数学建模竞赛中的论文写作
大学数学建模论文范文3000字(汇总5篇)
![大学数学建模论文范文3000字(汇总5篇)](https://img.taocdn.com/s3/m/4860221268eae009581b6bd97f1922791688be93.png)
大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。
叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。
_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。
同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。
因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。
我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。
数学建模论文格式
![数学建模论文格式](https://img.taocdn.com/s3/m/eed95beb85868762caaedd3383c4bb4cf6ecb755.png)
数学建模论文格式①研究的主要问题;②建立的什么模型;③用的什么求解方法;④主要结果(简洁、主要的);⑤自我评价和推广。
数学建模竞赛章程规定,对竞赛论文的评价应以:①假设的合理性②建模的制造性③结果的正确性④文字表述的清楚性为主要标准。
所以论文中应努力反映出这些特点。
留意:整个版式要完全根据《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
一、问题的重述数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。
此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。
这部分的内容是将原问题进行整理,将已知和问题明确化即可。
留意:在写这部分的内容时,肯定不可照抄原题!应为:在认真理解了问题的基础上,用自己的语言重新将问题描述一篇。
应尽量简短,没有必要像原题一样面面俱到。
二、模型假设作假设时需要留意的问题:①为问题有帮忙的全部假设都应当在此消失,包括题目中给出的假设!②重述不能代替假设!也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍旧要再次叙述!③与题目无关的假设,就不必在此写出了。
三、变量说明为了使读者能更充分的理解你所做的工作,对你的模型中所用到的变量,应一一加以说明,变量的输入必需使用公式编辑器。
留意:①变量说明要全即是说,在后面模型建立模型求解过程中使用到的全部变量,都应当在此加以说明。
②要与数学中的习惯相符,不要使用程序中变量的写法比如:一般表示圆周率;cba,,一般表示常量、已知量;zyx,,一般表示变量、未知量再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)四、模型的建立与求解这一部分是文章的重点,要特殊突出你的制造性的工作。
在这部分写作需要留意的事项有:①肯定要有分析,而且分析应在所建立模型的前面;②肯定要有明确的模型,不要让别人在你的文章中去找你的模型;③关系式肯定要明确;思路要清楚,易读易懂。
优秀的数学建模论文范文(通用8篇)
![优秀的数学建模论文范文(通用8篇)](https://img.taocdn.com/s3/m/0b0d63586d85ec3a87c24028915f804d2b1687c3.png)
优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
全国大学生、研究生数学建模竞赛论文写作要求
![全国大学生、研究生数学建模竞赛论文写作要求](https://img.taocdn.com/s3/m/207e9f96dd88d0d233d46a9d.png)
全国大学生、研究生数学建模竞赛论文写作要求题目:明确题目意思一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。
略四.模型假设根据全国组委会确定的评阅原则,基本假设的合理性很重要。
(1)根据题目中条件作出假设(2)根据题目中要求作出假设关键性假设不能缺;假设要切合题意五.模型的建立(1)基本模型:1) 首先要有数学模型:数学公式、方案等2) 基本模型,要求完整,正确,简明(2)简化模型1)要明确说明:简化思想,依据2)简化后模型,尽可能完整给出(3)模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。
能用初等方法解决的、就不用高级方法,能用简单方法解决的,就不用复杂方法,能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
(4)鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在▲建模中,模型本身,简化的好方法、好策略等,▲模型求解中▲结果表示、分析、检验,模型检验▲推广部分(5)在问题分析推导过程中,需要注意的问题:分析:中肯、确切;术语:专业、内行;原理、依据:正确、明确;表述:简明,关键步骤要列出;忌:外行话,专业术语不明确,表述混乱,冗长。
六.模型求解(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
(2)需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称(3)计算过程,中间结果可要可不要的,不要列出。
(4)设法算出合理的数值结果。
( 5 ) 结果分析、检验;模型检验及模型修正;结果表示1)最终数值结果的正确性或合理性是第一位的;2)对数值结果或模拟结果进行必要的检验。
