2020届高三联考 数学(理)含答案

合集下载

2020年高三全国统一考试·联考数学理科(含答案)

2020年高三全国统一考试·联考数学理科(含答案)

2020年普通高等学校招生全国统一考试·联考理科数学本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x x A ∈<--=,0322,则集合A 的真子集有( )A .5个 B. 6个 C. 7个 D. 8个2.已知i 是虚数单位,则化简2020)11(ii -+的结果为( ) A.i B.i - C.1- D.13.若干年前,某教师刚退休的月退休金为400元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A .4500元 B. 5000元 C .5500元 D .6000元4.将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A.72 B.73 C.71 D.143 5已知抛物线x y 42=的焦点为F ,过点F 和抛物线上一点)32,3(M 的直线l 交抛物线于另一点N ,则NM NF :等于( )A.2:1B.3:1C.4:1D.3:16.在所有棱长都相等的直三棱柱111C B A ABC -中,D ,E 分别为棱AC CC ,1的中点,则直线AB 与平面DE B 1所成角的余弦值为( ) A.1030 B.2030 C.20130 D.1070 7已知点A (4,3),点B 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥06200y x y x y 所表示平面区域上的任意一点,则AB 的最小值为( )A.5B.554 C.5 D.552 8.给出下列说法①定义在[a ,b]上的偶函数b x a x x f ++-=)4()(2的最大值为20; ②“4π=x ”是“1tan =x ”的充分不必要条件; ③命题“21),,0(000≥++∞∈∃x x x ”的否定形式是“21),,0(<++∞∈∀xx x ” 其中正确说法的个数为( )A.0B.1C.2D.39.已知5.03422log 2log ,,,03log m c m b m a m ===>,则c b a ,,间的大小关系为 A.c b a << B.c a b << C.b a c << D.a c b <<10.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤=15斤,1斤=16两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( )A .9两 B.127266两 C.63266两 D.127250两 11在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若3cos cos c A b B a =-,则B b A a B a cos cos cos +的最大值为( ) A.2 B.22 C.23 D.332 12.已知几)(x f 为奇函数,)(x g 为偶函数,且)13(log )()(3+=+x x g x f ,不等式0)()(3≥--t x f x g 对R x ∈恒成立,则t 的最大值为( )A.1B.2log 233-C.2D.12log 233- 二、填空题:本题共4小题,每小题5分,共20分13已知向量a =(2,5-),b =(1,52),则b 在a 方向上的投影等于 .14在△ABC 中,∠B=32π,A 、B 是双曲线E 的左、右焦点,点C 在E 上,且BC=21AB ,则E 的离心率为 .5已知函数)0,0)(cos()(πϕωϕω≤≤>+=x x f 是奇函数,且在]4,6[ππ-上单调减,则ω的最大值是 .16已知三棱锥A-BCD 中,平面ABD ⊥平面BCD ,BC ⊥CD ,BC=CD=2,AB=AD=6,则三棱锥A-BCD 的外接球的体积为 .三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第次年题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17.(12分)已知数列{a n }的前n 项和为S n ,且112n n n S na a =+-. (1)求数列{a n }的通项公式;(2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为T n ,证明: 32n T <.18.(12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABEF 为正方形,AF ⊥DF ,AF=22FD ,∠DFE=∠CEF=45.(1)证明DC ∥FE ;(2)求二面角D-BE-C 的平面角的余弦值.19.(12分)已知点P 在圆O :x 2+y 2=9上,点P 在x 轴上的投影为Q ,动点M 满足432PQ MQ u u u r u u u u r .(1)求动点M 的轨迹E 的方程;(2)设G (-3,0),H (3,0),过点F (1,0)的动直线l 与曲线E 交于A 、B 两点,问直线AG 与直线BH 的斜率之比是否为定值?若为定值,求出该定值;若不为定值,试说明理由.20.(12分)某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A 、B 、C .经过引种实验发现,引种树苗A 的自然成活率为0.7,引种树苗B 、C 的自然成活率均为p (0.6≤p≤0.8)(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及其数学期望;(2)将(1)中的数学期望取得最大值时p 的值作为B 种树苗自然成活的概率,该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗有75%的树苗可经过人栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元该农户为了获利期望不低于10万元,问至少要引种种树苗多少棵?21.(12分)已知函数f (x )=(a-1)x+xlnx 的图象在点A (e 2,f (e 2))(e 为自然对数的底数)处的切线斜率为4(1)求实数a 的值;(2)若m ∈Z ,且m (x-1)<f (x )+1对任意x>1恒成立,求m 的最大值.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程](10分)以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为-22ππρθ⎡⎤∈⎢⎥⎣⎦,),直线l 的参数方程为2cos 4sin x t y ts αα=-+⎧⎨=-+⎩(t 为参数). (1)点A 在曲线C 上,且曲线C 在点A 处的切线与直线:x+2+1=0垂直,求点A 的直角坐标;(2)设直线l 与曲线C 有且只有一个公共点,求直线l 的斜率的取值范围.23.[选修4-5:不等式选讲](10分)设函数f (x )=|x-1|+2|x+1|,x ∈R(1)求不等式f (x )<5的解集;(2)若关于x 的不等式122)(-<+t x f 在实数范围内解集为空集,求实数t 的取值范围·11·。

湖北省八校2020届高三第二次联考数学(理)试题 参考答案

湖北省八校2020届高三第二次联考数学(理)试题 参考答案

2020 届高三八校第二次联考 理科数学试题答案12max ⎛π⎫ π⎛ ⊄22020 届八校第二次联考理科数学试题答案一、选择题1. 答案 B Θ A = {x x > 1}, B = {x -1 ≤ x ≤ 2},∴ A I B = {x 1 < x ≤ 2}2. 答案 C Θ Z - (1- i ) = 22, 令 OA = Z , OB = 1- i = 2 ,根据复数的几何意义,点 A 在以 B (1,-1)为圆心, r = 2 的圆上,∴ Z = 33. 答案 A 根据函数的相关性质得 x > 1,0 < y < 1, z < 0,∴ z < y < x4. 答案C 设 BP = x ,根据题意得 x = 1.5 = 1,解得 x = 1 ,∴扫过的面积是x + 5 9 6s = π(62 - 52 )= 3.14 ⨯11 = 34.54m 25. 答案C Θ f (- x ) = - f (x ) ,且 f < 0, f < 0 ,结合图形特征作出判断⎪ ⎪⎝ 8 ⎭ ⎝ 3 ⎭C 2 A 3 4 6. 答案D 根据题意可得 p = 4 3=3⨯ 3⨯ 3⨯ 3 9 7. 答案 B ⋅ Θ 2,60 ≤θ≤ 120 ,结合图形转化可得cos θ,可得最大值是 18. 答案 A 根据题意可得渐近线的倾斜角是60ο,120ο,∴tan 60ο= b, b = a3a ,因此双曲x 2 线方程 a2 - y 23a 2= 1 ,该曲线又过点(2,3),解得 a = 1 ,所以实轴长为 29. 答案 B 令α= 2020x + π ,∴ f (x ) = sin α+ cos ⎛α- π⎫= sin α+ sin α= 2 sin α4⎛π⎫ ⎪⎝ 2 ⎭1 π =2 sin 2020x + ⎝⎪ ,即 M = 2 , m - n 4 ⎭ min= T ,∴ M ⋅ m - n 的最小值为 21010 10. 答案C 易判断①③正确11. 答案 D 根据题意数列{a }中 a = 1, a = 3, a= 6, a = 10Λ,易求得 a = n (n +1) , n 1 2 3 4 n2∴ 1=2 = ⎛ 1 -1 ⎫ ,求和得4040a n n (n +1) ⎝ n ⎪ n +1⎭2021 2 2。

2020届全国大联考高三联考数学(理)试题(解析版)

2020届全国大联考高三联考数学(理)试题(解析版)

x y 2 0,
范围是( )
A.[1, )
B. (, 1]
C. (1, )
D. (, 1)
【答案】A 【解析】画出约束条件的可行域,利用目标函数的最值,判断 a 的范围即可. 【详解】
作出约束条件表示的可行域,如图所示.因为 z ax y 的最大值为 2a 6 ,所以 z ax y 在点 A(2, 6) 处取得最大值,则 a 1 ,即 a 1 .
,则可得结论.
【详解】
第 2 页 共 20 页
0
(
1
)
2 5
(1)0
1,
33
(
2
)
1 3
(2)0
1,
5
5
log2
1 3
log2
1
0

c a b .
故选:C.
【点睛】
本题考查了指数幂,对数之间的大小比较问题,是指数函数,对数函数的性质的应用问
题,其中选择中间量 0 和 1 是解题的关键,属于基础题.
故选:B
【点睛】
本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题.
2.设集合 A {x | y x 3}, B {x |1 x 9} ,则 (ðR A) B ( )
A. (1,3)
B. (3,9)
C.[3, 9]
D.
【答案】A
【解析】求函数定义域求得集合 A ,由此求得 ðR A B .
本题考查折线图与柱形图,属于基础题.
5.已知
a
1 3
2
5
,b
2 5
1 3
,
c
log2
1 3
,则(

A. a b c

2020届全国大联考高三联考数学(理)试题(解析版)

2020届全国大联考高三联考数学(理)试题(解析版)

