简述肝脏在糖、脂类、蛋白质等代谢中的作用

简述肝脏在糖、脂类、蛋白质等代谢中的作用
简述肝脏在糖、脂类、蛋白质等代谢中的作用

1. 简述肝脏在糖、脂类、蛋白质等代谢中的作用

(1)肝脏在糖代谢中的作用:通过肝糖原的合成,分解与糖异生作用来维持血糖浓度的恒定,确保全身各组织,特别是脑组织的能量来源.

(2)肝脏在脂类的消化,吸收,分解,合成及运输等过程中均起重要作用.如肝脏生成的胆汁酸盐是乳化剂;酮体只能在肝中生成;VLDL, HDL只能在肝中合成;促进血中胆固醇醋合成的酶(LCAT)由肝脏生成分泌入血.

(3)肝脏能合成多种血浆蛋白质,如清蛋白,凝血酶原,纤维蛋白原等;通过鸟氨酸循环,肝脏将有毒的氨转变成无毒的尿素,这是氨的主要去路,也只能在肝中进行.

⑷肝脏对于维生素的消化,吸收,储存,转化等方面均起作用,.

⑸肝脏在激素代谢中的作用主要是参与激素的灭活.

中文名称:

高能磷酸化合物

英文名称:

energy-rich phosphate

定义:

生物体内具有高能键的化合物。ATP水解时自由能变化较大(约

34.54kJ/mol),为典型的高能化合物。体内各种磷酸化合物水解时释出的

能量大于或等于ATP水解时释放的能量者均属此类,如磷酸肌酸。

高能磷酸化合物(energy rich phosphate compounds)

定义:水解自由能在20.92kj/mol以上的磷酸化合物。

机体内有许多磷酸化合物如ATP,3—磷酸甘油酸,氨甲酰磷酸,磷酸烯醇式丙酮酸,磷酸肌酸,磷酸精氨酸等,它们的磷酰基水解时,可释放出大量的自由能,这类化合物称为高能磷酸化合物。ATP是这类化合物的典型代表。ATP水解生成ADP及无机磷酸时,可释放自由能7.3千卡(30.52千焦)。一般将水解时释放自由能在5.0千卡(20.9千焦)以上的称为高能化合物。5.0千卡以下的称为低能化合物,化学家认为键能是指断裂一个键所需要的能量,而生物化学家所指的是含有高能键(酸酐键)的化合物水解后释放出的自由能。高能键用“~”表示。

温度对酶促反应速率影响的双重性

酶是生物催化剂,温度对酶促反应有双重影响。升高温度一方面可以加怏酶促反应速率。但是,因为大多数酶是蛋白质大分子,常态下,因分子链中各种基团的相互吸引,使酶蛋白构象呈稳定的“线团”状,而活性中心就在其线团的凹穴表面。提高温度会破坏基团间的相互吸引,严重时会使酶变性失活,所以过分提高温度反会使酶变性失活,并不可逆转。

大多数酶在温度60℃以上时开始变性;8O℃时多数酶的变性就不可逆转。综含考虑这两个因素,人们把酶促反应速率最高时的温度,称为该酶促反应的最适温度(optimum temperature).当反应体系的温度低于最适温度时,温度每提高10℃,酶促反应速率可加快1-2倍。如温度高于最适温度时,反应速率会因酶变性而降低直至酶失活。

酶的最适温度不是酶的特性常数,因为它随反应进行的时间有关。酶可以在较短时间内承受较高的温度。相反,随着反应时间延长,最适反应温度也会降低。低温虽会

降低酶的活性,但不会破坏酶,在温度回升后,酶的活性又会恢复。

(四)pH对酶促反应速率的影响

酶蛋白是两性的高分子电解质,在不同pH条件下,酶分子的酸性基团和碱性基团将发生不同的离解〈特别是处于活性中心的基团),只有当这些基团处于一定的离解状态下,才对底物有最大的亲和力。同时pH也会改变某些底物(蛋白质、氨基酸等)和辅酶的离解程度,从而影响它们与酶和底物的结合。

大多数酶的活力都会受环境pH的影响。只有在某一pH时,酶的反应速率最大,这是酶的最适pH(optimum pH)。高于或低于此pH,反应速率下降。最适pH会随底物种类、浓度和缓冲体系不同而不同,而且常与酶的等电点不一致。因此最适pH不是酶的特征常数,只有在一定条件下才有意义。pH过低或过高都会影响酶的构象,甚至导致酶的变性和失活。

高中生物《酶在代谢中的作用》学案7 中图版必修1

高中生物《酶在代谢中的作用》学案7 中图版 必修1 1、指出酶的化学本质,说明酶在代谢中的作用。 2、探究影响酶活性的因素,认识生物科学的价值,培养质疑、求实、创新、合作和勇于实践的科学精神和科学态度。 3、描述酶的专一性和高效性,培养学生运用所学知识解释日常生活中生物学问题的能力。自学探究:酶的概念:是产生的一类具有 的 ,其中绝大多数的酶是 ,少数是 。一、影响酶活性的因素新陈代谢的概念: ,其中大部分反应是在的催化作用下进行的。 (一)温度、PH 在适宜的温度和PH下,酶的活性 ;温度过高、PH过高或过低,都会使酶的 遭到破坏而 。一定的低温使酶的活性 ,但不会使酶失活。

(二)温度对酶的作用有两种不同的影响:(1)和一般化学反应相同,酶促反应在一定的温度范围内,其反应速度随温度升高而加快。(2)由于绝大多数酶是蛋白质,遇热易变性失去活性。在低温范围内,前一种作用占主要地位,但当温度升到一定限度时,后一种作用明显产生影响,随温度升高反应速度反而下降。在一定条件下,每一种酶在某一温度其活力最大,这个温度称酶的最适温度,在最适温度时,反应速度最快。酶促反应速度最大时对应的pH也就是酶的最适pH。生物种类不同,酶的最适温度也有 ,某些温泉中的细菌,其酶的最适温度竟高达700C。不同酶的最适PH也不同,人体内胃蛋白酶的最适PH为 ,而胰蛋白酶的最适PH为 。二、酶的高效性和专一性 1、高效性:与无机催化剂相比,催化效率高得多比较过氧化氢酶和Fe3+的催化效率(1)活动程序见课本70页。(2)注意事项: A、加入材料后应立即观察实验现象并及时记录。 B、插卫生香时动作要快,不要插到气泡中,避免卫生香受潮。 C、试管要足够大,最好用20Х200ml,若试管太小,气泡过多影响卫生香的燃烧。