结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进;3)题目中要求回答的问题,数值结果,结论,须一一列出;4)列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;5)结果表示:要集中,一目了然,直观,便于比较分析▲数值结果表示:精心设计表格;可能的话,用图形图表形式▲求解方案,用图示更好6)必要时对问题解答,作定性或规律性的讨论。
数学建模经典论文五篇
![数学建模经典论文五篇](https://img.taocdn.com/s3/m/20fab98a6529647d272852f4.png)
1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。
大学生数学建模论文(专业推荐范文10篇)
![大学生数学建模论文(专业推荐范文10篇)](https://img.taocdn.com/s3/m/f632c165e53a580217fcfe16.png)
大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。
大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。
调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。
文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。
关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。
许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。
全国大学生数学建模竞赛论文范例
![全国大学生数学建模竞赛论文范例](https://img.taocdn.com/s3/m/02433028f342336c1eb91a37f111f18583d00c97.png)
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的研究,建立了相应的数学模型,并运用具体方法进行求解和分析。
通过对结果的讨论,得出了具有一定实际意义的结论和建议。
一、问题重述详细阐述所给定的问题,明确问题的背景、条件和要求。
二、问题分析(一)对问题的初步理解对问题进行初步的思考和分析,明确问题的关键所在和需要解决的核心问题。
(二)可能用到的方法和模型根据问题的特点,探讨可能适用的数学方法和模型,如线性规划、微分方程、概率统计等。
三、模型假设(一)假设的合理性说明所做假设的依据和合理性,确保假设不会对问题的解决产生过大的偏差。
(二)具体假设内容列举出主要的假设条件,如忽略某些次要因素、变量之间的关系等。
四、符号说明对文中使用的主要符号进行清晰的定义和说明,以便读者理解。
五、模型建立与求解(一)模型的建立详细阐述模型的构建过程,包括数学公式的推导和逻辑关系的建立。
(二)模型的求解运用适当的数学软件或方法对模型进行求解,给出求解的步骤和结果。
六、结果分析(一)结果的合理性对求解得到的结果进行合理性分析,判断其是否符合实际情况。
(二)结果的敏感性分析探讨模型中某些参数或条件的变化对结果的影响。
七、模型的评价与改进(一)模型的优点总结模型的优点,如准确性、简洁性、实用性等。
(二)模型的不足分析模型存在的不足之处,如局限性、假设的不合理性等。
(三)改进的方向针对模型的不足,提出可能的改进方向和方法。
八、结论与建议(一)结论总结问题的解决结果,明确回答问题的核心要点。
(二)建议根据结论,提出具有实际意义的建议和措施,为相关决策提供参考。
以下是一个具体的示例,假设我们要解决一个关于交通流量优化的问题。
问题重述在某城市的一个交通路口,每天早晚高峰时段都会出现严重的交通拥堵。
现需要建立数学模型,优化信号灯的设置时间,以提高交通流量,减少拥堵。
问题分析首先,我们需要收集该路口的交通流量数据,包括不同时间段各个方向的车辆数量。
数学建模竞赛获奖论文范文
![数学建模竞赛获奖论文范文](https://img.taocdn.com/s3/m/efa39ba1970590c69ec3d5bbfd0a79563c1ed4fa.png)
数学建模竞赛获奖论文范文数学的运用越来越广泛了,利用建立数学模型解决实际问题的数学建模活动也应运而生了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高中开设数学建模课程的意义与定位》1、高中开设数学建模课程的背景在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。
要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。
高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。
因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。
国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。
"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。
第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。
这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。
第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。
如何撰写数学建模论文
![如何撰写数学建模论文](https://img.taocdn.com/s3/m/bb930dfd2dc58bd63186bceb19e8b8f67d1cef63.png)
