能量爆炸及炸药爆炸的一般特征(一)

合集下载

第五章 炸药爆炸的基本理论

第五章  炸药爆炸的基本理论
在炸药爆炸反应的过程中,碳、氢元素氧化 所需的氧元素由炸药 本身提供。
氧平衡:炸药内含氧量与可燃元素充分氧化所 需氧量之间的关系。氧平衡用每克炸药中剩 余或不足氧量的克数或百分数表示。
氧系数:指炸药中含氧量与可燃元素充分氧化 所需氧量之比,用它也可以表示氧平衡的关 系。
氧平衡计算
对单体炸药:
假设炸药的通式为 CaHbNcOd ,则单质炸药的
例阿梅托的氧平衡计算
阿梅托
TNT 50% NH4NO3 50%
TNT的摩尔数为 500/227=2.2 1kg
NH4NO3的摩尔数为500/80=6.25
①1kg阿梅托组成为 2.2(C7H5N3O6)+ 6.25(C0H4N2O3) =C15.4H36N19.1O31.95
d (2a b)
炸药上述三种化学变化的形式,在一定条件 下,都是能够相互转化的:缓慢分解可发展为燃 烧、爆炸;反之,爆炸也可转化为燃烧、缓慢分 解。
研究炸药化学变化形式,就是为了控制外界 条件,使炸药的化学变化符合我们的需要。
氧平衡
炸药的爆炸是一个化学反应的过程,或者从 本质上说是一个氧化的过程,即炸药中氧对碳、 氢等元素氧化,使之成为较稳定的氧化物。
定义:单位质量炸药在定容条件下爆炸所释放的热
量称为爆热,其单位是kJ/kg或kJ/mol。 爆热的计算: 生成热:由元素生成1kg或lmol化合物所放出(或吸
收)的热量叫做该化合物的生成热。 盖斯定律:盖斯定律认为,化学反应的热效应同反
应进行的途径无关,当热力过程一定时,热效应只 取决于反应的初态和终态。
被完全氧化; • 硫被氧化为二氧化硫; • 氯首先与金属作用,再与氢生成HCl。
影响有毒气体生成量的因素:

煤矿爆破安全培训课件(ppt 89张)全

煤矿爆破安全培训课件(ppt 89张)全
*
第二节 爆破材料的安全管理
*
一、爆破材料的运输
(一)井筒内运输 1、电雷管和炸药必须分开运送; 2、必须事先通知绞车司机和井上、下把钩工。 3、运送硝化甘油类炸药或电雷管时,罐笼内只准放1层爆炸材料箱,不得滑动。运送其他类炸药时,爆炸材料箱堆放的高度不得超过罐笼高度的2/3。 4、在装有爆炸材料的罐笼或吊椅内,除爆破工或护送人员外,不得有其他人员。
*
(三)电雷管的选用
(1)井下爆破作业,必须使用煤矿许用电雷管。 (2)电雷管必须严格执行轻拿、轻放制度。 (3)不得使用脚线裸露处表面氧化的电雷管。 (4)不得使用桥丝接触不良、松动、折断或电阻不稳定的电雷管。 (5)严禁使用外壳有裂缝、严重砂眼的电雷管。
*
(三)电雷管的选用
(6)不得使用进水,起爆药受潮的电雷管。 (7)不同厂家、不同批次的雷管不得混用。 (8)运输、保管和使用电雷管时,不要挤压。 (9)在使用电雷管起爆时,一定要注意电雷管的最大安全电流和最小发火电流。
*
(二)井下运输
1、井下用机车运送爆炸材料时,应遵守下列规定: (1)炸药和电雷管不得在同一列车内运输。如用同一列车运输,装有炸药与装有电雷管的车辆之间,以及装有炸药或电雷管的车辆与机车之间,必须用空车分别隔开,隔开长度不得小于3m。 (2)硝化甘油类炸药和电雷管必须装在专用的、带盖的有木质隔板的车厢内,车厢内部应铺有胶皮或麻袋等软质垫层,并只准放1层爆炸材料箱。其他类炸药箱可以装在矿车内,但堆放调度不得超过矿车上缘。
*
(三)煤矿许用炸药的分级及选用要求
(7)各级煤矿乳化炸药对瓦斯安全性应达到《煤矿许用炸药瓦斯安全性等级及其检验方法》的规定。爆炸后有毒气体生成量应符合《煤矿许用炸药爆炸后有毒气体含量的规定及其测定方法》的规定。 (8)运输、保管和使用乳化炸药时,不要挤压或用锋利物划破。