总胆汁酸及肝功指标检测在肝病诊断中的临床意义

总胆汁酸及肝功指标检测在肝病诊断中的临床意义 发表时间:2016-06-21T09:44:05.817Z 来源:《心理医生》2015年24期作者:杨厚清[导读] 肝癌早期病变的影像检查往往不能较为准确地判断出肝内肿块的性质[2],所以很多学者将目光投向了肝病标志物。 杨厚清 (四川省青川县人民医院四川广元 628100) 【摘要】目的:探讨总胆汁酸及肝功指标检测在肝病诊断中的临床意义。方法:回顾性分析我科肝病患者100例以及在健康体检中心接受体检的正常人100例的临床资料,对两组的血清总胆汁酸(TBA)、胆碱酯酶(CHE)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、总胆红素(TBIL)、γ-谷氨酰转肽酶(GGT)、碱性磷酸酶(ALP)水平进行比较分析。结果:与正常对照组比较,肝病组患者的血清TBA水平出现了不同程度的增高(P<0.05),其中以急性肝炎组增高幅度最显著,而肝病组患者的CHE水平出现了不同程度的降低(P<0.05),其中以肝硬化组降低幅度最显著。结论:血清TBA、CHE可较好地反映出肝细胞的受损情况,联合肝功常规指标检测有利于提高诊断的准确性。 【关键词】总胆汁酸;肝功指标;肝病;诊断 【中图分类号】R575 【文献标识码】A 【文章编号】1007-8231(2015)24-0021-02 Clinical significance of detection of total bile acids and liver index in the diagnosis of liver disease YANG Hou-qing People’s Hospital of Qingchuan County in Sichuan Province,Sichuan Guangyuan 628100,China 【Abstract】Objective To discuss the Clinical significance of detection of total bile acids and liver index in the diagnosis of liver disease. Methods Clinical data of 100 patients with liver disease and 100 cases normal were retrospectively analyzed. To compare and analyze TBA, CHE, ALT, AST, TBIL, GGT and ALP between two groups. Results Compared with the control group, the serum TBA level in patients with liver disease group had increased in different degrees (P<0.05), which increased most significantly in acute hepatitis group. While the level of CHE in patients with liver disease group had decreased in different degree (P<0.05), the liver cirrhosis group decreased most greatly. Conclusion The serum levels of TBA and CHE can reflect the damage of liver cells, combined with liver function index can improve diagnostic accuracy. 【Key words】 Total bile acids; Liver function index; Liver; Diagnosis 近些年来,临床上出现的肝病患者越来越多,作为乙型肝炎大国,据报道我国乙型肝炎病毒携带者多达1.2亿,其中出现慢性肝炎病变者的比例高达10%[1],而由肝炎又可进一步发展为肝硬化、肝癌,从20世纪末以来我国原发性肝癌就开始高居癌症排名的第二位,且其发病率还正在不断升高。肝癌早期病变的影像检查往往不能较为准确地判断出肝内肿块的性质[2],所以很多学者将目光投向了肝病标志物。肝病标志物的数量十分丰富,其间的灵敏度与特异性也各有差异。本文旨在探讨了总胆汁酸及肝功指标检测在肝病诊断中的临床意义,现报道如下。 1.资料和方法 1.1 临床资料 以回顾性分析的研究方式,肝病组来源于2012年10月至2015年5月我科收治的100例患者,男:女=57:43,年龄24~69岁,平均(48.3±6.5)岁,其中39例属急性肝炎,27例属慢性活动性肝炎,19例属慢性迁延性肝炎,9例属肝硬化,6例属肝癌,所有肝病患者均经临床确诊。正常对照组来源于同期在健康体检中心接受体检的正常人100例,男:女=53:47,年龄22~65岁,平均(46.1±5.7)岁,均通过临床体检、肝功检查及B超确认无肝脏疾病,肝病组与正常对照组的一般资料比较差异无统计学意义(P>0.05)。 1.2 检测方法 两组均清晨空腹抽取4mL的静脉血,后常规对血液标本作处理,离心速度控制在每分钟5000转,离心结束后分离上层血清,使用本院配备的生化分析仪与生化试剂,采用循环酶速率法,检测血清中的血清总胆汁酸(TBA)、胆碱酯酶(CHE)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、总胆红素(TBIL)、γ-谷氨酰转肽酶(GGT)、碱性磷酸酶(ALP)水平。 1.3 统计学方法 通过SPSS 20.0软件录入两组患者的临床基本资料以及相关研究数据,计数资料组间比较采用χ2检验,计量资料组间比较采用t检验,P<0.05为差异有统计学意义。 2.结果 与正常对照组比较,肝病组患者的血清TBA水平出现了不同程度的增高(P<0.05或P<0.01),其中以急性肝炎组增高幅度最显著,而肝病组患者的CHE水平出现了不同程度的降低(P<0.05或P<0.01),其中以肝硬化组降低幅度最显著。总的来说,肝病组患者的肝功能指标阳性率TBA、CHE>ALT、GGT等常规肝功指标。详见表1。

第七章脂类代谢习题

第七章脂类代谢 一、知识要点 (一)脂肪的生物功能: 脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。 脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。 脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。 (二)脂肪的降解 在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。 萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 (三)脂肪的生物合成 脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。 3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。 (四)磷脂的生成 磷脂酸是最简单的磷脂,也是其他甘油磷脂的前体。磷脂酸与CTP反应生成

关于肝脏的功能及作用

关于肝脏的功能及作用 肝脏有什么功能? 肝脏是人体最大的实质性消化器官,位于右上腹部,具有代谢、分泌、排泄解毒等非常复杂的生理功能,对脂类、蛋白质及糖等营养物质的消化、吸收、氧化、分解、转化等起着重要的作用。使其保持动态平衡,为机体的活动提供热能。 肝脏还是分泌(制造)和排泄胆汁的场所,胆酸也在肝脏中合成,并随胆汁排入肠内,参与脂质代谢、转化等生化过程,从而保障了人体各处器官,尤其是心、脑、肾等脏器的功能活动。 同时肝脏也是人体重要的代谢器官,每时每刻都在进行着一系列的物质代谢过程,被喻为人体的中心化工厂。 因此肝脏的健康保护对提高人的生活质量、促进您的健康长寿是至关重要的。 解毒功能:肝脏是人体的主要解毒器官,它可保护机体免受损害,使毒物成为低毒的或溶解度大的物质,随胆汁或尿液排出体外。 此外,肝脏还有防御机能、调节血液循环量、制造凝血因子、产生热量、肝脏再生能力等。因此,在某种意义上讲,肝脏健康是人体健康的基本条件之一。体内的某些代谢废物或肠道细菌的腐败产物以及服用的药物等,经过肝脏处理,把有毒物质变成无毒或毒性较小、或易于溶解的物质而便于排出体外,这些变化过程称为解毒作用。如酒精在肝内经过氧化过程,变成二氧化碳和水,胆红素与葡萄

