几何证明的复习.

合集下载

2020年中考数学压轴题-专题28几何证明综合复习(判定四边形形状)(解析版)

2020年中考数学压轴题-专题28几何证明综合复习(判定四边形形状)(解析版)

专题28 几何证明综合复习(判定四边形形状)教学重难点1.培养学生通过探索和证明,发展推理意识和能力2.通过证明举例的学习和实践,懂得演绎推理的一般规则,并掌握规范表达的格式;了解证明之前进行分析的基本思路;3.体会用“分析综合法”探求解题思路;4.学习添置辅助线的基本方法,会添置常见的辅助线;5.会用文字语言、图形语言、符号语言三种数学语言进行证明说理。

【说明】:本部分为知识点方法总结性梳理,目的在于让学生能从题目条件和所证明结论,去寻找证明思路,用时大概 5-8 分钟左右。

【知识点、方法总结】:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的" 因为"、"所以 " 逻辑将条件一步步转化为所要证明的结论。

这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。

所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。

一、证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

、证明两角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等;7.相似三角形的对应角相等;8.等于同一角的两个角相等。

2019-2020学年上海八年级数学上册期末专题复习专题06 几何证明复习(考点讲解)(教师版)

2019-2020学年上海八年级数学上册期末专题复习专题06 几何证明复习(考点讲解)(教师版)

专题06 几何证明【考点剖析】1.命题:判断一件事情的句子;正确的命题叫真命题;错误的命题叫假命题;一个命题是由题设和结论两部分组成.2.公理和定理:从长期的实践中总结出来的真命题叫公理;从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的依据,这样的真命题叫做定理.3.证明真命题的步骤:①根据题意作出图形,并在图形上标出必要的字母和符号;②根据题设和结论,结合图形写出已知和求证;③经过分析,找出由已知推出结论的途径,写出证明过程.4.平行线的判定与性质平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;两条直线被第三条直线所截,如果内错角相等.那么这两条直线平行;两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.平行线的性质:两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

两条平行线被第三条直线所截,同旁内角相等。

5.全等三角形:全等三角形的判定:S.A.S; A.S.A; A.A.S; S.S.S;全等三角形的性质:全等三角形的对应角相等,对应边相等。

6.等腰三角形的判定与性质性质1:等腰三角形的两个底角相等;(简称:等边对等角)性质2:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称:等腰三角形的三线合一)判定1:(定义法)有两条边相等的三角形;判定2:如果一个三角形有两个角相等,那么这个三角形是等腰三角形。

(简称:等角对等边)7.证明常见题型证明两直线平行、两直线垂直、两条线段相等、两个角相等、线段或角的和差倍半简单的问题;【典例分析】【考点】证明举例例1 (普陀2017期中5)下列命题中,真命题是()A.两条直线被第三条直线所截,同位角相等;B.两边及其中一边的对角对应相等的两个三角形全等;C.直角三角形的两个锐角互余;D.三角形的一个外角等于两个内角的和. 【答案】C【解析】A 、两条直线被第三条直线所载,同位角不一定相等,因为两直线不一定平行,故A 错;B 、边、边、角不一定能得到两个三角形全等,故B 错;C 、直角三角形的两个锐角互余,正确;D 、三角形的一个外角等于不它不相邻的两个内角和,故D 错。

