线性系统理论全套PPT课件-309p

合集下载

已阅)线性系统理论

已阅)线性系统理论
§41 向量和距阵的范数 §42 平衡状态和稳定性 §43 渐近稳定(AS)及其判据 §4-4 lyapunov意义下的稳定 §4-5 有界输入有界输出(BIBO)稳定 §4-6 有界输入有界状态(BIBS)稳定 §4-7 Lyapunov函数法
第五章 线性系统的能控性和能观测性
§5-1 引言
§5-2 能控性
D(t)dd1q11((tt)),,......,,dd1qpp((tt))∈ Rqp (输入输出联系的系数阵)
对于线性定常系统, A、B、C、D为常数阵。
•故
x(t)Ax(t)Bu(t) y(t)Cx(t)Du(t)
第七章* 传递函数距阵的状态空间实现
§7-1 实现的基本概念
§7-7 传递函数的最小实现 §7-3 SIMO系统传递函数距阵的最小实现 §7-4 MISO系统传递函数距阵的最小实现 §7-5 *传递函数距阵的Jordan最小实现
编辑ppt
4
➢参考教材:
1.线性系统理论(第二版) 郑大钟,清华大学出版社,2002.10
引入了状态空间法(卡尔曼),提出了能控性和能观测性 的概念(卡尔曼),由“外部研究”深入到“内部研究”;
发展了多变量频域理论,利用计算机进行辅助设计与分析,
等。
编辑ppt
7
第一章 线性连续系统的 状态空间描述
§1-1 系统的状态空间描述
建模实例
建立图示电路的数学模型。
uc
(t)
1 c
i(t)dt
x 1 (t)uc(t),x2 (t)i(t)
及 d xi(t)x i,)
dt
iቤተ መጻሕፍቲ ባይዱ
则 有 x x 1 2 ( (tt) ) 1 0L 1 R C L x x 1 2( (tt) ) 1 0 L u r(t)

线性系统理论全PPT课件

线性系统理论全PPT课件
复频率域描述即传递函数描述
bn1 s n1 b1 s b0 y( s) g ( s) n u( s) s an1 s n1 a1 s a0
(2)系统的内部描述 状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征,—— 状态方 程和输出方程 (3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不 能控或不能观测的部分. 内部描述则是系统的一种完全的描述,能够完全反映系统的所有动力学特性.
离散时间线性系统的方块图
D(k )
H (k )
x(k 1)

x(k )
单位延迟

C (k )
u (k )

y (k )
G (k )
7/7,11/50
2.3.连续变量动态系统按状态空间描述的分类
线性系统和非线性系统
f ( x, u, t ) 设系统的状态空间描述为 x y g ( x, u, t )
5
• 建立数学模型 • 数学模型的基本要素是变量、参量、常数 和它们之间的关系 • 变量:状态变量、输入变量、输出变量、
扰动变量
• 参量:系统的参数或表征系统性能的参数
• 常数:不随时间改变的参数
6
• 时间域模型:微分方程组或差分方程组 可用于常系数系统 和变系数系统 • 频率域模型:用传递函数、频率响应
向量函数
g1 ( x, u, t ) f1 ( x, u, t ) g ( x, u , t ) f ( x, u , t ) ,g ( x, u, t ) 2 f ( x, u , t ) 2 g ( x , u , t ) f ( x , u , t ) n q

《线性系统》课件

《线性系统》课件
NG
线性系统的控制目标
01
02
03
04
稳定性
确保系统在受到扰动后能够恢 复稳定状态。
跟踪性能
使系统输出能够跟踪给定的参 考信号。
抗干扰性
减小外部干扰对系统输出的影 响。
优化性能指标
最小化系统性能指标,如误差 、超调量等。
线性系统的控制设计方法
状态反馈控制
基于系统状态变量进行 反馈控制,实现最优控
稳定性分析
利用劳斯-赫尔维茨稳定判据等 工具,分析系统的稳定性。
最优性能分析
通过求解最优控制问题,了解 系统在最优控制下的性能表现

