最全面七年级数学上册知识点总结(精华版)
完整版)七年级上册数学知识点大全
完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。
初中数学七年级上册知识点总结(最新最全)
提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
七年级上册数学知识点汇总
七年级上册数学知识点汇总一、有理数1. 正负数正数:大于 0 的数。
负数:小于 0 的数。
0 既不是正数也不是负数。
2. 有理数的分类按定义分:有理数分为整数(正整数、0、负整数)和分数(正分数、负分数)。
按性质分:有理数分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)。
3. 数轴定义:规定了原点、正方向和单位长度的直线。
数轴上的点与有理数的关系:数轴上的点与有理数一一对应。
4. 相反数定义:只有符号不同的两个数互为相反数。
性质:互为相反数的两个数之和为 0。
5. 绝对值定义:数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
6. 有理数的大小比较正数大于 0,0 大于负数,正数大于负数。
两个负数,绝对值大的反而小。
7. 有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得 0;一个数同 0 相加,仍得这个数。
运算律:加法交换律 a + b = b + a;加法结合律 (a + b) + c = a + (b + c)8. 有理数的减法法则:减去一个数,等于加上这个数的相反数。
9. 有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘,都得 0。
运算律:乘法交换律 ab = ba;乘法结合律 (ab)c =a(bc);乘法分配律 a(b + c) = ab + ac10. 有理数的除法法则:除以一个不等于 0 的数,等于乘这个数的倒数。
11. 有理数的乘方定义:求 n 个相同因数 a 的积的运算叫做乘方,记作aⁿ,其中 a 叫做底数,n 叫做指数。
性质:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0 的任何正整数次幂都是 0。
12. 科学记数法把一个大于 10 的数表示成a×10ⁿ的形式(其中 a 大于或等于 1 且小于 10,n 是正整数)。
七年级上册数学知识点 (全册)
七年级上册数学知识点 (全册)单元一:数的概念和认识
- 自然数、整数、有理数、无理数的概念及其表示方法- 数轴的认识和使用
- 数的比较和大小的判断方法
- 数的分类和性质
单元二:整数的加减法
- 整数的加法和减法运算规则
- 整数的加减法计算方法
- 整数加减法的应用
单元三:小数的认识和运算
- 小数的概念和表示方法
- 小数和分数的转换
- 小数的加减乘除运算法则
- 小数的应用问题
单元四:比例与相等
- 比例的概念和性质
- 比例的表示方法和比例的简化- 比例的相等和比例的应用
单元五:百分数
- 百分数的概念和表示方法
- 百分数与比例的关系
- 百分数的转化和运算法则
- 百分数的应用问题
单元六:图形的认识
- 几何图形的基本概念和性质- 点、线、面、体的认识
- 常见平面图形的名称和特征
- 三角形的分类和性质
单元七:平面图形的性质和计算
- 四边形的分类和性质
- 平行四边形的性质和判定方法
- 直角、等腰和等边三角形的性质
- 平面图形的周长和面积的计算方法
单元八:数据的收集和整理
- 数据的收集方法和调查问题的设计
- 数据的整理和分类
- 数据的统计和分析
- 数据的应用和解读
以上是七年级上册数学的主要知识点,通过学习这些内容,你可以打下坚实的数学基础。
希望你在学习中能够发现数学的乐趣,不断提升自己的数学能力。
加油!。
七年级上册数学知识点总结
七年级上册数学知识点总结七年级上册数学主要包括了以下知识点:整数运算、小数的加减法、小数运算、单位换算、带分数与分数的计算、比例与比例关系及图形的认识与运算等。
一、整数运算1. 整数概念:正整数、负整数、零2. 整数的加法和减法:同号相加、异号相减3. 加减混合运算:将整数计算问题转化为加法问题4. 整数的乘法和除法:同号相乘得正、异号相乘得负二、小数的加减法1. 小数的概念:有限小数、无限循环小数、无限不循环小数2. 加法:竖式计算、列竖式计算3. 减法:竖式计算、列竖式计算三、小数运算1. 小数乘法:数位对齐计算,小数点移动2. 小数除法:小数点移动,补零,竖式计算四、单位换算1. 长度单位换算:米、分米、厘米、毫米等2. 容积单位换算:立方米、立方分米、升、毫升等3. 质量单位换算:千克、克、毫克等4. 面积单位换算:平方米、平方分米、平方厘米等5. 时间单位换算:秒、分钟、小时、天等五、带分数与分数的计算1. 分数的概念:分子、分母2. 分数的加法和减法:通分、找规律3. 分数与整数的加减法:转化为带分数计算4. 分数的乘法和除法:分数相乘、分数相除的运算法则六、比例与比例关系1. 比例的概念:比例、比例常数2. 比例的性质:比例的基本性质、比例的可逆性3. 比例的应用:求比例中的一个未知数、综合运用比例解决实际问题七、图形的认识与运算1. 点、线、面的概念及特征2. 直线、射线、线段的概念及特征3. 角的概念及分类:直角、钝角、锐角等4. 三角形的分类:等边三角形、等腰三角形、普通三角形等5. 矩形、正方形、长方形的特征及性质6. 圆的认识:半径、直径、圆心等7. 长度、面积、周长的计算:直线的长度、图形的面积、图形的周长以上是七年级上册数学的主要知识点总结,希望对你有所帮助!。
初中七年级数学上册知识点复习总结(精华版)