2020届全国大联考高三联考数学(理)试题一、单选题 1.已知复数552iz i i=+-,则||z =( )A .B .C .D .【答案】B【解析】利用复数除法、加法运算,化简求得z ,再求得z 【详解】55(2)551725i i i z i i i i +=+=+=-+-,故||z ==故选:B 【点睛】本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题.2.设集合{|{|19}A x y B x x ===<≤,则()A B =R I ð( )A .(1,3)B .(3,9)C .[3,9]D .∅【答案】A【解析】求函数定义域求得集合A ,由此求得()R A B ⋂ð. 【详解】因为{|3}A x x =≥,所以()(1,3)R A B ⋂=ð. 故选:A 【点睛】本小题主要考查集合交集、补集的概念和运算,属于基础题.3.若各项均为正数的等比数列{}n a 满足31232a a a =+,则公比q =( ) A .1 B .2 C .3 D .4【答案】C【解析】由正项等比数列满足31232a a a =+,即211132a q a a q =+,又10a ≠,即2230q q --=,运算即可得解.【详解】解:因为31232a a a =+,所以211132a q a a q =+,又10a ≠,所以2230q q --=,又0q >,解得3q =. 故选:C. 【点睛】本题考查了等比数列基本量的求法,属基础题.4.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )A .6.25%B .7.5%C .10.25%D .31.25%【答案】A【解析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比. 【详解】水费开支占总开支的百分比为25020% 6.25%250450100⨯=++.故选:A 【点睛】本题考查折线图与柱形图,属于基础题. 5.已知21532121,,log 353a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则( )A .a b c <<B .c b a <<C .c a b <<D .b c a <<【答案】C【解析】加入0和1这两个中间量进行大小比较,其中2510()13<<,132()15->,21log 03<,则可得结论.【详解】205110()()133<<=Q ,10322()()155->=, 221log log 103<=, c a b ∴<<.故选:C. 【点睛】本题考查了指数幂,对数之间的大小比较问题,是指数函数,对数函数的性质的应用问题,其中选择中间量0和1是解题的关键,属于基础题.6.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( )A .,5()4k k π⎛⎫-∈ ⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 【答案】B【解析】由值域为[5,3]-确定,a b 的值,得()5cos4g x x =--,利用对称中心列方程求解即可 【详解】因为()[,2]f x b a b ∈+,又依题意知()f x 的值域为[5,3]-,所以23a b += 得4a =,5b =-,所以()5cos4g x x =--,令4()2x k k ππ=+∈Z ,得()48k x k ππ=+∈Z ,则()g x 的图象的对称中心为,5()48k k ππ⎛⎫+-∈ ⎪⎝⎭Z . 故选:B 【点睛】本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为07.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A【解析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.8.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且0FA FB +=u u u v u u u v,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( ) A .2 B 3C .2D 5【答案】C【解析】由0FA FB +=u u u r u u u r 得F 是弦AB 的中点.进而得AB 垂直于x 轴,得2b ac a=+,再结合,,a b c 关系求解即可 【详解】因为0FA FB +=u u u r u u u r,所以F 是弦AB 的中点.且AB 垂直于x 轴.因为以AB 为直径的圆经过双曲线C 的左顶点,所以2b a c a =+,即22c a a c a-=+,则c a a -=,故2c e a ==.故选:C 【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题. 9.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D 21r r 【答案】B【解析】根据空余部分体积相等列出等式即可求解. 【详解】在图1中,液面以上空余部分的体积为211r h π;在图2中,液面以上空余部分的体积为222r h π.因为221122r h r h ππ=,所以21221h r h r ⎛⎫= ⎪⎝⎭.故选:B 【点睛】本题考查圆柱的体积,属于基础题.10.已知定义在R 上的函数()f x 满足()()f x f x =-,且在(0,)+∞上是增函数,不等式()()21f ax f +≤-对于[]1,2x ∈恒成立,则a 的取值范围是A .3,12⎡⎤--⎢⎥⎣⎦B .11,2⎡⎤--⎢⎥⎣⎦C .1,02⎡⎤-⎢⎥⎣⎦D .[]0,1【答案】A【解析】根据奇偶性定义和性质可判断出函数为偶函数且在(),0-∞上是减函数,由此可将不等式化为121ax -≤+≤;利用分离变量法可得31a x x -≤≤-,求得3x-的最大值和1x-的最小值即可得到结果. 【详解】()()f x f x =-Q ()f x ∴为定义在R 上的偶函数,图象关于y 轴对称又()f x 在()0,∞+上是增函数 ()f x ∴在(),0-∞上是减函数()()21f ax f +≤-Q 21ax ∴+≤,即121ax -≤+≤121ax -≤+≤Q 对于[]1,2x ∈恒成立 31a xx∴-≤≤-在[]1,2上恒成立312a ∴-≤≤-,即a 的取值范围为:3,12⎡⎤--⎢⎥⎣⎦本题正确选项:A 【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.11.在三棱锥P ABC -中,5AB BC ==,6AC =,P 在底面ABC 内的射影D 位于直线AC 上,且2AD CD =,4PD =.设三棱锥P ABC -的每个顶点都在球Q 的球面上,则球Q 的半径为( )A .B C D 【答案】A【解析】设AC 的中点为O 先求出ABC ∆外接圆的半径,设QM a =,利用QM ⊥平面ABC ,得QM PD ∥ ,在MBQ ∆ 及DMQ ∆中利用勾股定理构造方程求得球的半径即可 【详解】设AC 的中点为O,因为AB BC =,所以ABC ∆外接圆的圆心M 在BO 上.设此圆的半径为r .因为4BO =,所以222(4)3r r -+=,解得258r =.因为321OD OC CD =-=-=,所以221131(4)8DMr =+-=. 设QM a =,易知QM ⊥平面ABC ,则QM PD ∥. 因为QP QB =,所以2222()PD a DM a r -+=+,即22113625(4)6464a a -+=+,解得1a =.所以球Q 的半径22689R QB a r ==+=. 故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题12.设函数()2ln x e f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,则实数t 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫+∞⎪⎝⎭ C .1,,233e e ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭U D .1,,23e ⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭U【答案】C【解析】()f x 恰有两个极值点,则()0f x ¢=恰有两个不同的解,求出()f x ¢可确定1x =是它的一个解,另一个解由方程e 02x t x -=+确定,令()()e 02xg x x x =>+通过导数判断函数值域求出方程有一个不是1的解时t 应满足的条件. 【详解】由题意知函数()f x 的定义域为()0,+?,()()221e 121x x f x t x xx -⎛⎫'=-+-⎪⎝⎭()()21e 2xx t x x ⎡⎤--+⎣⎦=()()2e 122x x x t x x⎛⎫-+- ⎪+⎝⎭=.因为()f x 恰有两个极值点,所以()0f x ¢=恰有两个不同的解,显然1x =是它的一个解,另一个解由方程e 02xt x -=+确定,且这个解不等于1.令()()e 02xg x x x =>+,则()()()21e 02xx g x x +'=>+,所以函数()g x 在()0,+?上单调递增,从而()()102g x g >=,且()13e g =.所以,当12t >且e 3t ≠时,()e 2ln x f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,即实数t 的取值范围是1,,233e e ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U . 故选:C 【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.二、填空题13.设n S 是公差不为0的等差数列{}n a 的前n 项和,且712a a =-,则94S a =______. 【答案】18【解析】先由712a a =-,可得12a d =-,再结合等差数列的前n 项和公式求解即可. 【详解】解:因为711+62a a d a ==-,所以12a d =-,()19544194992183a d S a d a a a d d+⨯====+. 故答案为:18. 【点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前n 项和公式,属基础题. 14.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有ABC ∆满足“勾3股4弦5”,其中“股”4AB =,D 为“弦”BC 上一点(不含端点),且ABD ∆满足勾股定理,则()CB CA AD -⋅=u u u v u u u v u u u v______.【答案】14425【解析】先由等面积法求得AD ,利用向量几何意义求解即可. 【详解】由等面积法可得341255AD ⨯==,依题意可得,AD BC ⊥, 所以()214425CB CA AD AB AD AD -⋅=⋅==u u u r u u u r u u u r u u u r u u u r u u u r . 故答案为:14425【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.15.()62122x x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为______,常数项为______. 【答案】3 -260【解析】(1)令1x =求得所有项的系数和; (2)先求出612x x ⎛⎫- ⎪⎝⎭展开式中的常数项与含21x 的系数,再求()62122x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项. 【详解】将1x =代入()62122x x x ⎛⎫+- ⎪⎝⎭,得所有项的系数和为3.因为的展开式中含21x 的项为()424621602C x x x ⎛⎫-= ⎪⎝⎭,612x x ⎛⎫- ⎪⎝⎭的展开式中含常数项()333612160C x x ⎛⎫-=- ⎪⎝⎭,所以()62122x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为60320260-=-.故答案为:3; -260 【点睛】本题考查利用二项展开式的通项公式解决二项展开式的特殊项问题,属于基础题. 16.已知圆22:4O x y +=,直线l 与圆O 交于,P Q 两点,(2,2)A ,若22||||40AP AQ +=,则弦PQ 的长度的最大值为_______.【答案】【解析】设(,)M x y 为PQ 的中点,根据弦长公式,只需||OM 最小,在,APM AQMV V中,根据余弦定理将22||,||AP AQ 表示出来,由AMP AMQ π∠+∠=,得到2222||||2||2||AP AQ AM MQ +=+,结合弦长公式得到22||||16AM OM -=,求出点M 的轨迹方程,即可求解. 【详解】设(,)M x y 为PQ 的中点,在APM △中,222||||||2||||cos AP AM MP AM MP AMP =+-∠,① 在AQM V 中,222||||||2||||cos AQ AM MQ AM MQ AMQ =+-∠,②,cos cos 0AMP AMQ AMP AMQ π∠+∠=∴∠+∠=Q①+②得2222222||||2||||||2||2||AP AQ AM MP MQ AM MQ +=+=++, 即()222402||2||||AM OQ OM =+-,2220||4||AM OM =+-,22||||16AM OM -=.()2222(2)(2)16x y x y -+--+=,得20x y ++=.所以min ||22OM ==,max ||22PQ =. 故答案为:22.【点睛】本题考查直线与圆的位置关系、相交弦长的最值,解题的关键求出点M 的轨迹方程,考查计算求解能力,属于中档题.三、解答题17.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知0ccosB bsinC -=,2cosA cos A =.()1求C ;()2若2a =,求,ABC V 的面积ABC S V【答案】(1) 12π.(2). 【解析】()1由已知利用正弦定理,同角三角函数基本关系式可求1tanB =,结合范围()0,B π∈,可求4B π=,由已知利用二倍角的余弦函数公式可得2210cos A cosA --=,结合范围()0,A π∈,可求A ,根据三角形的内角和定理即可解得C 的值.()2由()1及正弦定理可得b 的值,根据两角和的正弦函数公式可求sinC 的值,进而根据三角形的面积公式即可求解. 【详解】() 1Q 由已知可得ccosB bsinC =,又由正弦定理b csinB sinC=,可得ccosB csinB =,即1tanB =, ()0,B π∈Q ,4B π∴=,2221cosA cos A cos A ==-Q ,即2210cos A cosA --=,又()0,A π∈,12cosA ∴=-,或1(舍去),可得23A π=,12C A B ππ∴=--=.()223A π=Q ,4B π=,2a =, ∴由正弦定理a bsinA sinB=,可得22a sinBb sinA ⋅===()1sin 22224sinC A B sinAcosB cosAsinB ⎛⎫=+=+=+-⨯=⎪⎝⎭Q ,11222ABC S absinC ∴==⨯=V . 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角的余弦函数公式,三角形的内角和定理,两角和的正弦函数公式,三角形的面积公式等知识在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i )若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii )已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为(01)p p <<,若2020届高考本科上线人数乙市的均值不低于甲市,求p 的取值范围.可能用到的参考数据:取40.360.0168=,40.160.0007=. 【答案】(1)60%;(2) (i )0.12 (ii ) 2,13⎡⎫⎪⎢⎣⎭【解析】(1)利用上线人数除以总人数求解;(2)(i )利用二项分布求解;(ii )甲、乙两市上线人数分别记为X ,Y ,得~(40000,0.6)X B ,~(36000,)Y B p .,利用期望公式列不等式求解【详解】(1)估计本科上线率为4678560%50++++=.(2)(i )记“恰有8名学生达到本科线”为事件A ,由图可知,甲市每个考生本科上线的概率为0.6,则882241010()0.6(10.6)0.360.16450.01680.160.12P A C C =⨯⨯-=⨯⨯=⨯⨯≈.(ii )甲、乙两市2020届高考本科上线人数分别记为X ,Y , 依题意,可得~(40000,0.6)X B ,~(36000,)Y B p .因为2020届高考本科上线人数乙市的均值不低于甲市, 所以EY EX ≥,即36000400000.6p ≥⨯, 解得23p ≥, 又01p <<,故p 的取值范围为2,13⎡⎫⎪⎢⎣⎭. 【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.19.如图1,在等腰梯形12ABF F 中,两腰122AF BF ==,底边6AB =,214F F =,D ,C 是AB 的三等分点,E 是12F F 的中点.分别沿CE ,DE 将四边形1BCEF 和2ADEF 折起,使1F ,2F 重合于点F ,得到如图2所示的几何体.在图2中,M ,N 分别为CD ,EF 的中点.(1)证明:MN ⊥平面ABCD .(2)求直线CN 与平面ABF 所成角的正弦值. 【答案】(1)证明见解析 (2)23【解析】(1)先证CN EF ⊥,再证DN EF ⊥,由EF BC ∥可得BC ⊥平面CDN ,从而推出MN ⊥平面ABCD ;(2) 建立空间直角坐标系,求出平面ABF 的法向量与CN u u u r,坐标代入线面角的正弦值公式即可得解.【详解】(1)证明:连接CF ,DN ,由图1知,四边形BCEF 为菱形,且60CEF ∠=︒, 所以CEF ∆是正三角形,从而CN EF ⊥. 同理可证,DN EF ⊥, 所以EF ⊥平面CDN .又EF BC ∥,所以BC ⊥平面CDN ,因为BC ⊂平面ABCD , 所以平面CDN ⊥平面ABCD .易知CN DN =,且M 为CD 的中点,所以MN CD ⊥, 所以MN ⊥平面ABCD . (2)解:由(1)可知3CN =,2MN =,且四边形ABCD为正方形.设AB 的中点为G ,以M 为原点,以MG ,MC ,MN 所在直线分别为x ,y ,z 轴,建立空间直角坐标系M xyz -,则()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,0,2N ,()1,0,2F ,所以()0,2,0AB =u u u r,()1,1,2AF =-u u u r ,()0,1,2CN =-u u u r .设平面ABF 的法向量为(),,n x y z =r,由0,0,n AB n AF ⎧⋅=⎨⋅=⎩u u u v v u u u v v 得20,20,y x y z =⎧⎪⎨-++=⎪⎩ 取()2,0,1n =r.设直线CN 与平面ABF 所成的角为θ,所以22sin 333CN n CN nθ⋅===⨯u u u r r u u u r r , 所以直线CN 与平面ABF 所成角的正弦值为23.【点睛】本题考查线面垂直的证明,直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力,属于基础题.20.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,左、右焦点分别为12,F F ,离心率为12,P是椭圆上的一个动点(不与左、右顶点重合),且12PF F△的周长为6,点P关于原点的对称点为Q,直线2,AP QF交于点M.(1)求椭圆方程;(2)若直线2PF与椭圆交于另一点N,且224AF M AF NS S=△△,求点P的坐标.【答案】(1)22143x y+=;(2)135,24⎛⎫⎪⎝⎭或135,24⎛-⎝⎭【解析】(1)根据12PF F△的周长为22a c+,结合离心率,求出,a c,即可求出方程;(2)设(,)P m n,则(,)Q m n--,求出直线AM方程,若2QF斜率不存在,求出,,M P N 坐标,直接验证是否满足题意,若2QF斜率存在,求出其方程,与直线AM方程联立,求出点M坐标,根据224AF M AF NS S=△△和2,,P F N三点共线,将点N坐标用,m n表示,,P N坐标代入椭圆方程,即可求解.【详解】(1)因为椭圆的离心率为12,12PF F△的周长为6,设椭圆的焦距为2c,则222226,1,2,a ccab c a+=⎧⎪⎪=⎨⎪+=⎪⎩解得2a=,1c=,3b=所以椭圆方程为22143x y+=.(2)设(,)P m n,则22143m n+=,且(,)Q m n--,所以AP的方程为(2)2ny xm=++①.若1m=-,则2QF的方程为1x=②,由对称性不妨令点P在x轴上方,则31,2P ⎛⎫- ⎪⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭,联立①,②解得1,9,2x y =⎧⎪⎨=⎪⎩即91,2M ⎛⎫⎪⎝⎭. 2PF 的方程为3(1)4y x =--,代入椭圆方程得2293(1)124x x +-=,整理得276130x x --=,1x =-或137x =,139,714N ⎛⎫∴- ⎪⎝⎭. 222219|227419|21||4AF MAF N AF S S AF ⨯⨯==≠⨯⨯△△,不符合条件.若1m ≠-,则2QF 的方程为(1)1ny x m -=---, 即(1)1ny x m =-+③. 联立①,③可解得34,3,x m y n =+⎧⎨=⎩所以(34,3)M m n +.因为224AF M AF N S S =△△,设(,)N N N x y所以2211|42|||2M N AF y AF y ⨯⨯=⨯⨯⨯,即4M N y y =. 又因为,M N 位于x 轴异侧,所以34N ny =-. 因为2,,P F N 三点共线,即2F P uuu u r 应与2F N u u u u r共线,223(1,),(1,)4N n F P m n F N x =-=--u u u u r u u u u r所以()31(1)4N n n x m -=--,即734N m x -=, 所以2273344143m n -⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭+=,又22143m n +=, 所以2272839m m ⎛⎫--= ⎪⎝⎭,解得12m =,所以n =±所以点P的坐标为1,24⎛ ⎝⎭或1,2⎛ ⎝⎭. 【点睛】本题考查椭圆的标准方程以及应用、直线与椭圆的位置关系,考查分类讨论思想和计算求解能力,属于较难题.21.设函数()1f x x x=-,()ln g x t x =,其中()0,1x ∈,t 为正实数. (1)若()f x 的图象总在函数()g x 的图象的下方,求实数t 的取值范围; (2)设()()()221ln 1e 11xH x x x x x ⎛⎫=-++--⎪⎝⎭,证明:对任意()0,1x ∈,都有()0H x >.【答案】(1)(]0,2 (2)证明见解析【解析】(1)据题意可得()()()1ln 0F x f x g x x t x x=-=--<在区间()0,1上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的t 的取值范围;(2)不等式整理为2e 1e 1ln x x x x x x x -<-+,由(1)可知当2t =时,212ln x x x ->,利用导数判断函数e e 1xx x x -+的单调性从而证明e 2e 1xx x x <-+在区间()0,1上成立,从而证明对任意()0,1x ∈,都有()0H x >. 【详解】(1)解:因为函数()f x 的图象恒在()g x 的图象的下方, 所以()()1ln 0f x g x x t x x-=--<在区间()0,1上恒成立. 设()1ln F x x t x x=--,其中()0,1x ∈, 所以()222111t x tx F x x x x-+'=+-=,其中24t ∆=-,0t >. ①当240t -…,即02t <…时,()0F x '…, 所以函数()F x 在()0,1上单调递增,()()10F x F <=,故()()0f x g x -<成立,满足题意.②当240t ->,即2t >时,设()()2101x x tx x θ=-+<<, 则()x θ图象的对称轴12tx =>,()01θ=,()120t θ=-<, 所以()x θ在()0,1上存在唯一实根,设为1x ,则()1,1x x ∈,()0x θ<,()0F x '<,所以()F x 在()1,1x 上单调递减,此时()()10F x F >=,不合题意.综上可得,实数t 的取值范围是(]0,2. (2)证明:由题意得()()21e ln 1e 1xx H x x x x ⎛⎫=---+ ⎪⎝⎭()()21e 1e ln xx x x x x x--+=-, 因为当()0,1x ∈时,e 10x x x -+>,ln 0x <, 所以()()()21e 10eln x xx x x H x x x--+>⇔>2e 1e 1ln x x x x x x x-⇔<-+. 令()()e 101xh x x x =--<<,则()e 10xh x '=->,所以()h x 在()0,1上单调递增,()()00h x h >=,即e 1x x >+,所以()2e 1111xx x x x x x -+>+-+=+,从而2e e e 11x xx x x x <-++. 由(1)知当2t =时,12ln 0x x x --<在()0,1x ∈上恒成立,整理得212ln x x x->.令()()2e 011xm x x x =<<+,则要证()0H x >,只需证()2m x <.因为()()()222e 101x x m x x-'=>+,所以()m x 在()0,1上单调递增,所以()()e122m x m <=<,即()2m x <在()0,1上恒成立. 综上可得,对任意()0,1x ∈,都有()0H x >成立. 【点睛】本题考查导数在研究函数中的作用,利用导数判断函数单调性与求函数最值,利用导数证明不等式,属于难题.22.在直角坐标系xOy 中,曲线C的参数方程是11cos ,421sin 2x y αα⎧=+⎪⎪⎨⎪=+⎪⎩(α是参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)在曲线C 上取一点M ,直线OM 绕原点O 逆时针旋转3π,交曲线C 于点N ,求||||OM ON ⋅的最大值.【答案】(1)sin 6π⎛⎫ρ=θ+⎪⎝⎭(2)最大值为34【解析】(1)利用22sin cos 1αα+=消去参数α,求得曲线C 的普通方程,再转化为极坐标方程.(2)设出,M N 两点的坐标,求得||||OM ON ⋅的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得||||OM ON ⋅的最大值. 【详解】(1)由11cos ,421sin ,42x y αα⎧=+⎪⎪⎨⎪=+⎪⎩消去α得曲线C的普通方程为22102x y x y +--=.所以C的极坐标方程为1cos 22ρ=θ+θ, 即sin 6π⎛⎫ρ=θ+ ⎪⎝⎭.(2)不妨设()1,M ρθ,2,3N πρθ⎛⎫+ ⎪⎝⎭,10ρ>,20ρ>,[0,2)θπ∈, 则12||||sin sin 663OM ON πππρρθθ⎛⎫⎛⎫⋅==+⋅++ ⎪ ⎪⎝⎭⎝⎭πsin cos 6θθ⎛⎫=+ ⎪⎝⎭1cos cos 22θθθ⎛⎫=+⋅ ⎪ ⎪⎝⎭112cos 2444θθ=++11sin 2264πθ⎛⎫=++ ⎪⎝⎭ 当6πθ=时,||||OM ON ⋅取得最大值,最大值为34. 【点睛】本小题主要考查参数方程化为普通方程,普通方程化为极坐标方程,考查极坐标系下线段长度的乘积的最值的求法,考查三角恒等变换,考查三角函数最值的求法,属于中档题.23.已知函数()|2||3|f x x x =++-. (1)解不等式()32f x x ≤-;(2)若函数()f x 最小值为M ,且23(0,0)a b M a b +=>>,求13211a b +++的最小值.【答案】(1)7,3⎡⎫+∞⎪⎢⎣⎭(2)169【解析】(1)利用零点分段法,求得不等式的解集.(2)先求得()5f x ≥,即235(0,0)a b a b +=>>,再根据“1的代换”的方法,结合基本不等式,求得13211a b +++的最小值. 【详解】(1)当2x <-时,2332x x x ---+≤-,即35x ≥,无解; 当23x -≤≤时,2332x x x +-+≤-,即73x ≤,得733x ≤≤;当3x >时,2332x x x ++-≤-,即1x ≥,得3x >. 故所求不等式的解集为7,3⎡⎫+∞⎪⎢⎣⎭.(2)因为()|2||3||(2)(3)|5f x x x x x =++-≥+--=, 所以235(0,0)a b a b +=>>,则213(1)9a b +++=,1311313(1)3(21)16[213(1)]10211921192119b a a b a b a b a b ++⎛⎫⎡⎤+=++++=++≥ ⎪⎢⎥++++++⎝⎭⎣⎦.当且仅当211,235,0,0,a b a b a b +=+⎧⎪+=⎨⎪>>⎩即5,854a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号.故13211a b +++的最小值为169.【点睛】本小题主要考查零点分段法解绝对值不等式,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.。