炸药爆炸的基本理论

炸药爆炸的基本理论

Ca Hb NcOd

b 2
H2O (d

b)CO (a d 2

b )C 2

c 2
N2
如:梯恩梯(TNT)
C7H5N3O6 2.5H2O 3.5CO 3.5C 1.5N2
❖ 含有其它元素的炸药,确定爆炸产物的原则:
❖ 水不参与反应,只由液态变为气态; ❖ K、Na、Ca、Mg、Al等金属元素,在反应时首先
例如:一公斤TNT炸药爆炸后,可以产生常 压下的气体740m3,由于反应的放热性和高速性, 这些气体产物在爆炸的瞬间仍占有炸药原来所占 体积,即几乎被压缩在0.0006m3的体积内,因而 形成极高的压力状态。高压状态的气体产物将猛 烈膨胀,从而产生变热能为对外做功的机械功的 爆炸效应。
如果没有气体产生,也就不可能造成高温高 压状态,自然也就不可能发生爆炸现象。
被完全氧化; ❖ 硫被氧化为二氧化硫; ❖ 氯首先与金属作用,再与氢生成HCl。
❖ 影响有毒气体生成量的因素:
❖ 炸药的氧平衡; ❖ 化学反应的完全程度; ❖ 装药外壳等。
爆容
❖ 爆容:单位质量炸药爆炸时,气体产物在标准状 态(00C和一个大气压)下的体积,用V0表示,单 位L/kg。爆容越大,炸药做功能力越强。
炸药上述三种化学变化的形式,在一定条件 下,都是能够相互转化的:缓慢分解可发展为燃 烧、爆炸;反之,爆炸也可转化为燃烧、缓慢分 解。
研究炸药化学变化形式,就是为了控制外界 条件,使炸药的化学变化符合我们的需要。
氧平衡
炸药的爆炸是一个化学反应的过程,或者从 本质上说是一个氧化的过程,即炸药中氧对碳、 氢等元素氧化,使之成为较稳定的氧化物。
爆炸反应方程
❖ 反应方程能够确定反映产物的成分和数量, 确定爆炸释放的能量。它是计算炸药爆炸 热化学参数和爆轰参数的依据。

北理工爆轰物理学简答题总结

北理工爆轰物理学简答题总结

爆轰考点总结1.爆炸:爆炸的定义:可简单的定义为由能量极为迅速释放而产生的现象。

爆炸的特点:○1爆炸具有极大的能量释放速度、形成极高的能量密度,并迅速对外界介质做功形成冲击波的特点。

○2爆炸过程中,描述系统状态的物理量会在极短的时间内和极小的空间内发生急剧变化。

爆炸的分类:○1物理爆炸○2化学爆炸○3核爆炸2.炸药的定义及分类:定义:在适当外部激发能量作用下,可发生爆炸变化(速度极快且放出大量热和大量气体的化学反应),并对周围介质做功的化合物或混合物。

按应用分类:○1起爆药○2猛炸药○3发射药○4烟火剂按组成分类:○1单质炸药○2混合炸药3.爆轰、爆轰波、爆轰波阵面:爆轰是一伴有大量能量释放、带有一个以超声速运动的冲击波前沿的化学反应区沿炸药装药传播的流体动力学过程。

这种带有高速化学反应区的强冲击波称为爆轰波。

爆轰的前沿冲击波和放热反应区通称为爆轰波阵面。

1.炸药爆炸的基本特征:炸药爆炸是一种以高速进行的,能自动传播的化学反应过程,在此过程中放出大量的热、生成大量的气体产物,形成冲击波1)反应的放热性2)过程的高速度3)过程必须形成气体产物2.炸药的化学反应过程:根据反应速度快慢可分为热分解、燃烧和爆轰三种基本形式。