如何撰写数学建模论文如何撰写数学建模论文数学建模是一门将数学方法应用于实际问题解决的学科。
撰写数学建模论文是数学建模竞赛中非常重要的一部分,为了让你的论文论证清晰,逻辑严谨,下面给出一些建议:1. 理清问题:首先要仔细阅读题目,理解问题的背景和要求。
明确问题的关键点和限制条件,将问题抽象化,确定数学模型的目标和限定条件。
2. 收集信息:对于所给问题,收集并整理与之相关的信息。
例如,通过查阅文献、统计数据、实地调研等方式,获取问题的背景知识和阐明论证的依据。
3. 建立模型:根据问题的特点和要求,选择合适的数学方法建立模型。
可以是微分方程、线性规划、离散数学等。
模型要准确地反映问题的关键特征,并且具有可行性与可解性。
4. 分析模型:对所建立的数学模型进行分析。
包括模型的稳定性、敏感性分析、局部和全局优化等。
进行模型的合理简化与修正,提高模型的精确度与适用性。
5. 解决方案:根据数学模型,利用数学方法求得问题的解决方案。
可以使用数学软件进行求解,或者进行数值模拟实验,验证模型的可行性和准确性。
6. 结果讨论:对求解的结果进行准确描述,并进行合理的解释和讨论。
对问题的特点与解决方案进行分析,提出优化建议或改进方向。
7. 论文撰写:在论文撰写中,要注意论文的结构和格式。
包括题目摘要、引言、问题分析与模型建立、模型分析与求解、结果与讨论、结论等部分。
要注意使用清晰明了的图表和表格,使用规范的引用格式。
8. 语言表达:在论文写作中,要注重语言表达的准确性和流畅性。
使用科学的术语和符号,避免使用口语化的表达方式。
句子结构清晰,逻辑连贯,语法正确。
9. 修改和校对:完成初稿后,进行反复修改和校对。
检查论文的逻辑结构是否清晰,文字是否流畅,图表与公式是否规范准确。
同时注意查漏补缺,修正语法错误和拼写错误。
10. 合作与合理分工:在数学建模中,一般会涉及到团队合作。
在撰写论文时,要合理分工,根据各自的专长和贡献,明确每个人的责任和贡献度。
数学建模论文(精选4篇)
![数学建模论文(精选4篇)](https://img.taocdn.com/s3/m/27de590de418964bcf84b9d528ea81c758f52e2d.png)
数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
数学建模论文(7篇)
![数学建模论文(7篇)](https://img.taocdn.com/s3/m/902a52f7ba4cf7ec4afe04a1b0717fd5360cb21c.png)
数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。
如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。
数学建模所解决的问题不止现实的,还包括对未来的一种预见。
数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。
数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。
教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。
以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。
因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。
1.2数学建模在大学数学教学中的运用。
大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。
再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。
不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。
全国大学生数学建模竞赛论文范例
![全国大学生数学建模竞赛论文范例](https://img.taocdn.com/s3/m/2855ba4711a6f524ccbff121dd36a32d7275c74e.png)
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。
文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。
一、问题重述在当今社会,具体问题背景。
本次数学建模竞赛的问题是:详细描述问题。
需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。
二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。
从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。
进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。
基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。
三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。
四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。
详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。
详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。
数学建模优秀论文的范文
![数学建模优秀论文的范文](https://img.taocdn.com/s3/m/4b18bdd180c758f5f61fb7360b4c2e3f56272558.png)
以下是一篇数学建模优秀论文的范文,供您参考:题目:基于支持向量机的分类模型研究引言:分类是数学建模中的一个重要问题,其在很多领域都有着广泛的应用。