糖醛酸结合,变成直接胆红素,随肝汁排入肠道,这些变化过程,就是肝脏的解毒作用。 【肝脏的生理功能】 ●肝脏是人体内最大的消化腺。也是体内新陈代谢的中心站。在肝脏中发生的化学反应有500种以上,实验证明,动物在完全摘除肝脏后即使给予相应的治疗,最多也只能生存50多个小时。这说明肝脏是维持生命活动的一个必不可少的重要器官。肝脏的血流量极为丰富,约占心输出量的1/4。每分钟进入肝脏的血流量为1000-1200ml。肝脏的主要功能是进行糖的分解、贮存糖原;参与蛋白质、脂肪、维生素、激素的代谢;解毒;分泌胆汁;吞噬、防御机能;制造凝血因子;调节血容量及水电解质平衡;产生热量等。在胚胎时期肝脏还有造血功能。肝呈红褐色,质软而脆嫩。成人肝重约1500克左右。肝大部分位于右腹上部,小部分延伸到左腹上部。人们常把它比喻为机体内的化工厂,起着改造、加工、合成、转变、排泄等复杂的作用。肝脏除能分泌胆汁外,还有很多重要功能。 ●肝脏的胆汁分泌作用:肝细胞能不断地生成胆汁酸和分泌胆汁,胆汁在消化过程中可促进脂肪在小肠内的消化和吸收。每天有600-1100ml的胆汁,经胆管输送到胆囊。胆囊起浓缩和排放胆汁的功能。 人体需要的能源,是我们吃进去的食物,它们含有碳水化合物、蛋白质和脂肪。这些营养物质的代谢过程和相互转化,主要是在肝脏内进行的。

4.糖代谢

第四章糖代谢 一、A型选择题 01. 淀粉经α-淀粉酶作用后的主要产物是 A. 麦芽糖及异麦芽糖 B. 葡萄糖及麦芽糖 C. 葡萄糖 D. 麦芽糖及临界糊精 E. 异麦芽糖及临界糊精 02. 糖酵解时下列哪一对代谢物提供~P使ADP生成ATP A. 3-磷酸甘油醛及6-磷酸果糖 B. 1,3-二磷酸甘油酸及磷酸烯醇式丙酮酸 C. 3-磷酸甘油酸及6-磷酸葡萄糖 D. 1-磷酸葡萄糖及磷酸烯酸式丙酮酸 E. 1,6-双磷酸果糖及1,3-二磷酸甘油酸 03. 下列有关葡萄糖磷酸化的叙述中,错误的是 A. 已精激酶有四种同工酶 B. 己糖激酶催化葡萄糖转变成6-磷酸葡萄糖 C. 磷酸化反应受到激素的调节 D. 磷酸化后的葡萄糖能自由通过细胞膜 E. 葡萄糖激酶只存在于肝脏和胰腺p细胞 04. 下列哪个酶直接参与底物水平磷酸化 A. 3-磷酸甘油难脱氢酶 B. α-酮戊二酸脱氢酶 C. 琥珀酸脱氢酶 D. 磷酸甘油酸激酶 E. 6-磷酸葡萄糖脱氢酶 05. 1分子葡萄糖酵解时可生成几分了ATP? A. 1 B. 2 C. 3 D. 4 E. 5 06. 1分子葡萄糖酵解时可净生成几分子ATP? A. 1 B. 2 C. 3 D. 4 E. 5 07. 糖原的1个葡萄糖基经糖酵解可生成几个ATP A. 1 B. 2 C. 3 D. 4 E. 5 08. 糖原的1个葡萄糖基经糖酵解可净生成几个ATP? A. 1 B. 2 C. 3 D. 4 E. 5 09. 肝脏内据酵解途径的主要功能是 A. 进行糖酵解 B. 进行糖有氧氧化供能 C. 提供磷酸戊精 D. 对抗糖异生

E. 为其他代谢提供合成原料 10. 糖酵解时丙酮酸不会堆积的原因是 A. 乳酸脱氢酶活性很强 B. 丙酮酸可氧化脱羧生成乙酰CoA C. NADH/NAD+比例太低 D. 乳酸脱氢酶对两酮酸的K m值很高 E. 丙酮酸作为3-磷酸甘油难脱氢反应中生成的NADH的氢接受者 11. 6-磷酸果糖激酶-l的最强别构激活剂是 A. AMP B. ADP C. 2,6-双磷酸果糖 D. A TP E. 1,6-双磷酸果糖 12. 与糖酵解途径无关的酶是 A. 己糖激酶 B. 烯醇化酶 C. 醛缩酶 D. 丙酮酸激酶 E. 磷酸烯酸式丙酮酸羧激酶 13. 下列有关糖有氧氧化的叙述中哪一项是错误的? A. 糖有氢氧化的产物是CO2及H2O B. 糖有氧氧化可抑制糖酵解 C. 糖有氧氧化是细胞获取能量的主要方式 D. 三羧酸循环是在糖有氧氧化时三大营养素相互转变的途径 E. 1分子葡萄糖氧化成CO2及H2O 时可生成38分子ATP 14. 丙酮酸脱氢酶复合体中不包括 A. FAD B. NAD+ C. 生物素 D. 辅酶A E. 硫辛酸 15. 不能使同酮酸脱氢酶复合体活性降低的是 A. 乙酰CoA B. A TP C. NADH D. AMP E. 依赖cAMP的蛋白激酶 16. 下列关于三羧酸循环的叙述中,正确的是 A. 循环一周可生成4分子NADH B. 循环一周可使2个ADP磷酸化成A TP C. 乙酰CoA可经草酸乙酸进行糖异生 D. 百二酸可抑制延胡索酸转变成苹果酸 E. 琥珀酸CoA是α酮戊二酸氧化脱羧的产物 17. 1分子乙酰COA经三羧酸循环氧化后的产物是 A. 草酰乙酸 B. 草酸乙酸和CO2 C. CO2+H2O D. 草酰乙酸十CO2+H2O E. 2CO2+4分子还原当量

