高层建筑结构设计实例讲解(剪力墙)

合集下载

高层剪力墙结构设计实例分析

高层剪力墙结构设计实例分析

高层剪力墙结构设计实例分析【摘要】:结构式建筑的基础,剪力墙是结构竖向的主要承重体系,同时也是抵抗水平方向力不可缺少的部分。

笔者通过国内某建筑结构设计实例,阐述了高层建筑结构设计的设计方案以及相应构造应采取的措施。

【关键词】:高层建筑;剪力墙;设计中图分类号:[tu208.3] 文献标识码:a 文章编号:剪力墙结构体系是指利用建筑物墙体作为建筑的竖向承重体系,并用它抵抗水平力的结构体系。

在受力方面,因为剪力墙的刚度大,容易满足小震作用下结构尤其是高层结构的位移限值。

在地震作用下,其变形小,破坏程度低,可以设计成延性剪力墙,大震时通过连梁和墙肢底部的塑性铰范围内的塑性变形耗散地震能量。

这种体系在高层住宅、公寓和旅馆建筑中广泛应用。

所以有必要对剪力墙结构进行合理设计以满足安全、经济、合理的要求。

一、剪力墙结构设计要点在进行高层建筑结构设计时,必须要清晰掌握这种建筑相对于低多层建筑来说所具有的特征,只有这样才能准确地就其特殊性而作出相应的设计措施。

笔者总结了高层建筑结构设计特点主要有以下几点:(一)水平荷载是高层剪力墙结构设计时的决定性因素这是因为结构由自重等竖向荷载产生的轴力和弯矩的大小,仅与楼房高度的一次方成正比;而结构由于水平荷载产生的倾覆力矩及在竖构件中产生的轴力,是与楼房高度的两次方成正比;同时,对于同一建筑来说,自重等竖向荷载基本上是定值,而风荷载和地震作用等水平荷载,其数值是随结构动力特性的不同而有较大幅度的变化。

(二)轴向变形不容忽视因为在高层建筑中,自重等竖向荷载很大,能够使柱产生较大的轴向变形,从而会对连续梁弯矩产生较大的影响,对预制构件的下料长度产生影响,另外对构件的剪力和侧移也会产生影响,较易造成结构设计不够安全。

(三)侧移是高层剪力墙结构设计的关键因素水平荷载下结构的侧移变形随着楼房高度的增加迅速增大,因此水平荷载作用下结构的侧移应控制在规定限度之内。

(四)结构延性是高层建筑结构设计的重要设计指标与低多层建筑相比,高层建筑结构在地震作用下的变形更大一些。

高层框架剪力墙结构设计实例探析_张星亮

高层框架剪力墙结构设计实例探析_张星亮

工程技术193高层框架剪力墙结构设计实例探析【摘要】框架剪力墙结构是在框架结构中设置一定数量的剪力墙而形成的双重结构体系,其在工程中的应用较为广泛,本文通过结合实践以及规范要求,总结出高层框架剪力墙结构设计结构布置,同时结合工程实例进一步探讨框架剪力墙结构的应用,为同行提供参考借鉴。

【关键词】结构设计;框架剪力墙;结构布置;计算分析1.框架剪力墙结构布置(1)双向抗侧力体系和刚性连接。

框架—剪力墙结构中,剪力墙是主要的抗侧力构件。

结构在两个主轴方向均应市置剪力墙,并应设计为纵、横双向刚接框架体系,尽可能使两个方向抗侧力刚度接近,除个别节点外,不应采用铰接。

如果仅在一个主轴方向布置剪力墙,会造成两个主轴方向的抗侧刚度悬殊,无剪力墙的一个方向刚度不足且带有纯框架的性质,与有剪力墙的另一方向不协调,也容易造成结构整体扭转。

主体结构构件间的连接刚性,目的是为了保证整体结构的几何不变和刚度的发挥;同时,较多的赘余约束对始构在大震下的稳定性是有利的。

(2)框架—剪力墙结构是通过刚性楼、屋盖的连接,将地震作用传递到剪力墙,保证结构在地震作用下的整体工作的。

因此,剪力墙之间的距离不宜过大,否则,两墙之间的楼盖会不能满足平面内刚性的要求,造成处于该区间的框架不能与邻近的剪力墙协同工作而增加负担。

为了保证楼、屋盖的刚性,剪力墙之间无大洞口的楼屋盖长宽比不宜超过规范要求。

当两墙之间的楼盖开大洞时,该段楼盖的平面刚度更差,墙的间距应再适当缩小。

(3)楼板开洞处理。

当建筑无可避免地采取楼板开洞时,则应尽可能避免在剪力墙两侧楼板全部开洞或开大洞,对剪力墙结构是如此,对框架—剪力墙结构更是如此。

两侧楼板全部开洞的剪力墙,计算中可能认为它已发挥作用,但由于没有楼板的协同工作,水平力并不能有效地传递至此片剪力墙土,实际受力完全不是那回事,造成其他墙肢和框架柱实际受力比计算值大。