2020届高三11月联考数学(理)试题(解析版)

2020届高三11月联考数学(理)试题(解析版)

2020届高三11月联考数学(理)试题一、单选题1.复数312112ii i +++-的模为( )A .1BCD .5【答案】C【解析】对复数进行计算化简,然后根据复数的模长公式,得到答案.【详解】 根据题意,31211211212i i i i i i +++++=+-+(12)(1)122i i i+-+=+3122i i++=+2i =+,所以|2|i +==故选:C.【点睛】本题考查复数的四则运算,求复数的模长,属于简单题.2.集合{|3}A x x =≤,(){}22|log 2,B x y x x x R ==-+∈,则A B =ð( )A .{|0}x x ≤B .{|2 3 0}x x x ≤≤≤或C .{|23}x x ≤≤D .{|03}x x ≤≤【答案】B【解析】对集合B 进行化简,然后根据集合的补集运算,得到答案.【详解】因为(){}22|log 2,B x y x x x ==-+∈R{}2|20,x x x x =-+>∈R{}|02,x x x =<<∈R ,因为集合{|3}A x x =≤所以{|2 3 0}A B x x x =≤≤≤或ð.故选:B.【点睛】本题考查解对数不等式,一元二次不等式,集合的补集运算,属于简单题.3.已知向量(3,4)a =r ,则实数1λ=是||5a λ=r的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】先求出a r ,然后分别判断由1λ=能否得到||5a λ=r ,和由||5a λ=r 能否得到1λ=,从而得到答案.【详解】因为向量(3,4)a =r,所以5a ==r因为1λ=,所以可得5a a λλ==r r ,所以1λ=是||5a λ=r的充分条件. 因为||5a λ=r ,所以||||5a λ= ||1λ=即1λ=±.所以1λ=是||5a λ=r的不必要条件.综上所述,实数1λ=是||5a λ=的充分而不必要条件.故选:A.【点睛】本题考查根据向量的坐标求向量的模长,判断充分而不必要条件,属于简单题. 4.已知函数32,0()log ,0x x g x x x ⎧-≤=⎨>⎩,则不等式()1g x <的解集为( ) A .(0,2)B .(,2)-∞C .(1,2)-D .(1,2)【答案】C【解析】按0x ≤和0x >,分别解不等式()1g x <,从而得到答案.【详解】 根据题意,32,0,()log ,0,x x g x x x ⎧-≤=⎨>⎩,由不等式()1g x <得310x x ⎧-<⎨≤⎩或2log 10x x <⎧⎨>⎩,, 所以10x -<≤或02x <<.即12x -<<所以不等式()1g x <的解集为(1,2)-.故选:C.【点睛】本题考查解分段函数不等式,解对数不等式,属于简单题.5.某几何体的三视图如图所示,则该几何体的体积为( )正视图 侧视图俯视图A .43-B .23-C .32-D .34- 【答案】C【解析】根据三视图还原出几何体的直观图,将几何体分为三棱锥E ABC -和三棱锥E ACD -两部分,根据三视图中的数据及线段的位置关系分别得到底面积和高,求出几何体的体积.【详解】该几何体的直观图如下图,平面ACD ⊥平面ABC ,DE P 平面ABC ,ACD V 与ACB △均是边长为2的等边三角形,2BE =,点E 在平面ABC 上的射影落在ABC ∠的平分线上,所以DE ⊥平面ACD ,所以113E ABC ABC V S -∆=⨯=, 13E ACD ACD V S DE -=⨯⨯V 11)3=1=,所以几何体的体积为2. 故选:C.【点睛】本题考查三视图还原结合体,根据三视图求几何体的体积,属于中档题.6.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( )A .1112B .3316C .3516D .12548【答案】D【解析】对()f x 求导,利用导数的几何意义,求出切线方程,然后求出切线与()g x 的交点坐标,利用定积分求出围成的封闭图形的面积,得到答案.【详解】 由题意,22()(1)f x x '=--, 221(3)(31)2f '∴=-=--, 所以切线方程为270x y +-=,与2()2g x x =+的交点横坐标为132x =-,21x =. 故封闭图形的面积13227222x S x dx -⎛⎫=--- ⎪⎝⎭⎰ 3122231323311d 22243x x x x x x --⎛⎫⎛⎫=⎰--=-- ⎪ ⎪⎝⎭⎝⎭12548= 故选:D.【点睛】本题考查利用导数求函数图像上在一点的切线方程,定积分求封闭图形的面积,属于中档题.7.已知数列满足11a =,121n n a a +=+,设数列(){}2log 1n a +的前n 项和为n S ,若12111n nT S S S =++⋅⋅⋅+,则与9T 最接近的整数是( ) A .5B .4C .2D .1 【答案】C【解析】根据递推关系式121n n a a +=+,得到1121n n a a ++=+,得到{}1n a +的通项,从而得到(){}2log 1n a +的通项和前n 项和n S ,从而求出n T ,再得到9T ,从而得到答案.【详解】由题意,()112221n n n a a a ++=+=+, 所以1121n n a a ++=+, 所以{}n a 为以112a +=为首项,2为公比的等比数列,所以()11112n n a a -+=+2n =,因此()2log 1n a n +=,数列(){}2log 1n a +的前n 项和为(1)2n n n S +=, 12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 12111n n T S S S =++⋅⋅⋅+ 11111212231n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1211n ⎛⎫=- ⎪+⎝⎭所以995T =. 所以与9T 最接近的整数是2.故选:C.【点睛】本题考查构造法求数列的通项,等差数列前n 项和公式,裂项相消法求数列的和,属于中档题.8.已知函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,若函数()()g x f x m =-有两个零点,则实数m的取值范围为( )A .[2,)+∞B .(1,0)(2,)-+∞UC .(1,2]-D .(1,0)-【答案】D【解析】画出()y f x =的图像,然后得到()y f x =的图像和y m =的图像有两个交点,从而得到m 的取值范围.【详解】 根据函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,画出()f x 的图象如图所示,函数()()g x f x m =-有两个零点则函数()y f x =的图象与y m =的图象有2个交点,所以10m -<<,所以实数m 的取值范围为(1,0)-.故选:D.【点睛】本题考查画分段函数的图像,函数与方程,属于简单题.9.如果函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞,则14m n+的最小值为( ) A .92 B .2 C .1 D .34【答案】A【解析】由()f x 单调递增区间为[1,)+∞,得到对称轴方程21n m --=,即2m n +=,再根据基本不等式求出14m n+的最小值,得到答案. 【详解】 因为函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞ 所以对称轴为:21n m --=,即2m n +=, 所以14114()2m n m n m n ⎛⎫+=++ ⎪⎝⎭ 1452m n n m ⎛⎫=++ ⎪⎝⎭1(52≥+92=, 当且仅当2,3m =43n =时,等号成立. 故选:A.【点睛】本题考查根据二次函数的单调区间求参数之间的关系,基本不等式求和的最小值,属于简单题.10.已知sin()1223πα-= 则sin(2)6πα+= ( ) A .710- B .710 C .79- D .79【答案】C【解析】利用倍角公式,结合函数名的转换求解.【详解】21cos()12sin ()61223ππαα-=--=,(2)cos[(2)]cos(2)6263sin ππππααα+=-+=-272()169cos πα=--=-,故选C. 【点睛】本题主要考查三角函数的给值求值问题,首先从角入手,寻求已知角和所求角的关系,再利用三角恒等变换公式求解.11.如图,在三角形ABC 中,AC 上有一点D 满足4BD =,将ABD △沿BD 折起使得5AC =,若平面EFGH 分别交边AB ,BC ,CD ,DA 于点E ,F ,G ,H ,且AC P 平面EFGH ,BD P 平面EFGH 则当四边形EFGH 对角线的平方和取最小值时,DH DA=( )A .14B .1641C .2041D .3241【答案】B【解析】易得HG AC P ,EF AC P ,设DH GH k DA AC==,易得∥EH BD ,∥FG BD ,得1AH EH k DA BD==-,从而得到5GH k =,4(1)EH k =-,平行四边形EFGH 中,()2222413216EG HF k k +=-+,从而得到22EG HF +最小时的k 值,得到答案.【详解】AC P 平面EFGH ,AC ⊂平面ACD ,平面ACD I 平面EFGH HG =,所以AC HG P ,同理AC EF P设DH GH k DA AC==(01)k <<, BD P 平面EFGH ,BD ⊂平面ABD ,平面ABD ⋂平面EFGH HE =,所以BD HE P ,同理∥FG BD所以1AH EH k DA BD==-, 因为4BD =,5AC =所以5GH k =,4(1)EH k =-,在平行四边形EFGH 中,222222516(1)EG HF k k ⎡⎤∴+=+-⎣⎦(22413216)k k =-+, 又01k <<Q ,∴当1641k =时,22EG HF +取得最小值. 故选:B.【点睛】本题考查线面平行证明线线平行,平行四边形对角线的性质,二次函数求最值,属于中档题.12.定义在R 上的函数()f x 满足(2)()0f x f x ++=,(2018)2f =,任意的[1,2]t ∈,函数32(2)()(2)2f m g x x x f x ⎡⎤=+-++⎢⎥⎣⎦在区间(,3)t 上存在极值点,则实数m 的取值范围为( ) A .37,53⎛⎫-- ⎪⎝⎭B .(9,5)--C .37,93⎛⎫-- ⎪⎝⎭D .37,3⎛⎫-∞- ⎪⎝⎭ 【答案】C 【解析】根据(2)()0f x f x ++=得到()f x 周期为4,再求得()()220182f f ==,得到()g x ,求导得到()g x ',判断出()0g x '=的两根一正一负,则()g x 在区间(,3)t 上存在极值点,且[]1,2t ∈,得到()g x '在(),3t 上有且只有一个根,从而得到关于t 的不等式组,再根据二次函数保号性,得到关于m 不等式组,解得m 的范围.【详解】由题意知,(2)()f x f x +=-,(4)()f x f x ∴+=,所以()f x 是以4为周期的函数,(2018)(2)2f f ∴==,所以322()22m g x x x x ⎛⎫=+-++ ⎪⎝⎭32222m x x x ⎛⎫=++- ⎪⎝⎭, 求导得2()3(4)2g x x m x '=++-,令()0g x '=,23(4)20x m x ∴++-=, 2(4)240m ∆=++>, 由12203x x =-<, 知()0g x '=有一正一负的两个实根.又[1,2],t ∈(,3)x t ∈,根据()g x 在(,3)t 上存在极值点,得到()0g x '=在(,3)t 上有且只有一个正实根.从而有()0(3)0g t g ''<⎧⎨>⎩,即23(4)2027(4)320t m t m ⎧++-<⎨++⨯->⎩恒成立, 又对任意[1,2]t ∈,上述不等式组恒成立,进一步得到2311(4)20,322(4)20,273(4)20,m m m ⨯+⨯+-<⎧⎪⨯+⨯+-<⎨⎪+⨯+->⎩所以59373m m m ⎧⎪<-⎪<-⎨⎪⎪>-⎩故满足要求的m 的取值范围为:3793m -<<-. 故选:C.【点睛】本题考查函数的周期性的应用,根据函数的极值点求参数的范围,二次函数根的分布和保号性,属于中档题.二、填空题13.在平面直角坐标系中,O 为坐标原点,(1,1)A -,(0,3)B ,(3,0)C ,3BD DC =u u u r u u u r,则OA OD ⋅=u u u r u u u r________.【答案】32-【解析】将3BD DC =u u u r u u u r 转化为3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,从而得到OD uuu r的坐标,然后根据向量数量积的坐标运算,得到答案. 【详解】因为3BD DC =u u u r u u u r,所以3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,所以()134OD OC OB =+u u u r u u u r u u u r 93,44⎛⎫= ⎪⎝⎭, ()1,1OA =-u u u r所以9344OA OD ⋅=-+u u u r u u u r 32=-.故答案为:32-.【点睛】本题考查向量线性运算的坐标表示,数量积的坐标表示,属于简单题.14.已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,则11y z x +=+的最小值为________.【答案】13【解析】根据约束条件,画出可行域,将目标函数看成点(,)x y 与点(1,1)--两点连线的斜率,从而得到斜率的最小值,得到答案. 【详解】因为已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,画出可行域,如图所示,11y x ++表示点(,)x y 与点(1,1)--两点连线的斜率,所以可得当直线过点A 时,z 最小, 由0240y x y =⎧⎨+-=⎩得2,0,x y =⎧⎨=⎩ 所以z 的最小值为011213+=+. 故答案为:13. 【点睛】本题考查根据线性规划求分式型目标函数的最值,属于简单题.15.如图,底面ABCD 为正方形,四边形DBEF 为直角梯形,DB EF ∥,BE ⊥平面ABCD ,2AB BE ==,2BD EF =,则异面直线DF 与AE 所成的角为________.【答案】6π 【解析】设正方形ABCD 的中心为O ,可得OE DF ∥,得到直线DF 与AE 所成角为AEO ∠(或其补角),根据余弦定理,可得cos AEO ∠的值,从而得到答案. 【详解】 如图,设正方形ABCD 的中心为O ,连接AO ,EO , 则12OD BD =因为DB EF ∥,2BD EF = 所以EF OD P ,EF OD = 所以DFEO 为平行四边形, 所以OE DF ∥,所以直线DF 与AE 所成角等于OE 与AE 所成的角,即AEO ∠(或其补角),因为AE =OA =OE =在三角形AEO 中,根据余弦定理,可知222cos 22EO EA AO AEO EO EA +-∠==⋅, 所以6AEO π∠=.故答案为:6π. 【点睛】本题考查求异面直线所成的角的大小,属于简单题.16.已知函数()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭(0)>ω在区间,63ππ⎛⎫⎪⎝⎭上有最小值4f π⎛⎫⎪⎝⎭,无最大值,则ω=________. 【答案】73【解析】先对()f x 进行整理,得到()2sin 23f x x πω⎛⎫=+⎪⎝⎭,根据最小值4f π⎛⎫⎪⎝⎭,得到743k ω=+,然后根据()f x 在区间,63ππ⎛⎫⎪⎝⎭无最大值,得到周期的范围,从而得到ω的范围,确定出ω的值. 