脂类代谢

脂类代谢 一、名词解释 酮体、必需脂肪酸、脂肪动员、脂肪酸的β-氧化、血脂 二、选择题 1.脂肪酸在血中和下列哪个物质结合运输 A.载脂蛋白 B.清蛋白 C.球蛋白 D.脂蛋白 2.含2n个碳原子的饱和脂酸需要经多少次β-氧化才能完全分解为乙酰CoA A.2n次 B.n次 C.n-1次 D.n+1次 3.参和脂肪酸合成的乙酰CoA主要来自 A.胆固醇 B.葡萄糖 C.丙氨酸 D.酮体 4.脂肪酸合成的关键酶是 A.丙酮酸羧化酶 B.硫解酶 C.乙酰CoA羧化酶 D.丙酮酸脱氢酶 5.脂肪酸β-氧化不能生成 A.H2O B.FADH2 C.NADH D.乙酰CoA 6.胆固醇的生理功能不包括 A.氧化供能 B.参和构成生物膜 C.转化为胆汁酸 D.转变为维生素D3 7.不能利用甘油的组织是 A.肝 B.小肠 C.肾 D.脂肪组织 8.血浆脂蛋白按密度由大到小的正确顺序是 A.CM、VLDL、LDL、HDL B.VLDL、LDL、HDL、CM C.LDL、VLDL、HDL、CM D.HDL、LDL、VLDL、CM 9.含脂肪最多的血浆脂蛋白是 A.CM B.VLDL C.HDL D.LDL E.IDL 10.转运内源性甘油三酯的血浆脂蛋白是 A.CM B.VLDL C.HDL D.LDL 11.将肝外的胆固醇向肝内运输的是 A.CM B.VLDL C.HDL D.LDL 12.胆固醇含量最高的是 A.CM B.VLDL C.HDL D.LDL 13.激素敏感脂肪酶是 A.脂蛋白脂肪酶 B.甘油三酯脂肪酶 C.甘油一酯脂肪酶

D.甘油二酯脂肪酶 14.下列哪种磷脂中含有胆碱 A.卵磷脂 B.脑磷脂 C.磷脂酸 D.溶血磷脂 15.抗脂解激素是指 A.胰高血糖素 B.胰岛素 C.肾上腺素 D.促肾上腺皮质激素 16.有防止动脉粥样硬化的脂蛋白是 A.CM B.VLDL C.LDL D.HDL 17.要真实反映血脂的情况,常在饭后 A.3~6小时采血 B.8~10小时采血 C.12~14小时采血 D.24小时后采血 18.催化脂肪酸活化的酶是 A.脂酰CoA合成酶 B.脂酰CoA脱氢酶 C.脂酰CoA硫解酶 D.脂酰CoA转移酶 19.脂肪酸β-氧化的部位是 A.胞液 B.线粒体 C.细胞核 D.内质网 20.脂酰CoA β-氧化的反应顺序是 A.脱氢、加水、硫解、再脱氢 B.硫解、再脱氢、脱氢、加水 C.脱氢、加水、再脱氢、硫解 D.脱氢、硫解、加水、再脱氢 21.脂肪动员加强时肝内生成的乙酰辅酶A主要转变为 A.脂酸 B.酮体 C.草酰乙酸 D.葡萄糖 22.控制长链脂酰CoA进入线粒体氧化的因素是 A.脂酰CoA合成酶的活性 B.肉碱脂酰转移酶Ⅰ的活性 C.肉碱脂酰转移酶Ⅱ的活性 D.脂酰CoA脱氢酶的活性 23.下列何种物质是脂肪酸氧化过程中不需要的 A.HSCoA B.NAD+ C.NADP+ D.FAD 24.体内胆固醇和脂酸合成所需的氢来自 A.NADH+H+ B.NADPH+H+ C.FMNH2 D.FADH2 25.不产生乙酰辅酶A的化合物是 A.酮体 B.脂酸 C.葡萄糖 D.胆固醇 26.乙酰辅酶A的去路不包括

总胆汁酸

总胆汁酸 百科名片 正常人肝脏合成的胆汁酸有胆酸(CA)、鹅脱氧胆酸(CDCA)和代谢中产生的脱氧胆酸(DCA)还有少量石胆酸(LCA)和微量熊脱氧胆酸(UDCA),合称总胆汁酸(TBA)。 目录 编辑本段简介 总胆汁酸(TBA)是在肝脏内合成与甘氨酸或牛磺酸结合成为结合型胆汁酸,然后被肝细胞分泌入胆汁,随胆汁至肠道后,在肠道内细菌作用下被水解成游离型胆汁酸,有97%被肠道重新吸收后回到肝脏。如此循环不息。这样能使总胆汁酸发挥最大生理效应。更可防止总胆汁酸大量进入循环中对其它组织细胞的毒害。 健康人的周围血液中血清胆汁酸含量极微,当肝细胞损害或肝内、外阻塞时,胆汁酸代谢就会出现异常,总胆汁酸就会升高。 因此,总胆汁酸测定是一项比较敏感和有效的肝功能试验之一。 血清总胆汁酸在医学上的测定: 正常参考值: 血清总胆汁酸(TBA)<10μmol/L 血清氨胆酸(CG)<2.6mg/L 鹅脱氧胆酸(CDCA)<1.61μmol/L 编辑本段临床意义 1.正常人的血清总胆汁酸(TBA)是0 ~10 μmol/L的含量。 2.总胆汁酸(TBA)>10μmol/L提示肝细胞发生病变,血液中胆汁酸含量升高。急性肝炎、慢性活动性肝炎、肝硬化、肝癌时胆汁酸明显升高。特别是肝硬化、肝癌时总胆汁酸的升高率>(95%),也大于丙氨酸转氨基酶(ALT)20%。 3.当肝脏实质损害时,肝细胞对胆酸合成降低,鹅脱氧胆酸的合成绝对升高。

4.阻塞性黄疸时CA/CDCA比值大于1.0。 5.肝实质细胞损伤时,CA/CDCA比值小于1.0。 6..当幽门功能不全时,胆酸会反流到胃内,同胃酸一起造成对胃粘膜的损伤,并引起胃痛等不适症状。 7.鹅脱氧胆酸(CDCA)增高见于急慢性病毒性肝炎、胆汁瘀滞、慢性乙醇中毒、肝硬化、原发性肝癌、胆道梗塞等。 8.采用进食后血清总胆汁酸测定可提高参考值。 编辑本段血清总胆汁酸研究 人体血清总胆汁酸(TBA)是由肝脏合成并分解代谢,从而维持人体胆汁酸的相对稳定,它的调控是肝脏的一个主要功能。当肝细胞发生病变或患胆管疾病时可引起胆汁的代谢障碍,使进入血中的胆汁酸含量显著升高,血清TBA升高与肝细胞损伤程度成正比。 胆汁酸是胆固醇在肝脏分解代谢的产物,胆汁是由肝脏分泌到胆汁中,并随胆汁排入肠腔,作用于脂肪的消化吸收。胆汁酸在肠腔经细菌作用后,95%以上的胆汁酸被肠壁吸收经门静脉血重返肝脏利用,称为胆汁酸肠-----肝循环。故正常人血中胆汁酸浓度很低。胆汁酸的生成和代谢与肝脏有十分密切的关系,一旦当肝细胞发生病变,血清TBA很容易升高,因而血清TBA 水平是反映肝实质损伤的一项重要指标。 各类肝胆疾病的TBA升高:急性肝炎与肝癌均为100%,肝硬化为87.5%,慢性肝炎、胆道疾病也达65%以上。说明了肝胆疾病中TBA测定比传统肝功能指标任何一项都敏感。 急性肝炎与慢性肝炎的TBA有差异:急性肝炎时患者血清TBA与丙氨酸转氨基酶(ALT)一样,呈显著增高,平均增高幅度是正常的31倍,说明TBA对急性肝炎早期诊断价值与ALT(阳性率100%)测定相同,经积极治疗后随肝细胞损害的控制很快转为正常,而TBA则随肝功能的恢复逐渐转为正常。慢性肝炎时,TBA阳性率为65.7%,平均升高幅度为正常的10倍。 肝癌、肝硬化时,由于肝脏对TBA代谢功能下降,故血清TBA在不同阶段都增高。当肝癌时,TBA阳性率为100%,而肝硬化TBA阳性率为88%,亦高于其他指标。当转氨酶、胆红素及碱性磷酸酶等其他指标转为正常情况下,血清中TBA水平仍很高,这可能由于肝细胞功能失调,肝实质细胞减少等原因有关。 胆汁酸不但参与脂质的消化吸收,同时可维持胆汁中胆固醇的可溶性状态,当胆汁酸代谢导致胆固醇性胆石的形成,胆石形成阻塞加重胆汁酸的代谢异常,其阳性率明显高于其他肝功能指标。血清中TBA水平显著增高,随炎症的阻塞阶段不同而变化,但随着炎症消失或阻塞引流解除后,TBA水平迅速下降,其他指标亦随之正常。由此可见,TBA测定是一个良好的肝功能指标,能反映肝实质损伤的一项重要指征。 编辑本段总胆汁酸高的原因 1.肝脏发生病变,很容易引起血清中总胆汁酸升高。健康人的周围血液中血清胆汁酸含量极微,当肝细胞损害或肝内、外阻塞时,胆汁酸代谢就会出现异常,总胆汁酸就会升高。如急性肝炎、慢性肝炎、重型肝炎等肝病都