同时应通过正确的计算分析,适当折减其抗侧力刚度。

2.结构计算分析要点框架剪力墙结构的计算应考虑框架与剪力墙两种不同结构的不同受力特点,按两者变形协调工作特点进行结构分析。

剪力墙设计(结构)

剪力墙设计(结构)
施工方法
根据工程实际情况,选择合适的 施工方法,如预制装配式、整体
浇筑式等。
施工顺序
合理安排施工顺序,确保施工过程 的连续性和稳定性,避免因施工不 当造成结构损伤。
施工监控
采用施工监控技术,实时监测施工 过程和结构状态,及时发现和解决 施工中的问题,确保施工质量和安 全。
05
工程实例分析
某高层住宅楼的剪力墙设计
结构体系的选择与优化
结构形式
根据建筑功能和抗震要求,选择合适 的剪力墙结构形式,如框架-剪力墙、 筒体-剪力墙等。
结构布置
结构分析
采用先进的结构分Βιβλιοθήκη 方法,对剪力墙 结构进行详细的分析和优化,确保结 构的安全性和经济性。
合理布置剪力墙的位置、数量和尺寸, 以提高结构的承载力和稳定性。
施工工艺的优化
使用极限状态
考虑正常使用条件下的变形和 裂缝,保证剪力墙的正常使用 功能。
构造措施
根据剪力墙的类型、高度、跨 度等参数,采取相应的构造措 施,如钢筋的锚固、搭接和连 接等。
经济性
在满足安全性和使用功能的前 提下,合理选择材料和施工方
法,降低工程成本。
02
剪力墙的受力分析
剪力和弯矩的计算
剪力计算
根据结构体系和荷载分布,计算剪力 墙所承受的剪力,以确定墙体的剪切 承载能力。
剪力墙设计(结构)
• 剪力墙概述 • 剪力墙的受力分析 • 剪力墙的构造要求 • 剪力墙的设计优化 • 工程实例分析
目录
01
剪力墙概述
定义与作用
定义
剪力墙,又称抗风墙或抗震墙, 是一种竖向和水平向均连续的墙 体结构,主要承受风荷载或地震 作用引起的水平剪力。
作用

高层建筑结构设计 第06章 剪力墙结构内力计算

高层建筑结构设计 第06章 剪力墙结构内力计算

为简化计算,可将上述三式写成统一公式,并取G=0.4E 可得到整截面墙的等效刚度计算公式为
Ec Ieq Ec Iw
1
9Iw
AwH 2

引入等效刚度,可把剪切变形与弯曲变形 综合成弯曲变形的表达形式

11
V0
H
3
倒三角荷载
60 EIeq


1
V0
H
3
8 EIeq
• 内力 先将整体小开
口墙视为一个上 端自由、下端固 定的竖向悬臂构 件,如图所示, 计算出标高处 (第i楼层)截面 的总弯矩和总剪 力,再计算各墙 肢的内力。
• 墙肢的弯矩 将总弯矩Mi分为两部 分,其一为产生整体
弯曲的弯矩;另一为
产生局部弯曲的局部 弯矩,如图所示。
• 第j墙肢承受的全部弯矩可按下式计算
当剪力墙各墙段错开距离a不大于实体连接墙厚度的 8倍,并且不大于2.5m时,整片墙可以作为整体平 面剪力墙考虑;计算所得的内力应乘以增大系数1.2, 等效刚度应乘以折减系数0.8。当折线形剪力墙的各 墙段总转角不大于15°时,可按平面剪力墙考虑。
6.2 整体墙和小开口整体墙的计算
6.2.1 整体墙的内力和位移计算 1、墙体截面内力
Mi (x)

0.85M p (x)
Ii I
0.15M p (x)
Ii Ii
式中,Ii第i个墙肢的惯性矩,
I 对组合截面形心的组合截面惯性矩。
I I j Aj y2
• 墙肢的剪力 第j墙肢的剪力可近似按下式计算
Vi

1 2
Vp

A Ai
Ii Ii

26层剪力墙住宅楼结构cad设计施工图(电梯机房含塔楼)