热分解是一种缓慢的化学变化,其特点是在整个物质内部展开,反应速度与环境温度有关。

燃烧、爆轰与热分解不同,它们不是在整个物质内发生的,而是在某一局部开始,并以化学反应波的形式按一定的速度一层一层地自行传播。

化学反应波的波阵面很窄,化学反应就是在这个很窄的波阵面内进行并完成的。

1.燃烧与爆轰的区别:(1)传播机理不同:燃烧是通过热传导、热辐射及燃烧气体产物的扩散作用传入未反应区的;爆轰则是借助冲击波对炸药的强烈冲击压缩作用进行的。

(2)波的速度不同:燃烧传播速度很小;爆轰的传播速度很大,一般数千米每秒。

(3)受外界的影响不同:燃烧受外界条件的影响很大;爆轰几乎不受外界条件的影响。

(4)产物质点运动方向不同:燃烧产物质点运动方向与燃烧波传播方向相反;爆轰产物质点运动方向与爆轰波传播方向相同。

能量爆炸及炸药爆炸的一般特征

能量爆炸及炸药爆炸的一般特征

能量爆炸及炸药爆炸的一般特征在人们的日常生活、生产实践和科学试验中往往会遇到爆炸现象。

爆炸时,伴随有剧烈的发光、声响和破坏效应。

爆炸是物质系统的一种极快速的物理或化学变化,在变化的瞬间放出其含有的能量,借助爆炸物原有的气体或爆炸生成的气体快速膨胀,并对四周介质做功,使之发生气械破坏作用。

一、爆炸引起爆炸的缘由不同,可将爆炸分为物理爆炸、化学爆炸和核爆炸三类。

(1)物理爆炸。

是指由物理缘由引起的爆炸,爆炸过程中不发生化学变化。

如锅炉爆炸、氧气瓶爆炸等,在生产过程中物理爆炸的应用很少。

(2)化学爆炸。

是由爆炸物在极短的时间内发生化学变化而引起的爆炸。

如常用炸药的爆炸,煤矿井下瓦斯或煤尘与空气混合物以及其他混合气体的爆炸等到都属于化学爆炸。

(3)核爆炸。

是由核裂变或核聚变引起的爆炸,爆炸过程中放出的能量极大,爆炸中心的温度极高,达到几百万至几千万度,压力可达到几十万个MPa,并辐射出很强的各种射线,其破坏性也极强。

目前,核爆炸的应用范围仍非常有限。

二、炸药的化学变化形式炸药是在肯定条件下,能够发生快速化学反应、放出能量、生成气体产物,显示爆炸效应的化合物或混合物。

炸药的爆炸通常是从局部分子被活化、分解开头的,其反应应放出的热量又使四周的炸药分子活化、分解,直至全部炸药分子反应完毕。

当炸药发生极速的化学变化时,气体产物不能得到集中而导致温度和压力急剧上升,其后产物膨胀,将能量传递给四周介质而做功,便形成爆炸。

但爆炸并不是炸药惟一的化学变化形式。

由于环境和引起化学变化的条件不同,炸药可能有四种不同形式的化学变化,即缓慢分解、燃烧、爆炸和爆轰。

这四种化学变化的速度不同,生成的产物和热效应也不同。

(1)热分解。

炸药在肯定的温度时会发生热分解,而且温度越高,分解越快。

这种分解是在整个炸药内全面发生的,炸药内各点的温度相同,分解时既右以汲取热量,也可以放出热量,打算于炸药的类型和环境温度。

但是,当温度较高时,全部炸药的分解反应都伴随有热量放出。

爆破复习提纲

爆破复习提纲

爆破工程复习提纲1.炸药爆炸时普遍具有哪些特征?爆炸是指炸药以每秒数百米至数千米的速度进行的化学反应过程。

因此炸药的爆炸时会:1)释放出大量的热量,温度升高;2)产生大量高压高温气体并对外界进行做功;3)反应速度极快。

P24-25(38)2.正氧平衡的炸药在爆轰过程中会生成哪些有毒气体?由于氧气充足,因而炸药中的氮元素将被氧化而生成NO、NO2等有毒氮氧化物。

P35 3.负氧平衡的炸药在爆轰过程中会生成哪些有毒气体?氧气不足,其中的碳元素不能被充分氧化,从而生成CO为主的有毒气体。

P364.炸药的氧平衡状态对炸药的威力大小有无影响? 如有影响,会有什么影响?有影响。

理论上分析,零氧平衡的炸药爆炸反应时的放热量最大,而正氧平衡尽管反应放出的热量也较大,然而多余的氧气在高温条件下容易与爆轰产物中的氮反应生成氮氧化物,这是一个吸热反应,会减小炸药的反应生成热,降低爆炸威力。

而负氧平衡的炸药由于自身含氧量不足,将有部分的碳不能完全被氧化,是放热量大为降低,炸药威力下降。

P37 5.计算单质炸药和混合炸药的氧平衡率的具体方法。

P366.何谓炸药的感度、猛度、爆力、爆速、殉爆距离? 各自的意义是什么?感度(敏感度):指炸药早外能作用下发生爆炸反应的难以程度。

意义:感度是炸药能否实用的关键性能之一,是炸药安全性和作用可靠性的标度。

P28猛度:指炸药爆炸时对爆破对象的冲击、破碎能力,用它表征炸药的做功功率、爆破产生应力波和冲击波的强度。

意义:是衡量炸药爆炸特性和爆炸作用的重要指标。

P38 爆力:炸药能量对外界做功的原因是在于爆炸瞬间迅速释放化学能,将爆炸生成的气体产物立即加热到数千摄氏度的高温,并在气体产物中造成数万兆帕的高压状态,导致气体产物向周边急速膨胀而做功。