精华提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量)若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数,1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2. (1)凡能写成)0p q ,p (pq为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数&②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a >0 a 是正数;a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数;a ≤ 0 a 是负数或0 a 是非正数.—三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
七年级数学上册知识点总结(4篇)
七年级数学上册知识点总结(4篇)七年级上册数学知识点梳理总结篇一1、代数式:用运算符号+-×÷……连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用?乘,或省略不写;(2)数与数相乘,仍应使用×乘,不用?乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。
3、几个重要的代数式:(m、n表示整数)(1)a与b的'平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2。
七年级数学上册知识点总结篇二本学期我担任七年级数学教学工作,为适应新时期教学工作的要求,从各方面严格要求自己,认真钻研新课标理念,改进教法,认真对待工作中的每一个细节,积极向其他教师请教教学中出现的问题,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。
为总结过去,挑战明天,更好地干好今后的工作,现将本学期本人的的教学工作总结如下:本学期本人始终拥护国家的教育方针、政策,始终拥护国家目前进行的新课程改革,始终坚持教育的全面性和终身性发展。
七年级上册数学上册知识点大全
七年级上册数学上册知识点大全一、整数1. 整数的概念:表示物体个数的数,包括正整数、负整数和零。
2. 整数的运算:加法、减法、乘法、除法和取余数。
3. 绝对值的概念:一个数距离0的距离,用绝对值表示。
4. 相反数的概念:两个数的和为0,这两个数互为相反数。
5. 有理数的概念:可以表示为两个整数之比的数。
二、分数1. 分数的概念:表示部分的数,由两部分组成,分子和分母。
2. 分数的性质:分数的大小与分子、分母的大小有关,分子越大,分数越大;分母越大,分数越小。
3. 分数的运算:加法、减法、乘法、除法。
4. 最简分数:分子和分母没有公因数的分数。
5. 分数与小数的关系:分数可以转化为小数,小数也可以转化为分数。
三、代数式1. 代数式的概念:用字母表示数的式子。
2. 代数式的运算:加法、减法、乘法、除法。
3. 代数式的简化:合并同类项、提取公因式等方法简化代数式。
4. 代数式的值:将代数式中的字母代入数值后得到的数。
四、方程与不等式1. 方程的概念:含有未知数的等式。
2. 方程的解:使方程成立的未知数的值。
3. 一元一次方程的解法:移项、合并同类项、系数化为1等方法。
4. 一元一次不等式的解法:移项、合并同类项、系数化为1等方法。
5. 二元一次方程组的解法:消元法、代入法等方法。
6. 二元一次不等式组的解法:交集法、并集法等方法。
五、几何图形1. 点、线、面的概念。
2. 直线、射线、线段的概念及性质。
3. 角的概念:两条射线的公共端点所夹的部分。
4. 角的分类:锐角、直角、钝角、平角、周角等。
5. 三角形的概念:由三条边和三个内角组成的图形。
6. 三角形的性质:等边三角形、等腰三角形、直角三角形等。
7. 四边形的概念:由四条边和四个内角组成的图形。
8. 四边形的性质:平行四边形、矩形、正方形等。
初中七上数学知识点总结
初中七上数学知识点总结初中数学是学生数学学习的重要阶段,它在小学数学的基础上进行了深化和拓展。
七年级上册的数学知识点主要围绕有理数、整式、方程、几何图形等几个方面展开。
以下是对这些知识点的详细总结:一、有理数1. 有理数的概念:有理数包括整数和分数,可以表示为a/b的形式,其中a、b为整数,b≠0。
2. 有理数的分类:正有理数、负有理数、0。
3. 有理数的性质:加法、减法、乘法、除法运算法则,以及它们的交换律、结合律、分配律。
4. 有理数的大小比较:正数大于0,0大于所有负数;两个负数比较大小,绝对值大的反而小。
5. 绝对值:表示数轴上一个数到原点的距离,用符号“| |”表示。
二、整式1. 整式的概念:由整数和字母的有限次幂次运算(加、减、乘、除以及乘方)组成的代数式。
2. 单项式:只含有一个字母的整式,如2x^3。
3. 多项式:由若干个单项式相加或相减组成的整式,如3x^2 - 2x + 5。
4. 同类项:所含字母相同,并且相同字母的指数也相同的项。
5. 合并同类项:将多项式中的同类项相加或相减,简化多项式。
6. 整式的加减运算:主要是合并同类项,注意去括号法则和添括号法则。
三、方程1. 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程,如2x + 3 = 0。
2. 方程的解:能使方程左右两边相等的未知数的值。
3. 解方程的方法:移项、合并同类项、系数化为1等步骤。
4. 列方程解应用题:根据题意列出方程,然后解方程得到答案。
四、几何图形1. 点、线、面、体:点无大小,线有长度无宽度,面有长宽无厚度,体有长宽高。
2. 角:由两条射线的一个公共端点形成的形状,角的大小由两条边张开的程度决定。
3. 直线、射线、线段:直线无端点,射线有一个端点,线段有两个端点。
4. 角的分类:锐角、直角、钝角、平角、周角。
5. 相交线:两条直线相交,形成四个角,对顶角相等。