26层剪力墙住宅楼结构cad设计施工图(电梯机房含塔楼)
0.51.1.1.51.59.14.1-1九、钢筋混凝土构件统一构造要求:1. 主筋的混凝土保护层厚度: 桩、地下室底板、基础梁、地下室外墙、水池、屋面构架及阳台部分环境类别为二 类,其余为一类;相应各类环境下构件纵筋混凝土保护层厚度详见《 》第 页b03G329-1第 条之规定。69注:地下室外墙外侧 ,内侧 ;25252. 钢筋连接形式及要求:1) 级钢筋和直径 的 级钢筋应采用机械连接。HRB400>25HRB4002) 采用绑扎搭接接头,相邻的搭接接头位置应相互错开,从任一接头中心至 或 的区域范围内,对梁类、板类及墙类构件,受拉钢筋搭接接头面积百分率不宜大于 ;1.3LL1.3L'L对柱类构件,不宜大于 ;当工程中确有必要增大受拉钢筋搭接接头面积百分率时,对25%50%梁类构件,不应大于 ;对板类、墙类及柱类构件,可根据实际情况放宽。受力钢筋的50%接头应设置在受力较小处,上部钢筋在跨中附近,下部钢筋在支座处搭接;次梁钢筋搭接长度范围内箍筋间距不应大于 。板面同时设置通长筋及支座短筋时,通长筋与支座短筋应间隔均匀布置。4) 采用焊接接头,相邻的焊接接头位置应相互错开,从任一接头中心至 ( 为纵向受力钢筋的较大直径,且不小于 )的区域范围内,纵向受力钢筋的焊接接头面积百分35dd500率,对纵向受拉钢筋接头,不应大于 ;纵向受压钢筋的接头面积百分率可不受限制。50%3) 采用机械连接接头,相邻的接头位置应相互错开,从任一接头中心至 ( 为纵向35dd受力钢筋的较大直径)的区域范围内,纵向受力钢筋的接头面积百分率,对纵向受拉钢筋接头,不应大于 ;纵向受压钢筋的接头面积百分率可不受限制。50%5) 基础梁、板上部钢筋应在支座处搭接,下部钢筋应在跨中 范围内搭接;钢筋搭接接头长度范围内的梁箍筋间距不应大于 。1/3100100 本工程采用图集《混凝土结构施工图平面整体表示方法制

高层框支剪力墙结构设计实例分析

高层框支剪力墙结构设计实例分析

高层框支剪力墙结构设计实例分析摘要:框支剪力墙结构体系是将框架结构和剪力墙结构相结合的产物,在工程界被广泛采用。

本文结合工程实例,探讨了高层框支剪力墙结构的设计方法。

关键词:高层建筑;结构设计;框支剪力墙;抗震设计在当今寸土寸金的大环境下,为了适应社会对建筑功能多样化的要求,结构往往必须反常规地进行布置:即上部布置小空间;下部布置大空间,因此,建筑功能的要求与正常合理的结构布置产生了矛盾,结构转换层为解决这一矛盾应运而生。

转换层可改变轴线和柱网布置:亦可将框架结构转换成剪力墙结构,从而为建筑提供下层室内大空间和宽广的出入口。

转换层依其上下不通的平面布置可采用梁式、桁架式、箱型或厚板式转换层,其中,梁式转换层是目前高层建筑中实现垂直转换最常用的结构形式,梁式转换层具有传力直接,明确,传力途径清楚,受力性能好,工作可靠,构造简单,施工方便的优点,结构设计相对比较简单,而且造价也较节省。

1 、工程概况该工程为某小区高层建筑中的一座商住综合楼。

1、2 层用于商业,,转换层设在2层顶;3~30层为住宅,用于商业;地下1层为地下室,用于车库、水池和设备间。

室外地面至主要屋面的高度为90.5m,至局部电梯机房女儿墙顶的高度为99.2m。

标准层和转换层结构平面分别如图1和图2 所示。

图1 标准层结构平面图2转换层结构平面典型的板式住宅,南北通透,进深小,立面宽。

由于建筑平面狭长,并且西端局部轴线转向,如图设一道防震缝将建筑物分为东、西两个结构单元。

东座为长矩形平面,西座平面严重不对称,高宽比都很大。

本工程为丙类建筑,抗震设防烈度为 6 度,基本地震加速度为0.05g,建筑场地类别为 ii 类, 设计地震分组为第一组, 基本风压为0.35kn/m2,地面粗糙度为c 类。