2023
PART 06
线性系统的应用实例
REPORTING
线性系统在机械工程中的应用
总结词
广泛应用、控制精度高
详细描述
线性系统在机械工程中有着广泛的应用,如数控机床、机器人、自动化生产线等。这些系统通过线性 控制理论进行设计,可以实现高精度的位置控制、速度控制和加速度控制,提高生产效率和产品质量 。
时域分析法
通过求解线性常微分方程或差分 方程,可以得到系统的动态响应
,包括瞬态响应和稳态响应。
频域分析法
通过分析系统的频率响应函数,可 以得到系统在不同频率下的动态响 应特性。
状态空间分析法
通过建立系统的状态方程和输出方 程,利用计算机仿真技术对系统的 动态响应进行模拟和分析。
2023
PART 05
2023
PART 02
线性系统的数学模型
REPORTING
线性系统的微分方程
总结词
描述线性系统动态行为的数学方程
详细描述
线性系统的微分方程是描述系统状态随时间变化的数学模型,通常采用常微分 方程或差分方程的形式。这些方程反映了系统内部变量之间的关系及其对时间 的变化规律。

线性系统课件

线性系统课件
2 2
21
1 2 10 B1 , B2 , B3 3 9 27
则特解为:
1 2 2 10 rf ( t ) t t 3 9 27
可见,特解是由激励与系统方程共同决定的。 激励决定特解形式 系统方程决定系数
四、能控性和能观测性的概念
古典中:C(s)既是输出又是被控量
n 1
d r (t ) d r (t ) dr(t ) an n an 1 n1 a1 a0r (t ) dt dt dt m m 1 d e( t ) d e( t ) de(t ) bm m bm1 m1 b1 b0e(t ) dt dt dt
二、线性定常连续系统的能控性判据
二、线性系统判定方法
判断下述微分方程所对应的系统是否为线性系统?
d r (t ) 10r ( t ) 5 e( t ) ,t 0 dt
分析:根据线性系统的定义,证明此系统是否具有 齐次性和叠加性。可以证明:
系统不满足齐次性 系统不具有叠加性
此系统为非线性系统。 请看下面证明过程
证明齐次性
1.3 传递函数描述法的局限性
对于非零初始条件,这种描述不能应用。更为重要的是,输入输出描述不能揭示系统的内部行为。
例如:
从输入—输出关系来看,它们具有相同的传递函数:
1 G( s) s 1
但事实上这是两个不同的系统。这两个系统是不等价的 ,一个是能观不能控的,一个是能控不能观的。这表明 系统的内部特性比起由传递函数表达的外部特性要复杂 得多,输入—输出描述没有包含系统的全部信息,不能 完整的描述一个系统。
当e1 ( t ) e2 ( t ) 同时作用于系统时,若该系统为线性系统, 应有

线性系统理论全

线性系统理论全

稳定性判据与判定方法
稳定性判据
在控制工程中,常用的稳定性判据有Routh判据、Nyquist判据、 Bode判据等。这些判据通过分析系统的特征方程或频率响应来判 断系统的稳定性。
判定方法
除了使用稳定性判据外,还可以通过时域仿真、频域分析、根轨 迹法等方法来判定系统的稳定性。这些方法各有优缺点,适用于 不同类型的线性系统和不同的问题背景。
100%
线性偏差分方程
处理离散空间和时间的问题,如 数字滤波器和图像处理等。
80%
初始条件与边界条件
在差分方程中,初始条件确定系 统的起始状态。
状态空间模型
状态变量与状态方程
表示系统内部状态的变化规律 ,揭示系统动态特性。
输出方程
描述系统输出与状态变量和输 入的关系,反映系统对外部激 励的响应。
状态空间表达式的建立
复频域分析法
拉普拉斯变换
将时域信号转换为复频域信号,便于分析系统的稳定性和动态性 能。
系统函数
描述Байду номын сангаас统传递函数的复频域表示,反映系统的固有特性和对输入信 号的响应能力。
极点、零点与稳定性
通过分析系统函数的极点和零点分布,可以判断系统的稳定性以及 动态性能。
04
线性系统稳定性分析
BIBO稳定性
01
线性系统理论全