炸药的这种爆炸做功的能力便是爆力。

意义:是反映炸药爆轰在介质内部做功的性能,是衡量炸药爆炸作用性能的重要指标。

P39爆速:在炸药的传爆过程中,爆轰波的传播速度就是爆速。

爆破安全技术—爆破基础知识(2篇)

爆破安全技术—爆破基础知识(2篇)

爆破安全技术—爆破基础知识爆破工作是矿山生产工艺流程中的一道主要工序。

它是为随后的采、装、运工作创造条件。

爆破工作直接接触炸药、各种起爆器材等易燃易爆物品。

不安全因素极多,时刻威胁着作业人员、采矿设备和邻近居民的人身安全。

因此,矿山企业负责人必须加强对爆破工作的安全管理,避免或减少爆破事故的发生。

一、炸药爆炸特征炸药是在一定条件下能发生化学爆炸的物质。

它在外界作用下能够发生高速的放热反应,同时形成强烈压缩状态的高压气体并迅速膨胀对周围介质做机械功。

在工程爆破实践中,我们看到炸药爆炸时,瞬间产生火花,出现烟雾,发出巨响,形成“爆风”,把各种材料炸坏,当爆破设计不合理或误操作时,就可能引起事故。

1.炸药的主要特征(1)炸药是能发生自身燃烧和爆炸反应的物质。

不论单质炸药还是混合炸药,本身都含有可燃元素碳(C)、氢(H)和助燃元素氧(O)。

一旦发生爆炸,原来的分子结构就破坏了,氧元素就与碳、氢等元素化合,生成气体。

(2)炸药是具有化学爆炸特征的相对稳定的物质。

要使其爆炸,必须从外界供给一定的能量。

若外界供给的能量小,不足以引爆炸药,则炸药处于暂时稳定状态。

为了打破炸药的稳定状态,必须由外界供给足够的能量,这种外界能叫起爆能。

工业炸药的起爆能有热能、机械能和爆炸冲击能等形式。

(3)炸药的能量密度高。

炸药和一般燃料相比,单位质量的炸药爆炸后所放出的热虽不比一般燃料燃烧后所放出的热量多,但是,如以反应产物单位体积能量计算,则前者高于后者。

例如:炭、煤和氧混合燃烧8959.8kJ/kg梯恩梯4186kJ/kg硝铵炸药(零氧平衡)4228kJ/kg反之,以反应产生单位体积的能储量计算,则炭、煤和氧混合燃烧17.2kI/L梯恩梯6807.7kJ/L硝铵炸药(零氧平衡)7117.5kJ/L2.炸药爆炸的要素(1)反应过程放热量大。