2 、结构布置与计算调整住宅建筑平面形状复杂,高宽比的计算方法没有明确的标准。

如果按所考虑方向的最小投影宽度计算高宽比:东座达90.2∶9.3=9.7,西座达87.3∶9.3=9.4,远远超过了规范限值6。

剪力墙结构设计实例讲解

剪力墙结构设计实例讲解

剪力墙结构设计实例讲解在建筑结构设计领域,剪力墙结构因其良好的抗震性能和空间分隔能力,被广泛应用于高层住宅和商业建筑中。

接下来,我们将通过一个具体的实例来详细讲解剪力墙结构的设计过程。

首先,让我们来了解一下这个实例的基本情况。

这是一个位于地震设防烈度为 7 度的 20 层住宅楼项目,总高度约 60 米,建筑面积约15000 平方米。

根据建筑功能和使用要求,需要在保证结构安全的前提下,合理布置剪力墙,以满足建筑的空间布局和抗震性能要求。

在进行剪力墙结构设计之前,我们需要对建筑物所承受的荷载进行计算。

荷载主要包括恒载(如结构自重、建筑装修重量等)、活载(如人员活动、家具设备重量等)以及风荷载和地震作用。

通过精确的计算,确定结构在各种荷载组合下的内力和变形情况。

对于剪力墙的布置,需要遵循一定的原则。

一般来说,剪力墙应沿建筑物的主要轴线布置,形成较为规则的抗侧力体系。

在这个实例中,我们在建筑物的周边和电梯井、楼梯间等位置布置了剪力墙,以增强结构的抗扭性能和整体稳定性。

同时,剪力墙的间距也需要合理控制,既要保证结构的刚度均匀分布,又要避免间距过小导致施工困难和造价增加。

在确定了剪力墙的位置和数量后,我们需要对剪力墙的尺寸进行设计。

剪力墙的厚度通常根据其所在位置和受力情况确定。

在底部加强区,剪力墙的厚度一般较大,以提高其抗震能力。

而在非加强区,可以适当减小厚度,以节约材料和减轻结构自重。

此外,剪力墙的长度和高度也需要根据结构的受力特点和建筑空间要求进行合理调整。

接下来是对剪力墙的配筋设计。

配筋的目的是为了保证剪力墙在受力时能够具有足够的承载能力和延性。

一般来说,剪力墙的竖向钢筋主要承受压力,水平钢筋主要承受剪力。

在配筋计算中,需要考虑剪力墙的轴压比、剪压比等控制指标,以确保其满足规范要求。

同时,为了提高剪力墙的抗震性能,还需要在墙端和洞口周边设置加强钢筋。

在结构分析计算方面,我们采用了先进的结构分析软件,如SATWE、ETABS 等。

高层住宅剪力墙结构设计实例探析

高层住宅剪力墙结构设计实例探析

高层住宅剪力墙结构设计实例探析作者:刘栋马莹来源:《城市建设理论研究》2012年第33期【摘要】:人们对高层建筑的空间要求越来越高。

普通剪力墙的设计出现居多弊端,故结构设计问题受到众多工程设计人员的重视。

本文以某住宅小区为例,从高层住宅结构设计时剪力墙布置、结构计算、风荷载的体型系数及干扰系数取值、连梁设计等几方面展开分析,并结合实际工程经验,提出剪力墙结构构造的几点意见,以供参考。

【关键词】:高层住宅剪力墙结构设计中途分类号:TU241.8 文献标识码:A文章编号:1.墙肢长度和厚度的选取1.1墙肢的长度剪力墙墙肢长度(即墙肢截面高度)一般不宜大于8m。

结构设计中的剪力墙结构应具有延性,细高的剪力墙(高宽比大于2)容易设计成弯曲破坏的延性剪力墙,从而可避免脆性的剪切破坏。

当墙的长度很长时,为了满足每个墙段高宽比大于2的要求,可通过开设洞口将长墙分成长度较小、较均匀的联肢墙,洞口连梁宜采用约束弯矩较小的弱连梁(其跨高比宜大于6),使其可近似认为分成了独立墙段。

1.2墙肢厚度的选取规定剪力墙的最小厚度,其主要目的是保证剪力墙出平面的刚度和稳定性能。

其厚度要求见表1。

表1墙肢厚度参考表注:H-层高或剪力墙无支长度的较小值对短肢剪力墙结构,规定其抗震等级应比表1中规定的抗震等级要高一级采用。

故除6度区外,短肢剪力墙的抗震等级至少为一级。

对于住宅建筑,填充墙厚一般为200mm,相应剪力墙厚也取为200mm。

住宅层高一般为2.8~3.0m,故墙厚取200mm,除底层加强区的一字形短肢剪力墙外,均能满足规范要求。

对于无地下室的高层住宅,因其基础埋深一般在2.5m以上,则底层墙体高度会在5.0m以上,若按层高的1/16确定墙厚,将超过300mm,大于填充墙厚度。

为避免出现此种情况,在布置剪力墙时,应结合建筑平面,尽量不用一字形剪力墙,而采用L、T、Z、十字形等截而形式,且使翼缘长度大于其厚度的3倍,这样一方面墙体抗震性能更好,另一方面墙厚也可取为剪力墙无支长度的1/16。