支持向量机(SVM)是一种基于统计学习理论的分类算法,具有较好的泛化能力和鲁棒性,被广泛应用于图像分类、文本分类、生物信息学等领域。
本文旨在研究支持向量机在分类问题中的应用,并对其性能进行评估。
问题分析:分类问题的核心在于根据已知标签的数据集,训练出一个能够对未知数据进行分类的模型。
支持向量机是一种基于结构风险最小化原则的分类算法,其基本思想是将输入空间映射到高维特征空间,并在此空间中构建最大间隔分类器。
在支持向量机中,关键参数的选择和核函数的选取对模型的性能有着重要影响。
模型建立:支持向量机是一种基于统计学习理论的分类算法,其基本思想是在高维空间中构建一个超平面,将不同类别的数据分隔开。
该算法的核心在于寻找到一个能够将数据分隔开的最优超平面,使得分类间隔最大化。
在训练过程中,支持向量机会通过求解一个二次规划问题来寻找最优超平面。
模型求解:在模型训练过程中,我们采用了LIBSVM工具包来实现支持向量机。
LIBSVM是一种常用的支持向量机实现工具包,其提供了高效的求解算法和方便的接口。
在实验中,我们采用了交叉验证和网格搜索等方法来选择最优的参数组合,并对其进行评估。
结果分析:在实验中,我们采用了多种数据集来验证支持向量机的性能,包括图像分类、文本分类和生物信息学等领域的数据集。
实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。
同时,我们还对其进行了误差分析,发现支持向量机具有较好的泛化性能和鲁棒性。
结论与展望:本文研究了支持向量机在分类问题中的应用,并对其性能进行了评估。
实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。
同时,支持向量机还具有较好的泛化性能和鲁棒性。
数学建模论文范文免费(必备14篇)
![数学建模论文范文免费(必备14篇)](https://img.taocdn.com/s3/m/539c7489f424ccbff121dd36a32d7375a417c6e2.png)
数学建模论文范文免费(必备14篇)试论数学建模【摘要】本文以“减肥问题的研究”为例,介绍了数学建模基本方法和步骤,希望它能对初次参加数学建模的同学有所帮助。
【关键词】数学建模;基本方法;步骤数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题作抽象、简化、确定变量和参数并应用一些“规律”建立含变量和参数的数学问题,求解该数学问题并验证所得到的解,从而确定能否用于解决实际问题的这种多次循环,不断深化的过程。
数学建模可以培养学生下列能力:(1)洞察能力,许多提出的问题往往不是数学化的,这就是需要建模者善于从实际工作提供的原形中;抓住其数学本质,同时有些数学模型又可以有许多现实意义,这使得建模者不得不具有很强的洞察以及多种思维方式进行横向、纵向的研究;(2)数学语言翻译能力即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众的语言表达出来,在此基础上提出解决其中一问题的方案或建议;(3)综合应用分析能力,用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力,对于不少的实际问题,看起来完全不同,但在一定的简化层次下它们的数学建模是相同的或相似的,这正是数学应用广泛性的体现,这就要培养学生有广泛的兴趣,多思考,勤奋踏实地学习,通过熟能生巧达到触类旁通地境界。
因此,目前有越来越多的高等院校自己组织或参加全国乃至国际大学生数学建模竟赛。
然而,有部分学生特别是初次参加数学建模的学生对数学建模感到很茫然,本人多次承担数学建模指导老师,撰写该论文,希望对初次参加数学建模的同学有所帮助。
1.建立数学模型的一般步骤使问题理想化在众多因素中孤立出所研究的问题是科学研究的经典方法。
按照辩证唯物主义观点,世界上一切事物都是相互依赖、相互依存的,要精细地研究一个问题常常无从下手,就是因为思考相关问题太多所致。
因此,对初学者最好的方法就是使问题简单化、理想化,在特殊或极端情况下进入课题,然后加入相关因素,修正结果,使问题深化。
数学建模论文模板(10篇)
![数学建模论文模板(10篇)](https://img.taocdn.com/s3/m/9f95e162e418964bcf84b9d528ea81c758f52ef6.png)
数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。
2.数学教学中渗透数学建模思想是大学数学教学的必然要求。
目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。
为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。
3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。
数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。
另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。
二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。
1.从教学内容上改进以促进数学建模思想的普及和深入。
科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。
为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。
(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。
数学建模论文六篇
![数学建模论文六篇](https://img.taocdn.com/s3/m/5510d94cf56527d3240c844769eae009591ba267.png)