中考数学专题复习八几何证明题

中考数学专题复习八几何证明题

专题八:几何证明题问题解析几何证明题重在训练学生应用数学语言合情推理能力;几何证明题和计算题在中考中占有重要地位.根据新的课程标准;对几何证明题证明的方法技巧上要降低;繁琐性、难度方面要降低.但是注重考查学生的基础把握推理能力;所以几何证明题是目前常考的题型.热点探究类型一:关于三角形的综合证明题例题12016·四川南充已知△ABN和△ACM位置如图所示;AB=AC;AD=AE;∠1=∠2.1求证:BD=CE;2求证:∠M=∠N.分析1由SAS证明△ABD≌△ACE;得出对应边相等即可2证出∠BAN=∠CAM;由全等三角形的性质得出∠B=∠C;由AAS证明△ACM≌△ABN;得出对应角相等即可.解答1证明:在△ABD和△ACE中;;∴△ABD≌△ACESAS;∴BD=CE;2证明:∵∠1=∠2;∴∠1+∠DAE=∠2+∠DAE;即∠BAN=∠CAM;由1得:△ABD≌△ACE;∴∠B=∠C;在△ACM和△ABN中;;∴△ACM≌△ABNASA;∴∠M=∠N.点评本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.同步练2016·山东省菏泽市·3分如图;△ACB和△DCE均为等腰三角形;点A;D;E在同一直线上;连接BE.1如图1;若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.2如图2;若∠ACB=∠DCE=120°;CM为△DCE中DE边上的高;BN为△ABE中AE边上的高;试证明:AE=2CM+BN.类型二:关于四边形的综合证明题例题22016·山东省滨州市·10分如图;BD是△ABC的角平分线;它的垂直平分线分别交AB;BD;BC 于点E;F;G;连接ED;DG.1请判断四边形EBGD的形状;并说明理由;2若∠ABC=30°;∠C=45°;ED=2;点H是BD上的一个动点;求HG+HC的最小值.考点平行四边形的判定与性质;角平分线的性质.分析1结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.2作EM⊥BC于M;DN⊥BC于N;连接EC交BD于点H;此时HG+HC最小;在RT△EMC中;求出EM、MC即可解决问题.解答解:1四边形EBGD是菱形.理由:∵EG垂直平分BD;∴EB=ED;GB=GD;∴∠EBD=∠EDB;∵∠EBD=∠DBC;∴∠EDF=∠GBF;在△EFD和△GFB中;;∴△EFD≌△GFB;∴ED=BG;∴BE=ED=DG=GB;∴四边形EBGD是菱形.2作EM⊥BC于M;DN⊥BC于N;连接EC交BD于点H;此时HG+HC最小;在RT△EBM中;∵∠EMB=90°;∠EBM=30°;EB=ED=2;∴EM=BE=;∵DE∥BC;EM⊥BC;DN⊥BC;∴EM∥DN;EM=DN=;MN=DE=2;在RT△DNC中;∵∠DNC=90°;∠DCN=45°;∴∠NDC=∠NCD=45°;∴DN=NC=;∴MC=3;在RT△EMC中;∵∠EMC=90°;EM=.MC=3;∴EC===10.∵HG+HC=EH+HC=EC;∴HG+HC的最小值为10.点评本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识;解题的关键是利用对称找到点H的位置;属于中考常考题型.同步练2016·山东省济宁市·3分如图;正方形ABCD的对角线AC;BD相交于点O;延长CB至点F;使CF=CA;连接AF;∠ACF的平分线分别交AF;AB;BD于点E;N;M;连接EO.1已知BD=;求正方形ABCD的边长;2猜想线段EM与CN的数量关系并加以证明.类型三:关于圆的综合证明题例题32016·山东潍坊正方形ABCD内接于⊙O;如图所示;在劣弧上取一点E;连接DE、BE;过点D作DF∥BE交⊙O于点F;连接BF、AF;且AF与DE相交于点G;求证:1四边形EBFD是矩形;2DG=BE.考点正方形的性质;矩形的判定;圆周角定理.分析1直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°;∠BFD=∠BCD=90°;∠EDF=90°;进而得出答案;2直接利用正方形的性质的度数是90°;进而得出BE=DF;则BE=DG.解答证明:1∵正方形ABCD内接于⊙O;∴∠BED=∠BAD=90°;∠BFD=∠BCD=90°;又∵DF∥BE;∴∠EDF+∠BED=180°;∴∠EDF=90°;∴四边形EBFD是矩形;2∵正方形ABCD内接于⊙O;∴的度数是90°;∴∠AFD=45°;又∵∠GDF=90°;∴∠DGF=∠DFC=45°;∴DG=DF;又∵在矩形EBFD中;BE=D同步练枣庄市 2015 中考 -24如图;在△ABC中;∠ABC=90°;以AB的中点O为圆心、OA为半径的圆交AC于点D;E是BC的中点;连接DE;OE.1判断DE与⊙O的位置关系;并说明理由;2求证:BC2=CD 2OE;3若cos∠BAD=35;BE=6;求OE的长.类型四:关于相似三角形的证明问题例题42016·黑龙江齐齐哈尔·8分如图;在△ABC中;AD⊥BC;BE⊥AC;垂足分别为D;E;AD与BE 相交于点F.1求证:△ACD∽△BFD;2当tan∠ABD=1;AC=3时;求BF的长.考点相似三角形的判定与性质.分析1由∠C+∠DBF=90°;∠C+∠DAC=90°;推出∠DBF=∠DAC;由此即可证明.2先证明AD=BD;由△ACD∽△BFD;得==1;即可解决问题.解答1证明:∵AD⊥BC;BE⊥AC;∴∠BDF=∠ADC=∠BEC=90°;∴∠C+∠DBF=90°;∠C+∠DAC=90°;∴∠DBF=∠DAC;∴△ACD∽△BFD.2∵tan∠ABD=1;∠ADB=90°∴=1;∴AD=BD;∵△ACD∽△BFD;∴==1;∴BF=AC=3.同步练2016·湖北武汉·10分在△ABC中;P为边AB上一点.1 如图1;若∠ACP=∠B;求证:AC2=AP·AB;2 若M为CP的中点;AC=2;① 如图2;若∠PBM=∠ACP;AB=3;求BP的长;② 如图3;若∠ABC=45°;∠A=∠BMP=60°;直接写出BP的长.达标检测1. 2016·黑龙江哈尔滨·8分已知:如图;在正方形ABCD 中;点E 在边CD 上;AQ⊥BE 于点Q;DP⊥AQ 于点P .1求证:AP=BQ ;2在不添加任何辅助线的情况下;请直接写出图中四对线段;使每对中较长线段与较短线段长度的差等于PQ 的长.2. 2016·四川内江9分如图6所示;△ABC 中;D 是BC 边上一点;E 是AD 的中点;过点A 作BC 的平行线交CE 的延长线于F;且AF =BD;连接BF .1求证:D 是BC 的中点;2若AB =AC;试判断四边形AFBD 的形状;并证明你的结论.3. 烟台市 2015 中考 -23如图;以△ABC 的一边AB 为直径的半圆与其它两边AC;BC 的交点分别为D 、E;且=.1试判断△ABC 的形状;并说明理由.2已知半圆的半径为5;BC=12;求sin∠ABD 的值.4. 2015 内蒙古呼伦贝尔兴安盟;第22题7分如图;在平行四边形ABCD 中;E 、F 分别为边AB 、CD 的中点;BD 是对角线.1求证:△ADE ≌△CBF ;2若∠ADB 是直角;则四边形BEDF 是什么四边形 证明你的结论.5. 烟台市 2014 中考 -24如图;AB 是⊙O 的直径;延长AB 至P;使BP=OB;BD 垂直于弦BC;垂足为点B;点D 在PC 上.设∠PCB=α;∠POC=β.求证:tanα tan=.DCEF B A 图66. 2015 梧州;第25题12分如图;在正方形ABCD中;点P在AD上;且不与A、D重合;BP的垂直平分线分别交CD、AB于E、F两点;垂足为Q;过E作EH⊥AB于H.1求证:HF=AP;2若正方形ABCD的边长为12;AP=4;求线段EQ的长.7. 2015 北海;第25题12分如图;AB、CD为⊙O的直径;弦AE∥CD;连接BE 交CD于点F;过点E作直线EP与CD的延长线交于点P;使∠PED=∠C.1求证:PE是⊙O的切线;2求证:ED平分∠BEP;3若⊙O的半径为5;CF=2EF;求PD的长.参考答案类型一:关于三角形的综合证明题同步练2016·山东省菏泽市·3分如图;△ACB和△DCE均为等腰三角形;点A;D;E在同一直线上;连接BE.1如图1;若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.2如图2;若∠ACB=∠DCE=120°;CM为△DCE中DE边上的高;BN为△ABE中AE边上的高;试证明:AE=2CM+BN.考点等腰三角形的性质.分析1①通过角的计算找出∠ACD=∠BCE;再结合△ACB和△DCE均为等腰三角形可得出“AC=BC;DC=EC”;利用全等三角形的判定SAS即可证出△ACD≌△BCE;由此即可得出结论AD=BE;②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC;再通过角的计算即可算出∠AEB的度数;2根据等腰三角形的性质结合顶角的度数;即可得出底角的度数;利用1的结论;通过解直角三角形即可求出线段AD、DE的长度;二者相加即可证出结论.解答1①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°;∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB;∠DCE=∠DCB+∠BCE;∴∠ACD=∠BCE.∵△AC B和△DCE均为等腰三角形;∴AC=BC;DC=EC.在△ACD和△BCE中;有;∴△ACD≌△BCESAS;∴AD=BE.②解:∵△ACD≌△BCE;∴∠ADC=∠BEC.∵点A;D;E在同一直线上;且∠CDE=50°;∴∠ADC=180°﹣∠CDE=130°;∴∠BEC=130°.∵∠BEC=∠CED+∠AEB;且∠CED=50°;∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.2证明:∵△ACB和△DCE均为等腰三角形;且∠ACB=∠DCE=120°;∴∠CDM=∠CEM=×180°﹣120°=30°.∵CM⊥DE;∴∠CMD=90°;DM=EM.在Rt△CMD中;∠CMD=90°;∠CDM=30°;∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°;∠BEC=∠CEM+∠AEB;∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°;∴∠BEN=180°﹣120°=60°.在Rt△BNE中;∠BNE=90°;∠BEN=60°;∴BE==BN.∵AD=BE;AE=AD+DE;∴AE=BE+DE=BN+2CM.点评本题考查了等腰三角形的性质、全等三角形的判定及性质、解直角三角形以及角的计算;解题的关键是:1通过角的计算结合等腰三角形的性质证出△ACD≌△BCE;2找出线段AD、DE的长.本题属于中档题;难度不大;但稍显繁琐;解决该题型题目时;利用角的计算找出相等的角;再利用等腰三角形的性质找出相等的边或角;最后根据全等三角形的判定定理证出三角形全是关键.类型二:关于四边形的综合证明题同步练2016·山东省济宁市·3分如图;正方形ABCD的对角线AC;BD相交于点O;延长CB至点F;使CF=CA;连接AF;∠ACF的平分线分别交AF;AB;BD于点E;N;M;连接EO.1已知BD=;求正方形ABCD的边长;2猜想线段EM与CN的数量关系并加以证明.考点正方形的性质.分析1根据正方形的性质以及勾股定理即可求得;2根据等腰三角形三线合一的性质证得CE⊥AF;进一步得出∠BAF=∠BCN;然后通过证得△ABF≌△CBN得出AF=CN;进而证得△ABF∽△COM;根据相似三角形的性质和正方形的性质即可证得CN= CM.解答解:1∵四边形ABCD是正方形;∴△ABD是等腰直角三角形;∴2AB2=BD2;∵BD=;∴AB=1;∴正方形ABCD的边长为1;2CN=CM.证明:∵CF=CA;AF是∠ACF的平分线;∴CE⊥AF;∴∠AEN=∠CBN=90°;∵∠ANE=∠CNB;∴∠BAF=∠BCN;在△ABF和△CBN中;;∴△ABF≌△CBNAAS;∴AF=CN;∵∠BAF=∠BCN;∠ACN=∠BCN;∴∠BAF=∠OCM;∵四边形ABCD是正方形;∴AC⊥BD;∴∠ABF=∠COM=90°;∴△ABF∽△COM;∴=;∴==;即CN=CM.类型三:关于圆的综合证明题同步练枣庄市 2015 中考 -24如图;在△ABC中;∠ABC=90°;以AB的中点O为圆心、OA为半径的圆交AC于点D;E是BC的中点;连接DE;OE.1判断DE与⊙O的位置关系;并说明理由;2求证:BC2=CD 2OE;3若cos∠BAD=35;BE=6;求OE的长.思路分析:本题考查了切线的判定;垂径定理以及相似三角形的判定与性质等知识点.故对于题1可以连接OD;BD;由AB为圆O的直径;得到∠ADB为直角;从而得出三角形BCD为直角三角形;E为斜边BC 的中点;利用斜边上的中线等于斜边的一半;得到CE=DE;利用等边对等角得到一对角相等;再由OA=OD;利用等边对等角得到一对角相等;由直角三角形ABC中两锐角互余;利用等角的余角相等得到∠ADO与∠CDE互余;可得出∠ODE为直角;即DE垂直于半径OD;可得出DE为圆O的切线;对于题2首先可证明OE是△ABC的中位线;则AC=2OE;然后证明△ABC∽△BDC;根据相似三角形的对应边的比相等;即可证得;对于题3在直角△ABC中;利用勾股定理求得AC的长;之后根据三角形中位线定理OE的长即可求得.解题过程:1证明:连接OD;BD;∵AB为圆O的直径;∴∠ADB=90°;在Rt△BDC中;E为斜边BC的中点;∴CE=DE=BE=12 BC;∴∠C=∠CDE;∵OA=OD;∴∠A=∠ADO;∵∠ABC=90°;即∠C+∠A=90°;∴∠ADO+∠CDE=90°;即∠ODE=90°;∴DE⊥OD;又OD为圆的半径;∴DE为⊙O的切线;2证明:∵E是BC的中点;O点是AB的中点; ∴OE是△ABC的中位线;∴AC=2OE;∵∠C=∠C;∠ABC=∠BDC;∴△ABC∽△BDC;∴BC ACCD BC=;即BC2=AC CD.∴BC2=2CD OE;3解:∵cos∠BAD=35;∴sin∠BAC=45 BCAC=;又∵BE=6;E是BC的中点;即BC=12;∴AC=15.又∵AC=2OE;∴OE=12AC=152.规律总结:熟练把握切线的判定;垂径定理以及相似三角形的判定与性质等知识点是解决本题的关键.要证某线是圆的切线;已知此线过圆上某点;连接圆心与这点即为半径;再证垂直即可.类型四:关于相似三角形的证明问题同步练2016·湖北武汉·10分在△ABC中;P为边AB上一点.1 如图1;若∠ACP=∠B;求证:AC2=AP·AB;2 若M为CP的中点;AC=2;① 如图2;若∠PBM=∠ACP;AB=3;求BP的长;② 如图3;若∠ABC=45°;∠A=∠BMP=60°;直接写出BP的长.考点相似形综合;考查相似三角形的判定和性质;平行线的性质;三角形中位线性质;勾股定理..答案 1证△ACP∽△ABC即可;2①BP=5;②71解析1证明:∵∠ACP=∠B;∠BAC=∠CAP;∴△ACP∽△ABC;∴AC:AB=AP:AC;∴AC2=AP·AB;2①如图;作CQ∥BM交AB延长线于Q;设BP=x;则P Q=2x∵∠PBM=∠ACP;∠PAC=∠CAQ;∴△APC∽△ACQ;由AC2=AP·AQ得:22=3-x35即BP②如图:作CQ⊥AB 于点Q;作CP 0=CP 交AB 于点P 0;∵AC =2;∴AQ=1;CQ =BQ; 设P0Q =PQ =1-x;BP -1+x;∵∠BPM=∠CP 0A ;∠BMP=∠CAP 0;∴△AP 0C∽△MPB;∴00AP P C MP BP =;∴MP P0C =2012P C ==AP 0 BP =1+x;解得x ∴BP =-11-.达标检测1. 2016·黑龙江哈尔滨·8分已知:如图;在正方形ABCD 中;点E 在边CD 上;AQ⊥BE 于点Q;DP⊥AQ 于点P .1求证:AP=BQ ;2在不添加任何辅助线的情况下;请直接写出图中四对线段;使每对中较长线段与较短线段长度的差等于PQ 的长.考点正方形的性质;全等三角形的判定与性质.分析1根据正方形的性质得出AD=BA;∠BAQ=∠ADP;再根据已知条件得到∠AQB=∠DPA;判定△AQB≌△DPA 并得出结论;2根据AQ ﹣AP=PQ 和全等三角形的对应边相等进行判断分析.解答解:1∵正方形ABCD∴AD=BA;∠BAD=90°;即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE 于点Q;DP⊥AQ 于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPAAAS∴AP=BQ2①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ2. 2016·四川内江9分如图6所示;△ABC 中;D 是BC 边上一点;E 是AD 的中点;过点A 作BC 的平行线交CE 的延长线于F;且AF =BD;连接BF .1求证:D 是BC 的中点;2若AB =AC;试判断四边形AFBD 的形状;并证明你的结论.考点三角形例行;特殊四边形的性质与判定..1证明:∵点E 是AD 的中点;∴AE =DE .∵AF ∥BC;∴∠AFE =∠DCE;∠FAE =∠CDE .∴△EAF ≌△EDC .∴AF =DC .∵AF =BD;∴BD =DC;即D 是BC 的中点.2四边形AFBD 是矩形.证明如下:∵AF ∥BD;AF =BD;∴四边形AFBD 是平行四边形.∵AB =AC;又由1可知D 是BC 的中点;∴AD ⊥BC .DC EF B A图6∴□AFBD是矩形.3. 烟台市 2015 中考 -23如图;以△ABC的一边AB为直径的半圆与其它两边AC;BC的交点分别为D、E;且=.1试判断△ABC的形状;并说明理由.2已知半圆的半径为5;BC=12;求sin∠ABD的值.思路分析:1连结AE;如图;根据圆周角定理;由=得∠DAE=∠BAE;由AB为直径得∠AEB=90°;根据等腰三角形的判定方法即可得△ABC为等腰三角形;2由等腰三角形的性质得BE=CE=BC=6;再在Rt△ABE中利用勾股定理计算出AE=8;接着由AB为直径得到∠ADB=90°;则可利用面积法计算出BD=;然后在Rt△ABD中利用勾股定理计算出AD=;再根据正弦的定义求解.解题过程:解:1△ABC为等腰三角形.理由如下:连结AE;如图;∵=;∴∠DAE=∠BAE;即AE平分∠BAC;∵AB为直径;∴∠AEB=90°;∴AE⊥BC;∴△ABC为等腰三角形;2∵△ABC为等腰三角形;AE⊥BC;∴BE=CE=BC=×12=6;在Rt△ABE中;∵AB=10;BE=6;∴AE==8;∵AB为直径;∴∠ADB=90°;∴AE BC=BD AC;∴BD==;在Rt△ABD中;∵AB=10;BD=;∴AD==;∴sin∠ABD===.规律总结:本题考查了圆周角定理:在同圆或等圆中;同弧或等弧所对的圆周角相等;都等于这条弧所对的圆心角的一半.推论:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径.也考查了等腰三角形的判定与性质和勾股定理.4. 2015 内蒙古呼伦贝尔兴安盟;第22题7分如图;在平行四边形ABCD中;E、F分别为边AB、CD的中点;BD是对角线.1求证:△ADE≌△CBF;2若∠ADB是直角;则四边形BEDF是什么四边形证明你的结论.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:1由四边形ABCD是平行四边形;即可得AD=BC;AB=CD;∠A=∠C;又由E、F分别为边AB、CD的中点;可证得AE=CF;然后由SAS;即可判定△ADE≌△CBF;2先证明BE与DF平行且相等;然后根据一组对边平行且相等的四边形是平行四边形;再连接EF;可以证明四边形AEFD是平行四边形;所以AD∥EF;又AD⊥BD;所以BD⊥EF;根据菱形的判定可以得到四边形是菱形.解答:1证明:∵四边形ABCD是平行四边形;∴AD=BC;AB=CD;∠A=∠C;∵E、F分别为边AB、CD的中点;∴AE=AB;CF=CD;∴AE=CF;在△ADE和△CBF中;∵;∴△ADE≌△CBFSAS;2若∠ADB是直角;则四边形BEDF是菱形;理由如下:解:由1可得BE=DF;又∵AB∥C D;∴BE∥DF;BE=DF;∴四边形BEDF是平行四边形;连接EF;在 ABCD中;E、F分别为边AB、CD的中点;∴DF∥AE;DF=AE;∴四边形AEFD是平行四边形;∴EF∥AD;∵∠ADB是直角;∴AD⊥BD;∴EF⊥BD;又∵四边形BFDE是平行四边形;∴四边形BFDE是菱形.点评:本题主要考查了平行四边形的性质;全等三角形的判定以及菱形的判定;利用好E、F 是中点是解题的关键.5. 烟台市 2014 中考 -24如图;AB是⊙O的直径;延长AB至P;使BP=OB;BD垂直于弦BC;垂足为点B;点D在PC上.设∠PCB=α;∠POC=β.求证:tanα tan=.解析:连接AC先求出△PBD∽△PAC;再求出=;最后得到tanα tan=.解答:证明:连接AC;则∠A=∠POC=;∵AB是⊙O的直径;∴∠ACB=90°;∴tanα=;BD∥AC;∴∠PBD=∠A;∵∠P=∠P;∴△PBD∽△PAC;∴=;∵PB=0B=OA;∴=;∴tana tan===.点评:本题主要考查了相似三角形的判定与性质及圆周角的知识;本题解题的关键是求出△PBD∽△PAC;再求出tanα tan=.6. 2015 梧州;第25题12分如图;在正方形ABCD中;点P在AD上;且不与A、D重合;BP的垂直平分线分别交CD、AB于E、F两点;垂足为Q;过E作EH⊥AB于H.1求证:HF=AP;2若正方形ABCD的边长为12;AP=4;求线段EQ的长.考点:正方形的性质;全等三角形的判定与性质;勾股定理.所有分析: 1先根据EQ⊥BO;EH⊥AB得出∠EQN=∠BHM=90°.根据∠EMQ=∠BMH得出△EMQ∽△BMH;故∠QEM=∠HBM.由ASA定理得出△APB≌△HFE;故可得出结论;2由勾股定理求出BP的长;根据EF是BP的垂直平分线可知BQ=BP;再根据锐角三角函数的定义得出QF=BQ的长;由1知;△APB≌△HFE;故EF=BP=4;再根据EQ=EF﹣QF即可得出结论.解答: 1证明:∵EQ⊥BO;EH⊥AB;∴∠EQN=∠BHM=90°.∵∠EMQ=∠BMH;∴△EMQ∽△BMH;∴∠QEM=∠HBM.在Rt△APB与Rt△HFE中;;∴△APB≌△HFE;∴HF=AP;2解:由勾股定理得;BP===4.∵EF是BP的垂直平分线;∴BQ=BP=2;∴QF=BQ tan∠FBQ=BQ tan∠ABP=2×=.由1知;△APB≌△HFE;∴EF=BP=4;∴EQ=EF﹣QF=4﹣=.点评:本题考查的是正方形的性质;熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.7.8. 2015 北海;第25题12分如图;AB、CD为⊙O的直径;弦AE∥CD;连接BE交CD于点F;过点E作直线EP与CD的延长线交于点P;使∠PED=∠C.1求证:PE是⊙O的切线;2求证:ED平分∠BEP;3若⊙O的半径为5;CF=2EF;求PD的长.考点:切线的判定.分析: 1如图;连接OE.欲证明PE是⊙O的切线;只需推知OE⊥PE即可;2由圆周角定理得到∠AEB=∠CED=90°;根据“同角的余角相等”推知∠3=∠4;结合已知条件证得结论;3设EF=x;则CF=2x;在RT△OEF中;根据勾股定理得出52=x2+2x﹣52;求得EF=4;进而求得BE=8;CF=8;在RT△AEB中;根据勾股定理求得AE=6;然后根据△AEB∽△EFP;得出=;求得PF=;即可求得PD的长.解答: 1证明:如图;连接OE.∵CD是圆O的直径;∴∠CED=90°.∵OC=OE;∴∠1=∠2.又∵∠PED=∠C;即∠PED=∠1;∴∠PED=∠2;∴∠PED+∠OED=∠2+∠OED=90°;即∠OEP=90°; ∴OE⊥EP;又∵点E在圆上;∴PE是⊙O的切线;2证明:∵AB、CD为⊙O的直径;∴∠AEB=∠CED=90°;∴∠3=∠4同角的余角相等.又∵∠PED=∠1;∴∠PED=∠4;即ED平分∠BEP;3解:设EF=x;则CF=2x;∵⊙O的半径为5;∴OF=2x﹣5;在RT△OEF中;OE2=OF2+EF2;即52=x2+2x﹣52;解得x=4;∴EF=4;∴BE=2EF=8;CF=2EF=8;∴DF=CD﹣CF=10﹣8=2;∵AB为⊙O的直径;∴∠AEB=90°;∵AB=10;BE=8;∴AE=6;∵∠BEP=∠A;∠EFP=∠AEB=90°;∴△AEB∽△EFP;∴=;即=;∴PF=;∴PD=PF﹣DF=﹣2=.点评:本题考查了切线的判定和性质;圆周角定理的应用;勾股定理的应用;三角形相似的判定和性质;熟练掌握性质定理是解题的关键.。

