数值分析简明教程讲义
数值分析学习课件
数值分析学习课件目录1. 内容概要 (2)1.1 数值分析的重要性 (2)1.2 课件内容概述 (3)2. 基础知识准备 (4)2.1 数学知识要点 (6)2.2 计算机基础 (7)2.3 编程基础 (8)3. 数值计算的基本原理 (10)3.1 误差理论 (11)3.2 近似计算 (13)3.3 算法稳定性与收敛性 (15)4. 数值计算方法与技巧 (16)4.1 插值与逼近 (17)4.2 微分与积分计算 (19)4.3 线性代数方程求解 (19)4.4 优化计算方法 (21)5. 数值分析的应用实例 (22)5.1 数据拟合与预测分析 (23)5.2 微分方程数值解法应用 (24)5.3 线性规划优化问题应用 (26)5.4 其他领域的应用实例 (27)6. 实践操作指导 (28)6.1 编程实践环境搭建 (30)6.2 数值计算软件使用介绍 (31)6.3 编程实践案例分析 (32)7. 课程总结与展望 (33)7.1 课程重点内容回顾 (34)7.2 数值分析发展趋势 (35)7.3 学习建议与展望 (37)1. 内容概要数值分析是一个研究数值算法的学科,旨在寻找有效的方法来求解大量的数学问题,特别是那些无法得到精确解或者求解起来过于繁杂的问题。
它在物理学、工程学、经济学、生物技术以及许多其他科学领域中都是至关重要的。
本课程将涵盖数值分析的核心概念和方法,重点是数值线性代数、数值积分、数值微分方程以及数值优化等经典主题。
学生将理解这些问题的数学背景,掌握相关的数值算法,并能够运用编程实现这些算法。
学生还将学习误差分析、收敛性理论以及如何选择和实现适合特定问题的数值方法。
在整个课程中,学生将通过实际问题的解决,如物理模型、金融模型、生物数据的分析和处理等,来应用所学的数值分析知识和技能。
通过本课程的学习,学生不仅能够加深对数值方法的理解,还能增强解决实际问题的能力。
1.1 数值分析的重要性数值分析是利用计算机解决数学问题的重要工具,在许多领域,例如物理、工程、金融、生物等,现实世界的问题常常难以用精确的解析解表达出来。
数值分析第一讲
实际上由于x*不知道,用上式无法确定εr ,常用x代x*作分 母,此时:
r
| x|
13
结束
2 量级,当 ε 较小时,可以忽略 可见此时产生的影响是 r r
不计,以后我们就用
|x|
表示相对误差限.
例 5 在刚才测量的例子中,若测得跑道长为 100±0.1m ,课桌长为120±1cm ,则 1 0.1 ( 2) (1) 0.83% r 0.1% r 120 100 显然后者比前者相对误差大. 1.2.3 有效数字 定义 1.3 如果近似值 x 的误差限 ε 是它某一数位的半个 单位,我们就说 x 准确到该位,从这一位起直到前面第一个 非零数字为止的所有数字称x的有效数字. 如: x=±0.a1a2an×10m ,其中 a1 , a2 , , an 是 0 ~ 9 之 中的整数,且a1≠0,如e=|x-x*|≤ε=0.5×10m-l,1≤ l≤n,则称 x有 l 位有效数字. 14 结束
可见此法收敛速度很快,只算三次得到8位精确数字. 迭代法应用时要考虑是否收敛、收敛条件及收敛速度等 问题,今后课程将进一步讨论. 9 结束
§1.2
1.2.1
差.
误 差
误差的来源
在运用数学方法解决实际问题的过程中,每一步都可能带来误
1 、模型误差 在建立数学模型时,往往要忽视很多次要因素,把 模型“简单化”,”理想化”,这时模型就与真实背景有了差距,即带 入了误差. 2、测量误差 数学模型中的已知参数,多数是通过测量得到.而测 量过程受工具、方法、观察者的主观因素、不可预料的随机干扰等影响 必然带入误差. 3、截断误差 数学模型常难于直接求解,往往要近似替代,简化为 易于求解的问题,这种简化带入误差称为方法误差或截断误差. 4、舍入误差 计算机只能处理有限数位的小数运算,初始参数或中 间结果都必须进行四舍五入运算,这必然产生舍入误差.