高层建筑结构3(剪力墙结构)ql详解

高层建筑结构3(剪力墙结构)ql详解
2)抗震设计时短肢剪力墙的抗震等级应比规程中的抗震等 级提高一级,短肢墙的截面厚度不应小于200mm。(高
厚比小于8的墙) 3)较长剪力墙宜开设洞口将其分成长度较均匀的若干墙段,
墙段之间采用弱连梁连接,每个独立墙段的总高度与其截 面高度之比不应小于2。墙肢截面高度不宜大于8m。 4)按一、二级抗震设计等级设计的剪力墙截面厚度,底部
上部各层剪力可按材料力学公式计算截面的剪应力,各 墙肢剪应力之合力即为墙肢剪力;或按墙肢截面面积和惯性 矩比例的平均值分配剪力,即:
1
Vi Vp 2
A
Ai
Ii Ii
剪力墙的顶点位移计算
剪力墙的等效刚度就是将墙的弯曲、剪切和轴向变形之 后的顶点位移,按顶点位移相等的原则,折算成一个只考虑 弯曲变形的等效竖向悬臂杆的刚度。
加强部位不应小于层高或剪力墙无支长度的1/16,且不 应小于200mm;其他部位不应小于层高或无支长度的 1/20,且不应小于160mm。
5)按三、四级抗震等级设计的剪力墙截面厚度,底部加强 部位不应小于层高或无支长度的1/20,且不应小于 160mm。其他部位不应小于层高或无支长度的1/25, 且不应小于160mm。
有了等效惯性矩,可以直接按受弯悬臂杆的计算公式计 算顶点位移。
顶点水平位移统一表达 其中
V0H 3
EIe
V0 --- 底部总剪力
H --- 剪力墙总高
E Ie --- 等效抗弯刚度
α --- 系数 顶点集中荷载1/3, 均布荷载 1/8, 倒三角形荷载 11/60.
以集中载荷为例:
弯曲变位 剪切变位 V0 H 3 V0 H
第四章 剪力墙结构
*********剪力墙结构概述**********

12层框架-剪力墙结构高层住宅设计

12层框架-剪力墙结构高层住宅设计

12层框架-剪力墙结构高层住宅设计内容简介本工程位于哈尔滨市道里区,是现代化绿色都市住宅楼。

总建筑面积为6370m2 。

主体结构为12层,不设地下室。

第一层至第十二层均为居民住宅。

建筑总高度37.2m。

一共设有电梯三部。

本设计严格依据新规范。

建筑设计充分考虑了消防和疏散的要求,结构设计...<p >内容简介</p><p >本工程位于哈尔滨市道里区,是现代化绿色都市楼。

总建筑面积为6370m2 。

主体结构为12层,不设地下室。

第一层至第十二层均为居民。

建筑总高度37.2m。

一共设有电梯三部。

本设计严格依据新规范。

建筑设计充分考虑了消防和疏散的要求,结构设计考虑了地震作用。

本工程的结构形式为钢筋混凝土,结构体系为框架—剪力墙结构的高层住宅。

框架柱的抗震等级为三级,剪力墙的抗震等级为二级,抗震烈度为7度。

设计由四大部分组成:建筑设计、结构设计、工程经济分析、施工组织设计。

其中结构设计主要包括:工程概况、结构布置、刚度计算、荷载汇集、水平地震作用下结构内力计算(只考虑水平地震作用)、竖向荷载作用下结构内力计算(恒荷载和活荷载共同作用)、内力组合、构件截面设计。