数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。
题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。
本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。
(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。
(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。
本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。
同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。
有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。
数学建模优秀论文(精选范文10篇)2021
![数学建模优秀论文(精选范文10篇)2021](https://img.taocdn.com/s3/m/eb5e37764a73f242336c1eb91a37f111f1850dd0.png)
数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。
通过收集历史空气质量数据,构建空气质量预测模型。
运用机器学习算法对模型进行训练和优化,提高预测精度。
通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。
二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。
建立物流配送模型,考虑配送成本、时间、距离等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。
三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。
构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。
运用风险度量方法对模型进行评估。
通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。
四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。
建立能源消耗模型,考虑设备运行、生产计划等因素。
运用优化算法对模型进行求解。
通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。
五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。
收集历史交通流量数据,构建交通流量预测模型。
运用时间序列分析方法对模型进行训练和优化。
通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。
数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。
建立医疗资源需求模型,考虑人口分布、疾病类型等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。
精选五篇数学建模优秀论文
![精选五篇数学建模优秀论文](https://img.taocdn.com/s3/m/73d36eb5b9f67c1cfad6195f312b3169a451eac7.png)
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。
本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。
实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。
三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。
本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。
实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。
四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。
本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。
实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。
五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。
本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。
实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
国际大学生数学建模竞赛论文
![国际大学生数学建模竞赛论文](https://img.taocdn.com/s3/m/fd54a5be0129bd64783e0912a216147917117ef2.png)
国际大学生数学建模竞赛论文数学建模不仅有助于提高学生的数学知识水平和数学应用能力,而且还能激发学生学习数学的兴趣。
下文是店铺为大家整理的关于国际大学生数学建模竞赛论文的范文,欢迎大家阅读参考!国际大学生数学建模竞赛论文篇1浅析数学建模培训中提高心理素质的方法数学建模是一项集数学、计算机水平和综合能力的工作,为了让学生更好地参加各类数学建模竞赛,通常准备参加的学生都要做一些准备,即参加学校举办的建模竞赛培训,在培训中,学生能尽早了解并掌握建模的基础理论知识及相关应用软件,有利于培养学生分析问题和解决实际问题的能力,并且有利于培养学生的团队合作精神,使队员间尽早磨合,相互了解,同时可以训练学生快速获取有用信息和资料的能力,有利于增强学生的写作技能和排版技术等。