几何证明(4个概念2个性质3个判定2个定理2个应用2种思想方法1个轨迹)八年级数学上册沪教版

几何证明(4个概念2个性质3个判定2个定理2个应用2种思想方法1个轨迹)八年级数学上册沪教版
逆命题为“三条边对应相等的三角形全等”,成立.故答案为①④.
2 个性质3个判定
考点05 线段的垂直平分线
7.在锐角三角形ABC内一点P,,满足PA=PB=PC,则点P是△ABC
A.三条角平分线的交点
B.三条中线的交点
C.三条高的交点
D.三边垂直平分线的交点
(D )
8.已知: 如图,QA=QB.
求证: 点Q在线段AB的垂直平分线上.
(2)区别:定义、公理、定理都是真命题,都可以作为进一步判断其
他命题真假的依据,只不过公理是最原始的依据;而命题不一定是真
命题,因而不能作为进一步判断其他命题真假的依据.
考点04 互逆定理
6. [2022·江苏无锡宜兴市二模]下列命题的逆命题成立的是
①同旁内角互补,两直线平行
①④ .

②等边三角形是锐角三角形
证明:过点Q作MN⊥AB,垂足为点C,
故∠QCA=∠QCB=90°.
在Rt△QCA 和Rt△QCB中,
∵QA=QB,QC=QC,
∴Rt△QCA≌Rt△QCB(H.L.).
∴AC=BC.
∴点Q在线段AB的垂直平分线上.
你能根据分析
中后一种添加辅
助线的方法,写
出它的证明过程
吗?
考点06 角 平 分 线
AB=CB,
∴Rt△ABE≌Rt△CBF(HL).
15.如图,点B,E,F,C在同一条直线上,AE⊥BC,DF⊥BC,
AB=DC,BE=CF.试判断AB与CD的位置关系,并证明.
A
解:AB//CD,理由如下:
∵AE⊥BC,DF⊥BC,
∴∠AEB=∠DFC=90°
B
F
∵在Rt△ABE和Rt△DCF中, AB=DC,

初一下册几何证明题(完整版)

初一下册几何证明题(完整版)

初一下册几何证明题初一下册几何证明题第一篇:初一下册几何证明题初一下册几何证明题1.已知在三角形ab中,be,f分别是角平分线,d是ef中点,若d到三角形三边b,ab,a的距离分别为x,,z,求证:x=+z证明;过e点分别作ab,b上的高交ab,b于m,n点.过f点分别作a,b上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做b上的高交b于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交a于j点.则x=do,=h,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。

又因为fq=fp,em=en.fq=2dj,en=2hd。

又因为角fq,do,en都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。

所以do=hd+jd。

因为x=do,=h,z=dj.所以x=+z。

在正五边形abde中,m、n分别是de、ea上的点,bm与n相交于点o,若∠bon=108°,请问结论bm=n是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠bon=108°时。

bm=n还成立证明;如图5连结bd、e.在△bi)和△de中∵b=d,∠bd=∠de=108°,d=de∴δbd≌δde∴bd=e,∠bd=∠ed,∠db=∠en∵∠de=∠de=108°,∴∠bdm=∠en∵∠ob+∠ed=108°,∠ob+∠od=108°∴∠mb=∠nd又∵∠db=∠ed=36°,∴∠dbm=∠en∴δbdm≌δne∴bm=n3.三角形ab中,ab=a,角a=58°,ab的垂直平分线交a与n,则角nb=3°因为ab=a,∠a=58°,所以∠b=61°,∠=61°。

沪教版初二上册《几何证明》全章复习与巩固—知识讲解(基础)

沪教版初二上册《几何证明》全章复习与巩固—知识讲解(基础)

沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习《几何证明》全章复习与巩固—知识讲解(基础)【学习目标】1.理解命题、逆命题、定理、逆定理等的含义;2.掌握证明真命题正确性的方法步骤,会举反例说明假命题的错误;掌握证明线段相等角度相等的基本方法和思路;3.理解轨迹的定义,掌握三种基本轨迹;4.能判断直角三角形全等,能应用勾股定理及其逆定理解决实际问题.【知识网络】【要点梳理】要点一、几何证明1.命题和证明(1)命题定义:判断一件事情的句子.判断为正确的命题,叫做真命题;判断为错误的命题,叫做假命题.(2)演绎证明(简称证明)从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程. 要点诠释:命题通常由题设、结论两部分组成,题设是已知的事项,结论是由已知事项推出的事项,可以写成“如果……那么……”的形式,“如果”开始的部分是题设,“那么”开始的部分是结论.2.公理和定理(1)公理:人们从长期的实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始依据.(2)定理:从公理或其他真命题出发,用推理方法证明为正确的,并能进一步作为判断其他命题真假的依据,这样的真命题叫做定理.3.逆命题与逆定理(1)在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,则这两个命题叫互逆命题. 其中一个命题叫原命题;另一个命题叫它的逆命题.(2)如果一个定理的逆命题经过证明也是定理,则这两个定理叫做互逆定理,其中一个叫另一个的逆定理.4.证明真命题的一般步骤(1)理解题意,分清命题的条件(已知)、结论(求证)(2)根据题意,画出图形,并在图中标出必要的字母或符号(3)结合图形,用符号语言写出“已知”和“求证”(4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因”)(5)依据思路,运用数学符号和数学语言条理清晰的写出证明过程(6)检查表达过程是否正确、完善要点诠释:(1)一个命题(定理)的逆命题(逆定理)并不是唯一的,这是因为一个命题的题设中可能有两个或多个条件,结论也可能不止一个;(2)逆命题的真假与原命题的真假没有关系.要点二、线段的垂直平分线和角的平分线1.线段的垂直平分线(1)线段垂直平分线的定义垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.(2)线段垂直平分线的性质定理线段垂直平分线上的点和这条线段两个端点的距离相等.如图:∵MN 垂直平分线段AB∴PA=PB(3)线段垂直平分线的性质定理的逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点诠释:线段的垂直平分线定理与逆定理往往与边相等、角相等的证明密切相关,它提供了证明边、角相等 的又一种重要的方法,在以后的学习中还会与直角三角形、角平分线、勾股定理等连在一起综合应用.2.角的平分线(1)角的平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.(2)角的平分线有下面的性质定理:①角平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点在这个角的平分线上.如图:∵OP 平分∠AOB , PD ⊥OA ,PE ⊥OB ,∴PD=PE.3.垂线的性质性质1:过一点有且只有一条直线与已知直线垂直.性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短.简称:垂线段最短.要点诠释:(1)当题目中的条件涉及到角平分线上的点与角的两边的垂直关系时,利用角的平分线性质可直接得到垂线段相等,而不必用全等三角形来证,但是在书写过程中,不要漏掉垂直关系;A B O D E P(2)已知角的平分线,有两种常用的添加辅助线的方法:一是把角沿着角平分线翻折,在这个角的两边截取相等线段,从而创设两个全等的三角形;二是过角平分线上的点向角两边做垂线段,利用角平分线的性质定理及其逆定理来解题.要点三、轨迹1.轨迹的定义把符合某些条件的所有点的集合叫做点的轨迹.要点诠释:轨迹定义包含以下两层含义:其一、轨迹图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件(也称图形的纯粹性);其二、轨迹图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上(也称图形的完备性);所谓轨迹问题的证明就是用论证的方法证明得到的轨迹符合上述两层含义.2.三条基本轨迹轨迹1:和已知线段两个端点距离相等的点的轨迹是这条线段的垂直平分线;轨迹2:到已知角的两边距离相等的点的轨迹是这个角的平分线;轨迹3:到定点的距离等于定长的点的轨迹是以定点为圆心、以定长为半径的圆.3.交轨法作图利用轨迹相交进行作图的方法叫做交轨法.如果要求作的点(图形)同时要满足两个条件时,我们通常先作出满足条件A的轨迹,然后再作出满足条件B的轨迹,两轨迹的交点则同时满足条件A和条件B.交轨法是常用的作图方法,我们在利用尺规作三角形、线段的垂直平分线、角平分线时,都运用了交轨法.要点诠释:“尺规作图”是指限用无刻度直尺和圆规来作几何图形,基本的尺规作图有如下几种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知角的平分线;(4)经过一点作已知直线的垂线;(5)作线段的垂直平分线.要点四、直角三角形1. 直角三角形全等的判定(1)直角三角形全等一般判定定理:直角三角形是特殊的三角形,一般三角形全等的判定方法也适用于直角三角形,即(SAS、ASA、SSS、AAS)(2)直角三角形全等的HL判定定理:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为:HL)综上:直角三角形全等的判定方法有SAS、ASA、SSS、AAS、HL.2.直角三角形的性质定理:直角三角形的两个锐角互余;定理:直角三角形斜边上的中线等于斜边的一半;推论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;推论:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°. 3.勾股定理定理:在直角三角形中,斜边大于直角边;勾股定理:直角三角形两条直角边的平方和,等于斜边的平方;勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形;勾股定理证明思路:面积分割法(勾股定理逆定理证明思路:三角形全等)勾股数组:如果正整数满足,那么叫做勾股数组,常见的勾股数组有:3、4、5;5、12、13;7、24、25;8、15、17.4.两点之间的距离公式如果直角坐标平面内有两点,那么A、B两点的距离为:.两种特殊情况:(1)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:(2)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:要点诠释:几何证明的分析思路:(1)从结论出发,即:根据所要证明的结论→去寻找条件.例如:要证线段相等,则需先证:①⊿全等,然后利用全等三角形性质得到线段相等;②角相等,然后利用等角对等边(前提:在同一个三角形中)③寻找中间变量,然后利用等量代换得出结论;④观察图形,看是否可以直接利用线段的垂直平分线定理或角平分线定理来得出结论;要证角相等,则需先证:①⊿全等,然后利用全等三角形性质得到角相等;②线段相等,然后利用等边对等角(前提:在同一个三角形中)③寻找中间变量,然后利用等量代换得出结论;④观察图形,看是否可以直接利用角平分线逆定理来得出结论;要证垂直,则需先证:①两条直线所夹的角为90°;②先证等腰三角形,然后利用“三线合一”来得出结论(前提:在同一个三角形中);要证三角形全等,则需先要从已知找条件,看要判定全等还却什么条件,然后再去寻找.(2)从已知出发,即:根据所给条件、利用相关定理→直接可得的结论.例如:已知线段的垂直平分线→线段相等;已知角平分线→到角的两边距离相等或角相等;已知直线平行→角相等;已知边相等→角相等(前提:在同一三角形中).【典型例题】类型一、命题与证明1.下列语句不是命题的是()A、两点之间线段最短B、不平行的两条直线有一个交点C、x与y的和等于0吗?D、对顶角不相等。

2023年高考数学考点复习——空间几何中的平行证明(解析版)

2023年高考数学考点复习——空间几何中的平行证明(解析版)