结构设计中,采用PK-PM结构设计软件分析和手工计算结合的方法来完成。

设计严格按照国家颁布的新规范、新标准进行,所有数据及图表均依据规范要求,设计力求准确、经济、美观。

施工图采用现在工程界比较流行的平面整体表示方法绘制。

关键词:框架-剪力墙、结构设计、抗震</p><br /><p >文件组成及目录</p><p ><p>摘要<br />Abstract<br />1 绪论&nbsp;1<br />1.1 设计目标&nbsp;1<br />1.2 设计选题&nbsp;1<br />1.3 设计内容&nbsp;1<br />2 建筑设计&nbsp;2<br />2.1 总述&nbsp;2<br />2.2 平面设计&nbsp;2<br />2.3 剖面设计&nbsp;2<br />2.4 立面设计&nbsp;2<br />2.5 经济技术指标及建筑设计总说明&nbsp;2<br />3 结构设计&nbsp;3<br/>3.1 工程概况&nbsp;3<br />3.2 结构布置及计算简图&nbsp;3<br />3.2.1 梁、板截面尺寸确定&nbsp;3<br />3.2.2 框架柱截面尺寸确定&nbsp;3<br />3.2.3 剪力墙尺寸确定&nbsp;4<br />3.2.4 计算简图&nbsp;4<br />3.3 框架、剪力墙及连梁的刚度计算&nbsp;4<br />3.3.1 剪力墙等效刚度计算&nbsp;4<br />3.3.2 框架剪切刚度计算&nbsp;10<br />3.4 重力荷载及水平荷载计算&nbsp;13<br />3.4.1 重力荷载&nbsp;13<br />3.4.2 横向水平地震作用&nbsp;14<br />3.5 水平荷载作用下框架--剪力墙结构内力与位移计算&nbsp;17<br />3.5.1 位移计算与验算&nbsp;17<br />3.5.2 总框架、总剪力墙和总连梁内力计算&nbsp;17<br />3.5.3 横向水平地震作用下构件内力计算&nbsp;19<br />3.6 竖向荷载作用下框架—剪力墙结构内力计算&nbsp;24<br />3.6.1 计算单元及计算简图&nbsp;24 <span class='Ejn408'></span> <br />3.6.3 内力计算&nbsp;28<br />3.7 作用效应组合&nbsp;34<br />3.7.1 结构抗震等级&nbsp;34<br />3.7.2 框架梁弯矩和剪力设计值&nbsp;34<br />3.7.3 框架柱弯矩、轴力及剪力设计值&nbsp;36<br />3.7.4 剪力墙弯矩、轴力及剪力设计值&nbsp;39<br />3.8.5 连梁弯矩及剪力设计值&nbsp;40<br />3.8 构件截面设计&nbsp;42<br />3.8.1 框架梁&nbsp;42<br />3.8.2 框架柱&nbsp;43<br />3.8.3 剪力墙&nbsp;46<br />3.8.4 连梁&nbsp;48<br />4 设计概算&nbsp;49<br />5 施工组织设计&nbsp;62<br />5.1 工程概况&nbsp;62<br />5.1.1 建筑特点&nbsp;62<br />5.1.2 结构特点&nbsp;62<br />5.1.3 装饰特点&nbsp;62<br />5.1.4 水文地质情况&nbsp;62<br />5.1.5 气候条件&nbsp;63<br />5.1.6 资源供应&nbsp;63<br />5.2 工程目标&nbsp;63<br />5.3 施工布署&nbsp;63<br />5.3.1 划分施工段&nbsp;63<br />5.3.2 施工运输方式的选择机械布置&nbsp;63<br />5.3.3 现场供水、供电&nbsp;63<br />5.4 施工准备及资源计划&nbsp;64<br />5.4.1 施工准备工作计划&nbsp;64<br />5.4.2 主要施工机械计划&nbsp;64<br />5.4.3 主要劳动力计划&nbsp;64<br />5.4.4 主要材料计划&nbsp;65<br />5.5施工现场平面布置图&nbsp;65<br />5.6主要项目施工方案&nbsp;65 <spanclass='Ejn408'></span> <br />5.6.1 基础施工&nbsp;65<br />5.6.2 主体结构施工&nbsp;65<br />5.7 施工措施&nbsp;67<br />5.7.1 技术质量管理措施&nbsp;67<br />5.7.2 降低成本措施&nbsp;68<br />5.7.3 安全生产措施&nbsp;68<br />5.7.4 文明施工措施&nbsp;69<br />5.7.5冬期施工措施&nbsp;69<br />5.7.6 雨季施工措施&nbsp;69<br />6 结语&nbsp;71<br />参考文献<br />致谢<p class='Ejn408'></p> </p><p>建筑图:<br />建施01:首层平面图.dwg<br />建施02:标准层平面图.dwg<br />建施03:正立面图.dwg<br />建施04:剖面图.dwg<br />建施01:顶层平面图.dwg <spanclass='Ejn408'></span> </p><p><br />结构图:<br />结施01:八层板配筋图.dwg<br />结施02:八层梁平法施工图.dwg<br />结施03:八层柱平法施工图.dwg<br />结施04:顶层板配筋图.dwg<br />结施05:顶层梁平法施工图.dwg<br />结施06:顶层柱平法施工图.dwg<br />结施07:一层板配筋图.DWG<br/>结施08:一层结构布置图.dwg<br />结施09:一层梁平法施工图.dwg<br />结施10:一层柱平法施工图.dwg<br /> <span class='Ejn408'></span> </p><P></P><p>摘要<br />本课题针对GZ076外圆磨数控改造中三菱M50G数控系统二次开发的需要,设计了基于总线连接的远程I/O单元连接方案,完成了远程I/O单元输入输出口地址的分配和定义,并设计了有关电气原理图。