CONTENCT

• 线性系统基本概念 • 线性系统数学模型 • 线性系统分析方法 • 线性系统稳定性分析 • 线性系统能控性与能观性分析 • 线性系统优化与综合设计
01
线性系统基本概念
线性系统定义与性质
线性系统定义
满足叠加性与均匀性的系统。
线性系统性质

线性系统理论PPT-郑大钟(第二版)

线性系统理论PPT-郑大钟(第二版)

系统具有如下3个基本特征:
(1)整体性
1.结构上的整体性 2.系统行为和功能由整体 所决定
(2)抽象性
作为系统控制理论的研 究对象,系统常常抽去 了具体系统的物理,自 然和社会含义,而把它 抽象为一个一般意义下 的系统而加以研究。
(3)相对性
在系统的定义 中, 所谓“系统” 和“部分”这 种称谓具有相 对属性。
u1 u2

up
x1 x2
动力学部件

xn
输出部件
y1 y2

yq
连续时间线性系统的状态空间描述
线性时不变系统
x Ax Bu

y

Cx

Du
线性时变系统
x A(t)x B(t)u

y

C (t ) x

D(t
)u
连续时间线性系统的方块图
x A(t)x B(t)u
对于单输入,单输出线性时不变系统,其微分方程描述
y (n) an1 y (n1) a1 y (1) a0 y bmu (m) bm1u (m1) b1u (1) b0u

H (k )
单位延迟
C(k)
y(k)
u(k)


G(k)
2.3.连续变量动态系统按状态空间描述的分类
线性系统和非线性系统
设系统的状态空间描述为 x f ( x,u, t) y g( x,u, t)
向量函数
f1(x,u,t)
g1(x,u,t)
f
(
x,u,
t
)


f
2
(
x,u,
e

线性系统理论(第一章).ppt

线性系统理论(第一章).ppt

x2
0
x3 640
1 0 194
0 x1 0
1
x2
0
u
16 x3 1
x1
y 720
160
0
x2
x3
第一章
⑵当 m n时,将有理分式进行严格真化,
y
[bn
(bn1 bnan1) pn1 pn an1 pn1
(b0 bna0 ) ]u a1 p a0
x1(t)
X
(t
)
,
t t0
xn (t)
状态空间:状态向量取值的一个向量空间。
第一章
动力学系统的状态空间描述 一个动力学系统的结构示意图。
u1 u2
• ••
x1 x2
动力学部件

• u p

xn
状态变量组:x1, x2 , , xn
输入变量组:u1,u2 , ,u p 输出变量组:y1, y2 , , yq
第一章
例:给定系统的输入—输出描述为
y(3) 16 y(2) 194 y(1) 640 y 4u(3) 160u(1) 720u
则 x1 0
x2
0
x3 640
1 0 194
0 x1 0
1
x2
0
u
16 x3 1
y 1840
616
x1
64
x2
4u
x3
R1
C
uc
e(t)
L iL
R2 uR2
u 解:确定状态变量,最多2个线性无关的变量,取 c 和 iL
作为状态变量。
第一章
列出原始电路方程:由电路定律。
右回路:

线性系统理论全PPT课件

线性系统理论全PPT课件
详细描述
稳定性是线性系统的一个重要性质,它决定了系统在受到外部干扰后能否恢复到原始状态。如果一个系统是稳定 的,那么当外部干扰消失后,系统将逐渐恢复到原始状态。而不稳定的系统则会持续偏离原始状态。
03
线性系统的数学描述
状态空间模型
01
定义
状态空间模型是一种描述线性动态系统的方法,它通过状态变量和输入
航空航天控制系统的线性化分析
线性化分析
在航空航天控制系统中,由于非线性特性较强,通常需要进行线性化分析以简化系统模 型。通过线性化分析,可以近似描述系统的动态行为,为控制系统设计提供基础。
线性化方法
常用的线性化方法包括泰勒级数展开、状态空间平均法和庞德里亚金方法等。这些方法 可以将非线性系统转化为线性系统,以便于应用线性系统理论进行控制设计。
线性系统理论全ppt课件
• 线性系统理论概述 • 线性系统的基本性质 • 线性系统的数学描述 • 线性系统的分析方法 • 线性系统的设计方法 • 线性系统的应用实例
01
线性系统理论概述
定义与特点
定义
线性系统理论是研究线性系统的 数学分支,主要研究线性系统的 动态行为和性能。
特点
线性系统具有叠加性、时不变性 和因果性等特性,这些特性使得 线性系统理论在控制工程、信号 处理等领域具有广泛的应用。
线性系统的动态性能分析
动态性能指标
描述线性系统动态特性的性能指 标,如超调量、调节时间、振荡
频率等。
状态空间分析法
通过建立和解决线性系统的状态方 程来分析系统的动态性能,可以得 到系统的状态轨迹和响应曲线。
频率域分析法
通过分析线性系统的频率特性来描 述系统的动态性能,可以得到系统 的频率响应曲线和稳定性边界。

