工业燃料消费量等等。

所用的时间单位可以根据情况取年、季、月等。

3.1.2时间序列预测经济预测中的预测目标及其影响因素的统计资料,大多是时间序列。

任何预测目标都有各自的时间演变过程,研究它如何由过去演变到现在的演变规律,并分析、研究它今后的变化规律,即可对它们进行预测,时间序列预测技术就是利用预测目标本身的时间序列,分析、研究预测目标未来的变化规律而进行预测的。

时间序列预测法,只要有预测目标的历史统计数据即可进行预测,统计资料易于收集,计算又比较简单,不仅可用来预测目标,还可用于预测回归预测法的影响因素。

因此,广泛地用于各方面的预测。

而当找不到预测目标的主要影响因素或者虽然知道其主要影响因素,但找不到有关的统计数据时,时间序列预测法的优越性更为显著。

时间序列预测技术,可分为确定型和随机型两大类。

本章只介绍确定型时间序列预测,第四章将介绍随机型时间序列预测。

3.1.3四类影响因素世间各种各样的事物,在各时间都可能受很多因素的影响,因此,所形成的时间序列,实际上是各个影响因素同时作用的综合结果。

我们想从给定的时间序列,分析出作用于所观察事物的每一个影响因素,是无法办到的。

因此,我们在分析各种时间序列时,通常把各种可能的影响因素,按其作用的效果分为四大类:1)趋势变动[记为T(t)]:指预测目标在长时间内的变动趋势——持续上升或持续下降。

2)季节变动[记为S(t)]:指每年受季节影响重复出现的周期性变动,一般是以十二个月或四个季度为一个周期。

3)循环变动[记为C(t)]:指以数年为周期(各周期的长短可能不一致)的一种周期性变动,例如经济景气指数,银行储蓄。

第四章 时间序列

第四章 时间序列

a a a a a1 a2 f1 2 3 f 2 n 1 n f n 1 2 2 全年平均人数 a 2 f
426 430 430 430 430 435 435 438 438 410 410 4ห้องสมุดไป่ตู้0 420 424 2 1 3 1 2 2 1 2 2 2 2 2 2 2 427(人) 2 1 3 1 2 2 1
计算该企业第一季度平均每月的计划完成程度。 解:该企业第一季度平均每月的计划完成程度
a (5100 6180 8640 ) / 3 6640 c 104.84% (5000 6000 8000 ) / 3 6333 .3 b
例:某企业某年第二季度职工人数资料如下表:
日 期
全部职工人数(人) b 非生产人员占全部人数的% c 非生产人员(人) (a=bc)
(二)由相对数列计算序时平均数 基本
相对数列的 (c ) 序时平均数 公式:
分子数列的序时平均数 (a ) 分母数列的序时平均数 (b )
即:
a c b
例:某企业某年第一季度各月的有关统计资料如下表:
月份 计划产量(件) b a 实际产量(件) 计划完成程度(%)c 一月份 5000 5100 102 二月份 6000 6180 103 三月份 8000 8640 108
13.99 13.17
资料来源:《安徽统计年鉴2012》.
(三)平均数列
例:安徽省历年城镇非私营单位在岗职工平均工资 年份 职工平均工 资(元) 2006 17949 2007 2008 2009 2010 2011
22180 26363 29659
34341 40640
资料来源:《安徽统计年鉴2012》.

第四章 时间序列平滑预测法

第四章 时间序列平滑预测法

ˆ ( N 3) X t 1 ˆ ( N 5) X
t 1
Xt
423 358 434
445 527 429 426 502 480 384 427 446
419 448
月份
1
2
3
4
5
6
7
8
9
10
11
12
13
ˆ ( N 3) X t 1 ˆ ( N 5) X
t 1
Xt
423 358 434 445 527 429 426 502 480 384 427 446 405 412 469 467 461 452 469 455 430 419 437 439 452 466 473 444 444 448
1 (1) ˆ X t 1 ( N 3) M t (3) ( X t X t 1 X t 2 ) 3
1 (1) ˆ X t 1 ( N 5) M t (5) ( X t X t 1 X t 2 X t 3 X t 4 ) 5
月份 1 2 3 4 5 6 7 8 9 10 11 12 13
实际销售量 三期移动平均预测 五期移动平均预测

550 500 450 400 350 300 0 1 2 3 4 5 6 7
下个月的 预测销售 量——
419 or 448
8 9 10 11 12 13
月份