6. 平行线:在同一平面内,永不相交的两条直线。
七年级上册数学知识点梳理总结
七年级上册数学知识点梳理总结第一章:整数整数是由正整数、负整数和0组成的数集。
本章主要涉及整数的加减乘除、整数的比较大小和绝对值等基本概念及运算法则。
1.1 整数的基本概念正整数、负整数和0都属于整数,用符号 Z 表示。
正整数可以用自然语言表示出来,负整数则是用负号(-)和正整数表示出来,例如 -3 表示负三。
1.2 整数的加减乘除整数的加减乘除是基本运算,其中加法和乘法都满足交换律和结合律。
但是减法和除法不满足这两个定律。
整数加减运算的规则:同号相加取其绝对值相加再加上同号,异号相减是两数绝对值的和再加上它们的符号。
整数乘除运算的规则:正正得正,负负得正,正负得负,负正得负。
除法时,被除数可以为负数,但除数不能为0。
1.3 整数的比较大小在比较大小时,要考虑整数的符号和绝对值。
同号比大小,比绝对值;异号比大小,比符号。
1.4 整数的绝对值整数的绝对值是该数与0的距离,即一个整数的绝对值与这个整数的符号无关。
第二章:分数分数是指一个整数(分子)除以另一个非零整数(分母)所得的数值。
本章主要涉及分数的加减乘除、分数的比较大小、约分和通分等基本概念及运算法则。
2.1 分数的基本概念分数的分母和分子都是整数,分母不能为0。
分数可以表示为带分数和假分数两种形式。
分数是有理数的一种。
2.2 分数的加减乘除分数的加减乘除需要将分数化为通分或转化为小数进行计算,其中加法和乘法都满足交换律和结合律。
但是减法和除法不满足这两个定律。
在除法运算中,要注意分母不能为0。
2.3 分数的比较大小在比较大小时,可以先通分再比较大小。
同样分母的分数,分子越大,数值越大。
2.4 分数的约分与通分约分是将分子和分母的公因数约掉,使得分数的值不变;通分是使几个分母不同的分数具有相同的分母。
第三章:代数式与方程式代数式是由数字、字母和各种数学符号组成的表达式,其中字母表示数,称为变量。
方程式是用算式表示的等式,方程左右两边分别为代数式。
七年级上数学知识点归纳整理
一、整数与有理数
1.整数的概念和表示方法
2.整数的加法、减法、乘法和除法
3.整数之间的大小比较
4.有理数的概念和表示方法
5.有理数的加法、减法、乘法和除法
6.绝对值的概念和计算
7.加法逆元和乘法逆元
二、代数式与方程式
1.代数式的概念和表示方法
2.代数式的合并与展开
3.代数式的计算与化简
4.代数式的值和未知数
5.方程式的概念和表示方法
6.方程式的解和解集
7.一次方程式的解法
8.一次方程式的应用问题
三、平面几何基础知识
1.点、线、面的概念
2.点的坐标和平面直角坐标系
3.直线的概念和表示方法
4.直线的相交关系
5.平行线与垂直线
6.角的概念和表示方法
7.角的比较和性质
8.三角形的概念和分类
9.三角形的判定
10.三角形的性质与应用
四、分数与比例
1.分数的概念和表示方法
2.分数的大小比较和约分
3.分数的加法、减法、乘法和除法
4.分数的应用问题
5.比例的概念和比例式
6.比例的性质和运算
7.比例的应用问题
五、统计与概率
1.数据的收集与整理
2.数据的分析与表示
3.折线图和条形图
4.概率的概念和计算
六、三角形的面积与体积
1.平行四边形的面积
2.三角形的面积和周长
3.长方形和正方形的面积
4.梯形和圆的面积
5.三角柱的表面积和体积
6.四棱锥和圆柱的表面积和体积
七、函数初步
1.函数的概念与表示
2.函数的自变量和因变量
3.函数的图像和性质
4.函数的应用问题。
七年级数学上册知识点总结
七年级数学上册知识点总结1. 数与代数- 自然数:0、1、2、3、4、...- 整数:负整数、0、正整数的集合- 分数:有理数,由两个整数表示,如1/2、3/4等- 小数:无理数,可以写成有限小数或无限循环小数的实数- 代数式:利用字母和数的加、减、乘、除等运算符号拼成的式子- 等式与方程:等式是含有等号的算式,方程是含有未知数的等式2. 几何- 点、线、线段、射线:几何基本概念- 平面几何:平面上的点、线、图形等的性质和关系- 角与直线:顶点在一条直线上的两条线段叫做对顶角- 垂线与平行线:垂线垂直于另一条直线,平行线始终保持平行- 三角形:直角三角形、等边三角形、等腰三角形等特殊三角形- 多边形:正多边形、全等多边形、相似多边形等多边形的性质3. 数据与统计- 数据的分类:分类数据、顺序数据、数值数据- 统计图表:条形图、折线图、饼图等的制作和分析- 平均数:算术平均数、加权平均数等的计算方法4. 实际问题中的数学运算- 比例与比例关系:两个或多个量的比较关系- 百分数:百分数的计算与转化- 利率与利息:利率的计算与利息的计算- 速度与距离:速度与距离的关系- 比较大小:常见数的大小比较方法5. 函数与方程- 直接比例与反比例关系:两个量之间的比例关系- 线性函数:函数关系为一次函数的函数- 线性方程:未知数的最高次数为1的方程- 求解一元一次方程:方程求解的步骤和方法6. 平面直角坐标系- 平面直角坐标系的建立和应用- 点的坐标表示与读图- 距离公式:计算两点间的距离- 中点公式:计算两点间连线的中点坐标7. 数量关系与变化趋势- 图表的读取与分析- 增长速度:正比例关系与常数比例关系- 减少速度:反比例关系与常数比例关系- 变化趋势:数量关系的周期性与波动性以上是七年级数学上册的知识点总结,希望对学习有所帮助!。
七年级数学上册知识点总结(12篇)
七年级数学上册知识点总结七年级数学上册知识点总结(12篇)总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不如静下心来好好写写总结吧。
但是总结有什么要求呢?以下是小编整理的七年级数学上册知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
七年级数学上册知识点总结1代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。