数学建模竞赛培训是根据竞赛的发展动向,在认真进行调研和集体研究后,形成培训内容和培训方案,例如有线性与非线性优化、整数与多目标规划、多元统计分析、图论与网络方法、Matlab 与 Lingo 软件、各类竞赛题等等。
因此,指导教师讲授的内容是动态化和多样化的。
培训期间工作十分紧张,每天白天和晚上要进行,周六和周日也要进行,付出的辛苦是可想而知的。
特别是在模拟竞赛期间,要求学生按照竞赛规定的时间完成模拟训练赛题,并写成一篇完整的论文,由于题目比较难,学生往往就会在思想上出现各种畏难和波动情绪。
参加过建模的同学收获很多,不但领会到数学之美,建模之乐,还体会到团队合作的强大,专业交叉的益处,可以说对学生是一个专业,性格,心智等全方面的锻炼和提高。
1. 心理素质在竞赛中的作用心理素质是人综合素质的重要组成部分,一般指人的情绪、信心和意志力等。
很多学生通过《高等数学》、《概率统计》及《复变函数》等数学课程的学习,对数学的抽象性、实用性和理论性产生怀疑,或多或少的会对数学产生抵触情绪或者畏惧心理。
因此,每每提到"数学"都会产生疑问,对数学缺乏信心,失去兴趣,在比赛中,负面情绪占主导地位的学生,只要碰到一点弄不懂的地方,就容易焦躁沮丧,甚至于失去信心,中途放弃比赛,而意志力强的学生正好相反,同样的困难反而更能激发他们的斗志,往往坚持到最后,都取得不错的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模竞赛中的论文写作
在数学建模竞赛中,每个参赛队要提交一篇论文,内容是利用数学方法解决一个实际问题。
完成这篇论文有三个“工序”:第一,建立数学模型,即把实际问题转化为数学问题:第二,利用计算机及其他工具解决所得的实际问题:第三,将所得的结果写成论文,这篇论文不仅要使专家能看懂,而且要使数学知识相对少的管理者以及公众也能了解建模的基本思想和解决问题的方案。
论文写作是竞赛的关键环节。
许多参赛队所得的结果,从数学上看并不差,然而没有清楚地说明建模思想,问题分析不深入,也未能阐明结果的实际意义,成绩自然不理想。
论文的评阅标准是四句话:假设的合理性,建模的创造性,结果的正确性和文字清晰性。
每个参赛队员都要牢记这四句话。
论文的语言应该准确、简洁,使评阅人能很快地找到论文最精彩的部分,迅速地领会到你的建模思想,了解解决问题的方案。
论文的主体一般不应超过一万字(大约10页),次要的内容,详尽的推导可以作为附录。
一般来说,只有最好的论文,评阅人才会花较长的时间去读,所以如果你的论文过于冗长,是很难得到好成绩的。
语言要鲜明生动。
科学论文最重要的当然是准确性,不允许夸张或虚假。
但在准确的基础上要尽量鲜明生动,这将会给评阅入一个良好的印象。
有些参赛论文写得象某些数学教科书:定理...证明...定理...证明(这样的教科书不一定很受欢迎),使人看了打瞌睡,而且没有说清楚建模思想,读起来很费力,自然难以得到好成绩。
根据竞赛的要求,整篇文章应包含以下部分:摘要(约300~500字),问题的重述,假设,模型建立与模型分析,模型的稳定性,模型评价等部分。
摘要在整篇文章中起着“画龙点睛”的作用。
应以最简洁的语言,将全文中最精彩的部分展示在评阅人的面前。
要有“广告”的意识,摘要就是你的论文的“广告”。
如果你的论文摘要能够吸引评阅人的注意力,你就成功了一半。
摘要的内容可用三个词概括:问题、方法、结果。
首先用一两句话概括所解决的问题,其次简要说明建模的主要思路和方法,最后列举得到的主要结果。
一定要鲜明地指出文章的特色。
语言要简洁,避免难以理解的名词。
必要时,可用1~2个简洁的公式来说明主要思想或结果。
如果结果比较复杂,也可用图表说明。
摘要一定要精心推敲,删去所有废话,做到“字字珠矶”。
问题重述最好不要照抄原题。
可适当介绍建模思想(类似小说中的“引子”)特别是对于提法过泛的问题(美国赛题有很多这种类型),可适当将问题具体化。
假设是论文中的重要一环。
记住评阅标准的第一条:假设的合理性。
假设的主要目的是将常识判断、其他科学的语言等等转化为精确的数学语言。
这是数学建模的基础。
因此一定要使用规范化的数学语言、准确的数学概念。
例如MCM95B题:快速评卷的方案设计,要求设计评阅数学建模竞赛卷的方案。
一般的参赛队都会提出这样的假设:每位评阅人都是公平的。
这句话当然没
有错,然而“公平”不是一个数学概念。
如何把“公平”用数学语言精确地表达出来?假设第i 位评阅人给第j 份答卷的评分为c ij 日果我们认为c ij 是确定型变量,那么下面是“公平”的两种可能的解释:
(l) c ij 与评阅人无关,即每个评阅人给同一份卷同样的分数;
(2) 每个评阅人给所有答卷的排序相同,即若a 、b 是两位评阅人,j 、k 是两份答卷,则当ak aj c c ≥时必有bk bj c c ≥。
可以看出,假设(1)虽然看来与实际情况差别较大,但它是“公平"一词的原始解释,所有关于“公平”的假设都是以它为基础的,假设(2)比较复杂,但比较符合实际情况。
如果我们假设c ij 是随机变量,那么会与实际情况符合得更好。
注意,随机变量在数学上完全由其分布函数(或密度函数)决定,所以我们在假设中只能涉及其分布。
因此,一个可能的假设是:
(3) c ij 的分布与i 无关, c ij ~),(2σj c N ,这里c j 是答卷j 的“真实分数”。
可以看出,假设(3)是假设(l)和假设(2)的进一步发展。
我们可以根据假设(1)建立一个模型,根据假设(2)建立一个改进的模型。
又如CMCM99A 题:自动化车床管理。
题中说:“一道工序用自动化车床连续加工某种零件,由于刀具损坏等原因该工序会出现故障,其中刀具损坏故障占95%,其它故障仅占5%”。
这句话如何理解?有不少参赛队作出如下假设:
(1)刀具损坏故障与其他故障是相互独立的;
(2)刀具损坏故障次数与其他故障损坏次数的比例是19:1.