第七章 脂类代谢

第七章脂类代谢 一、填空题: 1.饱和脂肪酸的生物合成在中进行。 2.自然界中绝大多数脂肪酸含数碳原子。 3.脂肪酸生物合成的原料是,其二碳供体的活化形式是。4.生成丙二酸单酰CoA需要酶系催化,它包含有三种成份、_ 和。 5.饱和脂肪酸从头合成需要的引物是,其产物最长可含有碳原子。6.人体必需脂肪酸是、和。 7.饱和脂肪酸从头合成的还原力是,它是由代谢途径和转换所提供。8.大于十六碳原子的脂肪酸是生物体内相应的各个系统的酶催化合成。 10.硬脂酸(C18)经β-氧化分解,循环次,生成分子乙酰CoA, FADH2和 NADH。11.脂肪酸β-氧化是在中进行的,氧化时第一次脱氢的受氢体是,第二次脱氢的受氢体是,β-氧化的终产物是。 14.乙酰COA主要由、和降解产生。 二、选择题(只有一个最佳答案): 1.在人体中,脂肪酸以下列哪种形式参与三酰甘油的生物合成( ) ①游离脂肪酸②脂酰ACP ③脂酰CoA ④以上三种均不是 2.脂肪酸生物合成中,将乙酰基运出线粒体进入胞液中的物质是( ) ①CoA ②肉碱③柠檬酸④以上三种均不是 4.饱和脂肪酸从头合成和β-氧化过程中,两者共有( ) ①乙酰CoA ②FAD ③NAD+④含生物素的酶 5.长链脂肪酸从胞浆转运到线粒体内进行β-氧化作用,所需载体是( ) ①柠檬酸②肉碱③辅酶A ④α-磷酸甘油 6.脂肪酸从头合成所用的还原剂是( ) ①NADPH+H+②NADH+H+③FADH2④FMNH2 8.β-氧化中,脂酰CoA脱氢酶催化反应时所需的辅因子是( ) ①FAD ②NAD+③ATP ④NADP+ 9.植物体内由软脂酸(C16)生成硬脂酸(C18)其原料是( ) ①乙酰CoA ②乙酰ACP ③丙二酸单酰CoA ④丙二酸单酰ACP 10.在脂肪酸的合成中,每次碳链的延长都需要什么直接参加?() ①乙酰CoA ②草酰乙酸③丙二酸单酰CoA ④甲硫氨酸 11.合成脂肪酸所需的氢由下列哪一种递氢体提供?() ①NADP+ ②NADPH+H+③FADH2④NADH+H+ 12.脂肪酸活化后,β-氧化反复进行,不需要下列哪一种酶参与?() ①脂酰CoA脱氢酶②β-羟脂酰CoA脱氢酶 ③烯脂酰CoA水合酶④硫激酶 13.软脂酸的合成及其氧化的区别为() (1)细胞部位不同 (2)酰基载体不同 (3)加上及去掉2C?单位的化学方式不同

肝脏在蛋白质代谢中的作用

肝脏在蛋白质代谢中的作用 肝脏在蛋白质代谢中的作用 肝内蛋白质的代谢极为活跃,肝蛋白质的半寿期为10天,而肌肉蛋白质半寿期则为180天,可见肝内蛋白质的更新速度较快。肝脏除合成自身所需蛋白质外,还合成多种分泌蛋白质。如血浆蛋白中,除-珠蛋白外,白蛋白、凝血酶原、纤维蛋白原及血浆脂蛋白所含的多种载脂蛋白(Apo 肝内蛋白质的代谢极为活跃,肝蛋白质的半寿期为10天,而肌肉蛋白质半寿期则为180天,可见肝内蛋白质的更新速度较快。肝脏除合成自身所需蛋白质外,还合成多种分泌蛋白质。如血浆蛋白中,除γ-珠蛋白外,白蛋白、凝血酶原、纤维蛋白原及血浆脂蛋白所含的多种载脂蛋白(Apo A、Apo B、C、E)等均在肝脏合成。故肝功能严重损害时,常出现水肿及血液凝固机能障碍。肝脏合成白蛋白的能力很强。成人肝脏每日约合成12g白蛋白,占肝脏合成蛋白质总量的四分之一。白蛋白在肝内合成与其它分泌蛋白相似,首先以前身物形式合成,即前白蛋白原(preproalbumin),经剪切信号肽后转变为白蛋白原(proalturnin)。再进一步修饰加工,成为成熟的白蛋白(alturnin)。分子量69,000,由550个氨基酸残基组成。血浆白蛋白的半寿期为10天,