(分母中含有字母有除法运算的,那么式子叫做分式)1.单项式:数或字母的积(如5n),单个的数或字母也是单项式。
(1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的'系数。
(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。
(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。
2.多项式(1)概念:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
(3)多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
在做多项式的排列的题时注意:(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。
b.确定按这个字母降幂排列,还是升幂排列。
3.整式:单项式和多项式统称为整式。
4.列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .整式的加减运算1.同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。
七年级上册数学知识点 (全册)
七年级上册数学知识点 (全册)第一章:数的认识1.1 整数1.1.1 整数的定义与性质- 整数包括正整数、0 和负整数。
- 整数具有加法、减法、乘法和除法等基本运算性质。
1.1.2 整数的分类- 自然数:正整数和0。
- 整数:包括自然数、负整数和0。
1.2 分数1.2.1 分数的定义与性质- 分数是整数比上整数,形式为 a/b,其中 a 和 b 是整数,b 不为0。
- 分数具有加法、减法、乘法和除法等基本运算性质。
1.2.2 分数的分类- 正分数:分子大于分母的分数。
- 负分数:分子小于分母的分数。
- 零分数:分子等于分母的分数。
1.3 小数1.3.1 小数的定义与性质- 小数是十进制数的一种,由整数部分和小数部分组成,用小数点分隔。
- 小数具有加法、减法、乘法和除法等基本运算性质。
1.3.2 小数的分类- 有限小数:小数部分有限的小数。
- 无限小数:小数部分无限的小数。
第二章:代数式2.1 代数式的定义与性质2.1.1 代数式的定义- 代数式是由数字、变量和运算符组成的表达式。
2.1.2 代数式的性质- 代数式具有加法、减法、乘法和除法等基本运算性质。
2.2 变量2.2.1 变量的定义与性质- 变量是代数式中的未知数,用字母表示。
- 变量可以取不同的数值。
2.3 代数式的运算2.3.1 代数式的加减法- 同类项:变量和它们的指数相同的代数式。
- 代数式的加减法:同类项之间进行加减运算。
2.3.2 代数式的乘除法- 代数式的乘除法:将代数式与数字相乘或相除。
第三章:一元一次方程3.1 一元一次方程的定义与性质3.1.1 一元一次方程的定义- 一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是常数,x 是变量。
3.1.2 一元一次方程的性质- 一元一次方程的解是使方程成立的变量 x 的值。
3.2 一元一次方程的解法3.2.1 解法概述- 一元一次方程的解法有代入法、移项法、消元法等。
七年级数学上册知识点总结
七年级数学上册知识点总结一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数和负数的概念- 绝对值的计算2. 有理数- 有理数的定义- 有理数的加法和减法- 有理数的乘法和除法- 有理数的比较大小- 有理数的混合运算3. 整式与分式- 单项式与多项式的定义- 整式的加法、减法、乘法- 分式的定义和性质- 分式的加减法和乘除法4. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法- 不等式的概念和性质- 一元一次不等式的解法- 简单线性不等式的图形表示5. 函数的初步认识- 函数的定义- 函数的表示方法- 线性函数和常函数的概念 - 函数的简单应用二、几何1. 图形初步- 点、线、面的概念- 直线、射线、线段的性质 - 角的概念和分类- 平行线的性质2. 平面图形- 四边形的定义和性质- 矩形、正方形的性质- 三角形的定义和分类- 三角形面积的计算- 圆的基本性质- 圆的周长和面积的计算3. 空间图形- 简单立体图形的认识- 长方体和立方体的性质 - 棱柱、棱锥的基本概念 - 圆柱、圆锥的基本概念三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图和饼图的绘制- 平均数、中位数和众数的计算2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件的概率计算四、应用题1. 利用所学知识解决实际问题- 速度、时间和距离问题的解决- 货币、购物问题的解决- 比例和百分比问题的应用- 面积和体积问题的实际应用以上是七年级数学上册的主要知识点总结。
在学习过程中,学生应注重理解和掌握每个知识点的概念、性质和计算方法,通过大量的练习题来巩固和深化理解。
同时,要注意培养解决实际问题的能力,将数学知识应用到日常生活中去。
教师和家长应鼓励学生积极参与课堂讨论,提出问题并尝试独立解决,以培养其数学思维和创新能力。
七年级上册数学知识点总结大全(共7篇)
七年级上册数学知识点总结大全第1篇第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
只要有一个数为零,积就为零。
有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:减去一个数,等于加上这个数的相反数!有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