(2)反应速度必须快。

(3)反应必须生成大量气体。

二、爆破作用的原理(一)爆破作用圈炸药在岩石中爆炸后,产生高温、高压和高速膨胀的气体,使周围矿岩受压缩破碎,并向深处传播,形成爆轰波。

爆炸现象最主要的特征是什么

爆炸现象最主要的特征是什么

爆炸(高压化学反应或周围介质的状态变化):爆炸:在很短的时间内释放大量的能量,产生高温,并释放大量的气体,导致-周围介质中的化学反应或状态变化,极具破坏性。

定义:一种过程,其中能量从一种形式转换为另一种形式或几种形式,并在短时间内,小空间内具有强大的机械作用。

普通炸药的爆炸是将化学能转化为机械能。

核爆炸是指将核反应能转换为机械能的过程。

此时,短时间内会积聚大量热量,使气体量迅速膨胀,从而引起爆炸。

爆炸是非常快速的物理或化学能释放过程。

在这个过程中,太空中的物质以非常快的速度释放出其中所包含的能量,并转化为机械功,光和热。

因此,一旦失控,爆炸事故将产生巨大的破坏作用。

爆炸破坏作用的根本原因是爆炸系统中存在高压气体或爆炸时产生的高温高压气体。

爆炸的最重要特征是爆炸系统与其周围介质之间的压力突然变化,而压力差的快速变化是爆炸破坏的直接原因。

爆炸是物质系统中快速发生的物理变化或化学反应,系统本身的能量通过气体的快速膨胀转化为对周围介质的机械作用,通常伴随着强烈的放热,发光和声学作用。

爆炸的定义主要是指爆炸时产生的稳定的爆轰波,即一定量的气体在短时间内会以恒定的速率膨胀(压力变化),没有任何迹象。

必须产生热量或光。

例如,一种熵炸药TATP(三聚过氧丙酮炸药)仅具有压力变化并且产生气体,不会产生热量或光。

爆炸声主要是由气体膨胀速度高于声速引起的。

空气和可燃气体的混合物的爆炸,空气与煤粉或面粉的混合物的爆炸等都是化学反应引起的,它们都是氧化反应。

但这不仅仅与氧气有关。

例如,氯和氢混合气体爆炸,而爆炸并不是全部化学反应,例如蒸汽锅炉爆炸,汽车轮胎爆炸是物理变化。

当可燃气体在空气中达到一定浓度时,明火会爆炸。

1.物理爆炸物理爆炸是由物理变化(温度,体积,压力和其他因素)引起的。

爆炸前后,爆炸性物质的性质和化学组成不会改变。

锅炉爆炸是典型的物理爆炸。

原因是过热的水迅速蒸发大量的蒸汽,这使蒸汽压力持续增加。

当压力超过锅炉的极限强度时,就会发生爆炸。

炸药与爆炸的基本理论

炸药与爆炸的基本理论
通过燃烧释放炸药的能量,其速度相对缓慢;燃烧是通过热传导和热辐射来传递能量;燃烧
受环境条件的影响较大。
燃烧和爆燃的速度都是亚音速的,
爆炸则是借助于冲击波对炸药一层层的强烈冲击压缩作用来传递能量和激起化学反应的;爆炸
反应比燃烧反应更为激烈,放出热量的速度和形成的温度也更高;爆炸和爆轰的速度则是超音速
的。
一般工业炸药,如梯恩梯和各类混合炸药。感度较低,威力较大。
3)发射药(Propelant) 如黑火药,火焰感度高,多作为推进剂。
按作用特性和用途分类
2)猛炸药(high explosive) 猛炸药指那些利用爆轰所释放的能量对周围介质作
功的炸药。猛炸药因其对周围介质的破坏作用猛烈而 得名。
无论军用还是民用,大量使用的仍是由混合炸药 组成的猛炸药。不同的是民用混合炸药以廉价的硝酸 铵为主要成分,而军用混合炸药则很少使用硝酸铵, 只是在特定条件下将其当作一种代用品。
•● 炸药的氧平衡(oxygen balance)
对单质炸药: O.B.=16[c-(2a+b/2)]/M 对混合炸药:O.B.= ∑((O.B.)i×ki)
当炸药中成份不同或爆炸条件不同时,根据炸 药的氧平衡不同,将可能产生以下几种情况:
(1)零氧平衡 炸药中氧的含量恰好能将碳、氢完全氧化,此时炸药的氧平衡为零,即 c-(2a+b/2)=0 ◆ 因氧和可燃元素都得到了充分利用,故在理想反应条件下,炸药的热量释放最为充
在民用爆破工程领域,应用最为广泛的是硝铵炸药。
按炸药的物理状态分类
◆ 固体炸药 ◆ 液体炸药 ◆ 气体炸药 ◆ 多相炸药
•1 炸药与爆炸的基本理论
•1.2 炸药的氧平 衡
• 氧化剂 + 还原剂