【详解】()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭14cos sin 2x x x ωωω⎛⎫=⋅+ ⎪ ⎪⎝⎭)22sin cos 2cos 1x x x ωωω=+-sin 22x x ωω=+2sin 23x πω⎛⎫=+ ⎪⎝⎭,依题意,则322,432k ππωππ⨯+=+k Z ∈, 所以743k ω=+()k ∈Z .因为()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值, 所以342πππω-≤,即6ω≤, 令0k =,得73ω=. 故答案为:73ω=. 【点睛】本题考查二倍角公式,辅助角公式化简,根据正弦型函数的最值和周期求参数的值,属于中档题.三、解答题17.已知递增的等比数列{}n a 的前n 项和为n S ,149a a +=,238a a =. (1)求数列{}n a 的通项公式; (2)求数列{}n n S ⋅的前n 项和n T .【答案】(1)12n n a -=;(2)1(1)(1)222n n n nT n ++=-⋅+-【解析】(1)根据等比数列23148a a a a ==,解出1a 和4a 的值,从而得到公比q ,得到{}n a 的通项公式;(2)根据(1)得到n S ,再利用错位相减法和分组求和的方法求出{}n n S ⋅的前n 项和nT.【详解】(1)由题意,1423149,8,a a a a a a +=⎧⎨==⎩ 解得11,a =48a =或18,a =41a =; 而等比数列{}n a 递增,所以11,a =48a =,故公比2q =,所以12n n a -=. (2)由(1)得到12n S =++…1221n n -=-, 所以()*21n n S n ⋅=-2n n n =⋅-,23122232n T =⨯+⨯+⨯+…2(12n n +⋅-++…)n +,设23122232t =⨯+⨯+⨯+…2n n +⋅,2342122232t =⨯+⨯+⨯+…12n n ++⋅,两式相减可得,23222t -=+++ (1)22n n n ++-⋅()1212212n n n +-=-⋅-故1(1)22n t n +=-⋅+,所以1(1)(1)222n n n nT n ++=-⋅+-. 【点睛】本题考查等比数列通项基本量的计算,分组求和的方法,错位相减法求数列的前n 项的和,属于简单题. 18.已知函数321()3f x x ax bx =-+(),a b ∈R 在区间(1,2)-上为单调递减函数. (1)求+a b 的最大值;(2)当2a b +=-时,方程2135()32b f x x +=+有三个实根,求b 的取值范围. 【答案】(1)32-;(2)123,5⎡⎤--⎢⎥⎣⎦【解析】(1)先求得()f x ',根据()f x 在区间(1,2)-上为减函数,得到(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立,从而得到关于a ,b 的约束条件,画出可行域,利用线性规划,得到+a b 的最大值;(2)根据2a b +=-,得到b 的范围,设2135()()32b h x f x x +=--,求导得到()h x ',令()0h x '=得到x b =或1x =,从而得到()h x 的极值点,根据()h x 有3个零点,得到b 的不等式组,解得b 的范围. 【详解】(1)2()2f x x ax b '=-+,因为()f x 在区间(1,2)-上为减函数,所以(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立即120,440,a b a b ++≤⎧⎨-+≤⎩,画出可行域如图所示:设z a b =+,所以b a z =-+,z 表示直线l ,b a z =-+在纵轴上的截距.当直线:l b a z =-+经过A 点时,z 最大, 由120,440,a b a b ++=⎧⎨-+=⎩所以12a =,2b =- 故z a b =+的最大值为13222-=-. (2)由2a b +=-得2a b =-- 代入120,440,a b a b ++≤⎧⎨-+≤⎩可得1235b -≤≤-, 令2135()()32b h x f x x +=--32111323b x x bx +=-+-, 故由2()(1)h x x b x b '=-++(1)()0x x b =--=,得x b =或1x =,所以得到()h x 和()h x '随x 的变化情况如下表:x (,)b -∞ b(,1)b 1(1,)+∞ ()h x '+-+()h xZ极大值32111623b b -+- ]极小值12b -要使()h x 有三个零点,故需321110,62310,2b b b ⎧-+->⎪⎪⎨-⎪<⎪⎩ 即()2(1)220,1,b b b b ⎧---<⎪⎨<⎪⎩解得1b <,而1215>-所以b 的取值范围是123,5⎡⎤--⎢⎥⎣⎦. 【点睛】本题考查利用导数研究函数的单调性、极值和零点,根据函数的单调性求参数的取值范围,根据函数零点个数求参数的取值范围,属于中档题.19.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =.(1)求角C 的大小; (2)若3PB =,sin 38BAP ∠=,求ABC V 的面积. 【答案】(1)3C π=;(2【解析】根据正弦定理,将边化成角,然后整理化简,得到cos C 的值,从而得到C 的值;(2)根据条件得到APC △为等边三角形,从而得到23APB ∠=π,根据正弦定理,得到AB 的值,根据余弦定理,得到AP 的长,根据三角形面积公式,得到答案. 【详解】(1)因为cos cos 2cos ca Bb A C+=在ABC V ,由正弦定理sin sin sin a b cA B C== 所以得2cos (sin cos sin cos )C A B B A +sin C =. 所以2cos sin()sin C A B C +=. 即2cos 1C =所以1cos 2C =, 因为()0,C π∈,所以3C π=(2)由(1)知3C π=,而PA PC =APC △为等边三角形.由于APB ∠是APC △的外角, 所以23APB ∠=π. 在APB △中,由正弦定理得2sin sin3PB ABBAPπ=∠, 即2357sin 3ABπ=,所以19AB =. 所以由余弦定理得,2222co 23s AB PA PB PA PB π=+-⋅, 即21993PA PA =++, 所以2PA =,故235BC =+=,2AC =, 所以11353sin 252222ABC S CA CB C =⋅⋅=⨯⨯⨯=V . 【点睛】本题考查正弦定理的边角互化,正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.20.如图,在四棱锥1A ABCD ﹣中,底面ABCD 为直角梯形,90BAD ︒∠=,AB DC P ,2DC AB =24AD ==,12AA =,且O 为BD 的中点,延长AO 交CD 于点E ,且1A 在底ABCD 内的射影恰为OA 的中点H ,F 为BC 的中点,Q 为1A B 上任意一点.(1)证明:平面EFQ ⊥平面1A OE ;(2)求平面1A OE 与平面1A DC 所成锐角二面角的余弦值.【答案】(1)证明见解析;(2 【解析】(1)根据1A H ⊥平面ABCD ,得到1A H EF ⊥,由平面几何知识得到EF AE ⊥,从而得到EF ⊥平面1A OE ,所以所以平面EFQ ⊥平面1A OE ;(2)以O 为原点建立空间直角坐标系,得到平面1A DC 和平面1A OE 的法向量,利用向量的夹角公式,得到这两个面所成的锐角二面角的余弦值. 【详解】(1)由题意,E 为CD 的中点,因为1A H ⊥平面ABCD ,EE ⊂平面ABCD , 所以1A H EF ⊥,又因为DB EF ∥,AB AD =,OB OD =,所以AE 垂直平分BD , 所以DE BE =又因AB DE ∥,90BAD ︒∠= 所以ADEB 为正方形, 所以DE EC AB == 因为F 为BC 的中点, 所以EF BD P而DB AE ⊥,所以EF AE ⊥,又1A H AE H =I ,所以EF ⊥平面1A OE , 又EF ⊂平面EFQ , 所以平面EFQ ⊥平面1A OE .(2)因为1A 在底面ABCD 内的射影恰为OA 的中点H ,所以11242OH OA BD ===. 因为AB AD ⊥,所以过点O 分别作AD ,AB 的平行线(如图), 并以它们分别为x ,y 轴,以过O 点且垂直于xOy 平面的直线为z 轴, 建立如图所示的空间直角坐标系,所以(1,1,0)A --,(1,1,0)B -,(1,3,0)C ,(1,1,0)D -,1116,,222A ⎛-- ⎝⎭,所以1316,,222A D ⎛=-- ⎝⎭u u u u r ,1376,,222A C ⎛=- ⎝⎭, 设平面1A DC 的一个法向量为(,,)n x y z =r,则1100n A D n A C ⎧⋅=⎪⎨⋅=⎪⎩r v u u v v ,所以316022376022x y z x y z ⎧--=⎪⎪⎨⎪+=⎪⎩令6z =6)n =r,由(1)知,BD ⊥平面1A OE ,所以OD ⊥平面1A OE ,所以(1,1,0)OD =-u u u r为平面1A OE 的一个法向量,则||5|cos ,|||||102n OD n OD n OD ⋅〈〉===⋅r u u u rr u u u r r u u ur . 故平面1A OE 与平面1A DC 5. 【点睛】本题考查线面垂直的判定和性质,面面垂直的判定,利用空间向量求二面角的余弦值,属于中档题.21.已知函数1()1ln1mxf x x x-=-++(0)m >与满足()2()g x g x -=-()x R ∈的函数()g x 具有相同的对称中心.(1)求()f x 的解析式;(2)当(,]x a a ∈-,期中(0,1)a ∈,a 是常数时,函数()f x 是否存在最小值若存在,求出()f x 的最小值;若不存在,请说明理由;(3)若(21)(1)2f a f b -+-=,求22211a b a b+++的最小值. 【答案】(1)1()1ln 1x f x x x -=-++;(2)11ln 1a a a--++(3)94 【解析】(1)根据()g x 关于()0,1对称,从而得到()()2f x f x +-=,整理化简,得到m 的值;(2)判断出()f x 的单调性,得到当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,从而得到()f x 最小值;(3)由(21)(1)2f a f b -+-=得到a ,b 关系,然后将22b a =-代入到22211a b a b+++,利用基本不等式,得到其最小值. 【详解】(1)因为()2()g x g x -=-,所以()()2g x g x -+=,所以()y g x =图象关于(0,1)对称, 所以11()()1ln 1ln 11mx mx f x f x x x x x-++-=-+++++- 22212ln 21m x x ⎛⎫-=+= ⎪-⎝⎭所以22211,1m x x-=-0m > 解得1m =, 所以1()1ln 1x f x x x-=-++. (2)()f x 的定义域为(1,1)-,1()1ln 1x f x x x -=-++21ln 11x x ⎛⎫=-+-+ ⎪+⎝⎭, 当12x x <且12,(1,1)x x ∈-时,()f x 为减函数,所以当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,所以当x a =时,min 1()1ln1a f x a a-=-++. (3)由(21)(1)2f a f b -+-=, 得2110,1211,111,a b a b -+-=⎧⎪-<-<⎨⎪-<-<⎩解得01,a <<02,b <<22a b +=, 所以2222221211(1)a b a b ab b a a b a b++++++=++ 21(1)b a a b++=+()25321a a -=- 令53t a =-,则5,3t a -=(2,5)t ∈, ()()225392121016a t a t t -=--+- 916210t t =⎛⎫--+ ⎪⎝⎭94≥= 当且仅当4t =时,等号成立, 即当13a =,43b =时,22211a b a b+++的最小值为94. 【点睛】本题考查根据函数的对称性求参数的值,根据函数的单调性求最值,基本不等式求和的最小值,属于中档题.22.已知函数1()ln 2f x mx x =--()m R ∈,函数()F x 的图象经过10,2⎛⎫ ⎪⎝⎭,其导函数()F x '的图象是斜率为a -,过定点(1,1)-的一条直线.(1)讨论1()ln 2f x mx x =--()m R ∈的单调性; (2)当0m =时,不等式()()F x f x ≤恒成立,求整数a 的最小值.【答案】(1)当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)2【解析】对()f x 求导,得到()f x ',按0m ≤和0m >进行分类讨论,利用导函数的正负,得到()f x 的单调性;(2)根据题意先得到()F x ',然后得到()F x 的解析式,设()()()g x F x f x =-,按0a ≤和0a >分别讨论,利用()g x '得到()g x 的单调性和最大值,然后研究其最大值恒小于等于0时,整数a 的最小值.【详解】(1)函数()f x 的定义域是(0,)+∞,1()mx f x x-'=, 当0m ≤时,()0f x '≤,所以()f x 在(0,)+∞上为减函数,当0m >时,令()0f x '=,则1x m =, 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数, 综上,当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)根据题意,()(1)1F x a x '=-++, 设21()(1)2F x ax a x c =-+-+,代入10,2⎛⎫ ⎪⎝⎭,可得12c =, 令()()()g x F x f x =-21ln (1)12x ax a x =-+-+, 所以1()(1)g x ax a x '=-+-2(1)1ax a x x-+-+=. 当0a ≤时,因为0x >,所以()0g x '>.所以()g x 在(0,)+∞上是单调递增函数, 又因为21(1)ln11(1)112g a a =-⨯+-⨯+3202a =-+>, 所以关于x 的不等式()()F x f x ≤不能恒成立.当0a >时,2(1)1()ax a x g x x -+-+'=1(1)a x x a x⎛⎫-+ ⎪⎝⎭=-, 令()0g x '=,得1x a =. 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 因此函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭上是增函数,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上是减函数. 故函数()g x 的最大值为211111ln (1)12g ax a a a a a ⎛⎫⎛⎫=-+-⨯+ ⎪ ⎪⎝⎭⎝⎭1ln 2a a =-. 令1()ln 2h a a a =-,因为1(1)0,2h =>1(2)ln 204h =-<, 又因为()h a 在(0,)a ∈+∞上是减函数.所以当2a ≥时,()0h a <.所以整数a 的最小值为2.【点睛】本题考查函数与方程的应用,利用导数研究函数的单调区间、极值和最值,根据导函数的解析式求原函数的解析式,利用导数研究不等式恒成立问题,涉及分类讨论的思想,题目比较综合,属于难题.。