七年级数学上全册知识点整理
一、整数与小数1.整数的概念及性质2.整数的比较3.绝对值与相反数4.数轴5.小数的概念及性质6.小数的读法、读数、写法与大小比较7.有限小数与无限循环小数8.小数的加减法和乘除法二、代数初步1.代数运算法则2.字母的意义和代数表达式的概念3.代数表达式的计算4.代数式的应用三、一元一次方程1.方程的概念2.解方程的意义3.解一元一次方程的基本步骤4.根与方程的关系5.等式的性质以及等式两边平等的性质6.解一元一次方程的应用四、图形初步1.图形的分类2.点、线、线段、射线、交线、角的概念及基本性质3.平行线与垂直线的判定4.三角形的周长及其计算5.三角形的面积及其计算6.平行四边形的性质7.正方形、长方形、菱形、等腰梯形的性质五、比例与比例运算1.比例的概念2.比例中的四个数及其关系3.比例的性质及判断4.比例的延长与缩短5.比例的倒数与互为倒数关系6.比例的换元7.比例的应用六、图形的相似和全等1.图形的相似与全等的概念2.相似图形的判定与相似比3.全等图形的判定4.相似三角形的性质5.全等三角形的性质6.相似三角形的应用7.全等三角形的应用七、数轴和活动小车1.数轴的刻度与数轴图2.活动小车3.加速度和速度八、统计与概率初步1.统计调查2.统计图表的表示和分析3.平均数的计算4.概率的基本概念5.随机事件的发生与不发生6.概率的计算方法九、平面直角坐标系1.平面直角坐标系的建立2.坐标点的概念3.点的坐标的表示与判断4.四个象限5.平面图形的位置关系。
七年级上册数学知识总结
七年级上册数学知识总结七年级上册数学主要涵盖了数与式、分式、代数、图形与运动相结合的内容。
以下是对这些知识点的详细总结:一、数与式1. 数的概念:包括自然数、整数、有理数等,以及它们的性质和运算法则。
2. 平方与平方根:包括平方数的概念、平方根的概念与运算法则。
3. 指数与指数运算:介绍指数的概念与性质,并应用指数规律求解问题。
4. 科学计数法:介绍科学计数法的表示方法,以及进行数的加、减、乘、除运算的方法。
5. 代数式与项的概念:引入代数式的概念,认识代数式的基本组成单位——项,以及多项式的概念与运算法则。
二、分式1. 分式的概念与基本性质:介绍分式的概念、分式的基本性质与化简分式的方法。
2. 分式的乘除法:讲解分式的乘法与除法的运算规则与方法。
3. 混合运算:介绍分式与整数的混合运算,并通过练习巩固运用。
三、代数1. 一元一次方程:引入一元一次方程的概念,并通过算法讲解解方程的方法。
2. 一元一次方程的解:介绍解方程的基本规律与方法,并通过实例进行解答。
3. 一元一次方程的应用:介绍解应用问题的步骤与方法,并通过例题进行实践。
4. 数字方程:讲解数字方程的概念与解方程的方法,并通过练习巩固运用。
四、图形与运动1. 多边形:介绍多边形的概念、性质与命名,并通过实例进行演示。
2. 圆:引入圆的概念与圆的性质,并通过实例进行探究。
3. 圆的面积:讲解圆的面积的计算公式与性质,并通过实例进行计算。
4. 数据的收集与整理:讲解数据的收集方法与整理方式,并介绍简单的统计图形。
5. 一维坐标系与平面直角坐标系:引入一维坐标系与平面直角坐标系的概念与表示方法,并通过实例进行演示。
6. 运动与速度:介绍运动的概念与速度的计算方法,并通过实例进行探究。
以上是七年级上册数学的主要知识总结,通过对这些知识点的学习,学生可以对数学的基本概念与运算法则有较全面的了解,并能运用所学知识解决简单的实际问题。
七年级上册数学知识点归纳总结(详细篇)
七年级上册数学知识点归纳总结(详细篇)一、代数初步知识1、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写.(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号.(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a.(4)在代数式中出现除法运算时,一般用分数线将被3的形式;除式和除式联系,如3÷a写成a(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .2、几个重要的代数式:(1)a与b的平方差是:a2-b2; a与b差的平方是:(a-b)2.(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c.(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1.(4)若b>0,则正数是:a2+b ,负数是:-a2-b,非负数是:b2 ,非正数是:-b2 .有理数1、有理数:b(a、b都是整数且a≠0)形式的数,都(1)凡能写成a是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.(注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数)(2)有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性.(3)自然数是指0和正整数;a>0,则a是正数;a<0,则a是负数;a≥0 ,则a是正数或0(即a是非负数);a ≤0,则a是负数或0(即a是非正数).2、数轴:数轴是规定了原点、正方向、单位长度的一条直线.3、相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0.(2)注意:a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0时,则a+b=0;即a 、b 互为相反数.4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数.