由于血浆中含量多而分子量小,在维持血浆胶体渗透压中起着重要作用。? 肝脏在血浆蛋白质分解代谢中亦起重要作用。肝细胞表面有特异性受体可识别某些血浆蛋白质(如铜兰蛋白、α1 抗胰蛋白酶等),经胞饮作用吞入肝细胞,被溶酶体水解酶降解。而蛋白所含氨基酸可在肝脏进行转氨基、脱氨基及脱羧基等反应进一步分解。肝脏中有关氨基酸分解代谢的酶含量丰富,体内大部分氨基酸,除支链氨基酸在肌肉中分解外,其余氨基酸特别是芳香族氨基酸主要在肝脏分解。故严重肝病时,血浆中支链氨基酸与芳香族氨基酸的比值下降。? 在蛋白质代谢中,肝脏还具有一个极为重要的功能:即将氨基酸代谢产生的有毒的氨通过鸟氨酸循环的特殊酶系 合成尿素以解氨毒。鸟氨酸循环不仅解除氨的毒性,而且由于尿素合成中消耗了产生呼吸性H+的CO2,故在维持机体酸碱平衡中具有重要作用。? 肝脏也是胺类物质解毒的重要器官,肠道细菌作用于氨基酸产生的芳香胺类等有毒物质,被吸收入血,主要在肝细胞中进行转化以减少其毒性。当肝功不全或门体侧支循环形成时,这些芳香胺可不经处理进入神经组织,进行β-羟化生成苯乙醇胺和β-羟酪胺。它们的结构类似于儿茶酚胺类神经递质,并能抑制后者的功能,属于“假神经递质”,与肝性脑病的发生有一定关系。

肝脏的营养与代谢

肝脏与营养代谢 作者:佚名文章来源:本站编辑点击数:85 更新时间:2007-10-13 11:49:08 肝脏是消化系统最重要的脏器之一,是体内代谢的主要器官、 各种物质代谢的中心,有合成、贮存、分解、排泄、解毒和分泌等多种功能。各种营养素在小肠被吸收后,由血液运送到肝脏发生生化反应,变成可利用物质,提供机体活动所需要能量。肝脏代谢作用主要有以下几个方面。 一、肝脏与糖类代谢 肝脏是维持糖类贮存及适当分布的中心部位。肝脏通过4个主要途径来维持糖类代谢的平衡:即糖原贮存、糖原异生合成葡萄糖、糖原分解成为葡萄糖和糖类转化为脂肪。维持血糖的恒定,是肝脏在糖类代谢中的主要作用。肝脏病变后,肝内糖原的合成、贮存、释放都发生障碍,使血糖不稳定,不仅使机体利用糖原发生故障,而且容易出现低血糖的症状。 (一)合成糖原 摄取血液中的葡萄糖和其他单糖及糖类分解的产物,如乳酸等合成糖原。这种肝糖原生成作用是发生在糖类食物消化吸收以后,或是体内乳酸增加时进行,可暂时积蓄多余的糖类,避免血中葡萄糖和乳酸过多,维持人体血糖的正常浓度。 (二)糖异生作用 肝脏能利用蛋白质和脂肪的分解产物,即某些氨基酸,如甘氨酸、丙氨酸、谷氨酸、天门冬氨酸、甘油及某些脂肪酸合成肝糖原。 (三)调节血糖 当血液中的糖含量减少时,肝脏可把肝糖原再分解成葡萄糖,释放入血,供给组织。在肝脏病理情况下,常常发生糖代谢失常。 1、低血糖因为肝脏患病时,,合成肝糖原的能力降低,肝糖原贮存减少,进食后虽然可以出现一过性的高血糖,但由于不能合成肝糖原,患者饥饿或进食减少时,血糖浓度便下降,此时患者感到饥饿,并有四肢无力、心慌、多汗等症状。 2、乳酸堆积当肝脏受到损害时,乳酸不能及时转变为肝糖原或葡萄糖,结果堆积在体内,这样容易产生酸中毒症状,患者发生肢体酸痛,特别在活动以后,或肝功能出现波动时,症状明显加重,严重时可产生酸中毒。 二、肝脏与脂肪代谢 肝脏为甘油三酯、磷脂及胆固醇代谢的场所。肝脏所分泌的胆汁酸盐,可促进脂肪的乳化及吸收,并活化脂肪酶。患肝脏疾病时,肝内分泌胆汁的功能受到影响,没有足够的胆汁流入肠腔,使肠对脂肪的消化、吸收发生困难。随之而出现对脂溶性维生素吸收减少,机体则因缺乏这些维生素而患某些疾病。 (一)对脂肪酸有减饱和作用 使脂肪酸的氢原子数减少,使饱和脂肪酸变为不饱和脂肪酸,有利于脂肪进一步分解和转化。 (二)肝脏类脂代谢很活跃 肝脏将摄入的各种脂肪转变成血浆中的磷脂、胆固醇、胆固醇酯与脂蛋白,使脂肪离开肝脏,在血液中运输方便,并容易被组织吸收利用。 (三)肝脏能氧化脂肪酸,产生酮体 在肝脏中生成的酮体运至其他组织,特别是肌肉,氧化产生能量。在代谢正常时,酮体量不多,可以完全氧化,当糖类代谢发生障碍时,机体能量主要靠脂肪供给,这时酮体产生过多,血酮体浓度增加,出现酮尿,表示所动用脂肪超过肝脏的处理能力。 (四)将多余的胆固醇分解,变成制造胆汁的主要成分 (五)肝脏将糖和蛋白质代谢的中间产物转化为脂肪,形成体脂在体内贮存

题组一、酶在代谢中的作用及影响因素

题组一、酶在代谢中的作用及影响因素 1.(2013年高考新课标全国卷Ⅱ)关于酶的叙述,错误的是() B.低温能降低酶活性的原因是其破坏了酶的空间结构 C.酶通过降低化学反应的活化能来提高化学反应速度 D.酶既可以作为催化剂,也可以作为另一个反应的底物 解析:本题主要考查酶的相关知识。细胞生命活动所必需的酶,如呼吸氧化酶,会存在于分化程度不同的各类细胞中;低温抑制酶的活性,在一定范围内,当温度回升后,酶的活性可以恢复,但酶的空间结构一旦被破坏,其活性将无法恢复,低温没有破坏酶的空间结构;酶提高化学反应速度是靠降低化学反应的活化能实现的;酶在化学反应中充当催化剂,也可以作为另一个反应的底物。 答案:B 2.(2014年高考福建卷)用蛋白酶去除大肠杆菌核糖体的蛋白质,处理后的核糖体仍可催化氨基酸的脱水缩合反应。由此可推测核糖体中能催化该反应的物质是() A.蛋白酶B.RNA聚合酶 C.RNA D.逆转录酶 解析:大多数酶是蛋白质,少数酶是RNA,核糖体是由蛋白质和rRNA组成的,用蛋白酶去除大肠杆菌核糖体的蛋白质后,核糖体中只剩下RNA成分,因此,由题中信息“用蛋白酶去除大肠杆菌核糖体的蛋白质,处理后的核糖体仍可催化氨基酸的脱水缩合反应”可说明催化该反应的物质是RNA,故C正确,A、B、D错误。 答案:C 3.(2014年高考重庆卷)如图为乙醇在人体内主要的代谢过程。下列相关叙述,正确的是() A.乙醇转化为乙酸发生的氧化反应,均由同一种氧化酶催化 B.体内乙醇浓度越高,与乙醇分解相关的酶促反应速率越快 C.乙醇经代谢产生的[H]可与氧结合生成水,同时释放能量 D.正常生理情况下,人体分解乙醇的速率与环境温度呈正相关 解析:酶催化反应时具有专一性,A错误;在一定浓度范围内,随乙醇浓度增加,酶促反应速率加快,达到一定浓度后,酶促反应速率不变,B错误;乙醇经代谢产生的[H]可与氧结合生成水,并释放能量,C正确;人是恒温动物,其代谢速率不受环境温度影响而发生大的变化,D错误。