数值分析第一章PPT
1.1.2 计算数学与科学计算 现代科学的三个组成部分: 科学理论, 科学实验, 科学计算 科学计算 的核心内容是以现代化的计算机及数学软件 (Matlab, Mathematica, Maple, MathCAD etc. )为工具,以数学 模型为基础进行模拟研究。
一些边缘学科的相继出现:
计算数学,计算物理学,计算力学,计算化学,计算生物学, 计算地质学,计算经济学,等等
取 0 e
1
x2
dx S4 ,
S4
R4
/* Remainder */
1 1 1 1 由留下部分 称为截断误差 /* Truncation Error */ 4! 9 5! 11 /* included terms */ 1 1 这里 R4 引起.005 0 由截去部分 4! 9 /* excluded terms */ 1 1 1 S4 1 1 0 .333 0 .1 0 .024 0 .743 引起 3 10 42 | 舍入误差 /* Roundoff Error */ | 0.0005 2 0.001
数值分析
第1章
数值分析与科学计算引论
§1.1 数值分析的对象、作用与特点
1.1.1 什么是数值分析 数值分析是计算数学的主要部分,计算数学是数学 科学的一个分支,它研究用计算机求解各种数学问题的 数值计算方法及其理论与软件实现.这门课程又称为(数 值)计算方法、科学与工程计算等。
•
在电子计算机成为数值计算的主要工具的今天, 需要研究适合计算机使用的数值计算方法。使用计 算机解决科学计算问题时大致要经历如下几个过程:
造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
《数值分析简明教程》讲义
例2:取节点 , , 对函数 建立线性插值公式。
3、一般情形
现在考虑一般的插值问题:设函数在区间[a,b]上n+1个互异节点 上的函数值分别为 ,求n次插值多项式 ,满足条件
, j=0,1,…,n
令
——拉格朗日插值公式。
其中 为以 为节点的n次插值基函数,其公式为:
则称 为近似数x的相对误差限。
三、有效数字
1、有效数字
如果近似值 的误差限是某一位的半个单位,该位到 的第一位非零数字共有 位,则我们称 有 位有效数字。
例如, 取 时,
所以, 作为 的近似值时,就有3位有效数字。
2、误差限与有效数字的关系
定理1 设有一数x,其近似值
若 具有 位有效数字,则其相对误差限为
可表示为下列点斜式:
令
则
——线性插值公式
其中:
例1:已知 , ,求 。(10.714)
例2:取节点 , 对函数 建立线性插值公式。
2、抛物插值
问题:求作二次式 ,使满足条件:
几何解释就是通过三点 , , 的抛物线,因而称为抛物插值。
根据插值基函数所满足的条件,可得抛物插值的基函数为:
最终得: ——抛物插值公式。
运算过程中舍入误差不增长的计算公式——数值稳定的,否则为不稳定的。
2、要避免两个相近数相减。
3、要防止大数“吃掉”小数。(数量级相差很大的数,措施:调整运算次序。)
4、注意简化计算步骤。
第2章插值方法
在生产实践和科学研究所遇到的大量函数中,相当一部分是通过测量或实验得到的,并不知道它的表达式,只能通过观察、测量或实验得到函数在区间[a,b]上一些离散点上的函数值、导数值等。还有些函数,虽然有明确的解析表达式,但却过于复杂而不便于进行理论分析和数值计算,同样希望构造一个既能反映函数的特性又便于计算的简单函数,近似代替原来的函数。插值法就是寻求近似函数的方法之一。
《数值分析》完整版讲义
2.1.3 多项式插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 基函数插值法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 为什么要插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 什么是插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.2 数值分析的研究内容 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 学习建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
i
· ii ·
目录
2.2 Lagrange 插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Lagrange 基函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Lagrange 插值多项式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 插值余项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4 Lagrange 基函数性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
数值分析1.1讲义.