(注意:绝对值的意义是数轴上表示某数的点离开原点的距离).(2)绝对值可表示为|a|.(3)|a|是重要的非负数,即|a|≥0.(注意:|a|·|b|=|a ·b|).5、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数< 0.6、互为倒数:乘积为1的两个数互为倒数.(注意:0没有倒数;若 a 、b ≠0,那么a b 的倒数是b a ;倒数是本身的数是±1;若ab=1,则a 、b 互为倒数;若ab=-1,则a、b互为负倒数.7、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.(3)一个数与0相加,仍得这个数.8、有理数加法的运算律:(1)加法的交换律:a+b=b+a .(2)加法的结合律:(a+b)+c=a+(b+c).9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘.(2)任何数同零相乘都得零.(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11、有理数乘法的运算律:(1)乘法的交换律:ab=ba.(2)乘法的结合律:(ab)c=a(bc).(3)乘法的分配律:a(b+c)=ab+ac.12、有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:零不能做除数)13、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数.注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n=(b-a)n.14、乘方的定义:(1)求相同因式积的运算,叫做乘方.(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂.(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ,则a=0,b=0.(4)底数的小数点移动一位,平方数的小数点移动二位.15、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18、混合运算法则:先乘方,后乘除,zui后加减.注意:怎样算简单,怎样算准确,是数学计算的重要的原则.19、特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1、单项式:在代数式中,若只含有乘法(包括乘方)运算.或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3、多项式:几个单项式的和叫多项式.4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数zui 高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5、整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.6、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7、合并同类项法则:系数相加,字母与字母的指数不变.8、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9、整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的结果一般应该进行升幂(或降幂)排列.一元一次方程1、等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”.2、等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3、方程:含未知数的等式,叫方程.4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”.5、移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8、一元一次方程的zui 简形式: ax=b(x是未知数,a、b是已知数,且a≠0).9、一元一次方程解法的一般步骤:整理方程—去分母—去括号—移项—合并同类项—系数化为1 —(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”.仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套等”,利用这些关键字列出文字等式,并且据题意设出未知数,利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11、列方程解应用题的常用公式:(1)行程问题:距离=速度·时间(2)工程问题:工作量=工效·工时(3)比率问题:部分=全体·比率(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折;利润=售价-成本,;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提分数学七年级上知识清单第一章有理数一.正数和负数⒈正数和负数的概念负数:比0 小的数正数:比0 大的数0 既不是正数,也不是负数注意:①字母 a 可以表示任意数,当 a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当 a 表示0 时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2. 具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8 ℃支出与收入; 增加与减少; 盈利与亏损; 北与南; 东与西; 涨与跌; 增长与降低等等是相对相反量,它们计数:比原先多了的数, 增加增长了的数一般记为正数; 相反,比原先少了的数,减少降低了的数一般记为负数。