线性系统理论课件

线性系统理论课件
mn ij
定义: 矩阵 A a R
ij
mn
的行秩或列秩称为矩阵A的秩
记为rank(A)。 显而易见,对于矩阵
A aij Rmn
而言,有
rank(A)≤min{m,n}
当rank(A)=m时,我们称A为行满秩矩阵; 当rank(A)=n时,我们称A为列满秩矩阵; 当rank(A)<min{m,n}时,我们称A为降秩矩阵,
x1 x 2 x x3
xi R, i 1,2,, n
全体的集合。设 x, y R ,在Rn中规定加法和数乘为
n
x1 y1 x y 2 2 x y x y n n
ax1 ax 2 ax axn
与初等行变换矩阵相对应的初等列变换矩阵分别
记之为 Qi , j , Qi c 和 Qi, j
等价是多项式矩阵之间的一种关系,这种关系显 然具有下述三个性质:
反身性,即每一个多项式矩阵均与自身等价。
对称性,即A(s)与B(s)等价,可推出B(s)与A(s)等价。
传递性,即A(s)与B(s)等价,B(s)与C(s)等价,可推出
1
时,称T为由V1到V2的线性变换或线性算子。V1称为T 的定义域。若令 TV Tv v V V 则TV1也是一个线性 空间,它被称为T的值域空间,记为ImT=TV1。在 V1=V2时,称他为V1上的线性变换。
1 1 1 1 2
二、矩阵代数中的几个结果 定义: 矩阵 A a R 中列向量的最大无关组的个数 称为A的列秩; 其行向量的最大无关组的个数称为A的 行秩。
x y yx ( x y) z x ( y z ) 1x x k (lx) (kl) x

线性系统理论ppt课件

线性系统理论ppt课件
第五章 线性系统理论
第一节 线性关系
数学模型是由描述系统的变量和常量 构成的数学表达式,建立数学模型后,首 先要区分系统是线性还是非线性的。
以前的科学研究主要对象是线性系统, 而今正转向非线性系统,并且未来科学的 本质上是非线性科学
线性与非线性原本就是一对数学关系,用以区 分不同变量之间的两种基本的相互关系。
a11x1+a12x2+a13x3≤b1 a21x1+a22x2+a23x3≤b2
…… 它表示变量x1,x2,x3只能在给定的若干个代数 关系内变化,并且每个变量的变化都影响另 外两个变量的变化。
以上所讲的变量之间的关系都是静态相互 关系,都是用函数和代数方程进行描述。
实际上的动态过程中的诸变量的相互依存关 系要丰富的多。其数学表达式中将出现微分、 差分、积分等描述动态特性的项,反映这些 动态量对各个变量的依存关系。
xn
对于变系统系统,系统的系数为t的函数aij(t),系数矩阵为 A(t)
因此,对于最简单的一维系统就有:
x=ax
对于二维系统,有:
x=a11 x+a12 y y=a21 x+a22 y
以此类推至多维线性系统。
矩阵式描述对象整体特性的数学工具之一,方程给定后,借助代数 方法,通过分析系数矩阵,可以全面的了解系统的动态行为。
∇= a11a22 − a12a21
"鞍点"在三维空间中定义(图中的坐标原点),经过"鞍 点"平行于z轴的平面束代表无穷多个发展方向,每个平 面与曲面相交得到对应的曲线,代表该方向的发展轨迹。 不同的方向有的上升,有的下降。影射汽车市场,诸如 二手车置换的兴旺、汽车金融的产生、弱者被淘汰出局、 汽车出口呈上升态势、自主品牌的崛起、技术创新成企 业竞争王牌……不同的方面将有不同的发展。

