八年级数学上册第一章勾股定理测试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上北师大版第一章勾股定理测试题

一、选择题(每小题3分,共30分)

1. 下列各组中,不能构成直角三角形的是 ( ).

(A )9,12,15 (B )15,36,39 (C )16,30,32 (D )9,40,41

2. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).

(A )6 (B )8 (C )10 (D )12

3. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的

面积为( ).

(A )9 (B )3 (C )

49 (D )2

9 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).

(A )11 (B )10 (C )9 (D )8 5. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(2

2

=-+,则此三角形是( ). (A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形

6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).

(A )6 (B ) (C )

1320 (D )13

60 7. 高为3,底边长为8的等腰三角形腰长为 ( ).

(A )3 (B )4 (C )5 (D )6 8.△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长是

(A )42 (B )32 (C )37或33 (D )42或32

9. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个

大正方形(如图4所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分

别是a 、b ,那么2

)(b a + 的值为 ( ).

(A )49 (B )25 (C )13 (D )1

10.如图5,长方体的长为15,宽为10,高为20点B 离点C 的距离为5,一只蚂蚁如

果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( ) D (A )25 (B )25 (C )5510+ (D )35

二、填空题(每小题3分,共21分) B C 11. 写出两组直角三角形的三边长 .(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A 的面积为 . A

(2)斜边x= . 图5 E

13. 如图7,已知在Rt ABC

△中,Rt

ACB

∠=∠,4

AB=,分别以AC,BC

为直径作半圆,面积分别记为

1

S,

2

S,则

1

S+

2

S的值等于.

14. 四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中

有个直角三角形.

15. 如图8,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为.

16.如图9,矩形纸片ABCD,AB=3,AD=5,折叠纸片,使点A落在BC边上的E处,折痕为PQ,当点E

在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E 在BC边上可移动的最大距离为.

17. 在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .

三、简答题(50分)

18.(5分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD的面积.

19.(5分)如图10,方格纸上每个小正方形的面积为1个单位.

(1)在方格纸上,以线段AB为边画正方形并计算所画正方形的面积,解释你的计算方法.

(2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?

图9

20.(5分)如图11,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m 的半圆,其边缘AB=CD=20m ,点E 在CD 上,CE=2m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)

21.(5分)如图13(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13(2)所示.已知

展开图中每个正方形的边长为1.

(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条. (2)试比较立体图中∠ABC 与平面展开图中/

/

/

C B A 的大小关系.

22.(5分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?

(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?

,8.现在要将绿地扩充成等腰三角

23.(8分)有一块直角三角形的绿地,量得两直角边长分别为6m m

形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.

24.△ABC中,AB=AC,∠BAC=90°,D为BC中点,DE⊥DF,若BE=12,CF=5,求EF的长.(8分)_

25.如图,一辆卡车装满货物后,能否通过如图所示的工厂厂门(上方为半圆)已知卡车高为3.0米,宽为1.6米,说明你的理由.(8分)

相关文档
最新文档