仔细分析就可以知道,首先,假设(1)与假设(2)是相互矛盾的。
既然两种故障的发生是相互独立的,怎么由刀具损坏故障次数知道其他故障损坏次数呢?其次,我们不可能知道故障发生的具体时间,只能知道故障的发生的分布。
通过这样的分析就知道,假设(1)与假设(2)从数学上是不准确的,应如下表达:
用N 总,N 刀,N 其他表示在一定时间内(例如加工106个零件)总故障、刀具故障与
其他故障的次数,则
(1’)随机变量N 刀和N 其他相互独立:
(2’)用总N ,刀N ,其他N 表示相应的均值,则刀N =0.95总N ,其他N =0.05总N 。
注意假设(2)与假设(2’)的差别。
我们不可能预知刀具损坏的次数,但可从过去的故障记录知道它的分布,从而知道它的均值。
假设要写得简洁,只写出最重要的假设,通常以3~5条较为合适。
要使得评阅人一看就能记住。
如果假设过多,评阅人经常要回过头来看,就影响他对你的思路的理解。
最好把你使用的各种符号,结合假设列出来。
符号的设计也是很重要的,简单明了的符号有助于评阅人理解你的思路。
模型建立是整篇论文的核心,要简要说明建模的思路,准确地表达出所建立模型的数学形式。
说明问题是如何简化的,考虑了哪些主要因数,舍弃了哪些次要因数,注意说清楚自己的想法。
如引用现成的模型,指出参考文献就行了,切忌大段抄书。
模型分析这一部分主要说明解决数学问题的思路和方法,以及解释所得结果的实际意义。
这一段和课堂上所做的数学题比较类似。
但要注意避免大量的推导和公式。
主要说明解题思路,严格的推导、证明可放在附录中。
公式必须精选,只写出最关键的几步。
要说明结果的实际意义。
例如MCM2002B题是研究航空公司超订机票问题。
研究顾客不满意度与公司损失的关系。
有些参赛队仅是简单地假设这两者之间存在二个函数关系,有的参赛队进一步说明这一函数表明了市场的竞争程度:当市场处于垄断状态时,顾客即使不满意也无法选择其他航空公司,公司的损失就小:当市场处于完全竞争状态,则顾客不满意度增加时,就会大量流失,引起公司巨大损失。
这样的解释就使结果更容易理解。
结果尽量用表格、图表等形式,总之要简明易懂,美国赛题往往包含给公司管理者、政府或公众的一份报告。
这份报告要尽量少用数学术语,尽可能通俗地解释你的结果。
即使没有这一要求,也应通俗地解释你的结果。
一定要把你的特色鲜明地显示给评阅人。
其他部分则应简略,有些参赛队总想把所想到的全写出来。
舍不得删去次要内容。
这样会使文章显得十分杂乱。
鲁迅先生曾对年轻作家提出忠告,宁可把写长篇小说的材料写成短篇小说,也不要把短篇小说的材料拉成长篇。
这一忠告也适合于写科学论文。
模型稳定性的讨论是很重要的。
因为初始数据不可避免有误差,若模型不稳定,则所得结果可能毫无意义,但也有相反的情况。
例如CMCM93B题,足球队排名次问题。
现在我们看到每年甲A联赛,经常提前几轮就“尘埃落定”,冠军与降级队一早就知道了,球赛没有悬念,没人看,而且也造成球队之间作交易打假球的风气。
如果设计一种排名次的方案,每场比赛的结果都会对名次排序造成很大影响。
这样就逼使各队不得不全力以赴,假球就会少了,球市也会火爆。
所以对这种问题,不稳定反而是模型的优点。
最后,模型优缺点这部分是文章的结尾部分,千万不要“虎头蛇尾”,随便应付两句。
首先要把你的方案的优点说够。
你肯定希望你的方案被政府(或公司)采纳,而不是被“枪毙”吧!当然,任何方案都不是十全十美的,因此也要实事求是地说明模型的缺点。
另外,短短三天的竞赛,你肯定有许多很好的想法未能实现,可简要地在这里说明。
例如在模型中忽略哪些次要因素,这些因素可能起什么作用,提出一些更精细的模型。
这样能使评阅人了解你的思路是很广的,如果给你充分的时间,你将会做出更好的结果。
姜伯驹院士说过,在这数学技术的时代,在无论哪个行业的激烈竞争中,数学都已成为强者的翅膀。
祝同学们在数学建模竞赛中取得好成绩!祝同学们在人生的征途中,插上数学的翅膀,永远成为强者!
我们建议对每个问题建立两个模型。
一个较简单的模型,可能略嫌粗糙,但一定要反映出问题的最主要本质。
在此基础上建立较为精细、实用的模型。
两个模型对比,就会使你的论文更为生动,也更能说明问题。
诗要讲对仗,文章要讲对比,数学建模论文也是一样。
一般不要超过三个模型,模型太多了,文章就显得缺乏中心,而且往往哪个模型也没讲明白。