方程求根问题
在科学计算中常要遇到求解各种方程, 例如:
高次代数方程
超越方程
x 5- 3 x + 7 = 0
x e cos 0 3
x
高次线性方程和超越方程看似简 单,但难于求其精确解。对于高次 代数方程,由代数基本定理知多项 式根的数目和方程的阶相同,但对 超越方程就复杂的多,如果有解, 其解可能是一个或几个,也可能是 无穷多个。
用计算机解决科学计算问题通常经历以 下过程
应 用 数 学 计 算 数 学
实际问题
数值计算方法
程序设计
数学模型
上机计算结果
2.数值分析研究的内容 — 函数的数值逼近(插值与拟合)
— 数值积分与数值微分
— 非线性方程数值解 — 数值线性代数
— 常微和偏微数值解,……
数值分析实质上是以数学问题为研 究对象,不像纯数学那样只研究数 学本身的理论,而是把理论与计算 紧密结合,着重研究数学问题的数 值方法及理论。
y ' 1 2 xy y (0) 0
常微分方程的一般解(解析解) 对一些典型的微分方程 ( 可分离变 量方程,一阶线性方程等等 ) ,有可 能找出它们的一般解表达式,然后 用初始条件确定表达式中的任意常 数,这样解即能确定。
y ' 2 x 例如 求解 y (0) 0
数值分析
Numerical Analysis
教
《数值分析》(第2版)
材 朱晓临 主编
中国科学技术大学出版社
《数值分析》(第5版) 李庆阳,王能超,易大义编著 清华大学大学出版社
参 考 书 目
《数值分析》(第3版) 颜庆津著, 北京航空航天大学 出版社 《Numerical Analysis》(Ninth ed.)
数值分析简明教程0-1 (14)
• 对于欧拉格式, 对于欧拉格式,假设 y n = y ( xn ) ,则有: 则有:
' y n +1 = y ( x n ) + hf ( xn , y ( x n )) = y ( x n ) + h y ( xn )
• 按泰勒展开有: 按泰勒展开有:
y ( x n +1) = y ( xn ) + h y ( xn ) +
第三章 常微分方程的差分法
第三章 常微分方程数值解
3.1 欧拉方法 § 3.2 龙格-库塔方法 § 3.3 亚当姆斯方法 § 3.4 收敛性与稳定性 § 3.5 方程组和高阶方程 §
2
本章要点: 本章要点 本章主要研究常微分方程的定解问题。 本章主要研究常微分方程的定解问题。 这类问#39; h2 2
y
''
(ξ )
x n < ξ < x n +1
• 从而有: 从而有:
y ( x n +1) − y n +1 =
h2 2
y
''
(ξ )
• 这说明欧拉格式是一阶方法。 这说明欧拉格式是一阶方法。
11
二、 隐式欧拉格式
y ( x n +1 ) − y ( x n ) 若用向后差商 h
' y 代替方程 ( xn +1) = f ( xn +1 , y ( x n +1))
-----------(3)
(1),(2)式称为初值问题,(3)式称为边值问题 另外,在实际应用中还经常需要求解常微分方程组:
′ = f 1 ( x , y1 , y2 ) y1 ′ = f 2 ( x , y1 , y 2 ) y2 y1 ( x0 ) = y10 y2 ( x0 ) = y20
数值分析PPT教案
遗传算法
模拟生物进化过程的优 化算法,适用于多变量、 非线性、离散的最优化
问题。
数值积分和微分的方法
01
02
03
04
矩形法
将积分区间划分为若干个小的 矩形区域,每个矩形区域上的 函数值乘以宽度然后相加。
梯形法
将积分区间划分为若干个小的 梯形区域,每个梯形区域上的 函数值乘以宽度然后相加。
理解和应用能力。
培养创新思维和解决问题的能力
03
学生应该培养创新思维和解决问题的能力,以便在未来的学习
和工作中更好地应对挑战。
THANK YOU
感谢聆听
误差累积效应
误差的来源和传播
初始误差放大 误差传递规律
误差的度量和控制
绝对误差和 相对误差
误差的估计 和容忍度
提高数据精 度
选择合适的 算法和数值 方法
控制误差的 方法
迭代收敛性 和稳定性分 析
方法的稳定性和收敛性
方法的稳定性 不受初始条件和舍入误差的影响
对输入数据的变化具有稳健性
方法的稳定性和收敛性
课程目标
02
01
03
掌握数值分析的基本概念、原理和方法。
能够运用数值分析方法解决实际问题,提高计算能力 和数学素养。
培养创新思维和实践能力,为后续学习和工作奠定基 础。
02
数值分析基础
数值分析的定义和重要性
数值分析的定义
数值分析是一门研究数值计算方法及其应用的学科,旨在解决各 种数学问题,如微积分、线性代数、微分方程等。
电子工程