炸药的爆炸参数与性能

炸药的爆炸参数与性能

炸药的爆炸参数与性能一、炸药的爆炸参数(一)爆速爆速是炸药爆炸时爆轰波沿炸药内部传播的速度。

炸药爆速的高低与许多因素有关,首先取决于炸药自身的性质,其次还与装药直径、装药密度以及颗粒度、外壳、附加物等因素有关。

爆速是炸药的重要参数之一。

爆速愈高,炸药的爆炸能力愈大。

常用工业炸药的爆速通常为3000-4000m/s,低爆速炸药的爆速通常为2000m/s左右。

(二)爆热爆热是在一定条件下单位质量炸药爆炸时放出的热量,通常用符号Q v表示。

爆热是炸药爆炸做功的能量指标。

常用工业炸药的爆热为3000-4000kJ/kg。

(三)爆温爆温是炸药爆炸时放出的热量使爆炸产物定容(指爆炸产物的容积与炸药爆炸前的体积相同的情况)加热所达到的最高温度(℃)。

一般来讲,炸药的爆温愈高,气体产物的压力就愈大,对外界做功的能力也就愈大。

在实际应用中,不是爆温愈高愈好。

通常水下爆破炸药要求有较高的爆温,以提高水中爆破效果;对于煤矿安全炸药则要求有较低的爆温,以降低点燃瓦斯的可能性。

常用工业炸药的爆温为2300-3000℃,单质炸药的爆温为3000-5000℃。

(四)爆容爆容又称炸药的比容,是单位质量炸药爆炸时生成的气体产物在标准状态下(0℃和0.101MPa) 所占的体积(%) 。

通常炸药的爆容愈大,做功能力也愈大。

爆容只是一定条件下的相对值。

常用工业炸药的爆容为900L/kg左右。

(五)爆压爆压是炸药爆炸时生成的高温高压气体产生的压力。

通常有两个含义:(1)指爆轰压力,又称C-J压力,它是炸药爆炸时爆轰波阵面上的压力p1。

常用工业炸药的爆轰压为3000-3500MPa。

爆轰压可由试验测定,也可由理论计算得出。

(2)指爆炸产物压力,它是炸药爆炸做功时爆炸产物的压力p2,通常爆炸产物压力是爆轰压力的一半左右。

二、炸药的爆炸性能(一)做功能力炸药爆炸对周围介质所做的总功称为炸药的做功能力。

炸药的做功能力又称爆力或威力,它是炸药的爆炸产物对周围介质做功的能力。

能量爆炸及炸药爆炸的一般特征

能量爆炸及炸药爆炸的一般特征

能量爆炸及炸药爆炸的一般特征前言能量爆炸与炸药爆炸都属于化学爆炸的一种,是指在化学反应中放出热能和气体,产生强烈的声、光、热效应以及废弃气体或物质等,引起严重的灾难性后果。

在近代战争中,炸药爆炸被广泛应用于武器、军事装备、民用建筑等领域,因此对炸药爆炸及能量爆炸的研究成为了十分重要的科学领域。

本文将简要介绍能量爆炸和炸药爆炸的一般特征。

能量爆炸的特征能量爆炸又称为热爆炸、气爆炸,在化学反应中,产生大量的热和气体,形成高温高压环境,引起大规模破坏。

能量爆炸通常有以下几个特征:1. 空气中能产生爆炸:能量爆炸不需要氧气等反应物,可以在空气中自燃,如二氧化碳、氢气等气体。

2. 反应速度快:能量爆炸在反应开始后的很短时间内会迅速放出大量的热量,产生巨大的压力和速度,瞬间将周围介质推离。

3. 能量释放量大:能量爆炸能够释放极大量的热量和气体,这些能量会使周围介质瞬间被加热膨胀,形成巨大的冲击波。

4. 引发破坏:能量爆炸在爆炸过程中产生的冲击波,具有极强的破坏能力,能够摧毁建筑物、机械设备等。

炸药爆炸的特征炸药爆炸是利用爆炸性能的化合物进行瑕面破坏或杀伤敌人的行为。

炸药爆炸通常有以下几个特征:1. 爆炸前存储稳定:炸药在存储和运输过程中应具有稳定性,不受外界因素影响,如阳光、水分等。

2. 释放巨大能量:炸药爆炸时,放出大量的热量和气体,这些能量会使周围介质瞬间被加热膨胀,并形成冲击波。

3. 不具备燃烧性:炸药不需要氧气等反应物,可以在空气中自燃,并且燃烧产生的产物很少。

4. 可精确控制:炸药的爆炸能够通过遥控引爆控制在特定区域内,以达到精确的杀伤和破坏目标。

结语总之,能量爆炸和炸药爆炸都是化学爆炸的一种表现形式,都有着自己的一般特征。

对于这些灾难性事件,我们应该尽可能多地了解和研究,以增加预防控制的能力,从而减少爆炸事件对人类社会的危害和损失。

第03-04次课 炸药与爆炸理论(一)

第03-04次课 炸药与爆炸理论(一)