高层建筑混凝土剪力墙连梁设计实例分析

高层建筑混凝土剪力墙连梁设计实例分析

高层建筑混凝土剪力墙连梁设计实例分析连梁通常根据“小震弹性,中震屈服,大震破坏”的基本设计原则,作为抗震墙第一道防线。

结构计算中,按“强剪弱弯”原则使连梁端出现塑性铰,以耗散地震能量;按“强墙肢弱连梁”原则使连梁屈服先于墙肢,且使墙肢形成多铰机构而具有较大延性。

因此合理设计的连梁对于改善剪力墙有重要的作用。

1 连梁的结构定义《高层建筑混凝土结构技术规程》(JGJ3-2010)第7.1.3条文说明指出,连梁是指两端与剪力墙在平面内相连的梁。

2 连梁受力和变形在高层混凝土剪力墙结构体系中,连梁计算的调整比较频繁,跨度一般都比较小。

和普通框架梁的受力特点上的明显区别是:1)竖向荷载下连梁产生的弯矩和剪力一般较小,而在水平地震作用下剪力墙墙肢产生变形,连梁梁端产生相对转动,使得连梁产生弯矩和剪力;2)连梁端部的弯矩、剪力和轴力反作用于墙肢,使墙肢、连梁形成共同作用,减少了墙肢的内力和变形,对墙肢起到了一定的约束作用,改善了墙肢的受力状态。

3 实例分析《高层建筑混凝土结构技术规程》(JGJ3-2010)中第7.1.3条规定“跨高比不小于5的连梁宜按框架梁设计”,故这类连梁宜按框架梁输入计算,并且可称这类梁为弱连梁。

《全国民用建筑工程设计技术措施结构(混凝土结构)》(2009年版)第5.1.14条将跨高比不大于2.5且梁高不小于400mm的连梁称为“较强连梁”(简称为强连梁)。

故本文将连梁分为三大类:强连梁(跨高比≤2.5且梁高>400mm的连梁)、连梁(2.5<跨高比<5的连梁)、弱连梁(跨高比≥5的连梁)。

连梁一般情况下截面大、跨度小,且与其相连的墙体刚度大,因此在水平力作用下连梁内力往往很大,特别是抗震设防烈度较高时,连梁容易出现超筋现象。

高规和《建筑抗震设计规范》(GB50011-2010)、《混凝土结构设计规范》(GB50010-2010)等给出了一些处理方法:1.减小连梁截面高度或采取其他减小连梁刚度的措施;2.剪力墙连梁的弯矩可塑性调幅(在内力计算前将连梁刚度进行折减);3.跨高比较小的连梁,可设水平缝形成双连梁,使其破坏形态从剪切破坏变为弯曲破坏;4.当连梁截面宽度大于250mm跨高比不大于2.5时可采用交叉斜筋配筋,当连梁截面宽度不小于400mm时可采用集中对角斜筋配筋或对角暗撑配筋,可以改善其抗剪性能。

高层建筑框支剪力墙结构设计实例

高层建筑框支剪力墙结构设计实例

关键词 高层建筑 ; 框 支剪力墙结构; 计算分析 ; 抗震设计
0 引 言
通 过转 换构 件将 上部构件 的内力传 递到基础和地基 , 也 常有一部分 住宅建筑 由于车位 、 底部景 观架空通透 、 上 部房 间布局等因素, 造成 了少量抗震墙无 法落地 。 它们有一个共同 的特点, 就是转换层上的不 落地抗震墙 占该层总抗震墙 的比
框支柱 的数量一般为 6~8个, 最多不超过 1 0个。
1 工程 概况
本工程 2 # 、 3 #楼, 主体结构层高 6 0 . 3 m ,  ̄下室 2 层, 层高分 别为3 . 5 m, 4 . 7 m; 地上 1 层为居 民活动空间, 高5 . 4 m; 2 —1 3层为 住宅层 高 2 . 8 m , 以上至屋顶层高均为 3 . 0 m( 平面布置见图 1 ) 。
板取 1 8 0 mm , 与其相邻的层也适当加厚 至 1 5 0 m m。 考虑抗震需要, 施工 图阶段时更有意提 高转 换层配筋率, 使单层配筋率达到 0 . 3 5 %,以进一步提高转换层楼板 和框支
同, 这使得 它们 的一些特性更加接近抗震墙结构, 我们把这种 介 于抗 震规范所讲 的抗震墙结 构和部分框 支抗震墙结 构之 间的结构形式称 为局部框支抗震墙 结构 。这里所讲 的局部框 支抗震墙结构除了不落地抗震墙很少以外, 还具有以下特点 :
度直接决定 了整栋建筑的抗震潜力, 因而框支柱 的延性和承载 力成为设计 的关键。框支柱应在计算的基础上, 通过概念设计
AI
L L l ■ ■ l I ● i