2023年高考数学考点复习——空间几何中的平行证明考点一、线线平行例1、如图,在四面体ABCD 中,E ,F 分别为DC ,AC 的中点,过EF 的平面与BD ,AB 分别交于点G ,H .求证://EF GH证明:因为E ,F 分别为DC ,AC 的中点,所以//AD EF ,因为AD ⊄平面EFHG ,EF ⊂平面EFHG所以//AD 平面EFHG又平面EFHG ⋂平面ABD HG =,AD ⊂平面ABD所以//AD GH ,所以//EF GH .例2、如图,在四棱锥S -ABCD 中,底面ABCD 是菱形,60BAD ∠=︒,SAB ∆为等边三角形,G 是线段SB 上的一点,且SD //平面GAC .求证:G 为SB 的中点证明:证明:如图,连接BD 交AC 于点E ,则E 为BD 的中点,连接GE ,∵//SD 平面GAC ,平面SDB 平面=GAC GE ,SD ⊂平面SBD ,∵//SD GE ,而E 为BD 的中点,∵G 为SB 的中点.例3、在正四棱锥P ABCD -中,,E F 分别是,AB AD 的中点,过直线EF 的平面α分别与侧棱,PB PD 交于点,M N ,求证://MN BD证明:证明:在ABD △中,因为E ,F 分别是,AB AD 的中点,所以EF BD ∕∕且12EF BD =, 又因为EF ⊄平面PBD ,BD ⊂平面PBD ,所以//EF 平面PBD因为EF ⊂平面,αα⋂平面PBD MN =,所以//EF MN ,所以//MN BD .跟踪练习 1、如图,四边形ABCD 和三角形ADE 所在平面互相垂直,//AB CD ,AB BC ⊥,60DAB ∠=︒,4AB AD ==,AE DE ⊥,AE DE =,平面ABE 与平面CDE 交于EF ,求证://CD EF证明:证明:因为//AB CD ,AB平面ABE ,CD ⊄平面ABE ,所以//CD 平面ABE , 因为平面ABE 平面CDE EF =,CD ⊂平面CDE ,所以//CD EF .2、在四棱锥P ﹣ABCD 中,底面ABCD 为平行四边形E ,F 分别为BC ,AD 的中点,过EF 的平面与平面PCD 交于M ,N 两点,求证://AB MN答案:证明见解析证明:∵底面ABCD 为平行四边形,E ,F 分别为BC ,AD 的中点,∵EF //CD ,∵EF //AB .EF ⊄平面PCD ,CD ⊂平面PCD ,所以//EF 平面PCD ,过EF 的平面与平面PCD 交于M ,N 两点,∵MN //EF ,∵AB //MN .3、如图,三棱锥P ABC -中,∵ABC 为正三角形,点1A 在棱PA 上,1B 、1C 分别是棱PB 、PC 的中点,直线11A B 与直线AB 交于点D ,直线11A C 与直线AC 交于点E ,求证://DE BC证明:∵1B 、1C 分别是棱PB 、PC 的中点,∵11//B C BC ,∵11B C ⊄平面BCDE ,BC ⊂平面BCDE ,∵11//B C 平面BCDE ,∵11B C ⊂平面11B C DE ,平面BCDE ⋂平面11B C DE DE =,∵11//B C DE ,则//DE BC ;4、如图,四棱锥P ABCD -的底面是边长为8的正方形,点G.E.F .H 分别是棱PB .AB .DC .PC 上共面的四点,//BC 平面GEFH.证明://GH EF证明:∵//BC 平面GEFH ,又∵BC ⊂平面PBC 且平面PBC平面GEFH GH =,∵//BC GH .又∵//BC 平面GEFH ,又∵BC ⊂平面ABCD 且平面ABCD平面GEFH EF =,∵//BC EF ,∵//EF GH .5、如图,AE ⊥平面ABCD ,//BF 平面ADE ,//CF AE ,求证://AD BC证明:依题意//CF AE ,CF ⊄平面ADE ,AE ⊂平面ADE ,∵//CF 平面ADE ,又//BF 平面ADE ,BF CF F ⋂=,∵平面//BCF 平面ADE ,∵平面BCF ⋂平面ABCD AD =,平面ADE平面ABCD BC =,∵//AD BC ;考点二、 线面平行例1、如图,正三棱柱ABC ﹣A 1B 1C 1中D 是AC 的中点,求证:B 1C ∵平面A 1BD证明:设AB 1与A 1B 相交于点P ,连接PD ,则P 为AB 1中点,∵D 为AC 中点,∵PD ∵B 1C ,又∵PD ∵平面A 1BD ,B 1C ⊄平面A 1BD ,∵B 1C ∵平面A 1BD例2、如图,在四棱锥A BCDE -中,底面BCDE 为矩形,M 为CD 中点,连接,BM CE 交于点,F G 为ABE △的重心,证明://GF 平面ABC证明:延长EG 交AB 于N ,连接CN ,因为G 为ABE △的重心,则N 为AB 的中点,且2EG GN =, 因为//CM BE ,所以2EF BE FC CM ==,所以2EF EG FC GN==,因此//GF NC , 又因为GF ⊄平面ABC ,NC ⊂平面ABC ,所以//GF 平面ABC ;例3、如图,四棱锥C ABED -中,四边形ABED 是正方形,若G ,F 分别是线段EC ,BD 的中点.(1)求证://GF 平面ABC .证明:由四边形ABED 为正方形可知,连接AE 必与BD 相交于中点F ,又G 是线段EC 的中点,故//GF AC ,GF ⊄面ABC ,AC ⊂面ABC ,//GF ∴面ABC ;跟踪练习1、如图,在直三棱柱111ABC A B C -中,底面ABC 是等边三角形,D 是AC 的中点,证明:1//AB 平面1BC D证明:直三棱柱111ABC A B C -中,设1B C 与1BC 交于点E ,连接DE ,四边形11BCC B 是矩形,则E 为1B C 的中点,因D 是AC 的中点,所以1//DE AB ,又1AB ⊄平面1BC D ,DE ⊂平面1BC D ,所以1//AB 平面1BC D . 2、《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵111ABC A B C -中,,11AA AB AC ===,M ,N 分别是1CC ,BC 的中点,点P 在线段11A B 上,若P 为11A B 的中点,求证://PN 平面11AAC C证明:证明:取11A C 的中点H ,连接PH ,HC .在堑堵111ABC A B C -中,四边形11BCC B 为平行四边形,所以11//B C BC 且11B C BC =.在111A B C △中,P ,H 分别为11A B ,11A C 的中点,所以11//PH B C 且1112PH B C =.因为N 为BC 的中点,所以12NC BC =, 从而NC PH =且//NC PH , 所以四边形PHCN 为平行四边形,于是//PN CH .因为CH ⊂平面11AC CA ,PN ⊄平面11AC CA ,所以//PN 平面11AACC .3、如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA =,1AB =,E ,M ,N 分别是BC ,1BB ,1A D 的中点,证明://MN 平面ABCD证明:连接1,ME B C ,,E M 分别为1,BC BB 中点,11//2ME B C ∴; 由直四棱柱特点知:11//A D B C ,11//2ME A D ∴,又N 为1A D 中点,//ME ND ∴, ∴四边形MNDE 为平行四边形,//MN DE ∴,又DE ⊂平面ABCD ,MN ⊄平面ABCD ,//MN ∴平面ABCD ;4、如图,在四棱锥P ABCD -中,四边形ABCD 是边长为2的菱形,M 是AB 的中点,N 是PD 的中点,PA AB =,求证://MN 平面PBC证明:如图∵,取PC 的中点Q ,连接BQ ,NQ ,因为N 是PD 的中点,所以//NQ CD 且12NQ CD =.因为四边形ABCD 是菱形,M 是AB 的中点,所以//BM CD 且12BM CD =, 从而//BM NQ 且BM NQ =,所以四边形BMNQ 是平行四边形,从而//MN BQ .又MN ⊄平面PBC ,BQ ⊂平面PBC ,所以//MN 平面PBC . 5、如图,已知四边形ABCD 和BCEG 均为直角梯形,//AD BC ,//CE BG ,且2BCD BCE π∠=∠=,222BC CD CE AD BG =====,)求证://AG 平面BDE答案:证明见解析证明:证明:过G 作GN CE ⊥于N ,交BE 于M ,连接DM ,如图所示:因为BC CE ⊥,且2CE BG =,所以N 为CE 中点,所以MG MN =,MNBC DA ,12MN AD BC ==, 所以MG AD ,MG AD =,所以四边形ADMG 为平行四边形,所以AG DM ,又DM ⊂平面BDE ,AG ⊄平面BDE ,所以AG 平面BDE .6、在四棱锥P —ABCD 中,AB //CD ,过CD 的平面分别交线段P A ,PB 于M ,N ,E 在线段DP 上(M ,N ,E 不同于端点)求证:CD //平面MNE证明:证明:∵//AB CD ,AB ⊂平面ABP ,CD ⊄平面ABP ∵//CD 平面ABP又∵CD ⊂平面CDMN ,平面CDMN 平面ABP MN =∵//CD MN又∵MN ⊂平面MNE ,CD ⊄平面MNE ∵//CD 平面MNE7、如图,在多面体ABCDEF 中,矩形BDEF 所在平面与正方形ABCD 所在平面垂直,1AB =,点M 为AE 的中点,求证://BM 平面EFC证明:连接AC 交BD 于点N .连接MN .因为四边形ABCD 是正方形,所以N 为AC 的中点,由于M 为AE 的中点,所以//MN CE , 又因为MN ⊄平面CEF ,CE ⊂平面CEF ,所以//MN 平面CEF ,易知//BN EF ,BN ⊄平面CEF ,EF ⊂平面CEF ,所以//BN 平面CEF ,因为MN BN N ⋂=,BN ⊂平面BMN ,MN ⊂平面BMN ,所以平面//BMN 平面CEF .又因为BM ⊂平面BMN ,所以//BM平面EFC ;8、在四棱锥P ABCD -中,底面ABCD 为梯形,//AB CD ,22AB CD ==,若Q 为AB 的中点,求证://DQ 平面PBC证明:∵在梯形ABCD 中,//AB CD ,22AB CD ==,Q 为AB 的中点,所以//BQ CD 且BQ CD =,∵四边形BCDQ 为平行四边形,所以//DQ BC ,∵BC ⊂平面PBC ,DQ ⊄平面PBC ,所以//DQ 平面PBC .9、如图所示,四面体P ABC 中,E ,F 分别为AB ,AC 的中点,过EF 作四面体的截面EFGH 交PC 于点G ,交PB 于点H ,证明:GH /平面ABC证明:∵E ,F 分别为AB ,AC 的中点,∵EF ∵BC ,又∵EF ∵平面PBC ,BC ∵平面PBC ,∵EF ∵平面PBC ,∵EF ∵平面EFGH ,平面EFGH ∩平面PBC =GH ,∵EF ∵GH ,又∵GH ∵平面ABC ,EF ∵平面ABC ,∵GH ∵平面ABC ;10、如图所示,在三棱柱111ABC A B C -中,D 为AC 的中点,求证:1//AB 平面1BC D证明:证明:如图,连接1B C 交1BC 于O ,连接OD ,∵四边形11BCC B 是平行四边形.∵点O 为1B C 的中点.∵D 为AC 的中点,∵OD 为1AB C 的中位线,∵1//OD AB .∵OD ⊂平面1BC D ,1AB ⊄平面1BC D ,∵1//AB 平面1BC D .11、如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PAB △为正三角形,且侧面PAB ⊥底面ABCD ,M 为PD 的中点,求证://PB 平面ACM答案:证明见解析证明:证明:连接BD ,与AC 交于O ,在PBD △中,,O M 分别为,BD PD 的中点,//BP OM ∴,BP ⊄平面,ADE OM ⊂平面CAM ,//BP ∴平面CAM ;12、如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =,证明:1//CB 平面1A EF答案:证明见解析证明:连接1AB 交1A E 于点G ,连接FG ,因为四边形11ABB A 为菱形,则11//AA BB 且11AA BB =, E 为1BB 的中点,则11//B E AA 且1112B E AA =,故11112B G B E AG AA ==, 所以,1B G CF AG AF=,1//CB FG ∴, 1CB ⊄平面1A EF ,FG ⊂平面1A EF ,因此,1//CB 平面1A EF ;考点三、 面面平行例1、如图所示,四棱柱1111ABCD A B C D -的侧棱与底面垂直,12,,AC AA AD DC AC BD ====交于点E ,且,E F 分别为1,AC CC的中点,2BE =,求证:平面11//B CD 平面1A BD证明:如图,连接1AD ,设11AD A D H ⋂=,则H 为1AD 的中点,而E 为AC 的中点,连接EH ,则EH为1ACD △的中位线,所以1//EH CD ,又EH ⊄平面11B CD ,1CD ⊂平面11B CD ,所以//EH 平面11B CD ,又因为侧棱与底面垂直,所以1111//,=BB DD BB DD ,所以四边形11BB D D 为平行四边形,所以11//B D BD ,BD ⊄平面11B CD ,11B D ⊂平面11B CD ,所以//BD 平面11B CD ,又BD EH E ⋂=,,BD EH ⊂平面1A BD ,所以平面11//B CD 平面1A BD .