3.0 表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0 是正数和负数的分界线,0 既不是正数,也不是负数。
二.有理数1. 有理数的概念⑴正整数、0、负整数统称为整数(0 和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8 也是偶数,-1,-3,-5 也是奇数。
q2. (1) 凡能写成(p, q为整数且0) 形式的数,都是有理数. 正整数、0、负整数统称整数;正分数、负pp分数统称分数;整数和分数统称有理数. 注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;正整数正有理数正分数(2) 有理数的分类: ①按正、负分类: 有理数零负整数负有理数负分数正整数整数零负整数②按有理数的意义来分: 有理数正分数分数负分数总结:①正整数、0 统称为非负整数(也叫自然数)②负整数、0 统称为非正整数③正有理数、0 统称为非负有理数④负有理数、0 统称为非正有理数(3) 注意:有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4) 自然数0 和正整数;a>0 a 是正数;a<0 a 是负数;aa≥0 a 是正数或0 是非负数;a≤0 a 是负数或0 a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2. 数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0 用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3. 利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4. 数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1 ,无最小的负整数5.a 可以表示什么数⑴a>0表示⑵a<0表示a 是正数;反之,a 是正数,则a>0;a 是负数;反之,a 是负数,则a<0 a 是0;反之,a 是0, ,则a=06. 数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
四.相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0 的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0 的相反数是它本身;相反数为本身的数是0。
2. 相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0 的相反数是0;⑶互为相反数的两数和为0,和为0 的两数互为相反数,即a,b 互为相反数,则a+b=03. 相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0 除外)在原点两旁,并且与原点的距离相等。
0 的相反数对应原点;原点表示0 的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4. 相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“- ”即可求得(如:5的相反数是-5);0的相反数还是0;⑵求多个数的和或差的相反数是,要用括号括起来再添“- ”,然后化简(如;5a+b的相反数是-(5a+b)。
化简得-5a-b);注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;⑶求前面带“- ”的单个数,也应先用括号括起来再添“- ”,然后化简( 如:-5的相反数是-(-5),化简得5);) 相反数的和为0 a 、b互为相反数a+b=05. 相反数的表示方法⑴一般地,数 a 的相反数是-a ,其中 a 是任意有理数,可以是正数、负数或 0。
当 a>0 时,-a<0(正数的相反数是负数) 当 a<0 时,-a>0(负数的相反数是正数) 当 a=0 时,-a=0,(0 的相反数是 0) 6. 多重符号的化简多重符号的化简规律 : “+”号的个数不影响化简的结果,可以直接省略;“- ”号的个数决定最后化简结果; 即:“- ”的个数是奇数时,结果为负,“- ”的个数是偶数时,结果为正。
五.绝对值⒈绝对值的几何定义一般地,数轴上表示数 a 的点与原点的距离叫做 a 的绝对值,记作 |a| 。
2. 绝对值的代数定义⑴一个正数的绝对值是它本身; ⑵一个负数的绝对值是它的相反数; ⑶0 的绝对值是 0. 可用字母表示为: ①如果 a>0,那么|a|=a ;②如果 a<0,那么|a|=-a ; ③如果 a=0,那么|a|=0 。
可归纳为①:a ≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。
) ②a ≤0,<═> |a|=-a 3. 绝对值的性质(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。
) 任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。
所以, a 取任何有理数,都有 |a| ≥0。