在电子工程中,数值分析用于 模拟电路的行为和性能。通过 电磁场理论和数值方法,可以 优化电路设计和性能,提高电 子设备的效率和稳定性。
数值分析讲义
第1章数值分析中的误差一、重点内容误差设精确值x* 的近似值x,差e=x-x* 称为近似值x 的误差(绝对误差)。
误差限近似值x 的误差限 是误差e 的一个上界,即|e|=|x-x*|≤ε。
相对误差e r是误差e 与精确值x* 的比值,。
常用计算。
相对误差限是相对误差的最大限度,,常用计算相对误差限。
绝对误差的运算:ε(x1±x2)=ε(x1)+ε(x2)ε(x1x2)≈|x1|ε(x2)+|x2|ε(x1)有效数字如果近似值x 的误差限ε 是它某一个数位的半个单位,我们就说x 准确到该位。
从这一位起到前面第一个非0 数字为止的所有数字称为x 的有效数字。
关于有效数字:(1) 设精确值x* 的近似值x,x=±0.a1a2…a n×10ma1,a2,…,a n是0~9 之中的自然数,且a1≠0,|x-x*|≤ε=0.5×10m-l,1≤l≤n则x 有l位有效数字.(2) 设近似值x=±0.a1a2…a n×10m有n 位有效数字,则其相对误差限(3) 设近似值x=±0.a1a2…a n×10m的相对误差限不大于则它至少有n 位有效数字。
(4) 要求精确到10-3,取该数的近似值应保留4 位小数。
一个近似值的相对误差是与准确数字有关系的,准确数字是从一个数的第一位有效数字一直数到它的绝对误差的第一位有效数字的前一位,例如具有绝对误差e=0.0926 的数x=20.7426 只有三位准确数字2,0,7。
一般粗略地说,具有一位准确数字,相对于其相对误差为10% 的量级;有二位准确数字,相对于其相对误差为1% 的量级;有三位准确数字,相对于其相对误差为0.1% 的量级。
二、实例例1 设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的误差是0.001526…,有|x-x*|=0.001526…≤0.5×101-3即l=3,故x=3.14 有 3 位有效数字。
数值分析讲义
由于除数很小,将导致商很大,有可能出现“溢出”现 象另外. ,设x* ,y* 的近似值分别为x,y,则z=x÷y是z*=x*÷y*
的近似值.此时,z的绝对误差满足估计式
e(z) z* z (x* x) y x( y y* ) y e(x) x e( y)
yy*
y2
可见,若除数太小,则可能导致商的绝对误差很大。
n k, k 1,...2,1
类似地可得
Ik
I
* k
(1) nk
k!( n!
I
n
I
* n
)
,
k n, n 1,...,1,0
可见,近似误差Ik-I*k是可控制的,算法是数值稳定的。
例如,由于
e 1 10
01 x9e1dx
I9
01 x9dx
1 10
取近似值 I9
1 (e1 1 ) 0.0684 2 10 10
§3 绝对误差、相对误差和有效数字
设x是精确值x*的一个近似值,记 e=x*-x
称e为近似值x的绝对误差,简称误差。如果满足 |e|≤
则称为近似值x的绝对误差限,简称误差限。 精确值x* 、近似值x和误差限之间满足: x-≤x*≤x+
通常记为 x*=x±
绝对误差有时并不能很好地反映近似程度的好坏,如
随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等 各个领域。本课仅限介绍最常用的数学模型的最基本的数 值分析方法。
§2 误差的来源和分类
误 1.差模是型描误述差数值数计学算模之型中通近常似是值由的实精际确问程题度抽,象在得数到值的, 计一般算带中有十误分差重,要这,种误误差差按称来为源模可型分误为差模。型误差、观测误差、 截断误2.差观和测舍误入差误差数四学种模。型中包含的一些物理参数通常是 通过观测和实验得到的,难免带有误差,这种误差称为观 测误差。
《数值分析教程》课件
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。
数值分析简明教程
ℓi1
=
ai1 u11
(i = 2,3,∙∙∙, n)
ukj = akj − ∑km−=11 ℓkmumj
ℓik
=
1 ukk
�aik
−
∑km−=11
ℓimumk�
(j = k, k + 1,∙∙∙, n) (i = k + 1, k + 2,∙∙∙, n)
平方根法(Cholesky 分解法)(系数矩阵对.称.正.定.):
则 (1) x = φ(x) 在 [a, b] 上有唯一实根 x∗;
第 1 页 共 13 页
周斌
(2) 对任意 x0 ∈ [a, b] , 迭代公式收敛,且