例2、如图,在三棱锥P ABC -中,PAB △是正三角形,G 是PAB △的重心,D ,E ,H 分别是PA ,BC ,PC 的中点,点F 在BC 上,且3BF FC =,求证:平面//DFH 平面PGE证明:连结BG ,因为PAB △是正三角形,G 是PAB △的重心,D 为PA 的中点,所以BG 与GD 共线,且2BG GD =,因为E 为BC 的中点,3BF FC =,所以F 是CE 的中点, 所以2BG BE CD EF==,所以//GE DF , 又GE平面PGE ,DF ⊄平面PGE ,所以//DF 平面PGE , 因为H 是PC 的中点,所以FH //PE ,因为FH ⊄平面PGE ,PE ⊂平面PGE ,所以//FH 平面PGE ,因为FH DF F ⋂=,,FH DF ⊂平面DFH ,所以平面//DFH 平面PGE ;例3、如图,在多面体ABCDEF 中,ABCD 是正方形,2//AB DE BF BF DE ==,,,M 为棱AE 的中点,求证:平面//BMD 平面EFC证明:如图,连接AC ,交BD 于点N ,∵N 为AC 的中点,连接MN ,由M 为棱AE 的中点,则//MN EC .∵MN ⊄面EFC ,EC ⊂面EFC ,∵//MN 平面EFC .∵//BF DE BF DE =,,∵四边形BDEF 为平行四边形,∵//BD EF .又BD ⊄平面EFC ,EF ⊂平面EFC ,∵//BD 平面EFC ,又MNBD N =, ∵平面//BMD 平面EFC .跟踪练习1、如图,在几何体ABCDE 中,四边形ABCD 是矩形,2AB BE EC ===,G ,F ,M 分别是线段BE ,DC ,AB 的中点,求证:平面//GMF 平面ADE证明:如图,因为AB中点为M,连接MG,∥,又G是BE的中点,可知GM AE又AE⊆平面ADE,GM⊄平面ADE,所以GM平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF AD.又AD⊆平面ADE,MF⊄平面ADE,所以MF平面ADE.⋂=,GM⊆平面GMF,MF⊆平面GMF,又因为GM MF M所以平面GMF平面ADE2、如图,四边形ABCD是边长为BB1=DD1=2,E,F分别是AD1,AB1的中点,证明:平面BDEF∵平面CB1D1证明:证明:连接AC ,交BD 于点O ,连接OE ,则O 为AC 的中点,∵E 是1AD 的中点,1//OE CD ∴OE ⊂平面BDEF ,1CD ⊄平面BDEF ,所以1//CD 平面BDEF又F 是1AB 的中点11//EF B D ∴EF ⊂平面BDEF ,11B D ⊄平面BDEF ,所以11//B D 平面BDEF又111,CD B D ⊂平面11CB D ,1111B D CD D ⋂=, 所以平面//BDEF 平面11CB D .3、如图,已知矩形ABCD 所在的平面垂直于直角梯形ABPE 所在的平面,且EP =2BP =,1AD AE ==,AE EP ⊥,//AE BP ,F ,G 分别是BC ,BP 的中点,求证:平面//AFG 平面PEC证明:∵F ,G 分别是BC ,BP 的中点,∵FG CP ,且FG ⊄平面CPE ,则FG ∥平面CPE ,1BG PG AE ===,且//AE BP ,AE EP ⊥∵四边形AEPG 是矩形,则EP AG ∥,且AG ⊄平面CPE ,则AG平面CPE又GA GF G ⋂=,故平面//AFG 平面PEC4、如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,AD //BC ,P ,Q 是AB ,CD 的中,点M ,N 分别是SB ,CB 的中点,求证∵平面AMN //平面SCD答案:证明见解析证明:因为M 、N 分别是SB ,CB 的中点,所以//MN SC ,MN ⊄面SCD ,SC ⊂面SCD ,所以//MN 面SCD ,又//AD CN 且AD CN =,所以ADCN 为平行四边形,所以//AN DC ,AN ⊄面SCD ,DC ⊂面SCD ,所以//AN 面SCD ,又AN MN N =,,AN MN ⊂面AMN ,所以面//AMN 面SCD ;5、如图,在三棱锥P ABC -中,PAB △是正三角形,G 是PAB △的重心,,,D E H 分别是,,PA BC PC 的中点,点F 在BC 上,且3BF FC =,求证:平面//DFH 平面PGE证明:证明:连结BG ,由题意可得BG 与GD 共线,且2BG GD =,∵E 是BC 的中点,3BF FC =,∵F 是CE 的中点,∵2BG BE GD EF==,∵//GE DF ,GE 平面PGE ;DF ⊄平面PGE ;∵//DF 平面PGE , ∵H 是PC 的中点,∵//FH PE ,PE ⊂平面PGE ,FH ⊄平面PGE ;∵//FH 平面PGE , ∵DF FH F =,DF ⊂平面DEF ,FH ⊂平面DEF ,∵平面//DFH 平面PGE ; 考点四 平行中的动点例1、直三棱柱111ABC A B C -所有棱长都为2,在AB 边上是否存在一点E ,使1//AC 平面1CEB ,若存在给出证明,若不存在,说明理由证明:存在,E 是AB 的中点,直三棱柱111ABC A B C -中,连接1BC 交1B C 于点O ,如图:则O 为1BC 中点,连接OE ,而E 为AB 的中点,则1//OE AC ,又1AC ⊄平面1CEB ,OE ⊂平面1CEB ,所以1//AC 平面1CEB ;例2、如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90ACB ∠=︒,CA CB ==,1AA =D 是棱11A B 的中点,E 在棱1BB 上,且1AD EC ⊥,在棱BC 上是否存在点F ,满足//EF 平面1ADC ,若存在,求出BF 的值答案:存在,BF =证明:因为1AA ⊥面ABC ,故三棱柱111ABC A B C -为直三棱柱.故1AA ⊥面111A B C ,而1C D ⊂面111A B C ,故11AA C D ⊥,因为CA CB ==,故1111C A C B ==112B A =,因为D 是棱11A B 的中点,故111C D A B ⊥,因为1111AA A B A =, ∵直线1C D ⊥平面ADE ,而AD ⊂平面ADE , ∵1C D AD ⊥,又1AD EC ⊥,111C D C E C ⋂=,∵AD ⊥平面1DEC ,而DE ⊂平面1DEC ,∵AD DE ⊥,在矩形11ABB A 中,11ADA DEB ∠=∠,11AA D DB E ∠=∠,故11ADA DEB ∠,故1111AA A D DB EB =11EB =即1=3EB ,故12BE EB =. 过E 作EG DE ⊥,交AB 于G ,取AB 的中点为L ,连接,DL CL ,则1DEB EGB ∠=∠,而190DB E EBG ∠=∠=︒,故1EBG DB E , 所以11BG EB B E B D =31=,所以23BG =.在矩形11ABB A 中,因为11ADA DEB ∠=∠,故1ADA EGB ∠=∠,而1ADA DAL ∠=∠,所以EGB DAL ∠=∠,所以//AD EG ,而AD ⊂平面1ADC ,EG ⊄平面1ADC ,所以//EG 平面1ADC .在BC 上取点F ,使233BF BC ==,连GF , 因为1BL =,故23BG BL =,故//GF CL . 在矩形11ABB A 中,因为,D L 为所在棱的中点,故11//,,DL AA DL AA =而1111//,,CC AA CC AA =故11//,CC DL CC DL =,故四边形1C DLC 为平行四边形,故1//DC CL ,故1//GF DC ,而1C D ⊂平面1ADC ,FG ⊄平面1ADC ,所以//FG 平面1ADC .因为GF EG G ⋂=,故平面以//EGF 平面1ADC ,因为EF ⊂平面EGF ,故//EF 平面1ADC .例3、如图,已知AD ⊥平面ABC ,EC ⊥平面ABC ,12AB AC AD BC ===,设P 是直线BE 上的点,当点P 在何位置时,直线//DP 平面ABC ?请说明理由证明:当点P 是BE 的中点时,//DP 平面ABC .理由如下:如下图,取BC 的中点O ,连接AO 、OP 、PD ,则//OP EC 且12OP EC =,因为AD ⊥平面ABC ,EC ⊥平面ABC ,所以//AD EC . 又12AD EC =,所以//OP AD 且OP AD =, 所以四边形AOPD 是平行四边形,所以//DP AO .因为AO ⊂平面ABC ,DP ⊄平面ABC ,所以//DP 平面ABC ;跟踪练习1、在三棱锥S ABC -中,AB ⊥平面SAC ,AS SC ⊥,1AB =,AC =,E 为AB 的中点,M 为CE 的中点,在线段SB 上是否存在一点N ,使//MN 平面SAC ?若存在,指出点N 的位置并给出证明,若不存在,说明理由证明:存在点N 为SB 上的靠近S 的四等分点即14SN SB =,//MN 平面SAC , 证明如下:取AE 的中点F ,连接FN ,FM ,则//MF AC ,因为AC ⊂平面SAC ,MF ⊄平面SAC ,所以//MF 平面SAC , 因为1124AF AE AB ==,14SN SB =, 所以FN //SA ,又SA ⊂平面SAC ,FN ⊄平面SAC ,所以//FN 平面SAC ,又MF FN F =,,MF FN ⊂平面MNF ,所以平面//MNF 平面SAC ,又MN ⊂平面MNF ,所以//MN 平面SAC .2、在如图所示的五面体ABCDEF 中,∵ADF 是正三角形,四边形ABCD 为菱形,23ABC π∠=,EF //平面ABCD ,AB =2EF =2,点M 为BC 中点,在直线CD 上是否存在一点G ,使得平面EMG //平面BDF ,请说明理由证明:连接AC 交BD 于点O ,连接OM ,OF ,取CD 的中点G ,连接GM ,GE因为EF //平面ABCD ,EF ⊂平面ABEF ,平面ABEF ∩平面ABCD =AB ,所以EF //AB因为OM //AB //EF ,12OM AB EF ==,所以四边形OMEF 是平行四边形,所以OF //EM 因为EM ⊄平面BDF ,OF ⊂平面BDF ,所以EM //平面BDF因为点G 与点M 分别为CD 与BC 的中点,所以GM //BD因为GM ⊄平面BDF ,BD ⊂平面BDF ,所以GM //平面BDF而GM ∩EM =M ,平面EMG //平面BDF3、在长方体1111ABCD A B C D -中,已知AB AD =,E 为AD 的中点,)在线段11B C 上是否存在点F ,使得平面1//A AF 平面1ECC ?若存在,请加以证明,若不存在,请说明理由证明:存在,当点F 为线段11B C 的中点时,平面1//A AF 平面1ECC .证明:在长方体1111ABCD A B C D -中,11//AA CC ,11//AD B C .又因为1CC ⊂平面1ECC ,1AA ⊄平面1ECC ,所以1//AA 平面1ECC .又E 为AD 的中点,F 为11B C 的中点,所以1//AE FC ,且1AE FC =.故四边形1AEC F 为平行四边形,所以1//AF EC ,又因为1EC ⊂平面1ECC ,AF ⊄平面1ECC ,所以//AF 平面1ECC .又因为1AF AA A =,1AA ⊂平面1A AF ,AF ⊂平面1A AF ,所以平面1//A AF 平面1ECC .4、如图所示,在三棱柱ABC ﹣A 1B 1C 1中,平面ACC 1A 1∵平面ABC ,AA 1∵AC ,D ,D 1分别为AC ,A 1C 1的中点且AD =AA 1,在棱AA 1上找一点M ,使得1//D M 平面1DBC ,并说明理由答案:M 与A 重合时,1//D M 面1DBC ,理由见解析证明:当M 与A 重合时,D 1M ∵面DBC 1,理由如下:∵D 1C 1∵AD ,且D 1C 1=AD ,∵四边形D 1C 1DA 为平行四边形,∵D 1A ∵C 1D ,因为C 1D ∵面BDC 1,∵D 1M ∵面DBC 1.5、如图,在三棱锥P ABC -中,PA ⊥底面ABC ,ABC 是正三角形,E 是棱AB 的中点,如1AE =,在平面PAC 内寻找一点F 使得//BF 平面PEC ,并说明理由答案:答案见解析.证明:延长AC 至点G ,使得AC CG =,延长AP 至点H ,使得AP PH =,连接GH ,在直线GH 上任取一点F ,则点F 满足BF ∥平面PEC .理由如下: E 是线段AB 的中点,C 是线段AG 的中点,CE ∴是ABG 的中位线,∴BG CE ∥,BG ∴∥平面PEC .同理HG平面PEC , 又BG HG G =,∴平面BHG平面PEC , BF ⊂平面BHG ,BF ∴∥平面PEC .(注:若此题点F 直接取H 或G ,理由充分,给6分)6、已知四棱柱1111ABCD A B C D -的底面是边长为2的菱形,且BC BD =,1DD ⊥平面ABCD ,11AA =,BE CD ⊥于点E ,试问在线段11A B 上是否存在一点F ,使得//AF 平面1BEC ?若存在,求出点F 的位置;若不存在,请说明理由;证明:当F 为线段11A B 的中点时,//AF 平面1BEC .下面给出证明:取AB 的中点G ,连接EG ,1B G ,则1//FB AG ,且1FB AG =,所以四边形1AGB F 为平行四边形,所以1//AF B G .因为BC BD =,BE CD ⊥,所以E 为CD 的中点,又G 为AB 的中点,//AB CD ,AB CD =,所以//BG CE ,且BG CE =, 所以四边形BCEG 为平行四边形,所以//EG BC ,且EG BC =,又11//BC B C ,11BC B C =, 所以11//EG B C ,且11EG B C =,所以四边形11EGB C 为平行四边形, 所以11//B G C E ,所以1//AF C E ,又AF ⊄平面1BEC ,1C E ⊂平面1BEC ,所以//AF 平面1BEC ,7、在正三棱柱111ABC A B C -中,已知12,3AB AA ==,M ,N 分别为AB ,BC 的中点,P 为线段1CC 上一点.平面1ABC 与平面ANP 的交线为l ,是否存在点P 使得1//C M 平面ANP ?若存在,请指出点P 的位置并证明;若不存在,请说明理由证明:当2CP =时,1//C P 平面ANP证明如下:连接CM 交AN 于点G ,连接GP ,因为12CG CP GM PC ==,所以1//C M GP 又∵GP ⊂平面ANP ,1C M ⊄平面ANP ∵1C M 平面ANP。