脂类代谢

脂类代谢 单选题 1 下列哪种代谢所形成的乙酰CoA为酮体生成的主要原料来源? A 来源于葡萄糖氧化分解 B 甘油转变而成 C 脂肪酸β-氧化生成 D 丙氨酸转变而成 E 甘氨酸转变而成 2 对于下列各种血浆脂蛋白的作用,哪种描述是正确的? A CM主要转运内源性TG B VLDL主要转运外源性TG C HDL主要将Ch从肝内转运至肝外组织 D 中间密度脂蛋白(IDL)主要转运TG E LDL是运输Ch的主要形式 3 控制长链脂肪酰辅酶A进入线粒体氧化速度的因素是: A 脂酰辅酶A(CoA)合成酶活性 B ADP含量 C 脂酰CoA脱氢酶的活性 D 肉毒碱脂酰转移酶的活性 E HSCoA的含量 4 某饱和脂肪酸1摩尔在体内完全氧化为CO2、H2O同时形成147摩尔A TP,此饱和脂肪 酸为: A 硬脂酸 B 十四碳脂肪酸 C 软脂酸 D 二十碳脂肪酸 E 十二碳脂肪酸 5 生物合成胆固醇的限速步骤是 A 焦磷酸牛儿酯→焦磷酸法呢酯 B 鲨烯→羊毛固醇 C 羊毛固醇→胆固醇 D 3-羟基-3-甲基戊二酰CoA→甲基二羟戊酸(MV A) E 二乙酰CoA→3-羟基-3-甲基戊二酰CoA 6 当6-磷酸葡萄糖脱氢受抑制时,其影响脂肪酸生物合成是因为: A 乙酰CoA生成减少 B 柠檬酸减少 C ATP形成减少 D NADPH+H+生成减少 E 丙二酸单酰CoA减少 7 血浆中催化脂肪酰转移到胆固醇生成胆固醇酯的酶是 A LCAT B ACAT C 磷脂酶 D 肉毒碱脂肪酰转移酶 E 脂肪酰转移酶 名词解释: 1酮体 2激素敏感性脂肪酶 3载脂蛋白 4脂肪动员

5β-氧化 6血浆脂蛋白 7VLDL 8LCAT 9LDL受体 10抗脂解激素 问答题: 1按电泳法分类,血浆脂蛋白可分成哪几类?当血总胆固醇浓度升高时,哪一类血浆脂蛋白量会有变化? 2体内合成脂肪酸和胆固醇的原料和主要的供氢体、关键酶.是什么?试述它们的来源。 3何谓脂肪动员?说明脂肪动员过程中限速酶及其调节因素。 4什么是酮体?试简述其生成和氧化的过程及其生理意义? 5试讨论脂肪酸进入肝脏后有哪几条代谢去路? 6写出糖、脂类分解代谢的共同途径,并指出体内糖、脂类是否可互变,为什么?

糖代谢

糖代谢 五、名词解释题 1. glycolysis 5. Pasteur effect 2. glycolytic pathway 6. pentose phosphate pathway (PPP ) 3. tricarboxylic acid cycle (TAC )7. glyCOgu 4. citric acid cycle 8. glycogenesis 9. gluconeoguesis 17. 糖有氧氧化 10. substrate cycle 18. 糖异生途径 11. lactric acid cycle 19. 糖原累积症 12. blood sugar 20. 活性葡萄糖 13. 三碳途径21. Cori 循环 14. 肝糖原分解22 蚕豆病 15. 级联放大系统23 高血糖 16. Krebs 循环24 低血糖 六、问答题 1. 简述糖酵解的生理意义。 2. 糖的有氧氧化包括哪几个阶段? 3. 述乳酸氧化供能的主要反应及其酶c 4. 试述三羧酸循环的要点及生理意义 5. 试列表比较糖酵解与有氧氧化进行的部位、反应条件、关键酶、产物、能量生成及生理意义。

6. 试述磷酸戊糖途径的生理意义。 7. 机体通过哪些因素调节糖的氧化途径与糖异生途径? 8. 试述丙氨酸异生为葡萄糖的主要反应过程及其酶。 9. 试述乳酸异生为葡萄糖的主要反应过程及其酶。 10. 简述糖异生的生理意义。 11. 糖异生过程是否为糖酵解的逆反应?为什么? 12. 简述乳酸循环形成的原因及其生理意义。 13. 简述肝糖原合成代谢的直接途径与间接途径。 14. 机体如何调节糖原的合成与分解使其有条不紊地进行? 15. 神经冲动如何加速肌糖原的分解? 16. 简述血糖的来源和去路。 17. 概述肾上腺素对血糖水平调节的分子机理。 18. 简述6- 磷酸葡萄糖的代谢途径及其在糖代谢中的重要作用。 19. 简述草酰乙酸在糖代谢中的重要作用。 20. 在糖代谢过程中生成的丙酮酸可进人哪些代谢途径? 21. 概述B 族维生素在糖代谢中的重要作用。 22. 在百米短跑时,肌肉收缩产生大量的乳酸,试述该乳酸的主要代谢去向。 23. 试述肝脏在糖代谢中的重要作用。 24. 试述从营养物质的角度,解释为什么减肥者要减少糖类物质的摄入量?(写出有关的代谢途径及其细胞定位、主要反应、关键酶) 1. glycolysis 糖酵解在缺氧情况下,葡萄糖分解为乳酸,产生少量ATP 的过程称为糖酵解。 2. glycolytic pathway 酵解途径葡萄糖分解为丙酮酸的过程称为酵解