lim
k→+∞
������������
=
������∗
(3) 后验误差估计:
|xk
−
x∗|
≤
L 1−L
|xk
−
xk−1|
先验误差估计:
|xk
−
谱半径:
n 阶 矩 阵 B 在 复 数 范 围 内 的 各 特 征 值 为 λi (i = 1,2,∙∙∙, n) , 则 称 ρ(B) = max1≤i≤n|λi| 为 B 之谱半径。
ρ(B) ≤ ‖B‖ (注: ‖∙‖ 是 Rn×n 上任一矩阵范数)
矩阵条件数: n 阶非奇异矩阵 A 的条件数:Cond(A) = ‖A−1‖‖A‖
② 系数矩阵 A = (aij)n×n 严格对角占优 ③ 系数矩阵 A 对称正定
SOR 迭代法 �x(k+1) = (1 − ω)x(k) + ωD−1(b − Lx(k+1) − Ux(k))� : ⇓
x(k+1) = Bωx(k) + ω(D + ωL)−1b Bω = (D + ωL)−1[(1 − ω)D − ωU]
《数值分析》PPT课件
8
实际问题 数学模型 数值计算方法
上机计算求出结果
近似解与精确解之间的误差称为截断误差或方法误差.
9
例如,用泰勒(Taylor)多项式
Pn (x)
f (0)
f (0) x 1!
f (0) x2 2!
f (n) (0) xn n!
近似代替函数 f (,x) 则数值方法的截断误差是
4
数值分析的特点: 一、面向计算机,能根据计算机的特点提供切实可行的 有效算法. 二、有可靠的理论分析,能任意逼近并达到精度要求, 对近似算法要保证收敛性和数值稳定性,还要对误差进行
分析. 三、要有好的计算复杂性,时间复杂性好是指节省时
间,空间复杂性好是指节省存储量,这也是建立算法要研 究的问题,它5 关系到算法能否在计算机上实现.
界,即
13
e * x * x *,
则 叫* 做近似值的误差限, 它总是正数.
例如,用毫米刻度的米尺测量一长度 ,x读出和该长度 接近的刻度 ,x * x *是 x的近似值, 它的误差限是 0.5m,m 于是
x * x 0.5mm. 如读出的长度为 765m,m 则有 765 x . 0.5 虽然从这个14 不等式不能知道准确的 是x多少,但可知
19
当准确值 位x数比较多时,常常按四舍五入的原则得 到 x的前几位近似值 ,x * 例如
x π 3.14159265
取3位 取5位
x3* 3.14, 3* 0.002, x5* 3.1416, 5* 0.000008,
它们的误差都不超过末位数字的半个单位,即
π 3.14 1 102 , 2
定义设1 为准确x 值,
x *为 x的一个近似值, 称
数值分析方法(讲义)
第十章 数值分析方法在生产实际中,常常要处理由实验或测量所得到的一批离散数据,数值分析中的插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。
插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。
相应的理论和算法是数值分析的内容,这里不作详细介绍。
§1 数据插值方法及应用在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。
与此有关的一类问题是当原始数据),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。
1、分段线性插值这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。
如果b x x x a n =<<<= 10那么分段线性插值公式为n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11111 =≤<--+--=-----可以证明,当分点足够细时,分段线性插值是收敛的。
其缺点是不能形成一条光滑曲线。
例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。
根据地图的比例,18 mm 相当于40 km 。
根据测量数据,利用MA TLAB 软件对上下边界进行线性多项式插值,分别求出上边界函数)(2x f ,下边界函数)(1x f ,利用求平面图形面积的数值积分方法—将该面积近似分成若干个小长方形,分别求出这些长方形的面积后相加即为该面积的近似解。
数值分析简明教程讲义
第1章 绪论数值计算方法是一门与计算机使用密切结合的实用性很强的数学课程,其特点如下: 第一,面向计算机,要根据计算机特点提供实际可行的有效算法,即算法只能包括加、减、 乘、除运算和逻辑运算,是计算机能直接处理的。