安徽省皖江名校联盟2020届高三数学第一次联考试题理(含解析)

安徽省皖江名校联盟2020届高三数学第一次联考试题理(含解析)

C. 向左平移个 单位长度 4
【答案】C 【解析】 【分析】
D. 向左平移个 单位长度 2
根据三角函数解析式之间的关系即可得到结论.
【详解】因为 y = sin3x + cos3x =
2sin

3x
+
4


所以将其图象向左平移 个单位长度, 4
可得 y =
2sin
3
a,
b a
m

, NM
=

m

3a,
b a
m

,根据题意可得
AM NM = 0





(m

a)(m

3a )
+

b a
mLeabharlann 2 =0,

一步



1+
b2 a2

m2


4am
+ 3a2
=
0
,根据方程有解,利用判别式大于等于零,求得 a2

3b2
,进一
B. 1, 2
C. x − 3 x 1
D. x 1 x 2
【答案】D 【解析】 根据集合的基本运算进行求解即可.
【详解】由 ln x 0 得 x 1,所以 B = x | x 1 ,
A B = {x |1 x 2},
故选 D.
【点睛】该题考查的是有关集合的运算,属于简单题目.
所以 V
=
1 r2h 3
=
rh
1
r2 + h2

2020届高三12月联考理科数学参考答案

2020届高三12月联考理科数学参考答案

数学参考答案(理科)2.【解析】集合(2,1)B =-,所以{2,1,2}U A B =- () ,有3个元素。

3.【解析】开区间上最小值一定是极小值,导数等于0,反过来不成立。

4.【解析】3927=3.14161250,355=3.141592113 ,22=3.1428577,故选B。

5.【解析】(1)1((1)1)f f +=--+,所以(1)3f -=-。

6.【解析】11=1n n k a n kn k++=+--,由k 是正数及反比例函数的单调性知50k -<且60k ->,故选D。

7.【解析】1211109895040sum =⨯⨯⨯⨯=,判断框在12,11,10,9,8i =都满足条件,7i =不满足,故选B8.【解析】(1()322f f ππ=-=-,,故选A。

9.【解析】球心是AC 的中点,25=R ,6125812534343πππ=⋅==R V ,选C10.【解析】设1910a b x x a b+=⇒+=-,于是199(10)()(101016a bx x a b a b b a -=++=++≥+=所以210+16028x x x -≤⇒≤≤,所以a b +的最小值是2(当13,22a b ==时取得)11.【解析】设点001(,)P x x ,切线l 方程为20012y x x x =-+,所以002(2,0),(0,)A x B x ,点001(,)P x x 是AB 中点,S 2AOB = ,命题(1)(2)都正确。

过原点作倾斜角等于15 和75 的2条射线与曲线的交点为,M N ,由对称性知OMN 是等边三角形,命题(3)正确。

过原点作2条夹角等于45 的射线与曲线的交点为,M N ,当直线OM 的倾斜角从90 减少到45 的过程中,OM ON 的值从+∞变化到0,在这个过程中必然存在OM ON 的时刻,此时OMN 是等腰直角三角形,命题(4)正确.12.【解析】解1:222||2132a b a b a b a b -=+-=-,由题设=()1||||1=||1a b a b c a b c a b +-≤+-+- ,所以22221||2132a b a b a b a b a b +≤+=++=+(),得212a b ≤ (),所以a b -≤≤ ,因此,||1a b -≤ ,易见等号可以取得,故选D。

2020届高三联考数学理科试题(含答案)

2020届高三联考数学理科试题(含答案)

2020年高三联考理科数学试题本试卷共6页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用黑色字迹钢笔或签字笔将答案填写在答题卡上对应题目的序号下面,如需改动,用橡皮擦干净后,再选填其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{/|1|1}A x x =-<, 1{0}xB xx-=≤,则A ∩(∁U B )=( ) A .(0,1) B .[0,1) C .(1, 2) D . (0,2)2. 已知x ,y ∈R ,i 为虚数单位,且(x ﹣2)i ﹣y=1,则(1)x yi -+的值为( ) A .4 B . ﹣4C . ﹣2iD . ﹣2+2i3、已知),2(ππα∈,53sin =α,则)4tan(πα-的值等于( )A .7-B .71-C .7D .714. 等比数列{}n a 中,39a =,前3项和为32303S x dx =⎰,则公q 的值是( )A. 1B.-12 C. 1或-12 D. - 1或-125.定义在R 上的偶函数f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式()0xf x >的解集是( )A .(0,13)B .(13 ,+∞)C .(- 13,0)∪(13,+∞)D .(-∞,-13)∪(0,13)6.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积...为 A .π12 B . π3 C .π34 D .π3127.已知双曲线22221x y a b-=(0a >,0b >),过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点,若OM ON ⊥,则双曲线的离心率为( )A .132-+ B .132+ C .152-+ D .152+ 8. 已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M={1(x,y )|y x=}; ②M={1(x,y )|y sin x =+};③M={2(x,y )|y log x =}; ④M={2x(x,y )|y e =-}.其中是“垂直对点集”的序号是( ) A.①② B .②④ C .①④ D .②③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(8~13题)9.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的 概率为10. 设31(5)nx x-的展开式的各项系数之和为M ,二项式系数之和为N ,若240M N -=,则展开式中的常数项_________.11. 下列说法:①“x ∃∈R ,23x >”的否定是“x ∀∈R ,23x ≤”;②函数sin(2)sin(2)36y x x ππ=+- 的最小正周期是π;③命题“函数()f x 在0x x =处有极值,则0()0f x '=”的否命题是真命题;④()f x 是(,0)(0,)-∞+∞上的奇函数,0x >的解析式是()2xf x =,则0x <时的解析式为()2xf x -=-.其中正确的说法是__________.12. 已知向量a =(2,1),b =(x ,y ).若x ∈[-1,2],y ∈[-1,1],则向量a ,b 的夹角是钝角的概率是 .13.右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起, 每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥.( ) ▲ 14.在极坐标系中,过点(3,)3π且垂直于极轴的直线方程的极坐标方程是 (请选择正确标号填空) (1)3sin 2=ρθ (2)3cos 2=ρθ (3)3sin 2=ρθ (4)3cos 2=ρθ 15. 如图,在△ABC 和△ACD 中,∠ACB =∠ADC =90°,∠BAC =∠CAD ,⊙O 是以AB 为直径的圆,DC 的延长线与AB 的延长线交于点E . 若EB =6,EC =62,则BC 的长为 .三、解答题:本大题共6小题,共80分。

2020届高三百校大联考数学(理)答案

2020届高三百校大联考数学(理)答案

由正弦定理得,ssiinnCBccoossBC=槡33tanC,∴tanB=槡3, ∵0<B<π,∴B=π3; (5分) (2)∵∠D=2∠B, ∴由(1)知,∠D=23π,在△ACD中,由余弦定理得,
axex,则曲线 f(x)=axex在点(0,f(0))处的切线的
斜率为 k=f′(0)=a,又切点为(0,0,),∴切线方
{y=ax
程为 y=ax,联立
得,x2 -(2+a)x+
y=x2 -2x+4
AC2 =12 +22 -2×1×2cos23π=7,
∴AC=槡7, (7分) 又 BC=槡7,B=π3,
4=0,∴Δ=(2+a)2 -4×4=0,解得,a=2或 a=
-6.)
14.1536(解析:∵数列{log2Sn}是公差为 2的等差
+11=
3+9×214=66,故选 B.)
{ 10.D(解析:由 y=abx
得,P(a2,ab),又 cc
F1(-c,0),
x2+y2=a2
ab 则 tan∠PF1F2 =kPF1 =c+ca2 =c2a+ba2 =13,化简得,

c4-7c2a2+10a4=0,即 e4 -7e2 +10=0,解得 e2 =5或
(7分) 令 h(x)=ex -1-x,
xx
则 h′(x)=ex(xx2-1)+x12 -1=ex(x-x21)+1-1,
∵当 x≥1时,ex≥x+1>0,
∴当
x≥

时,h′(x)

ex(x-1)+1 x2
-1≥
(x+1)(xx2-1)+1-1=0, (10分)
∵B(4,0),∴kMB +kNB =x1y-14+x2y-24
=k(x1 -1)+k(x2 -1)

河北省2020年高三3月联考理科数学试题(含答案+全解全析)

河北省2020年高三3月联考理科数学试题(含答案+全解全析)

河北省2020年高三3月联考数学(理科)试题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|y=3-x },B={x|1<x≤9),则(C R A)∩B=A.(3,9)B.(1,3)C.[3,9] D .φ 2.已知复数z=ii-25+ 5i ,则|z|= A.5 B .32 C .52 D .23.已知向量a =(0,2),b =(23 ,x),且a 与b 的夹角为3π,则x=A .-2B .2C .1D .-l4.若双曲线C:221x y m-=的一条渐近线方程为3x+2y=0,则m=A.49B.94C.23D.325.已知底面是等腰直角三角形的三棱锥P-ABC 的三视图如图所示,俯视图中的两个小三角 形全等,则A .PA ,PB ,PC 两两垂直 B .三棱锥P-ABC 的体积为38 C. |PA|=|PB|=|PC|=6D .三棱锥P-ABC 的侧面积为356.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外,据统计,烟台苹果(把 苹果近似看成球体)的直径(单位:mm)服从正态分布N(80,52),则直径在(75,90]内的概率为 附:若X ~N (μ,σ2),则P(μ-σ<X ≤μ+σ)一0.6826,P(μ- 2σ<X ≤μ+2σ) =0. 9544. A.0. 6826 B.0.8413 C.0.8185 D.0.9544 7.将函数2)63sin(3)(-+-=πx x f 的图象向右平移6π个单位长度得到函数g(x)的图象,若g(x)在区间],18[θπ-上的最大值为1,则θ的最小值为A .3πB .12πC .18πD.6π8.函数2ln ||()||x f x x x =-的图象大致为9.设不等式组0,30x y x ⎧+≥⎪⎨⎪≤⎩表示的平面区域为Ω,若从圆C:x 2+y 2=4的内部随机选取一点P,则P 取自Ω的概率为A.524B.724C.1124D.172410.已知定义在R 上的函数f(x)满足f(x)=f(-x),且在[0,+∞)上是增函数,不等式f(ax +2)≤f(-1)对于x ∈[1,2]恒成立,则a 的取值范围是A.3,12⎡⎤--⎢⎥⎣⎦B 1.1,2⎡⎤--⎢⎥⎣⎦C.1,02⎡⎤-⎢⎥⎣⎦D.[0,1]11.已知直线v=k(x-l)与抛物线C :y 2=4x 交于A ,B 两点,直线y=2k(x-2)与抛物线D :y 2=8x 交于M ,N 两点,设λ=|AB|-2|MN|,则A.λ<-16B.λ=-16C.-12<λ<0D.λ=-1212.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将l 到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为A. 56383B.57171C.59189D.61242第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.83)12(xx -的展开式中的常数项为 . 14.函数1)4()(-+-=x x x x f 的值域为 .15.在数列{a n }中,a 1=1,a n ≠0,曲线y=x 3在点(a n ,a n 3,)处的切线经过点(a 1n +,0),下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{a n }是等比数列. 其中所有正确结论的编号是______.16.如图,在三棱锥A-BCD 中,点E 在BD 上,EA=EB=EC=ED ,BD=.2CD ,△ACD 为正三角形,点M ,N 分别在AE ,CD 上运动(不含 端点),且AM=CN ,则当四面体C- EMN 的体积取得最大值32时, 三棱锥A-BCD 的外接球的表面积为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)在△ABC 中,内角A,B,C 的对边分别为a,b,c,且2a-c=2bcosC. (1)求sin()2A CB ++的值; (2)若3b =,求c-a 的取值范围.18.(12分)在四棱锥P-ABCD 中,△PAB 是边长为2的等边三角形,底面ABCD 为直角梯形,AB ∥CD,AB ⊥BC,BC= CD=l,PD=2 .(l)证明:AB ⊥PD.(2)求二面角A- PB-C 的余弦值.19.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向,为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如下:(l)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y (单位:元)与空气质量指数x 的关系式为⎪⎩⎪⎨⎧≤<≤<≤≤=.300250,1480,250100,220,1000,0x x x y 假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.61,121,121,61,31,619月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X 元,求X 的分布列;( ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2. 88万元?说明你的理由.20.(12分)已知椭圆C:2221(1)x y a a+=>的左顶点为A,右焦点为F,斜率为1的直线与椭圆C 交于A,B 两点,且OB⊥AB,其中O 为坐标原点.(1)求椭圆C 的标准方程;(2)设过点F 且与直线AB 平行的直线与椭圆C 交于M,N 两点,若点P 满足3OP PM =u u u r u u u u r,且NP 与椭圆C的另一个交点为Q,求||||NP PQ 的值. 21.(12分) 设函数f(x)=x-x1,g(x)=tlnx ,其中x ∈(0,1),t 为正实数. (l)若f(x)的图象总在函数g(x)的图象的下方,求实数t 的取值范围; (2)设 H (x) = (lnx-x 2+1)e x +(x 2-l) (l-x1),证明:对任意x ∈(0,1),都有H(x)>0.(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分. 22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 1的参数方程24,4x t y t =⎧⎪⎨⎪=⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 2的极坐标方程为ρ=4sinθ.(1)求C 1的极坐标方程与C 2的直角坐标方程; (2)已知射线(0)2πθαα=<<与C 1交于O,P 两点,与C 2交于O,Q 两点,且Q 为OP 的中点,求α.23.[选修4-5:不等式选讲](10分) 已知函数f(x)=|x-2|+|2x-1|. (1)求不等式f(x)≥3的解集;(2)记函数f(x)的最小值为m,若a,b,c 均为正实数,且12a b c m ++=,求a 2+b 2+c 2的最小值.。