线性系统理论课件

线性系统理论课件

x0 xe
* * 所确定的球域 S ( ) 内,至少存在一个初态 x0 ,由 x0出发的,t t 0时的状态x
不满足下列不等式
* x xe (t; x0 , t0 ) xe
t t0
则称状态 x e 是不稳定的。
2)几何意义
S ( )
* 0x
x2
H ( )界面
函数,李氏认为在判断一个系统的稳定时,不一定非要找到系统的真正能量函数,
可以根据不同的系统虚构一个广义的能量函数,称为李亚普诺夫函数(李氏函数)。 李氏函数能满足一定的条件,也就可根据它来判断系统的稳定性了。
李氏函数一般是状态分量 x1 , x2 ,, xn 和时间 t 的标量函数,用V ( x, t )表示。若
Re{i ( A)} 0, 其中n为系统的维数.
i 1,2,, n
当矩阵A给定后则一旦导出其特征多项式 ( ( s) det(sI A) s n n 1s n 1 1s 0 那么就可利用劳斯 霍尔维茨( Routh Hurwitz 判据而直接由系统 )
有限常数 k , G (t ) 的每一个元 g ij (t ) (i 1,2,, q; j 1,2,, p) 均满足关系 式:

二 内部稳定性

0
g ij (t ) dt k
ˆ ˆ 或者等价地当G( s)为真的有理分式函数矩 阵时G( s)的每一个元传递函数 ˆ g ij ( s)的所有极点均具有负实 部
对t具有连续的一阶导数存在,对 xi (i 1,2,, n)具有连续的一阶偏导数存在, 且满足如下条件
(1) (2) (3) (4)
V ( x, t ) 0, V ( x, t ) 0, V ( x, t ) 0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)系统的内部描述 状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征,—— 状态方 程和输出方程 (3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不 能控或不能观测的部分. 内部描述则是系统的一种完全的描述,能够完全反映系统的所有动力学特性.
从作用时间 1.连续时间系统 类型的角度 2.离散时间系统
连续系统按其参数 1.集中参数系统: 属有穷维系统 的空间分布类型 2.分布参数系统: 属于无穷维系统
本书中仅限于研究线性系统和集中参数系统
线性系统 线性系统理论的研究对象为线性系统,其模型方程具有线性属性即满足叠加原理。 若表征系统的数学描述为L 系统模型 系统模型是对系统或其部分属性的一个简化描述 ①系统模型的作用:仿真、预测预报、综合和设计控制器
2/4,2/50
u1
yq
2.1 基本概念
2.1.1 定义
u2
up
x1, x2 ,, xn
y2
yq
(1)状态: 系统过去、现在和将来的状况 能够完全表征系统运动状态的 (2)状态变量: 最小一组变量:
0
a. x t t t x(t0 ) 表示系统 t
b. 当
t t0
0
时刻的状态
时的输入 u t 给定,且上述初始 状态确定时,状态变量能完全确定系统 在 t t 0 时的行为
1.2 线性系统理论的基本概貌
线性系统理论是一门以研究线性系统的分析与综合的理论和方法为基本任 务的学科。
线性系统理论着重研究线性系统状态的运动规律和改变这种规律的可能性 和方法,以建立和揭示系统结构、参数、行为和性能间确定的和定量的关系。 主要内容: 数学模型 → 分析理论 → 发展过程: 主要学派: 状态空间法 几何理论 把对线性系统的研究转化为状态空间中的相应几何问题, 并采用几何语言来对系统进行描述,分析和综合 综合理论
线性系统理论是系统控制理论的一个最为基础和最为成熟的分支。它以 线性代数和微分方程为主要数学工具,以状态空间法为基础分析和设计控制 系统。