八年级数学几何证明题复习技巧(含的答案).doc

八年级数学几何证明题复习技巧(含的答案).doc

类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分
线的性质、等腰三角形的判定与性质等也经常用到。
例 1. 已知:如图 1 所示,
A
E D
中, C 90 ,AC BC,AD DB,AE CF 。求证: DE= DF
CF
B
图1
分析: 由
是等腰直角三角形可知,
1+2= 2-0= 1+2= 4+1= 2+2= 2-0= 1-1= 2
+2= 2-0= 1-0= 3+0= 4-2= 2-0= 3-0= 0+1
=
4-1=
4+1=
3-1= 4-3=
2-0=
3-1=
1+3=
2-0=
1-0= 3+0= 1+2= 5-4= 1-1= 2+0=
3-
1= 2-0=
0+1= 1+4=
( 2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结 论继续推敲,如此逐步往上逆求,直到已知事实为止;
( 3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考 问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3-2=
3-0= 4-3=
5-2= 5+0=
家长签名

2. 分析: 本题采用“截长补短”的手法。 “截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相 等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。

几何证明举例复习

几何证明举例复习

对应练习: 综训 P129 6题
角平分线定理
定理:
角平分线上的点到角两边的距离相等。
逆定理: 在角的内部,到角两边距离相等的点在角的平分线上。 例题: 综训127页,例4
等腰三角形相关定理:
判定定理: 等角对等边 性质定理: (1)等边对等角 (2)三线合一 推论: (1)等边三角形的每个角都等于60º (2)直角三角形中,30º 角所对的直角边等于 斜边的一半。 例题: 综训127页,例3
几何证明举例复习
知识回顾 全等三角形相关定理:
(1)AAS定理,HL定理 (2)全等三角形的对应高相等, 对应中线、对应角平分线相等。(逆定理)
例题: 求证:有两边和其中一边上的高对应相等的两个三 角形全等。
对应练理: 线段垂直平分线上的点到线段两个端点的距离相等。 逆定理: 到线段两端点距离相等的点在这条线段的垂直平分线上。 例题: 求证:△ABC三边的垂直平分线相交于一点。
对应练习:
1、如图,△ABC中,∠ACB=90°, ∠A=30°CD⊥AB,AB=4,则BC= 2 ∠BCD= 30° BD= 1 B 2、如图,∠C=90°,D是CA的 B 延长线上一点, ∠BDC=15 °, 1 且AD=AB,则BC = AD C 2
C
D
A
D A
3、等腰三角形一腰上的高等于腰长的一半,则顶 角的度数是(C ) (A)30° (B)150° (C)30°或 150° (D)60°或120°
随堂练习:
综训 P130 综合训练 课本习题变式 1--7题


思考: 本节课你有什么收获?
作业:
A组 综合能力测试:10,11题 B组: 综合能力测试:21,22题

选修4-1《几何证明选讲》综合复习

选修4-1《几何证明选讲》综合复习

第1题图 第6题图第9题图 选修4-1《几何证明选讲》综合复习一、选择题:本大题共10小题,每小题5分,共50分.1.如图4所示,圆O 的直径AB =6,C 为圆周上一点,BC =3过C 作 圆的切线l ,过A 作l 的垂线AD ,垂足为D ,则∠DAC =( ) A .15︒ B .30︒ C .45︒ D .60︒2.在Rt ABC ∆中,CD 、CE 分别是斜边AB 上的高和中线,该图中共有x 个三角形与ABC ∆相似,则x =( ) A .0 B .1 C .2 D .33.一个圆的两弦相交,一条弦被分为12cm 和18cm 两段,另一弦被分为3:8,则另一弦的长为( ) A .11cm B .33cm C .66cm D .99cm4.如图,在ABC ∆和DBE ∆中,53AB BC AC DB BE DE ===,若ABC ∆与 DBE ∆的周长之差为10cm ,则ABC ∆的周长为( ) A .20cm B .254cm C .503cm D .25cm 5.O 的割线PAB 交O 于,A B 两点,割线PCD 经过圆心,已知226,12,3PA PO AB ===,则O 的半径为( )A .4 B.6C.6D .8 6.如图,AB 是半圆O 的直径,点C 在半圆上,CD AB ⊥于点D , 且DB AD 3=,设COD θ∠=,则2tan 2θ=( )A .13B .14C.4- D .37.在ABC ∆中,,D E 分别为,AB AC 上的点,且//DE BC ,ADE ∆的面积是22cm ,梯形DBCE 的面积为26cm ,则:DE BC 的值为( )A. B .1:2 C .1:3 D .1:4 8.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作( )个. A .2 B .3 C .4 D .5 9.如图甲,四边形ABCD 是等腰梯形,//AB CD .由4个这样的 等腰梯形可以拼出图乙所示的平行四边形, 则四边形ABCD 中A ∠度数为 ( )A .30︒B .45︒C .60︒D .75︒10.如图,为测量金属材料的硬度,用一定压力把一个高强度钢珠 压向该种材料的表面,在材料表面留下一个凹坑,现测得凹坑 直径为10mm ,若所用钢珠的直径为26 mm ,则凹坑深度为( ) A .1mm B .2 mm C .3mm D .4 mmA B CDE第4题图∙第 14 1题图O CDBA第12题图二、填空题:本大题共14小题,每小题5分,共70分.把答案填在题中横线上.11.如图,在△ABC 中,AB =AC ,∠C =720,⊙O 过A 、B 两点且 与BC 相切于点B ,与AC 交于点D ,连结BD , 若BC =15-,则AC =12.如图,AB 为O 的直径,弦AC 、BD 交于点P , 若3,1AB CD ==,则sin APD ∠=13.如图,EF 是O 的直径,MN 是O 的弦,10,EF cm =8MN cm =,则E F、两点到直线MN 的距离之和等于__________(第13题图) (第14题图)14.如图,1O 过O 的圆心O ,与O 交于A B 、两点,C 在O 上,CB 延长线交1O 于点D ,CO 延长线交1O 于E ,108EDC ∠= ,则C ∠=__________15.相交两圆1O 与2O 的公共弦长3AB =,延长AB 到P 作PC 切1O 于C ,PD 切2O 于D ,若2PC =,则PD =__________16.如图,AB 的延长线上任取一点C ,过C 作圆的切线CD ,切点为D ,ACD ∠的平分线交AD 于E ,则CED ∠=__________(第16题图) (第17题图)17.如图,AB 是O 的直径,D 是O 上一点,E 为 BD的中点,O 的弦AD 与BE 的延长线相交于C ,若18,AB =12,BC =则AD =__________18.如图,AD CE 、分别是ABC的两条高,则 (1) A E D C 、、、四点__________(是否共圆) (2) BDE __________BAC(∽,≌),为什么?(3) 10,AC =4sin 5B =,则DE =__________ 19.如图,PC 是O 的切线, C 为切点,PAB 为割线,4,PC =8,PB =30B ∠= ,则BC =__________(第19题图) (第20题图)20.如图ABC 的外接圆的切线AD 交BC 的延长线于D ,若1,AB =AD =30ADB ∠= ,则ABCACDS S = __________.21.如图,PQ 为半圆O 的直径,A 为以OQ 为直径的半圆A 的圆心,O 的弦PN 切A 于点N ,8,PN =则A 的半径为__________(第21题图) (第22题图)22.如图ABC中,D 是AB 的一个三等分点,//DE BC ,//EF BC ,2AF =,则AB =__________ 23.如图,在ABC中,AD 是BC 边上中线,AE 是BC 边上的高,DAB DBA ∠=∠,18AB =,12BE =,则CE =__________.(第23题图)(第24题图)A CP D OE F B第26题图 第25题图第27题图C24.如图,AD 是ABC 的高,AE 是ABC 外接圆的直径,圆半径为5,4AD =,则AB AC = __________三、解答题:本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤. 25.(本小题满分8分)如图:,EB EC 是O 的两条切线,,B C 是切点,,A D 是 O 上两点,如果46,32E DCF ∠=︒∠=︒,试求A ∠的度数.26.(本小题满分10分)如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE AC =,DE 交AB 于点F ,且42==BP AB ,求PF 的长度.27.(本小题满分12分)如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF EF =;(2)求证:PA 是O 的切线;(3)若FG BF =,且O 的半径长为求BD 和FG 的长度.。

初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何证明的基本方法(1)一、常用定理梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。

塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。

角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD,当且仅当A,B ,C ,D 四点共圆时取等号.斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•BC PC +AC 2•BCBP -BP •PC 。

几何证明初步复习

几何证明初步复习

A
D E B C
探究点二:
1、求证:角平分线上的点到这个角两边的距离相等。
2、 已 知 : 如 图 , A B C A D C 9 0 , A B A D , 点 E 在 AC 上 , 求 证 : EB ED
D
A E
C
B
巩固检测:
1、 B D 是 A B C 的 平 分 线 , D E A B 于 E , S A B C 3 6 cm , A B 1 8 cm ,
6、几何证明的步骤:________________ 7、三角形内角和定理:_____________________ 推论1:______________________ 推论2:__________________________
8、三角形全等的判定方法:________________
9、线段垂直平分线的性质及其逆定理: _____________
D C E
B
A
2、 如 图 所 示 , 在 A B C 中 , A B A C , 在 A B 上 取 点 D , 在 A C的 延 长 线 上 取 点 E , 使 B D C E , 连 接 D E 交 B C 于 点 G 求 证 : DG EG
A
D B G C
E
3、 如 图 所 示 , 在 A B C 中 , A B = A C , D E 是 A B 的 垂 直 平 分 线 , BCE的 周 长 为 24cm, 且 BC=10cm, 求 AB的 长
A、所有的命题都是定理
C、公理是真命题
B、定理是真命题
D、作线段AB的垂直平分线不是命题
2、将“等腰三角形的两底角相等”写成“如 果…那么…”的形式:__________ __ A B C 中 , 若 A 3 0 , B 1 C , 则 B 3、 在

沪教版(上海)八年级数学第一学期-第十九章 几何证明 复习课件-

沪教版(上海)八年级数学第一学期-第十九章 几何证明 复习课件-
第十九章 几何证明 复习课件
知识梳理: 定义
概念
几 何 证 明
命题 真命题 假命题 基本事实 定理 互逆命题
几何证明
证明步骤
平行线 三角形内角和 全等三角形 等腰三角形 等边三角形 角平分线 垂直平分线 直角三角形
知识回顾
定义:用来说明一个名词含义的语句叫做定义。 命题:判断一件事情的句子,叫做命题。
轴对称图形,有三条对称轴
知识梳理: 等边三角形的判定:
名称
图形
判定


三条边都相等的三角形


A
三个角都等于60°的三角形

B
C 有一个角等于60°的等腰
三角形
知识梳理: 角平分线
定理:角平分线上的点到这个角的两边距离相等。 逆定理:在一个角的内部,且到角的两边距离相等
的点,在这个角的平分线上。 定理:三角形的三条角平分线相交于一点,并且这
精讲点拨
例 已知:如图,在△ABC中,∠1是它的一个外角,E为边
AC上一点,延长BC到D,连接DE。
D 2
求证:∠1>∠2。 C
证明:∵∠1是△ABC的一个外角(已知),
∴∠1>∠3(
)。
E5
3
∵∠3是△CDE的一个外角,
4
∴∠3>∠2(
)。 A
1 BF
∴∠1>∠2(
)。
把你所悟到的证明真命题的方法,步骤,书写格
)。
),
), )。
谢谢
一点到三边的距离相等(这个交点叫做三角形的内 心)。 三角形一个内角和与它不相邻的两个外角的平分线 交于一点,这个的点到三边所在直线的距离相等。 这样点有三个。

几何证明选讲知识点汇总与练习(内含答案)

几何证明选讲知识点汇总与练习(内含答案)

⼏何证明选讲知识点汇总与练习(内含答案)《⼏何证明选讲》知识点归纳与练习(含答案)⼀、相似三⾓形的判定及有关性质平⾏线等分线段定理平⾏线等分线段定理:如果⼀组平⾏线在⼀条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

推理1:经过三⾓形⼀边的中点与另⼀边平⾏的直线必平分第三边。

推理2:经过梯形⼀腰的中点,且与底边平⾏的直线平分另⼀腰。

平分线分线段成⽐例定理平分线分线段成⽐例定理:三条平⾏线截两条直线,所得的对应线段成⽐例。

推论:平⾏于三⾓形⼀边的直线截其他两边(或两边的延长线)所得的对应线段成⽐例。

相似三⾓形的判定及性质相似三⾓形的判定:定义:对应⾓相等,对应边成⽐例的两个三⾓形叫做相似三⾓形。

相似三⾓形对应边的⽐值叫做相似⽐(或相似系数)。

由于从定义出发判断两个三⾓形是否相似,需考虑6个元素,即三组对应⾓是否分别相等,三组对应边是否分别成⽐例,显然⽐较⿇烦。

所以我们曾经给出过如下⼏个判定两个三⾓形相似的简单⽅法:(1)两⾓对应相等,两三⾓形相似;(2)两边对应成⽐例且夹⾓相等,两三⾓形相似;(3)三边对应成⽐例,两三⾓形相似。