即 (1) 正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数 轴上表示某数的点离开原点的距离;绝对值是 0 的数是 0. 即:a=0 <═> |a|=0 ;a(a (a (a 0) 0) 或 0)⑵一个数的绝对值是非负数, 绝对值最小的数是 0. 绝对值可表示为:aa a(a 0)0)a;即:|a| ≥0;绝对值的问题经常分类讨论;a ( a a aa a⑶任何数的绝对值都不小于原数。
即: |a| ≥a ; 1a 0 ;1 a 0 ;⑷绝对值是相同正数的数有两个,它们互为相反数。
即:若 |x|=a (a>0),则 x=±a ;⑸互为相反数的两数的绝对值相等。
即:|-a|=|a| 或若 a+b=0,则|a|=|b| ;|a| 是重要的非负数, 即a b a b|a| ≥0;注意:|a| ·|b|=|a ·b|,⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b| ,则a=b或a=-b;⑺若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a|+|b|=0 ,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4. 有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的数总比右边的数小,或者右边的数总比左边的数大⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
(3)正数的绝对值越大,这个数越大;(4)正数永远比0 大,负数永远比0 小;(5)正数大于一切负数;(6)大数- 小数>0 ,小数- 大数<0.5. 绝对值的化简①当a≥0 时,|a|=a ;②当a≤0 时,|a|=-a6. 已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数 a 的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0 的数是0,没有绝对值为负数的数。
六.有理数的加减法.1. 有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与0 相加,仍得这个数。
2. 有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。
3. 加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0 后的和等于原数。
即:⑶当b=0 时,a+b=a⑴当b>0 时,a+b>a4. 有理数减法法则⑵当b<0 时,a+b<a减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b) 。
5. 有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5 的和”②按运算意义读作“负8 减7 减6 加5”6. 有理数加减混合运算中运用结合律时的一些技巧:Ⅰ. 把符号相同的加数相结合(同号结合法)(-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23) =-33+18-15-1+23 (将减法转换成加法)(省略加号和括号)(把符号相同的加数相结合)=(-33-15-1)+(18+23)(运用加法法则一进行运算)=-49+41(运用加法法则二进行运算)=-8Ⅱ. 把和为整数的加数相结合(凑整法)(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) =6.6-5.2+3.8-2.6-4.8 (将减法转换成加法)(省略加号和括号)(把和为整数的加数相结合)(运用加法法则进行运算)=(6.6-2.6)+(-5.2-4.8)+3.8=4-10+3.8(把符号相同的加数相结合,并进行运算)=7.8-10(得出结论)=-2.2 Ⅲ. 把分母相同或便于通分的加数相结合(同分母结合法) 3 1 3 2 1 7 --+ -+ -5 2 4 5 2 83 -5 2 51 1+ 2 23 7原式=(-)+(-)+(+-)4 81 8=-1+0-1 8Ⅳ. 既有小数又有分数的运算要统一后再结合(先统一后结合) =-13 412 3(+0.125)-(-3)+(-3)-(-108)-(+1.25)原式=(+ 1)+(+3 8 3 4 1 2 )+(-3 )+(+10 )+(-1 1 4)8 3 1 3 1 2 31 4= +3 -3+10 -18483 =(3-14141 12 3)+(-3)+10881 2 3=2 -3+102=-3+13 161 6Ⅴ. 把带分数拆分后再结合(先拆分后结合) =101 61 7 -3+10-12+451122151 7 +61原式=(-3+10-12+4)+(-)+(-)5 1511 224 + 1115 22 =-1+ 8 15+30 307 =-1+=-30Ⅵ. 分组结合2-3-4+5+6-7-8+9 +66-67-68+69 原式=(2-3-4+5)+(6-7-8+9)+=0Ⅶ. 先拆项后结合(1+3+5+7 +99)- (2+4+6+8 +100)七.有理数的乘除法1. 有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘 ;(“同号得正,异号得负”专指“两数相乘”的 +(66-67-68+69)情况,如果因数超过两个,就必须运用法则三) 法则二:任何数同 0 相乘,都得 0;法则三:几个不是 0 的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为 0, 则积等于 0. 2. 倒数1 乘积是 1 的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为 a · =1(a ≠0),就是说 aa1 1 1 和 互为倒数,即 a 是 的倒数, 是 a 的倒数。