梯恩梯——敏 化 剂 木 食 煤矿 岩石 粉——松 散 剂 盐——消 焰 剂 井下——氧平衡近于零, 限制有毒有害气体产生
井巷设计与施工
SHAFT SINGKING AND DRIFTING
殉爆距离:主动药包引起被动药 包爆炸的 最大距离
井巷设计与施工
SHAFT SINGKING AND DRIFTING
起爆药 猛炸药 发射药
十、炸药分类 单质炸药
炸 药
混合炸药
硝铵炸药 铵油炸药 高威力硝铵炸药 浆状炸药 水胶炸药 乳化炸药 硝化甘油炸药
井巷设计与施工
SHAFT SINGKING AND DRIFTING
冲击波:一种炸药 爆炸后在介质中产 生的传播速度高于 介质声速的一种压 缩波。
井巷设计与施工
SHAFT SINGKING AND DRIFTING
爆轰波:在炸药中传播的,带有爆炸反应的冲击波。
爆 速:爆轰波的传播速度。
井巷设计与施工
爆热
六、炸药爆炸的 热力学参数
爆温 爆容 爆压
井巷设计与施工
SHAFT SINGKING AND DRIFTING
1、爆热:单位质量炸药在定容条件下爆炸时放出的热量。 单位:kJ/mol或kJ/kg 盖斯定律:化学反应的热效应与反应进行的路径无关,而只 取决于反应的初态与终态
Q Q1 Q2 Q 炸药的爆热 Q1 爆炸产物的生成热 Q2 炸药的生成热
井巷设计与施工
SHAFT SINGKING AND DRIFTING
化学爆炸: 爆炸前后,不仅物质的物态发生了急剧变 化,而且物质的化学成分也发生了改变, 这类爆炸叫化学爆炸。 常见的化学爆炸:炸药、瓦斯与煤(粉) 尘爆炸。

第三章炸药的爆炸性能

第三章炸药的爆炸性能

• • • • •
爆炸现象的主要特征: 1-快; 8000m/s 2-爆炸点附近压力急剧升高;3000~3500MPa 3-或大或小的响声; 4-周围介质发生震动或临近介质遭到破坏; 岩石 粉碎,裂隙
• 爆炸分类 • • • • • 物理爆炸 热水瓶爆炸 锅炉爆破 轮胎爆炸 气球爆炸 • • • • • 化学爆炸 • 核爆炸 烟花爆竹爆炸 • 原子弹爆炸 炸药爆炸 • 氢弹爆炸 瓦斯、煤尘爆炸 氢氧混合物爆炸
(3)、三种变化形式的转化 热分解是炸药性质本身决定的,燃烧是 依靠热辐射和热传导进行传播的,爆轰是依靠 冲击波进行传播的。炸药三种反应不是相互独 立的,炸药的热分解在一定条件下可以转变为 炸药的燃烧;而炸药的燃烧在一定条件下又能 转变为炸药的爆轰。 如炸药失火时,宜用水灭火,不宜用泡 沫灭火器。更不能用覆盖沙土的办法灭火。 起爆炸药时,要给其足够的能量,确保 炸药稳定爆轰,以免造成半爆或拒界能量作用(如用一发合 格的雷管引爆铵梯炸药)时,炸药将会发生最 快最猛烈的化学反应,并生成大量的热和产生 大量的气体,这就是爆炸。爆炸反应在炸药中 稳定传播时,这样的化学反应叫爆轰,爆轰状 态下炸药的化学反应最完全,能量释放最充分 、最集中。当起爆药的能量不足或受其它因素 影响时,炸药可能出现不稳定爆炸现象,造成 半爆或息爆。
对工业炸药提出所谓“实用感度”与”危险感度”要求: ① 实用感度: 最小引爆冲能下能起爆 ---冲击波感度。 ② 危险感度: 保持安全的最大引爆冲能---机械感度。 一对矛盾,取其中。 • 使用者:使用中需要高感度→防止拒爆 • 生产者:操作制造中需要低感度→防止事故
3.3 炸药的感度与储存性能
炸药安定性
是指炸药在一定贮存期内,能保持其物理化学性质 和爆炸性质不变的能力。 (1)物理安定性 是指炸药在正常存放和使用条件下,能保持物理性 能变化不超过允许范围的能力,不吸湿,不挥发,不变 更机械强度和组织的能力。 (2)化学安定性 是指炸药在存放过程中,能保持其化学变化不超过 允许范围的能力,一般用炸药分解变质的情况衡量其优 劣。 (3)热安定性 在热的作用下,炸药保持其物理化学性质不发生显 著变化的能力。

炸药及爆炸概论知识讲座

炸药及爆炸概论知识讲座

硝酸铵-2700m/s;
3. 影响爆速的因素
①药卷直径: 临界直径(小于则不爆)、 极限直径 (大于也不提高)
二号岩石铵梯炸药临界直径15mm
② 炸药密度:单质炸药(密好)、混合炸药(最佳密度)
③药卷外壳:外壳限制爆轰产物侧飞,直径小提高爆速明显,大时不明显。 ④ 炸药的粒度:越细,临界直径和极限直接减小,爆速提高。 ⑤ 起 爆 能 的 大 小 : 如 TNT 粒 径 1.0~1.6mm , ρ=1.0g/cm3 , 装 药 直 径
五. 炸药的爆速
1. 爆速的概念
超音速、质点运动方向与波的传播方向相同、脉冲波、不具有周期性