N 的选取
在实用上,一般用对过去数据预测的均方误差S 来作为选取N 的准则。
N=3 N=5
不能归因于其他三种成分 的时间序列的变化
时间坐标若不是 季度,就是年
往往,一个时间序列,是由四种因素(T、 S、C、I)综合作用的结果。 这四种因素对时间序列变化的影响有两种基 本假设→
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三.时间序列分解法
(一)乘法模型(季节指数法)Yt Tt St Ct It
分解基本思路: Step1:采用移动平均法从Y中剔除S和I,得到TC; Step2:从Y中剔除TC,得到SI=Y/TC; Step3:对SI进行按月(季)平均,剔除I,得到S; Step4:对Y建立长期趋势方程,求出T; Step5:从Step1的TC中剔除Step4求得的T,得到C=TC/T; Step6:根据长期趋势方程求出的T,判断循环指数C; Step7: 预测模型为Yˆt Tt St Ct ,进行预测。
175 172 180 192 201 210 220 227 235 232 240
——
三项简单移动平均预测
预测值
相对误差 %
——
——
——
——
—— 175.67
—— 8.51
181.33
9.79
191
9.05
201
8.64
210.33
7.34
219
6.81
227.33
2.01
231.33
3.61
235.67
(3)4
二.时间序列的分解模型 (一)加法模型
(二)乘法模型 Yt Tt St Ct It Yt Tt St Ct It
(三)混合模型
Yt Tt St Ct It Yt Tt St It Yt Tt Ct St It
(3)5
第四章 时间序列分析预测法
(3)1
第四章 目录
4.1 时间序列分解法 4.2 移动平均法 4.3 指数平滑法 4.4 自适应过滤预测法 4.5 三次指数平滑法预测案例
(3)2
• 时间序列:由同一现 象在不同时间上的相 继观察值排列而成的 序列,也称时间数列、 动态数列。
• 例如:中国历年人均国内
• 差 S ,进行修正,修正的方法是,各季度平均季节变
差减去其平均数,得到各季节的季节变差S; • Step3:从SI中提出S,I=SI-S,随机变动无预测价值; • Step4: 预测模型为 Yˆt Tt St,进行预测。
(3)9
4.2 移动平均法
• 移动平均法:通过对时间序列按一定的 项数(间隔长度)逐期移动平均,从而 修匀时间序列的周期变动和不规则变动, 显示出现象的发展趋势,然后根据趋势 变动进行外推预测的一种方法。
新观察值包含更多信息,应具有更大权重。 限制三,预测滞后。移动平均值趋势都相应地滞后于 实际值,这必将给预测带来偏差。所以,简单移动平均 法只适用于时间序列变化比较平稳的近期预测。
(3)17
• 当数据的随机因素较大(数据变化趋势 剧大)时,宜选用较大的k,这样有利于 较大限度地平滑由随机性所带来的严重 偏差;反之,当数据的随机因素较小 (数据变化趋势平稳)时,宜选用较小 的k,这有利于跟踪数据的变化,并且预 测值滞后的期数也少。
生产总值表
年份
1978 1979 1980 1981 …… 2007
人均GDP (美元/人)
381 419 463 492 …… 18268
(3)3
4.1时间序列分解法
• 一.时间序列变动的影响因素分解 • (一)长期趋势因素(T) • (二)季节变动因素(S) • (三)循环变动因素(C) • (四)不规则变动因素(I)
——
四项简单移动平均预测
预测值
相对误差 %
——
——
——
——
——
——
——
——
179.75
10.57
186.25
11.31
195.75
11.02
205.75
9.36
214.5
8.72
223
3.88
228.5
4.79
233.5
——
(3)14
250
240
230
220
210
200
190
180
170 95 96 97 98 99 00 01 02 03 04 05 06
(3)11
设时间序列为 Y1,Y2 ,Yt , 移动平均法可以表示为:
Yt 1

Mt

Yt
Yt1 k
Yt(k 1)
式中:Yt 为最新观察值; Yˆt1 为下一期预测值;k为移动平均项数。
Yˆt 1
Yˆt

Yt
Ytk k
由移动平均法计算公式可以看出,每一新预测值是对前一 移动平均预测值的修正,k越大平滑效果愈好。
SALE
பைடு நூலகம்P3
P4
(3)15
简单移动平均法的优点 : 计算量少; 具 有 修 匀 作 用 , 移 动 平 均 线 能 较 好 地反映时间序列的发展趋势及其变化。
(3)16
简单移动平均法的三个主要限制
限制一:计算移动平均必须具有k个过去观察值,当
需要预测大量的数值时,就必须存储大量数据;
限制二:k个过去观察值中每一个权数都相等,而早于 (t-k+1)期的观察值的权数等于0,而实际上往往是最
(3)12
例题4.3
某公司1995-2005年的产品销售量数据如 表4-6所示,分别采用三项和四项简单移 动平均法对该公司2006年的产品销售量 进行预测
(3)13
年份
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
销售量Yt
135
82
74
115
142
88
78
130
165
95
83
147
190
106
86
158
205
112
(3)8
三.时间序列分解法
• (一)加法模型(季节变差法) Yt Tt St It
• 分解基本思路: • Step1:以时间t为自变量,对Y建立长期趋势方程,求出
T; • Step2:SI=Y-T,求出不同年度同一季节的平均季节变
• 常用的移动平均法有一次移动平均法和 二次移动平均法。
(3)10
一次移动平均预测
• 一.简单移动平均法 • 基本思想:每次取一定数量时期的数据平均,按时间
顺序逐次推进,每推进一次,舍去前一个数据,增加 一个后续相邻的新数据,再进行平均,这些平均值可 以构成一个新序列。如果原来的时间序列没有明显的 不稳定变动的话,则可用最近时期的一次移动平均数 作为下一个时期的预测值。
(3)6
例题4-1
• 某公司2000-2005年产品销售额季度数据 如表4-1所示。用时间序列分解法的乘法 模型(季节指数法)预测2006年第1季度 的销售额。
(3)7
年份 2000 2001 2002 2003 2004 2005
第一季度 第二季度 第三季度 第四季度
67
104
136
76
72
110
相关文档
最新文档