湖南省天壹名校联盟2020届高三12月大联考数学(理)试题答案

湖南省天壹名校联盟2020届高三12月大联考数学(理)试题答案

理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案DADCBBABACBC1.D 解析:A =[-1,2],B =[1,2],A ∩B =[1,2].2.A 解析:a ·(a -2b )=a 2-2a ·b =1-2×12=0,故选A .3.D 解析:A 不单调,B 单调递减,C 是偶函数,D 满足条件.4.C 解析:z =1+3i 1-i =(1+3i )(1+i )2=-1+2i ,故选C.5.B 解析:由题意可知m 天后剩下的线段的长度为(12)m ,则(12)m <1100,解得m ≥7,故选B.6.B 解析:由线面间的位置关系易知选B.7.A解析:由已知綈p :∃x 0∈(-1,1),f (x 0)=0为真命题.∵f (x )为增函数,∴f (-1)f (1)<0,1e-1<a <1+e ,a =0,1,2,3,故选A.8.B 解析:x =2020,x =2018,x =2016,…,x =0,x =-2,y =m 2+m =12,m =3,故选B.9.A 解析:设一条渐近线方程为y =kx ,则|3k |k 2+1=2,解得k 2=45,∴b 2a 2=45,c 2a 2=95,e =355.10.C解析:由已知得ω=2,x =φ是f (x )的一条对称轴,且使f (x )取得最值,则3φ=k π,φ=π3,f (x )=cos(2x +π3)=cos[2(x +5π12)-π2],g (x )=sin2x =cos(2x -π2),故选C .11.B解析:由已知得直线l 的方程为:y -e x 1-a =e x 1-a (x -x 1),y -x 2=12x 2(x -x 2),∴x 1-a =12x 2x 1-a (1-x 1)=x 22,消去e x 1-a整理得x 1+x 2=1.12.C解析:如图,EC =PE =PC =332,∴PA =PB =3,设△PAB 与△ABC 的中心分别为G ,H ,过G ,H 分别作面PAB 与面ABC 的垂线交于点O ,则O 是外接球的球心,连接OE ,则∠OEH =30°.∵EH =32,∴OE =1,R =OB =OE 2+BE 2=132,S =4πR 2=13π.二、填空题(本大题共4小题,每小题5分,共20分)13.314.415.-3016.713.3解析:作出可行域知z =2x -y 在点(3,3)处取得最大值3.14.4解析:设等差数列{a n }的公差为d ,则由已知可得a 1=9d ,∴a n =a 1+(n ﹣1)d =(n +8)d .∵a k 是a 1与a 2k 的等比中项,∴a k 2=a 1a 2k ,即(k +8)2d 2=9d •(2k +8)d ,化简得k 2﹣2k ﹣8=0,解得k =4(﹣2舍去).15-30解析:(1+2x -x )5表示5个因式(1+2x-x )的乘积,有2个因式都选-x ,其余的3个因式都选1,相乘可得含x 2的项,或者有3个因式选-x ,有1个因式选1x,1个因式选1,相乘可得含x 2的项,故x 2项的系数为C 25+(-C 35·C 12·2)=-30.(或将括号里面2项组合起来展开考虑)16.7解析:注意到l 1的倾斜角为30°,如图,设A 在l 2上的射影为M ,A 在l 1上的射影为N .∵AM =AF ,∴当A ,F ,N 三点共线时,d 1+d 2取得最小值,此时AN 与AM 夹角为60°,d 1=2d 2,∴N 在l 2上,FA :y =-3(x -1),N (-1,23),代入l 1解得b =7.三、解答题(本大题共6小题,共70分)17.解析:(1)由余弦定理得a 2+c 2-b 2=2ac cos B ,∴sin A sin B =2ac cos B c 2=2sin A cos B sin C ,∴sin2B =sin C ,2B =C 或2B =π-C ,由2B =π-C 得A =B ,不符合条件,∴C =2B .(5分)(2)由(1)及正弦定理得323=sin B sin C =sin B 2sin B cos B ,∴cos B =33=a 2+12-92a ·23,解得a =1或3(舍),∴S △ABC =12×1×23×63= 2.(12分)18.解析:(1)连接A 1C 交AC 1于点O ,连接OD ,则平面A 1BC ∩平面ADC 1=OD ,∵A 1B ∥平面ADC 1,∴A 1B ∥OD ,∵O 为A 1C 的中点,∴D 为BC 的中点,∴AD ⊥BC ,∵B 1D ⊥平面ABC ,∴AD ⊥B 1D ,∵BC ∩B 1D =D ,∴AD ⊥平面BCC 1B 1,∵AD ⊂平面ADC 1,∴平面ADC 1⊥平面BCC 1B 1.(6分)(2)建立如图所示空间直角坐标系D ­xyz ,设AB =2,则B (-1,0,0),A (0,3,0),B 1(0,0,3),C 1(2,0,3),∴BA →=(1,3,0),DA →=(0,3,0),DC 1→=(2,0,3),设平面ADC 1的法向量为n =(x ,y ,z )=0+3z =0,取x =-3得n =(-3,0,2),∴|cos<BA →,n >|=|-32×7|=2114,即直线AB 与平面ADC 1所成角的正弦值为2114.(12分)19.解析:(1)由y -=1661ii y=∑=60得16×(70+65+62+59+56+t )=60,解得t =48,∴621ii x=∑=32+42+52+62+72+82=199,n x -2=6×5.52=181.5,代入可得b ^=1910-1980199-181.5=-7017.5=-4,a ^=y --b ^x -=60-(-4)×5.5=82,∴所求的线性回归方程为y ^=-4x +82.(5分)(2)利用(1)中所求的线性回归方程y ^=-4x +82可得,当x 1=3时,y ^1=70;当x 2=4时,y ^2=66;当x 3=5时,y ^3=62;当x 4=6时,y ^4=58;当x 5=7时,y ^5=54;当x 6=8时,y ^6=50;与销售数据对比可知满足|y ^i -y i |≤1的共有4个“好数据”:(3,70)、(4,65)、(5,62)、(6,59),由题意知X 的可能取值为1,2,3,P (X =1)=C 22·C 14C 36=15,P (X =2)=C 12·C 24C 36=35,P (X =3)=C 02·C 34C 36=15.∴X 的分布列为X 123P153515数学期望EX =1×15+2×35+3×15=2.(12分)20.解析:(1)设M (x 1,y 1),N (x 2,y 2),由已知得c a =22,∴a 2=2b 2,椭圆C :x 2+2y 2=2b 2,代入直线l 方程整理得(m 2+2)y 2+2my +1-2b 2=0,∴y 1+y 2=-2m m 2+2=-252,y 1y 2=1-2b 2m 2+2=25(1-2b 2),x 1x 2=(my 1+1)(my 2+1)=25(2-b 2),∵OM ⊥ON ,∴x 1x 2+y 1y 2=0,解得b 2=1,∴椭圆C 的方程为x 22+y 2=1.(6分)(2)由(1)知Q (x 2,-y 2),k PM =y 1x 1-2,k PQ =-y 2x 2-2,∴k PM -k PQ =y 1x 1-2--y 2x 2-2=y 1(x 2-2)+y 2(x 1-2)(x 1-2)(x 2-2),∵y 1(x 2-2)+y 2(x 1-2)=y 1(my 2-1)+y 2(my 1-1)=2my 1y 2-(y 1+y 2)=0,∴k PM =k PQ ,∴P 、M 、Q 三点共线.(12分)21.解析:(1)f ′(x )=2ln x +2-a ,由f ′(x )=0得x =e a -22,当x >ea -22时,f ′(x )>0,当0<x <ea -22时,f ′(x )<0,∴f (x )在x =e a -22处取得最小值f (ea -22)=1-2e a -22<0,解得a >2-2ln2.∵e a2>ea -22,f (e a 2)=1>0,∴f (x )在(e a -22,+∞)上有1个零点;∵a >2-2ln2,∴14a <12<e a -22,f (14a )=14a (2ln 14a -a )+1,令14a =t ∈(0,12),则f (t )=t (2ln t -14t )+1,f ′(t )=2(ln t +1),∴f (t )≥f (1e )=34-2e>0,∴f (14a )>0,∴f (x )在(14a,e a -22)上有1个零点,综上,a 的取值范围是(2-2ln2,+∞).(6分)(分参数形结合可酌情给分)(2)由f (x )=0得2ln x +1x =a ,令g (x )=2ln x +1x,则x 1,x 2是y =g (x )与y =a 交点横坐标.g ′(x )=2x -1x 2=2x -1x 2,当0<x <12时,g ′(x )<0,g (x )在(0,12)上是减函数,在(12,+∞)上是增函数,∴g (x )在x =12处取得最小值,∴0<x 1<12<x 2,设h (x )=g (x )-g (14x )(x >12),∴h ′(x )=-(2x -1)2x 2<0,h (x )是减函数,∴h (x )<h (12)=0,∴g (x )<g (14x ),∵x 2>12,∴g (x 1)=g (x 2)<g (14x 2),∵x 1、14x 2∈(0,12),g (x )在(0,12)上递减,∴x 1>14x 2,即4x 1x 2>1.(12分)22.解析:(1)由ρ2+42ρcos(θ-π4)-8=0得ρ2+4ρcos θ+4ρsin θ-8=0,∴x 2+y 2+4x +4y -8=0,∴曲线C 的直角坐标方程为(x +2)2+(y +2)2=16.(4分)(2)将直线l 的参数方程代入C 方程整理得t 2+2t (sin α+cos α)-14=0,t 1+t 2=-2(sin α+cos α),t 1t 2=-14<0,∴||PA |-|PB ||=||t 1|-|t 2||=|t 1+t 2|=22|sin(α+π4)|,∵0≤α<π,∴π4≤α+π4<5π4,-22<sin(α+π4)≤1,∴||PA |-|PB ||的取值范围是[0,22].(10分)23.解析:(1)当x >4时,x +2+x -4≤2x ,恒成立,此时x >4;当x <-2时,-x -2-x +4≤2x ,解得x ≥12,此时无解;当-2≤x ≤4时,x +2-x +4≤2x ,解得x ≥3,此时3≤x ≤4,综上,不等式的解集是[3,+∞).(5分)(2)由f (x )≥k |x -1|得|x +2|+|x -4|≥k |x -1|,当x =1时,6≥0恒成立,此时k ∈R ,当x ≠1时,k ≤|x +2|+|x -4||x -1|=|x -1+3|+|x -1-3||x -1|=|1+3x -1|+|1-3x -1|,又|1+3x -1|+|1-3x -1|≥2,∴k ≤2,综上,k 的取值范围是(-∞,2].(10分)。

2020届四省名校高三第二次大联考数学(理)试题(PDF版,含答案解析)

2020届四省名校高三第二次大联考数学(理)试题(PDF版,含答案解析)