第二,有可靠的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和数值稳 定性,还要对误差进行分析,这些都建立在相应数学理论基础上。
第三,要有好的计算复杂性,时间复杂性好是指节省时间,空间复杂性好是指节省存储量, 这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。
第四,要有数值实验,即任何一个算法除了从理论上要满足上述三点外,还要通过数值试验 证明是行之有效的。
1.1 误差的基本概念除了极个别的情况外,数值计算总是近似计算,实际计算结果与理论结果之间存在着误差。
数值分析的任务之一是将误差控制在一定的容许范围内或者至少对误差有所估计。
一、误差的来源 1、模型误差用计算机解决科学计算问题首先要建立数学模型,它是对被描述的实际问题进行抽象,简化而得到的,因而是近似的,数学模型与实际问题之间出现的这种误差称为模型误差。
这种误差可忽略不计,在数值计算方法中不予讨论。
2、观测误差在数学模型中往往还有一些根据观测得到的物理量,如温度,长度,电压等等,测量的结果不可能绝对正确,由此产生的误差称为观测误差。
观测误差在数值计算方法中也不予讨论。
3、截断误差(方法误差)在数学模型不能得到精确解时,通常要用数值方法求它的近似解,其近似解与精确解之间的误差称为截断误差或方法误差。
4、舍入误差在计算过程中,由于计算机的字长有限,采用计算机数系中和实际数据比较接近的数来表示,由此产生的误差以及计算过程又可能产生新的误差,这些误差称为舍入误差。
二、绝对误差和相对误差1、绝对误差秘绝对误差限设数x (精确值)有一个近似值为*x ,记 称e(x)为近似值*x 的绝对误差,简称误差。
当e(x)为正时,近似值*x 偏大,叫做强近似值 ;当它为负时,近似值*x 偏小,叫作弱近似值。
第一章插值方法(3-4学时)
问题
l 求作二次式1 ( x )
,使满足条件
p2 ( x0 ) = y0 , p2 ( x1 ) = y1 , p2 ( x2 ) = y 2
二次插值的几何解释是用通过三个点 ( x0 , y0 ),( x1 , y1 ),( x2 , y2 ) 的抛物线 y = p2 ( x ) 插值,令
l0 ( x ) l0 ( x0 ) = 1, l0 ( x1 ) = l0 ( x2 ) = 0
问题
≤ 求作次数 n
pn ( x ) 多项式
Байду номын сангаас,使满足条件
这就是所谓的拉格朗日(Lagrange)插值。点 xi (它们互不相同) 拉格朗日(Lagrange)插值 拉格朗日 称为插值节点。 用几何语言来描述,就是,通过曲线y=f(x)上给定的n+1个点 ,求作一条n次代数曲线 作为 Y=f(x)的近似。
问题: 问题:
选取什么函数作为近似的函数 误差如何?
数值分析简明教程 2.<# >
f ( x )
,如何求得其具体表达式,
王能超 编著
插值问题
设函数f(x)在区间[a ,b]上有定义,且已知在一组互异 点 上的函数 值 ,寻求一个简单的函数p(x),使满足 (1.1) 并用p(x)近似代替f(x),上述问题称为插值问题 插值问题。 插值问题
类似的可以构造出
2.<# >
王能超 编著
拉格朗日插值的一般情形
≤n 仿照前述作法,对于求作次数 ,使满足条件
pn ( x ) 多项式
lk ( x ) , k = 0,1, 2,L , n
的问题,我们可构造插值基函数 ≤n ,它们都是次 数小于 这表明,除
数值分析课件第一章
Pn ( x) an x n an1x n1 a1x a0 .
秦九韶算法:
S n an , S k xS k 1 ak , (k n-1,,0) P ( x) S . n 0
例: x 3.1415926 , 取三位 取五位 1 * * x3 3.14, | e3 | 0.0015926 0.005 10 2 , 2 1 * * x5 3.1416 | e5 | 0.0000073 0.00005 10 4 . , 2
I 0 1 e1.
* I 9 0.0684, I 0 0.6321, ( A) I n 1 nI n1, n 1,2,. ( B) * * I n1 1 (1 I n ), n 9,8,,1. n 1 1 e1 ( I 9 ( ) 0.0684) 2 10 10
* *
§3 误差定性分析、避免误差危害
一、算法的数值稳定性
定义3 一个算法若输入数据有 误差, 而在计算过程中舍入 误差不增长, 则称此算法是数值稳定 的, 否则是不稳定的.