第一章 绪论
1.1系统控制理论的研究对象
系统是系统控制理论的研究对象
系统:是由相互关联和相互制约的若干“部分”所组成的具有特定功能的一个“整体
系统具有如下3个基本特征:
线性系统理论
第一章 绪 论
第一部分 线性系统的时间域理论 第二部分 线性系统的复频率域理论
第二章 线性系统的状态空间描述 第三章 线性系统的运动分析 第四章 线性系统的能控性和能观测性 第五章 系统运动的稳定性 第六章 线性反馈系统的时间域综合
第一章 绪论 控制理论发展概况: 第一阶段 20世纪40—60年代 经典控制理论 第二阶段 20世纪60—70年代 现代控制理论 第三阶段 20世纪70— 大系统理论 (广度) 智能控制理论 (深度)
1.输入变量组 2. 内部状态变量组 3.输出变量组
u x
y
系统动态过程的数学描述
1. 白箱描述: 内部描述(状态方程和输出方程 ) 2.黑箱描述: 外部描述(输入, 输出变量组的关系 )
动态系统的分类
CVDS 从机制的角度 1.连续变量动态系统 2.离散事件动态系统 DEDS
从特性的角度
1.线性系统 2.非线性系统
(t ) Ax(t ) Bu(t ) 的、一阶微分方程(组):x
(6)输出方程:描述系统输出与状态、输入之间关 系的数学表达式: y(t ) Cx(t ) Du(t ) (7)状态空间表达式: (5)+ (6).
第二章 线性系统的状态空间描述
2.1 状态和状态空间
系统动态过程的数学描述
u1 u2
up
yq
x1, x2 ,, xn
y2
yq
1/4,1/50
(1).系统的外部描述 外部描述常被称作为输出—输入描述 例如.对SISO线性定常系统:时间域的外部描述:
u1 u2
up
yq
x1, x2 ,, xn
y2
yq
经典线性系统理论→现代线性系统理论
代数理论
把系统各组变量间的关系看作为是某些代数结构之间的 映射关系,从而可以实现对线性系统描述和分析的完全的 形式化和抽象化,使之转化为纯粹的一些抽象代数问题
多变量频域方法
一是频域方法 二是多项式矩阵方法
第一部分: 线性系统时间域理论 线性系统时间域理论是以时间域数学模型为系统描述,直 接在时间域内分析和综合线性系统的运动和特性的一种理论 和方法。
L (c1u1 c 2u 2 ) c1L (u1 ) c 2 L (u 2 )
②模型类型的多样性:用数学模型描述、用文字、图表、数据或计算机程序表示
③数学模型的基本性:着重研究可用数学模型描述的一类系统 ④建立数学模型的途径:解析、辨识 ⑤系统建模的准则:折衷
线性系统理论研究对象是 (线性的)模型系统,不是 物理系统。
(3) 状态向量:以系统的 n 个独立状态变量
x1 t , L, xn t 作为分量的向量,即 x t x1 t量 x1 t ,, xn t 为坐 标轴构成的 n 维空间。 (5)状态方程:描述系统状态与输入之间关系
y(n) an1 y(n1) a1 y(1) a0 y bn1u (n1) b1u(1) b0u
复频率域描述即传递函数描述
bn1 s n1 b1 s b0 y( s) g ( s) n u( s) s an1 s n1 a1 s a0
(1)整体性
1.结构上的整体性
(2)抽象性
(3)相对性 在系统的定义 中, 所谓“系统” 和“部分”这 种称谓具有相 对属性。
作为系统控制理论的研 究对象,系统常常抽去 2.系统行为和功能由整体 所决定 了具体系统的物理,自 然和社会含义,而把它 抽象为一个一般意义下 的系统而加以研究。
动态系统: 所谓动态系统,就是运动状态按确定规律或确定统计规律随时间演化 的一类系统——动力学系统。 动态系统是系统控制理论所研究的主体,其行为有各类变量间的关系来表征。 系统变量可区分为三类形式
相关文档
最新文档