2020届四省名校高三第二次大联考理科数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

3.考试结束后,请将本试卷和答题卡一并交回。

满分150分,考试用时120分钟。

一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{})2ln(+==x y x A ,{}13<=x x B ,则=B A A.{}02<<-x x B.{}02<≤-x x C.{}12<<-x x D.{}12<≤-x x 2.对于平面内两个非零向量a 和b ,0:>⋅b a p ,a q :和b 的夹角为锐角,则p 是q 的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入x n ,的值分别为2,4,则输出v 的值为A.24B.25C.49D.504.已知等差数列{}n a 的前n 项和为n S ,且1032=+a a ,305=S ,则数列{}n a 的公差为A.1B.2C.3D.45.42)2(xx -展开式中含5x 的项的系数为A.8B.8-C.4D.4-6.正三棱柱(底面为正三角形的直棱柱)111C B A ABC -中,AB AA =1,M 为棱1CC 的中点,则异面直线C A 1与BM 所成的角为A.6π B.4πC.3π D.2π7.2019年成都世界警察与消防员运动会期间,需安排甲、乙、丙、丁四名志愿者去CB A ,,三个场馆参与服务工作,要求每个场馆至少一人,则甲乙被安排到同一个场馆的概率为A.121 B.81C.61D.418.已知函数)sin(31)cos(33)(θθ+-+=x x x f )2|(|πθ<是偶函数,则θ的值为A.3π B.3π-C.6π D.6π-9.在ABC ∆中,点D 在BC 边上,且DB CD 3=,点M 在AD 边上,AM AD 3=,若AC AB CM μλ+=,则=+μλA.32- B.32C.67 D.67-10.抛物线)0(:2>=a ax y C 的焦点F 是双曲线12222=-x y 的一个焦点,过F 且倾斜角为︒60的直线l 交C 于B A ,,则=||AB A.2334+ B.234+C.316D.1611.下列选项中,函数1sin 2)(2+-=x x x x f 的部分图象可能是A. B.C. D.12.设点)0,1(A ,)0,4(B ,动点P 满足||||2PB PA =,设点P 的轨迹为1C ,圆2C :4)3(3(22=-++y x ,1C 与2C 交于点N M ,,Q 为直线2OC 上一点(O 为坐标原点),则=⋅MQ MN A.4 B.32C.2 D.3二、填空题(本大题共4小题,每小题5分,共20分)13.设复数|43|1i ii z +-+=,则=z _______.14.在正项等比数列{}n a 中,1011010=a ,则=++++2019321lg lg lg lg a a a a _______.15.如图,三棱锥ABC P -中,平面⊥PAC 平面ABC ,BC SB ⊥,2==BC AB ,3==PC PA ,则三棱锥ABC P -的外接球的表面积为_______.16.已知函数⎪⎩⎪⎨⎧>+≤+--=1,21ln 1,272)(2x x x x x x f 若关于x 的方程kx x f =)(恰有4个不相等的实数根,则实数k 的取值范围是_______.三、解答题(共70分。

五岳联考2020届河南广东等省高三普通高等学校招生全国统一考试4月联考数学(理)试卷及答案

五岳联考2020届河南广东等省高三普通高等学校招生全国统一考试4月联考数学(理)试卷及答案

绝密★启用前 试卷类型:B五岳联考2020届河南广东等省高三普通高等学校招生全国统一考试4月联考数学(理)试卷★祝考试顺利★本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x x A ∈<--=,0322,则集合A 的真子集有( )A .5个 B. 6个 C. 7个 D. 8个 2.已知i 是虚数单位,则化简2020)11(ii -+的结果为( ) A.i B.i - C.1- D.13.若干年前,某教师刚退休的月退休金为400元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A .4500元 B. 5000元 C .5500元D .6000元4.将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A.72 B.73 C.71 D.143 5已知抛物线x y 42=的焦点为F,过点F 和抛物线上一点)32,3(M 的直线l 交抛物线于另一点N,则NM NF :等于( )A.2:1B.3:1C.4:1D.3:16.在所有棱长都相等的直三棱柱111C B A ABC -中,D,E 分别为棱AC CC ,1的中点,则直线AB 与平面DE B 1所成角的余弦值为( ) A.1030 B.2030 C.20130 D.1070 7已知点A (4,3),点B 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥06200y x y x y 所表示平面区域上的任意一点,则AB 的最小值为( ) A.5 B.554 C.5 D.552 8.给出下列说法①定义在[a,b]上的偶函数b x a x x f ++-=)4()(2的最大值为20;。

2020届安徽省高三数学联考试题(理)及答案

2020届安徽省高三数学联考试题(理)及答案

2020届安徽省高三数学联考试题(理)及答案一、单选题1.复数z 满足()1243i z i -=+(i 为虚数单位),则复数z 的模等于( )AB C .D .【答案】B【解析】根据复数模的性质和求解直接解得结果即可. 【详解】4312i z i +===- 故选:B 【点睛】本题考查复数模长的求解,涉及到复数模的性质的应用,属于基础题.2.已知全集为R ,集合{}2,1,0,1,2A =--,102x B xx -⎧⎫=<⎨⎬+⎩⎭,则()U A C B ⋂的元素个数为()A .1B .2C .3D .4【答案】C【解析】解分式不等式求得集合B ,根据交集和补集的定义求得集合()U A C B ⋂,进而得到元素个数. 【详解】{}10212x B x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭{2U C B x x ∴=≤-或}1x ≥(){}2,1,2U AC B ∴=-,有3个元素故选:C 【点睛】本题考查集合元素个数的求解,涉及到分式不等式的求解、交集和补集的混合运算,属于基础题.3.已知函数()f x 在区间(),a b 上可导,则“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的( )A .充分不必要条件B .必要不充分条件C .充要条件 D .既不充分也不必要条件【答案】A【解析】由开区间最小值点必为极小值点可知极小值点导数值为0,充分性成立;利用()3f x x =可验证出必要性不成立,由此得到结论. 【详解】(),a b 为开区间 ∴最小值点一定是极小值点 ∴极小值点处的导数值为0∴充分性成立当()3f x x =,00x =时,()00f x '=,结合幂函数图象知()f x 无最小值,必要性不成立∴“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的充分不必要条件故选:A【点睛】本题考查充分条件、必要条件的判断,涉及到导数极值与最值的相关知识;关键是能够明确极值点处的导数值为0,但导数值为0的点未必是极值点.4.2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源于中国古代数学家祖冲之的圆周率。

(全国I卷)2020届高三数学五省优创名校联考试题 理

(全国I卷)2020届高三数学五省优创名校联考试题 理

2020~2020年度高三全国Ⅰ卷五省优创名校联考数学(理科)第Ⅰ卷一、选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合M={x|3x2-13x-10<0}和N={x|x=2k,k∈Z}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有A.1个B.2个C.3个D.无穷个2.34i34i 12i12i +--= -+A.-4B.4C.-4iD.4i3.如图1为某省2020年1~4月快递业务量统计图,图2是该省2020年1~4月快递业务收入统计图,下列对统计图理解错误的是A.2020年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2020年1~4月的业务量同比增长率均超过50%,在3月最高C.从两图来看,2020年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2020年快递业务收入同比增长率逐月增长4.设x,y满足约束条件60330x yxx y-+⎧⎪⎨⎪+-⎩≥≤≥,则11x yzx++=+的取值范围是A.(-∞,-8]∪[1,+∞)B.(-∞,-10]∪[-1,+∞)C.[-8,1]D.[-10,-1]5.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为A.4643π-B.64-4πC.64-6πD.64-8π6.有一程序框图如图所示,要求运行后输出的值为大于1000的最小数值,则在空白的判断框内可以填入的是A.i<6 B.i<7 C.i<8 D.i<97.在直角坐标系xOy中,F是椭圆C:22221x ya b+=(a>b>0)的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ 于点M,若M是线段PF的中点,则椭圆C的离心率为A.2 2B.1 2C.1 3D.1 48.已知f(x)为定义在R上的奇函数,g(x)=f(x)-x,且当x∈(-∞,0]时,g(x)单调递增,则不等式f(2x-1)-f(x+2)≥x-3的解集为A.(3,+∞)B.[3,+∞)C.(-∞,3]D.(-∞,3)9.函数f(x)=ln|x|+x2-x的图象大致为A.B.C.D.10.用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为A .532 B .516C .1132D .111611.已知函数f (x )=3sin (ωx+φ)(ω>0,0<φ<π),()03f π-=,对任意x ∈R 恒有()|()|3f x f π≤,且在区间(15π,5π)上有且只有一个x 1使f (x 1)=3,则ω的最大值为A .574 B .1114C .1054D .117412.设函数f (x )在定义域(0,+∞)上是单调函数,且(0,)x ∀∈+∞,f[f (x )-e x+x]=e .若不等式f (x )+f′(x )≥ax 对x ∈(0,+∞)恒成立,则a 的取值范围是 A .(-∞,e -2] B .(-∞,e -1] C .(-∞,2e -3] D .(-∞,2e -1]第Ⅱ卷二、填空题:本大题共4小题.将答案填在答题卡中的横线上. 13.已知单位向量a ,b 的夹角为60°,则|2|________|3|+=-a b a b .14.已知正三棱柱ABC —A 1B 1C 1的高为6,AB =4,点D 为棱BB 1的中点,则四棱锥C —A 1ABD的表面积是________.15.在(x2-2x-3)4的展开式中,含x6的项的系数是________.16.已知双曲线C:22221 x yab-=(a>0,b>0),圆M:222()4bx a y-+=.若双曲线C的一条渐近线与圆M相切,则当22224149aaa b-+取得最大值时,C的实轴长为________.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题.17.设数列{a n}的前n项和为S n,a1=3,且S n=na n+1-n2-n.(1)求{a n}的通项公式;(2)若数列{b n}满足22121(1)nnnbn a++=-,求{b n}的前n项和T n.18.△ABC的内角A,B,C所对的边分别为a,b,c.已知22()23sina cb ab C+=+.(1)求B的大小;(2)若b=8,a>c,且△ABC的面积为33,求a.19.如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,且CE CSλ=u u u r u u u r.(1)若23λ=,证明:BE⊥CD;(2)若13λ=,求直线BE与平面SBD所成角的正弦值.20.在直角坐标系xOy中,动圆P与圆Q:(x-2)2+y2=1外切,且圆P与直线x=-1相切,记动圆圆心P的轨迹为曲线C.(1)求曲线C的轨迹方程;(2)设过定点S(-2,0)的动直线l与曲线C交于A,B两点,试问:在曲线C上是否存在点M(与A,B两点相异),当直线MA,MB的斜率存在时,直线MA,MB的斜率之和为定值?若存在,求出点M的坐标;若不存在,请说明理由.21.已知函数f(x)=e x+ax2,g(x)=x+blnx.若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(1,g(1))处的切线相交于点(0,1).(1)求a,b的值;(2)求函数g(x)的最小值;(3)证明:当x>0时,f(x)+xg(x)≥(e-1)x+1.(二)选考题:请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程]已知直线l的参数方程为,2x my⎧=⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,椭圆C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=48,其左焦点F在直线l上.(1)若直线l与椭圆C交于A,B两点,求|FA|+|FB|的值;(2)求椭圆C的内接矩形面积的最大值.23.[选修4—5:不等式选讲]已知函数f(x)=|x+2|-|ax-2|.(1)当a=2时,求不等式f(x)≥2x+1的解集;(2)若不等式f(x)>x-2对x∈(0,2)恒成立,求a的取值范围.2020~2020年度高三全国Ⅰ卷五省优创名校联考数学参考答案(理科)1.C 2.D 3.D 4.A 5.B 6.B 7.C 8.B 9.C 10.B 11.C 12.D 13.114.36 15.121617.解:(1)由条件知S n =na n +1-n 2-n ,① 当n =1时,a 2-a 1=2;当n≥2时,S n -1=(n -1)a n -(n -1)2-(n -1),② ①-②得a n =na n +1-(n -1)a n -2n , 整理得a n +1-a n =2.综上可知,数列{a n }是首项为3、公差为2的等差数列,从而得a n =2n +1. (2)由(1)得222221111[](22)4(1)n n b n n n n +==-++, 所以22222221111111111[(1)()()][1]4223(1)4(1)44(1)n T n n n n =-+-++-=-=-+++L .18.解:(1)由22()sin a c b C +=+得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即2(cos 1)sin ac B C +=,所以有sin (cos 1)sin C B B C +=,因为C ∈(0,π),所以sinC >0,所以cos 1B B +=,cos 2sin()16B B B π-=-=,所以1sin()62B π-=.又0<B <π,所以666B ππ5π-<-<,所以66B ππ-=,即3B π=.(2)因为11sin 222ac B ac =⋅=ac =12. 又b 2=a 2+c 2-2accosB =(a +c )2-3ac =(a +c )2-36=64, 所以a +c =10,把c =10-a 代入到ac =12(a >c )中,得5a =. 19.(1)证明:因为23λ=,所以23CE CS =,在线段CD 上取一点F 使23CF CD =,连接EF ,BF ,则EF ∥SD 且DF =1. 因为AB =1,AB ∥CD ,∠ADC =90°, 所以四边形ABFD 为矩形,所以CD ⊥BF . 又SA ⊥平面ABCD ,∠ADC =90°, 所以SA ⊥CD ,AD ⊥CD .因为AD∩SA=A ,所以CD ⊥平面SAD . 所以CD ⊥SD ,从而CD ⊥EF .因为BF∩EF=F ,所以CD ⊥平面BEF . 又BE ⊂平面BEF ,所以CD ⊥BE .(2)解:以A 为原点,AD u u u r的正方向为x 轴的正方向,建立空间直角坐标系A —xyz ,则A (0,0,0),B (0,1,0),D (2,0,0),S (0,0,2),C (2,3,0),所以142(,1,)333BE BC CE BC CS =+=+=u u u r u u u r u u u r u u u r u u u r ,(0,1,2)SB =-u u r ,(2,0,2)SD =-u u u r .设n =(x ,y ,z )为平面SBD 的法向量,则0SB SD ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u rn n , 所以20y z x z -=⎧⎨-=⎩,令z =1,得n =(1,2,1).设直线BE 与平面SBD 所成的角为θ,则||2174sin |cos ,|||||BE BE BE θ⋅===u u u ru u u r u u u r n n n .20.解:(1)设P (x ,y ),圆P 的半径为r ,因为动圆P 与圆Q :(x -2)2+y 2=1外切,1r =+,①又动圆P 与直线x =-1相切,所以r =x +1,②由①②消去r 得y 2=8x ,所以曲线C 的轨迹方程为y 2=8x .(2)假设存在曲线C 上的点M 满足题设条件,不妨设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),则2008y x =,2118y x =,2228y x =, 1010108MA y y k x x y y -==-+,2020208MB y y k x x y y -==-+, 所以120210*********(2)88()MA MB y y y k k y y y y y y y y y y +++=+=+++++,③ 显然动直线l 的斜率存在且非零,设l :x =ty -2,联立方程组282y x x ty ⎧=⎨=-⎩,消去x 得y 2-8ty +16=0,由Δ>0得t >1或t <-1,所以y 1+y 2=8t ,y 1y 2=16,且y 1≠y 2, 代入③式得02008(82)816MA MB t y k k y ty ++=++,令02008(82)816t y m y ty +=++(m 为常数), 整理得2000(864)(1616)0my t my y m -+-+=,④因为④式对任意t ∈(-∞,-1)∪(1,+∞)恒成立,所以0200864016160my my y m -=⎧⎪⎨-+=⎪⎩, 所以024m y =⎧⎨=⎩或024m y =-⎧⎨=-⎩,即M (2,4)或M (2,-4), 即存在曲线C 上的点M (2,4)或M (2,-4)满足题意.21.(1)解:因为f′(x )=e x+2ax ,所以f′(1)=e +2a ,切点为(1,e +a ),所以切线方程为y =(e +2a )(x -1)+(e +a ),因为该切线过点(0,1),所以a=-1.又()1bg xx'=+,g′(1)=1+b,切点为(1,1),所以切线方程为y=(1+b)(x-1)+1,同理可得b=-1.(2)解:由(1)知,g(x)=x-lnx,11 ()1xg xx x-'=-=,所以当0<x<1时,g′(x)<0;当x>1时,g′(x)>0,所以当x=1时,g(x)取极小值,同时也是最小值,即g(x)min=g(1)=1.(3)证明:由(1)知,曲线y=f(x)在点(1,f(1))处的切线方程为y=(e-2)x +1.下面证明:当x>0时,f(x)≥(e-2)x+1.设h(x)=f(x)-(e-2)x-1,则h′(x)=e x-2x-(e-2),再设k(x)=h′(x),则k′(x)=e x-2,所以h′(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增.又因为h′(0)=3-e,h′(1)=0,0<<ln2<1,所以h′(ln2)<0,所以存在x0∈(0,1),使得h′(x0)=0,所以,当x∈(0,x0)∪(1,+∞)时,h′(x)>0;当x∈(x0,1)时,h′(x)<0.故h(x)在(0,x0)上单调递增,在(x0,1)上单调递减,在(1,+∞)上单调递增.又因为h(0)=h(1)=0,所以h(x)=f(x)-(e-2)x-1≥0,当且仅当x=1时取等号,所以e x-(e-2)x-1≥x2.由于x>0,所以e(e2)1x xxx---≥.又由(2)知,x-lnx≥1,当且仅当x=1时取等号,所以,e(e2)11lnx xx xx---+≥≥,所以e x-(e-2)x-1≥x(1+lnx),即e x-x2+x(x-lnx)≥(e-1)x+1,即f(x)+xg(x)≥(e-1)x+1.22.解:(1)将cos,sinxyρθρθ=⎧⎨=⎩代入ρ2cos2θ+3ρ2sin2θ=48,得x2+3y2=48,即221 4816x y+=,因为c 2=48-16=32,所以F的坐标为(-,0), 又因为F 在直线l上,所以m =-把直线l的参数方程22x y t ⎧=-⎪⎪⎨⎪=⎪⎩代入x 2+3y 2=48,化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8,所以12||||||FA FB t t +=-=== (2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(θ,4sinθ)(02θπ<<),所以内接矩形的面积8sin 2S θθθ=⋅=, 当4θπ=时,面积S取得最大值 23.解:(1)当a =2时,4,2()|2||22|3,214,1x x f x x x x x x x --⎧⎪=+--=-<<⎨⎪-+⎩≤≥,当x≤-2时,由x -4≥2x+1,解得x≤-5;当-2<x <1时,由3x≥2x+1,解得x ∈∅;当x≥1时,由-x +4≥2x+1,解得x =1.综上可得,原不等式的解集为{x|x≤-5或x =1}.(2)因为x ∈(0,2),所以f (x )>x -2等价于|ax -2|<4, 即等价于26a x x-<<, 所以由题设得26a x x-<<在x ∈(0,2)上恒成立, 又由x ∈(0,2),可知21x -<-,63x >, 所以-1≤a≤3,即a 的取值范围为[-1,3].。