⑴冲击波:在介质中以密度、压力质点运动速度突升的形式向前传播的压缩波。 ⑵爆轰波:是在炸药中传播的、伴有炸药高速化学反应的冲击波。
爆速:爆轰波稳定传播的速度,是衡量炸药质量的重要指标。
2. 测定―0.3mm的镍隔丝 BS—1型爆速仪 TNT-7000m/s; 黑索金-8200m/s; 二号水胶炸药-4400m/s;
四. 炸药的氧平衡
CWHXNYOZ
C、H——可燃剂,O——氧化剂 爆炸产物:CO2、CO、 C、 NO2、NO、N2、H2O、H2、O2、 CH4
炸药爆炸的基本反应: 2 H2 + O2 = 2 H2O + 240.7kJ/mol
C + O2 = CO2 + 395 kJ/mol 1. 炸药的氧平衡 ⑴氧平衡:比例关系 ⑵氧平衡值:每克炸药中保证可燃元素充分氧化时,多余或欠缺
爆炸性不明显
爆炸
2. 生成大量气体——作功的介质,1000L/kg
铝热剂的化学反应:
2Al + Fe2O3 = Al2O 3+ 2Fe + 829kJ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能量爆炸及炸药爆炸的一般特征(一)
在人们的日常生活、生产实践和科学试验中往往会遇到爆炸现象。

爆炸时,伴随有强烈的发光、声响和破坏效应。

爆炸是物质系统的一种极迅速的物理或化学变化,在变化的瞬间放出其含有的能量,借助爆炸物原有的气体或爆炸生成的气体迅速膨胀,并对周围介质做功,使之发生机械破坏作用。

一、爆炸引起爆炸的原因不同,可将爆炸分为物理爆炸、化学爆炸和核爆炸三类。

(1)物理爆炸。

是指由物理原因引起的爆炸,爆炸过程中不发生化学变化。

如锅炉爆炸、氧气瓶爆炸等,在生产过程中物理爆炸的应用很少。

(2)化学爆炸。

是由爆炸物在极短的时间内发生化学变化而引起的爆炸。

如常用炸药的爆炸,煤矿井下瓦斯或煤尘与空气混合物以及其他混合气体的爆炸等到都属于化学爆炸。

(3)核爆炸。

是由核裂变或核聚变引起的爆炸,爆炸过程中放出的能量极大,爆炸中心的温度极高,达到几百万至几千万度,压力可达到几十万个MPa,并辐射出很强的各种射线,其破坏性也极强。

目前,核爆炸的应用范围仍十分有限。

二、炸药的化学变化形式
炸药是在一定条件下,能够发生快速化学反应、放出能量、生成气体产物,显示爆炸效应的化合物或混合物。

炸药的爆炸通常是从局部分子被活化、分解开始的,其反应应放出的热量又使周围的炸药分子活化、分解,直至全部炸药分子反应完毕。

当炸药发生极速的化学变化时,气体产物不能得到扩散而导致温度和压力急剧升高,其后产物膨胀,将能量传递给周围介质而做功,便形成爆炸。

但爆炸并不是炸药惟一的化学变化形式。

由于环境和引起化学变化的条件不同,炸药可能有四种不同形式的化学变化,即缓慢分解、燃烧、爆炸和爆轰。

这四种化学变化的速度不同,生成的产物和热效应也不同。

(1)热分解。

炸药在一定的温度时会发生热分解,而且温度越高,分解越快。

这种分解是在整个炸药内全面发生的,炸药内各点的温度相同,分解时既右以吸收热量,也可以放出热量,决定于炸药的类型和环境温度。

但是,当温度较高时,所有炸药的分解反应都伴随有热量放出。

(2)燃烧。

有些炸药在热源的作用下可以被点燃。

因温度、压力环境的不同可进行缓慢的(每秒数毫米)或速燃甚至爆燃(每秒数米至数百米),炸药在密闭空间中燃烧时可能变为爆炸。

根据炸药的燃烧特性,可将将炸药分为三大类:起爆药、猛炸药和火药。

起爆药一旦燃烧,化学反应极快,燃烧速度增长很快,而且燃烧不稳定,极易转变为爆
炸;猛炸药一般能够稳定燃烧;燃烧稳定性最好的是火药,稳定燃烧的压力可从1000个大气压到10000个大气压,压车增高时也可转变为爆炸。

相关文档
最新文档