预备定理:平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与三⾓形相似。

判定定理1:对于任意两个三⾓形,如果⼀个三⾓形的两个⾓与另⼀个三⾓形的两个⾓对应相等,那么这两个三⾓形相似。

简述为:两⾓对应相等,两三⾓形相似。

判定定理2:对于任意两个三⾓形,如果⼀个三⾓形的两边和另⼀个三⾓形的两边对应成⽐例,并且夹⾓相等,那么这两个三⾓形相似。

简述为:两边对应成⽐例且夹⾓相等,两三⾓形相似。

判定定理3:对于任意两个三⾓形,如果⼀个三⾓形的三条边和另⼀个三⾓形的三条边对应成⽐例,那么这两个三⾓形相似。

简述为:三边对应成⽐例,两三⾓形相似。

引理:如果⼀条直线截三⾓形的两边(或两边的延长线)所得的对应线段成⽐例,那么这条直线平⾏于三⾓形的第三边。

定理:(1)如果两个直⾓三⾓形有⼀个锐⾓对应相等,那么它们相似;(2)如果两个直⾓三⾓形的两条直⾓边对应成⽐例,那么它们相似。

第11章几何证明初步复习学案

第11章几何证明初步复习学案

第11章几何证明初步复习学案【复习目标】1、(1)了解定义、命题、公理、定理的含义(2)能将命题写成“如果…那么…”的形式,并会找出命题的条件(题设)和结论(3)会写出一个命题的逆命题,并会找出逆命题的条件(题设)和结论(4)能判断一个命题的真假。

并会举反例证明一个命题是错误的2、(1)了解证明的含义,理解证明的必要性,体会证明的过程要步步有据(2)了解几何证明的三个步骤并会求证文字语言叙述的命题3、体会反证法的含义,知道反证法的步骤,会用反证法证明命题4、综合运用所学知识利用逻辑推理进行严谨的证明,发展初步演绎推理的能力【学习过程】一、自主学习:1、(1)用来说明一个名词含义的语句叫做定义。

表示的语句叫做命题。

有些真命题是通过长期实践总结出来的,被大家所公认的,并且作为证实其他命题的起始依据,这样的真命题叫做。

通过推理的方法得到证实的真命题称作(2)命题通常由和组成,是已知的事项,是由已知事项推断出的事项,命题的一般叙述形式为,其中,所引出的部分是条件,所引出的部分是结论(3)在两个命题中,如果第一个命题的是第二个命题的,而第一个命题的是第二个命题的,那么这两个命题叫做互逆命题,如果把其中一个命题叫做,那么另一命题叫做它的。

如果一个定理的逆命题也是真命题,那么这个逆命题就是原来定理的(4)错误的命题叫,正确的命题叫做,要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的,而不符合命题的就可以了,这种例子称为2、(1)除公理外,命题的真实性都必须经过推理,推理的过程叫做(2)几何证明的过程一般包括三个步骤:①根据题意,画出②结合图形,写出③找出由已知推出求证的途径,写出3、(1)证明一个命题时,不是由已知条件出发直接证明命题的结论,而是先提出与命题的相反的假设,推出矛盾,从而证明命题成立,这种证明的方法叫做反证法(2)用反证法证明一个命题,有三个步骤:①否定②推出③肯定4、公理与定理:(定理需要会证明)(1)两直线平行,同位角相等(公理)两直线平行,内错角相等;两直线平行,同旁内角互补(2)同位角相等,两直线平行(公理)内错角相等,两直线平行;同旁内角互补,两直线平行(3)对顶角相等(3)全等三角形的判定:ASA(公理)、SAS(公理)、SSS(公理)、AAS、HL(4)全等三角形的性质:全等三角形的对应边相等,对应角相等(公理)两个全等三角形的对应高相等(5)三角形三个内角的和等于180度(6)三角形的一个外角等于与它不相邻的两个内角的和三角形的一个外角大于与它不相邻的任意一个内角三角形的外角和等于360度(7)线段垂直平分线上的点到这条线段的的距离相等到一条线段的相等的点,在这条线段的垂直平分线上。

正数负数复习正负数的几何证明

正数负数复习正负数的几何证明

正数负数复习正负数的几何证明正数和负数是数学中的基本概念,它们在数轴上展现出了明显的几何特征和相对关系。

在本文中,我们将复习正数和负数的几何证明,以便更好地理解它们之间的关系。

一、正数和负数的定义首先,我们来回顾一下正数和负数的定义。

在数学中,正数是大于零的实数,用“+”表示,而负数则是小于零的实数,用“-”表示。

正数和负数是互为相反数的关系,即它们之和等于零。

例如,2是一个正数,它的相反数是-2;同样地,-2是一个负数,它的相反数是2。

二、正数和负数在数轴上的位置为了更直观地理解正数和负数在数轴上的位置,我们可以将数轴分成两部分,即正数轴和负数轴。

正数轴位于数轴的右侧,从零开始一直向右延伸;而负数轴位于数轴的左侧,从零开始一直向左延伸。

零位于数轴的原点,既不是正数也不是负数。

三、正数和负数的几何证明1. 证明一:正数和正数的和仍为正数假设有两个正数a和b,我们需要证明它们的和a + b仍为正数。

从数轴的角度看,我们可以将a和b表示为数轴上的两个点,它们都位于正数轴上。

在数轴上,a和b之间的距离是|b|,也就是b的绝对值。

那么,我们将数轴上的点a向右移动|b|的距离,就得到了一个新的点a'。

此时,在数轴上以a'为起点,以b所表示的距离为长度的线段所代表的数值就是a + b。

由于a和b都是正数,所以它们的和a+b也一定是正数。

因此,我们可以得出结论:正数和正数的和仍为正数。

2. 证明二:负数和负数的和仍为负数假设有两个负数a和b,我们需要证明它们的和a + b仍为负数。

根据前面的几何证明方法,我们可以将a和b表示为数轴上的两个点,它们都位于负数轴上。

在数轴上,a和b之间的距离是|a|,也就是a的绝对值。

那么,我们将数轴上的点b向左移动|a|的距离,就得到了一个新的点b'。

此时,在数轴上以a为起点,以b'所表示的距离为长度的线段所代表的数值就是a + b。

由于a和b都是负数,所以它们的和a + b也一定是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明的复习
教学目的:
1.理解逆命题、逆定理的概念,分清定理的条件与结论;
2.通过举例证明,掌握证明的一般步骤,培养推理论证能力;
3.掌握直角三角形中有关定理及推论;
4.初步掌握常见的有关添辅助线方法
教学重点与难点:
重点:直角三角形中有关定理及推论的应用;
难点工分清互逆定理的条件与结论;
有关常用的添线方法。

教学建议:
1.加强几何语言、几何图形和分析推理的训练,使学生顺利地从观察、操作和比较等方法向几何论证迁移。

教学过程
(一)复习提问:
1.怎样的命题称为互逆命题?
2.什么叫做互逆定理?
3.本章节所学定理、推论及互逆定理有几组?名称?
4、填空:(投影)
(1 )如图,已知:△ABC中,∠B=90°,则∠A+∠C=90
∵在△ABC中,∠B=90°( ),
∴∠+∠=90‘(Rt△两锐角互余)。

(2 ) 如图,已知:Rt △ABC 中,CD 是斜边AB 上的中线, 则CD =½
AD ,
∵在Rt △ABC 中, 是斜边AB 上的中线 ( ), ∴CD =½
( )。

B
C
(4 ) 如上图,已知:△ABC 中,∠C =90°,且AC =½
AB ,则∠B 二30°。

∵在△ABC 中,∠C =90°,且AC = ( ), ∴∠B =30° ( )。

(5) 如图,已知:l ⊥AB ,C 为垂足,且AC =BC ,点P 为直 线l 上任一点,则PA =PB 。

∵l ⊥AB ,C 为垂足,且AC =BC ,点P 为直线l 上 ( ) , ∴PA 二PB( )。

(6 ) 如图,已知:PA =PB ,则点P 在线段AB 的中垂线上
∵PA = (已知),
∴点P 在线段AB 的 上
( )。

(7 ) 如图,已知:OC 是∠AOB 的平分线,P 为OC 上一
点,且PD ⊥OA ,PE ⊥OB ,点D 、E 为垂足,则PD =PE 。

∵OC 平分∠AOB 且PD ⊥OA ,PE ⊥OB ,垂足为D ,E ,
∴ 点P 在OC 上 ( ),
∴PD = ( )。

(8 )如图,已知:PD ⊥OA ,PE ⊥OB ,垂足D ,E , 且PD =PE, 则点P 在∠AOB 的平分线上。

∵PD ⊥OA ,PE ⊥OB ,垂足为D|、E 且PD =PE( ),
∴点 在∠AOB 的平分线上( )。

(二)题型举例
例1:如图CD 是斜边AB 上的高,CE 是斜边AB 上的中线.
问:(1)图中有哪些角与∠A 相等,哪些角与∠B 相等?
(2 )如上图,若∠B =30°,则与∠B 相等的角有哪些?
与CE 相等的线段有哪些? 为什么?
(3 )如上图,将∠B =30°改为AD =ED 后,
是否有同样结论?为什么?
( 学生答.师板演)
例2:(一)观察两个直角在斜边的两侧:
1、请学生观察图形,这个图形其实是两个斜边相等 的直角三角形通过图形的运动使它们的斜边互相重合得到的。

2、在图形运动中那些量始终不变?那些量之间始终保持相等的关系?
3、连接DC 后,你还可以得到什么结论?
通过操作演示证明学生的观点。

(二)、观察两个直角在斜边的同侧:
把Rt △ABC 沿着AB 翻折得到现在的图形。

1、ED=EC ?为什么?
2、连接CD 后,你还能得到什么结论?
3、作CD 的中点N ,连接EN ,线段EN 与 CD 是怎样的位置关系?
4、过点E 作EN ⊥DC ,垂足为N ,N 为DC 的中点吗?
5、延长BD 、AC 两线交与一点,这样的图形与前面的图形的解题思路是一样的。

C A B
D E
C
D
A B
D
E A
例3:(1)已知:如图,在∆ABC 中,AB=BC=14cm
DE 垂直平分AB 交BC 于E ,AC=6cm ,求∆AEC 的周长。

(2 ) 我们把例题的图形经过变化可以得到练习4、练习5观察两个图形,
找到它们的共同点和区别。

练习5的图形中缺了BE 这条线段,学生通过观察可以找到添加辅助线的方法,进而解决难题。

练习4:如图,已知Rt ∆ABC 中,∠ACB=︒90,斜边AB 上的垂直平分线DE 交
直角边BC 于E ,若BC=8cm , AC=6cm ,
求(1)∆AEC 的周长,(2)如果∠B=︒35,则∠EAC= 度,为什么?
练习5:如图,已知∆ABC 中,∠C=︒90
求证:BC=21
AE
(三)复习小结
1、准确运用几何符号语言描述所学定理是几何证明的基础。

2、使用定理1、2及推论1、2去计算或推断有关角及线段相等或和差、倍分关系。

3、初步掌握常用的辅助线添设规律:
(四)布置作业:
1、系统复习本章节
2、练习册A 册:习题17---19。

相关文档
最新文档