五岳联考·河南广东等省2020届高三普通高等学校招生全国统一考试4月联考数学(理)【带答案】

五岳联考·河南广东等省2020届高三普通高等学校招生全国统一考试4月联考数学(理)【带答案】

绝密★启用前 试卷类型:B2020年普通高等学校招生全国统一考试·联考理科数学本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x x A ∈<--=,0322,则集合A 的真子集有( ) A .5个 B. 6个 C. 7个 D. 8个 2.已知i 是虚数单位,则化简2020)11(ii -+的结果为( ) A.i B.i - C.1- D.13.若干年前,某教师刚退休的月退休金为400元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A .4500元 B. 5000元 C .5500元 D .6000元 4.将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A.72 B.73 C.71 D.143 5已知抛物线x y 42=的焦点为F ,过点F 和抛物线上一点)32,3(M 的直线l 交抛物线于另一点N ,则NM NF :等于( )A.2:1B.3:1C.4:1D.3:16.在所有棱长都相等的直三棱柱111C B A ABC -中,D ,E 分别为棱AC CC ,1的中点,则直线AB 与平面DE B 1所成角的余弦值为( )A.1030 B.2030 C.20130 D.10707已知点A (4,3),点B 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥06200y x y x y 所表示平面区域上的任意一点,则AB 的最小值为( ) A.5 B.554 C.5 D.552 8.给出下列说法①定义在[a ,b]上的偶函数b x a x x f ++-=)4()(2的最大值为20; ②“4π=x ”是“1tan =x ”的充分不必要条件;③命题“21),,0(000≥++∞∈∃x x x ”的否定形式是“21),,0(<++∞∈∀xx x ” 其中正确说法的个数为( )A.0B.1C.2D.3 9.已知5.03422log 2log ,,,03log m c m b ma m ===>,则cb a ,,间的大小关系为A.c b a <<B.c a b <<C.b a c <<D.a c b <<10.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤=15斤,1斤=16两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( )A .9两 B.127266两 C.63266两 D.127250两 11在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若3cos cos c A b B a =-,则Bb A a Ba cos cos cos +的最大值为( ) A.2 B.22 C.23 D.332 12.已知几)(x f 为奇函数,)(x g 为偶函数,且)13(log )()(3+=+xx g x f ,不等式0)()(3≥--t x f x g 对R x ∈恒成立,则t 的最大值为( )A.1B.2log 233-C.2D.12log 233- 二、填空题:本题共4小题,每小题5分,共20分13已知向量a =(2,5-),b =(1,52),则b 在a 方向上的投影等于 . 14在△ABC 中,∠B=32π,A 、B 是双曲线E 的左、右焦点,点C 在E 上,且BC=21AB ,则E 的离心率为 .5已知函数)0,0)(cos()(πϕωϕω≤≤>+=x x f 是奇函数,且在]4,6[ππ-上单调减,则ω的最大值是 .16已知三棱锥A-BCD 中,平面ABD ⊥平面BCD ,BC ⊥CD ,BC=CD=2,AB=AD=6,则三棱锥A-BCD 的外接球的体积为 .三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第次年题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答 (一)必考题:共60分 17.(12分)已知数列{a n }的前n 项和为S n ,且112n n n S na a =+-. (1)求数列{a n }的通项公式;(2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为T n ,证明: 32n T <.18.(12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABEF 为正方形,AF ⊥DF ,AF=22FD ,∠DFE=∠CEF=45. (1)证明DC ∥FE ;(2)求二面角D-BE-C 的平面角的余弦值.19.(12分)已知点P 在圆O :x 2+y 2=9上,点P 在x 轴上的投影为Q ,动点M 满足432PQ MQ u u u r u u u u r.(1)求动点M 的轨迹E 的方程;(2)设G (-3,0),H (3,0),过点F (1,0)的动直线l 与曲线E 交于A 、B 两点,问直线AG 与直线BH 的斜率之比是否为定值?若为定值,求出该定值;若不为定值,试说明理由.20.(12分)某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A 、B 、C .经过引种实验发现,引种树苗A 的自然成活率为0.7,引种树苗B 、C 的自然成活率均为p (0.6≤p≤0.8)(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及其数学期望; (2)将(1)中的数学期望取得最大值时p 的值作为B 种树苗自然成活的概率,该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗有75%的树苗可经过人栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活. ①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元该农户为了获利期望不低于10万元,问至少要引种种树苗多少棵?21.(12分)已知函数f (x )=(a-1)x+xlnx 的图象在点A (e 2,f (e 2))(e 为自然对数的底数)处的切线斜率为4(1)求实数a 的值;(2)若m ∈Z ,且m (x-1)<f (x )+1对任意x>1恒成立,求m 的最大值.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分. 22.[选修4-4:坐标系与参数方程](10分)以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为=2-22ππρθ⎡⎤∈⎢⎥⎣⎦(,),直线l 的参数方程为2cos 4sin x t y ts αα=-+⎧⎨=-+⎩(t 为参数). (1)点A 在曲线C 上,且曲线C 在点A 处的切线与直线:x+2+1=0垂直,求点A 的直角坐标; (2)设直线l 与曲线C 有且只有一个公共点,求直线l 的斜率的取值范围.23.[选修4-5:不等式选讲](10分) 设函数f (x )=|x-1|+2|x+1|,x ∈R (1)求不等式f (x )<5的解集;(2)若关于x 的不等式122)(-<+t x f 在实数范围内解集为空集,求实数t 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2020届高中毕业班第一次考试
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合2
{30},{17}M x x x N x x =-<=≤≤,则M N =I
A.{13}x x ≤<
B.{13}x x <<
C.{07}x x <<
D.{07}x x <≤ 2.设复数213i
z i
-=
+,则z = A.
13 B.23 C.1
2
D.22
3.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如右图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、万位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为46可用算筹表示为
4.为了贯彻落实党中央精准扶贫的决策,某市将其低收入家庭的基本情况经过统计绘制成下图,其中各项统计不重复,若该市老年低收入家庭共有900户,则下列说法错误..
的是
A.该市共有15000户低收入家庭
B.在该市从业人员中,低收入家庭有1800户
C.在该市失无业人员中,低收入家庭有4350户
D.在该市大于18岁在读学生中,低收入家庭有800户
5.运行如图所示的程序框图,若输出的i 的值为99,则判断框中可以填
A.1S ≥
B.S>2
C.S>lg99
D. lg98S ≥
6.已知幕函数()a
f x x =的图象过点(3,5),且3
11
(),,log 4
a
a
a b a c e
==
=,则a ,b ,c 的大小关系为
A.c<a<b
B.a<c<b
C.a<b<c
D.c<b<a 7.已知非零向位a ,b 满足a b λ=,若a ,b 夹角的余弦值为19
30
,且(2)(3)a b a b -⊥+,则实数λ的值为
A.49-
B.23
C.32或49-
D.32
8.记单调递增的等比数列{a n }的前n 项和为S n ,若a 2+a 4=10,a 2a 3a 4=64,则 A.S n +1-S n =2n +
1 B.a n =2n C.S n =2n -1 D.S n =2n -
1-1 9.
函数2sin ()6
x
f x =的图象大致为
10.设抛物线C :y 2=2px(p>0)的焦点为F ,抛物线C 与圆C':x 2+(y
)2=3交于M ,N 两点.
若MN =MNF 的面积为
A.
8 B.3
8
C.8
D.4
11.关于函数()cos cos 2f x x x =+有下列三个结论:①π是f(x)的一个周期;②f(x)在
35[
,]44
ππ
上单调递增;③f(x)的值域为[-2,2]。

则上述结论中,正确的个数为 A.0 B.1 C.2 D.3
12.已知四棱锥S -ABCD 的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的图过点E.若SA
=3,则△SED 的面积的最小值为 A.9 B.7 C.
92 D.72
二、填空题:本题共4小题,每小题5分,共20分。

13.若变量x ,y 满足约束条件212420y x x y y ≤+⎧⎪
+≤⎨⎪+≥⎩
,则z =x -2y 的最大值为
14.函数2()x
f x x e
-=⋅的极大值为
15.已知双曲线22
22:1(0,0)x y C a b a b
-=>>,直线l :x =4a 与双曲线C 的两条渐近线分别
交于A ,B 两点,若△OAB(点O 为坐标原点)的面积为32,且双曲线C 的焦距为双曲线C 的离心率为
16.记数列{a n }的前n 项和为S n ,已知21(1)n n n S a n a -+=+,且a 2=5。

若2n
n
S m >,则实数m 的取值范围为
三、解答题:共70分。

解答应写出文字说明,证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分. 17.(12分)
△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,已知(a -b)2=c 2-ab 。

(Ⅰ)求角C ; (Ⅱ)若4cos()sin 02
c A b C π
++=,a =1,求△ABC 的面积。

18.(12分)
如图所示,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,点D ,E 分别在线段AA 1,CC 1上,且AD =
1
3
AA 1,DE//AC ,F 是线段AB 的中点。

(Ⅰ)求证:EF//平面B 1C 1D ;
(Ⅱ)若AB ⊥AC ,AB =AC ,AA 1=3AB ,求直线BC 与平面B 1DE 所成角的正弦值。

19.(12分)
已知椭圆C :2
214
x y +=,不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点。

(Ⅰ)若线段MN 的中点坐标为1(1,)2
,求直线l 的方程;
(Ⅱ)若直线l 过点(4,0),点P(x 0,0)满足k PM +k PN =0(k PM ,k PN 分别为直线PM ,PN 的斜
率),求x 0的值。

20.(12分)
已知函数2
1
()(ln )2
f x mx x =+。

(Ⅰ)若m =1,求曲线y =f(x)在(1,f(1))处的切线方程; (Ⅱ)当m ≤1时,要使f(x)>xlnx 恒成立,求实数m 的取值范围。

21.(12分)
某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度。

在每一轮游戏中,主持人给出A ,B ,C ,D 四种食物,要求小孩根据喜爱程度对其排序,然后由家长猜测小孩的排序结果,设小孩对四种食物排出的序号依次为x A x B x C x D ,家长猜测的序号依次为y A y B y C y D ,其中x A x B x C x D ,y A y B y C y D 都是1,2,3,4四个数字的一种排列。

定义X =(x A -y A )2+( x B -y B )2+(x C -y C )2+(x D -y D )2,用X 来衡量家长对小孩饮食习惯的了解程度。

(Ⅰ)若参与游戏的家长对小孩的饮食习惯完全不了解。

(i )求他们在一轮游戏中,对四种食物排出的序号完全不同的概率; (ii )求X 的分布列(简要说明方法,不用写出详细计算过程)。

(Ⅱ)若有一组小孩和家长进行了三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩的饮食习惯是否了解,说明理由。

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为126126x m m
y m m ⎧
=+⎪⎪⎨⎪=-
⎪⎩
(m 为参数),以坐标原点为极点,
x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()13
π
ρθ+=。

(Ⅰ)求曲线C 的普通方程以及直线l 的直角坐标方程; (Ⅱ)已知点M(2,0),若直线l 与曲线C 交于P ,Q 两点,求
11
MP MQ
+的值。

23.[选修4-5:不等式选讲](10分) 已知x ,y ,z 是正数。

(Ⅰ)若xy<1,证明:4x z z y xyz ++>g ;
(Ⅱ)若1
3
xyz x y z =++,求2xy •2yz •2xz 的最小值。

相关文档
最新文档