例5
1 1 n x 计算I n e x e dx, n 0,1,, 0
并估计误差.
I n 1 nI n1 , n 1,2,,
数值分析
数学学院 李胜坤
第1章
一、什么是数值分析
引论
§1 数值分析的研究对象与特点
数值分析是计算数学的一个主要部分,计算数学是数 学科学的一个分支,它研究用计算机求解各种数学问题 的数值计算方法及其理论与软件实现. 步骤:实际问题→数学模型→数值计算方法 →程序设计→上机计算求出结果
数值分析第一章PPT课件
= f ’( )(x* x)
x* 与 x 非常接近时,可认为 f ’( ) f ’(x*) ,则有:
|e*(y)| | f ’(x*)|·|e*(x)|
即:x*产生的误差经过 f 作用后被放大/缩小了| f ’(x*)| 倍。故称| f ’(x*)|为放大因子 /* amplification factor */ 或 绝对条件数 /* absolute condition number */.
r* (x ) ln x * r* (y )
11 0n1lnx*0.1% 2a1
n4
.
10
1.3 避免误差危害的若干原则
算法的数值稳定性
用一个算法进行计算,如果初始数据误差在计算中 传播使计算结果的误差增长很快,这个算法就是数值不 稳定的.
.
11
1.3 避免误差危害的若干原则
病态问题与条件数
Cp
x f (x) f (x)
x nxn1 xn
n,
它表示相对误差可能放大 n倍.
如 n10,有 f(1 ) 1 ,f(1 .0)2 1 .2,4 若取 x 1, x*1.02, 自变量相对误差为 2% ,函数值相对误差为 24%, 这时问题可以认为是病态的.
一般情况下,条件数
Cp
10就认为是病态,
εr*21 a11 0n10.0 0% 1
已知 a1 = 3,则从以上不等式可解得 n > 6 log6,即
n 6,应取 * = 3.14159。
.
8
1.2 数值计算的误差
问题:对于y = f (x),若用x* 取代x,将对y 产生什么影响?
分析:e*(y) = f (x*) f (x)
e*(x) = x* x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
eXL2(x)1 0.9417568X
0.3096362x2
3、
一般情形
现在考虑一般的插值问题:设函数在区间[
a,b]上n+1个互异节点
函数值分别为,yo,y1,...yn,求n次插值多项式
Ln(x),满足条件
Ln(Xj)yj,j=0,
1,…,n
令
Ln(x) y°l0(x) y1〔1(X)... ynln(x)
设函数y=f(x)在区间[a,b]上有n+1个互异点X0,X1 ,...Xn,对应的函数值分别为,y0,y1,...yn,若存在一个简单函数y=p(x),使其经过y=f(x)上的 这n+1个已知点(X0,y0),(X1, y1),…,(xn,yn),即
/P(xi)=yi, i=0,1,…,n
那么,函数p(x)称为插值函数,点x0,x1,...Xn称为插值节点,包含插值节点的区间
一、 误差的来源
1、 模型误差
用计算机解决科学计算问题首先要建立数学模型,它是对被描述的实际问题进行抽 象,简化而得到的,因而是近似的,数学模型与实际问题之间出现的这种误差称为 模型误
差。这种误差可忽略不计,在数值计算方法中不予讨论。
2、 观测误差
在数学模型中往往还有一些根据观测得到的物理量,如温度, 长度,电压等等,测量
的结果不可能绝对正确, 由此产生的误差称为 观测误差。观测误差在数值计算方法中也不
予讨论。
3、 截断误差(方法误差)
在数学模型不能得到精确解时,通常要用数值方法求它的近似解,其近似解与精确 解之间的误差称为截断误差或方法误差。
4、 舍入误差
在计算过程中,由于计算机的字长有限, 采用计算机数系中和实际数据比较接近的数来表 示,由此产生的误差以及计算过程又可能产生新的误差,这些误差称为 舍入误差。。
差的一个上界,即可以找出一个正数 ,
使e(x)1\ /
称为x的绝对误差限(或误差限)。
显然,误差限 总是正数,且|x X*|,在应用上常常采用如下写法:
*
x x
例:用毫米刻度的米尺测量一长度x时,如果该长度接近某一刻度x,则x作为x的 近似值时
1
e(x)x x -(毫米)=(毫米)
2
绝对误差还不足以刻划近似数的精确程度,例如,有两个量x101,y1000
:a,b]称为插值区间,求p(X)的方法称为 插值法,f(x)称为被插函数。若p(x)是次数不
超过n的多项式,用Pn(x)表示,即
P
n
a
则称Pn(x)为n次插值多项式,相应的插值法称为 多项式插值。
插值多项式的存在唯一性
定理:设节点x0,x1,...Xn互异,则在次数不超过n的多项式集合Hn中,满足插值条
第三,要有好的计算复杂性,时间复杂性好是指节省时间,空间复杂性好是指节省存 储量,这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。
第四,要有数值实验,即任何一个算法除了从理论上要满足上述三点外,还要通过数 值试验 证明是行之有效的。
误差的基本概念
除了极个别的情况外,数值计算总是近似计算,实际计算结果与理论结果之间存在着 误差。数值分析的任务之一是将误差控制在一定的容许范围内或者至少对误差有所估计。
最终得:L2(x)
例1:已知.100
例2:取节点
l
l
10,.