肝功能检验项目及结果解释

肝功能检验项目及结果解释 肝脏最重要的功能是物质代谢功能,包括帮助将吃进去的各种食物进行消化、吸收,将吸收的营养物质进行合成与分解以及储存,对体内的代谢废物进行分解,将有害的物质进行无害化处理。这些功能使肝脏被喻为人体"化工厂"。由于肝脏处理的是各种化学物质,包括药物等,因此,肝脏也是最容易受到损害的器官,所以无论是健康体检或是门诊住院,肝功都是必查项目。 基础知识 1.肝的结构特点是什么? 肝在人体腹腔的右上方,占据了右上腹的大部分和左上腹的一部分。肝脏由韧带"悬挂"在腹腔内,而韧带又有一定的伸缩性,所以肝脏的位置可随腹腔压力和容积的改变而变化。肝脏最近的"邻居"是胆囊,它附在肝叶之下,其间有胆管相通。祖国医学认为肝主谋虑,胆主决断,它们相互作用,又相互配合,可谓"亲密无间,肝胆相照"。但是"近朱者赤,近墨者黑",若肝脏受损,胆囊也易被影响,如病毒性肝炎患者容易合并胆囊炎、胆管炎。相反胆囊有病变时,也可波及肝脏。其次肝还与胃、胰腺、脾及十二指肠相邻,这些器官多属消化器官,共同调节人的消化功能。一旦肝受损,也可影响"左邻右舍"。如慢性肝炎可有胰腺病变,重型肝炎可诱发胃及十二指肠溃疡,肝硬化可引起脾大及食管下

端、胃底静脉曲张等。 2.肝主要的生理功能有哪些? (1)排泄胆汁,消化脂肪。肝脏的重要功能之一是排泄胆汁。胆汁是肝细胞所生成的一种黄色液体,肝脏每日合成和排出500~1000ml,其主要成分是胆盐(胆盐由胆酸、去氧胆酸等钠盐组成)。胆汁是一种重要的消化液,其功能是:①帮助脂肪乳化,使脂肪滴变小变细便于消化吸收;②促进脂肪酸吸收;③维生素(A、D、E、K)在肠道内经胆盐作用,形成水溶性颗粒被吸收;④加速铁和钙的吸收;⑤刺激小肠和结肠蠕动;⑥抑制肠道腐败菌的生长繁殖;⑦排泄激素等有害物质,如性腺激素、甲状腺激素和重金属盐类汞、砷等。 (2)代谢营养物质,灭活激素。吃进的食物在肠道被消化吸收后,经肝门静脉系统进入肝脏"加工"。在肝脏内代谢的物质主要有以下几种:①糖类。肝脏是维持血中糖含量恒定的主要器官。饭后血糖浓度升高,大部分葡萄糖合成肝糖原储存于肝脏。空腹时肝糖原又分解为葡萄糖,进入血液,提高血糖水平。肝脏能将已吸收的葡萄糖、果糖和半乳糖转化为肝糖原。如在饥饿时,糖的供应不足,肝糖原储备减少,肝脏能通过糖异生作用。成人肝含糖原l00~1509。②脂类。肝脏能氧化脂肪酸,产生酮体,酮体可为肝外组织提供能量。肝脏能合成多种类脂质,如血浆中的磷脂、胆固醇及胆固醇酯;肝脏如向血液输送障碍,脂肪便可堆积于肝中,形成脂肪肝。③蛋白质。肝脏可利用氨基酸合成蛋白

肝脏在物质代谢中的作用

一、肝脏在糖代谢中的作用 肝脏是调节血糖浓度的主要器官。当饭后血糖浓度升高时,肝脏利用血糖合成糖原(肝糖原约占肝重的5%)。过多的糖则可在肝脏转变为脂肪以及加速磷酸戊糖循环等,从而降低血糖,维持血糖浓度的恒定。相反,当血糖浓度降低时,肝糖原分解及糖异生作用加强,生成葡萄糖送入血中,调节血糖浓度,使之不致过低。因此,严重肝病时,易出现空腹血糖降低,主要由于肝糖原贮存减少以及糖异生作用障碍的缘故。临床上,可通过耐量试验(主要是半乳糖耐量试验)及测定血中乳酸含量来观察肝脏糖原生成及糖异生是否正常。 肝脏和脂肪组织是人体内糖转变成脂肪的两个主要场所。肝脏内糖氧化分解主要不是供给肝脏能量,而是由糖转变为脂肪的重要途径。所合成脂肪不在肝内贮存,而是与肝细胞内磷脂、胆固醇及蛋白质等形成脂蛋白,并以脂蛋白形式送入血中,送到其它组织中利用或贮存。 肝脏也是糖异生的主要器官,可将甘油、乳糖及生糖氨基酸等转化为葡萄糖或糖原。在剧烈运动及饥饿时尤为显著,肝脏还能将果糖及半乳糖转化为葡萄糖,亦可作为血糖的补充来源。 糖在肝脏内的生理功能主要是保证肝细胞内核酸和蛋白质代谢,促进肝细胞的再生及肝功能的恢复。(1)通过磷酸戊糖循环生成磷酸戊糖,用于RNA的合成;(2)加强糖原生成作用,从而减弱糖异生作用,避免氨基酸的过多消耗,保证有足够的氨基酸用于合成蛋白质或其它含氮生理活性物质。 肝细胞中葡萄糖经磷酸戊糖通路,还为脂肪酸及胆固醇合成提供所必需的NADPH。通过糖醛酸代谢生成UDP?葡萄糖醛酸,参与肝脏生物转化作用。 二、肝脏在脂类代谢中的作用 肝脏在脂类的消化、吸收、分解、合成及运输等代谢过程中均起重要作用。 肝脏能分泌胆汁,其中的胆汁酸盐是胆固醇在肝脏的转化产物,能乳化脂类、可促进脂类的消化和吸收。 肝脏是氧化分解脂肪酸的主要场所,也是人体内生成酮体的主要场所。肝脏中活跃的β-氧化过程,释放出较多能量,以供肝脏自身需要。生成的酮体不能在肝脏氧化利用,而经血液运输到其它组织(心、肾、骨骼肌等)氧化利用,作为这些组织的良好的供能原料。 肝脏也是合成脂肪酸和脂肪的主要场所,还是人体中合成胆固醇最旺盛的器官。肝脏合成的胆固醇占全身合成胆固醇总量的80%以上,是血浆胆固醇的主要来源。此外,肝脏还合成并分泌卵磷脂?胆固醇酰基转移酶(LCA T),促使胆固醇酯化。当肝脏严重损伤时,不仅胆固醇合成减少,血浆胆固醇酯的降低往往出现更早和更明显。 肝脏还是合成磷脂的重要器官。肝内磷脂的合成与甘油三酯的合成及转运有密切关系。磷脂合成障碍将会导致甘油三酯在肝内堆积,形成脂肪肝(fatty liver)。其原因一方面由于磷脂合成障碍,导致前β?脂蛋白合成障碍,使肝内脂肪不能顺利运出;另一方面是肝内脂肪合成增加。卵磷脂与脂肪生物合成有密切关系。卵磷脂合成过程的中间产物——甘油二酯有两条去路:即合成磷脂和合成脂肪,当磷脂合成障碍时,甘油二酯生成甘油三酯明显增多。

相关文档
最新文档