0,X1
(X
xj(x
X2)
(X。
X1)(X0
X2)
(X
X°)(x
X2)
(X1
X0)(X1
X2)
(X
X°)(x
X1)
(X2
X°)(X2
X1)
h(
x)y1I
2(x)y2
121
11,.144
1/2
,X2
1对函数
——抛物插值公式。
12求y -115。()
2、相对误差及相对误差限
我们把近似值的误差e(x)与准确值X的比值,记作
/ 、
e
x x
称为近似值x的相对误差。
实际计算中,由于真值总是未知的, 与绝对误差限类似,可以找到一个正数
*
|X
I
则称为近似数x的相对误差限。
三、有效数字
1、有效数字
至少有n位有效数字。
例2已知.2的近似数x*的相对误差限为,最坏情况
二、 绝对误差和相对误差
1、绝对误差秘绝对误差限
设数X(精确值)有一个近似值为X,记
*
e(x) x x
称e(x)为近似值x的绝对误差,简称误差。
当e(x)为正时,近似值x偏大,叫做 强近似值;当它为负时,近似值x偏小,叫 作弱近似值。
准确值x一般是未知的,因而绝对误差e(x)也是未知的,但往往可以估计出绝对误
件的插值多项式Pn (x)存在且唯一。
拉格朗日插值多项式
1ቤተ መጻሕፍቲ ባይዱ线性插值
问题:求作一次式L,x),使满足条件
L
从几何图形上看,y L1(x)表示通过两点X0,y,X1,y1的直线,因此,一次
插值亦称线性插值。
L,x)可表示为下列点斜式:
其中:
1:
L
y3
X1X0
(
X X
1
L
yih(x)
X
XI
线性插值公式
l
第1章绪论
数值计算方法是一门与计算机使用密切结合的实用性很强的数学课程,其特点如下:
第一,面向计算机,要根据计算机特点提供实际可行的有效算法, 即算法只能包括加、
减、 乘、除运算和逻辑运算,是计算机能直接处理的。
第二,有可靠的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和 数值稳 定性,还要对误差进行分析,这些都建立在相应数学理论基础上。
l
1
0
已知 一
.115。()
例2:取节点x00,x11对函数y
e
2、抛物插值
问题:求作二次式L2(x),使满足条件:
L
几何解释就是通过三点X0,
根据插值基函数所满足的条件,
e%建立线性插值公式。
l
h(x)
L2(xJyi
\
X2,y的抛物线,因而称为抛物插值。 可得抛物插值的基函数为:
y。,X1,y1,
数值计算中应注意的若干原则
1、 要使用数值稳定的计算公式。
运算过程中舍入误差不增长的计算公式一一数值稳定的,否则为不稳定的。
2、 要避免两个相近数相减。
3、 要防止大数“吃掉”小数。(数量级相差很大的数,措施:调整运算次序。)
4、 注意简化计算步骤。
第
在生产实践和科学研究所遇到的大量函数中,相当一部分是通过测量或实验得到的,
并不知道它的表达式,只能通过观察、测量或实验得到函数在区间】a,b]上一些离散点
上的函数值、导数值等。还有些函数,虽然有明确的解析表达式,但却过于复杂而不便于 进行理论分析和数值计算,同样希望构造一个既能反映函数的特性又便于计算的简单函 数,近似代替原来的函数。插值法就是寻求近似函数的方法之一。
引言