图 1 2 #、 楼 底 邵 结 构 平 面 布 置 图
2 结 构设 计 中的计算 和分 析

实例分析高层建筑框架剪力墙结构设计

实例分析高层建筑框架剪力墙结构设计

实例分析高层建筑框架剪力墙结构设计高层建筑是现代城市中不可或缺的一部分,其建筑结构设计对于建筑的保障至关重要。

当然,针对不同的建筑用途、地理位置、功能等方面的要求,高层建筑的结构设计也会有所不同。

其中,框架剪力墙结构设计是一种常见的方案。

今天我们将重点讨论这种方案,希望对建筑结构设计专业人士以及感兴趣的读者有所启示。

1. 框架剪力墙结构设计的基本原理框架剪力墙结构由“框架”和“剪力墙”两部分组成,其中框架是建筑支撑结构的骨架,而剪力墙是建筑结构的主要承载结构。

框架主要负责承担水平荷载,而剪力墙则负责承担垂直荷载和地震力。

在框架剪力墙结构中,剪力墙会被布置在建筑的核心位置,而框架则贯穿整个建筑。

这种设计可以极大地提高建筑的抗震能力和结构刚度,使建筑更加稳定和安全。

此外,这种设计还可以增加建筑的自重和防火性能,适用于中高层甚至超高层建筑。

2. 框架剪力墙结构设计的具体实现方法在实现框架剪力墙结构设计时,需要考虑以下几个方面的问题:- 建筑布局:剪力墙应该被放置在建筑核心区域,以最大化其受力控制作用。

此外,框架应该被放置在建筑的周边位置,以增加建筑的整体稳定性。

- 钢筋混凝土设计:框架的设计应该考虑抗震、风荷载、地震等因素。

剪力墙应该被设计成厚实、多层的结构,以承担垂直荷载和地震力。

- 梁柱连接:框架和剪力墙之间的梁柱连接应该被精心设计,以确保强度充足且不会发生脆性断裂。

- 材料选择:建筑材料的选择应该考虑建筑的安全性和可持续性。

建议优先选择优质材料,如高强度钢筋和烧结砖,以增加建筑的整体抗震性。

3. 框架剪力墙结构设计的案例分析以下是一个实例分析,关于一个成功应用框架剪力墙结构设计的项目。

该项目是一座60层的高层住宅,其建筑高度达到了180米。

在设计过程中,建筑工程师首先考虑了建筑的布局。

剪力墙被放置在建筑核心区域,而框架则被布置在建筑周围。

他们还考虑了建筑的高度和周边自然条件,以确保建筑具有强大的抗震和风荷载能力。

某高层建筑结构设计实例分析

某高层建筑结构设计实例分析

某高层建筑结构设计实例分析随着城市的快速发展,高层建筑如雨后春笋般涌现。

高层建筑的结构设计不仅关系到建筑的安全性和稳定性,还影响着建筑的使用功能和经济性。

本文将通过一个具体的高层建筑结构设计实例,对其进行详细的分析,以期为相关设计提供参考。

一、工程概况该高层建筑位于城市中心商务区,总建筑面积为_____平方米,地上_____层,地下_____层。

建筑高度为_____米,主要用途为商业和办公。

二、结构选型根据建筑的功能和高度要求,本工程采用了框架核心筒结构体系。

框架柱采用钢筋混凝土柱,核心筒采用钢筋混凝土剪力墙。

这种结构体系能够有效地抵抗水平荷载,保证结构的稳定性。

框架柱的布置充分考虑了建筑的平面布局和受力要求,柱距均匀合理,既满足了建筑使用功能的要求,又保证了结构的受力性能。

核心筒位于建筑的中心部位,其剪力墙的厚度和配筋根据不同楼层的受力情况进行了优化设计。

三、荷载取值在结构设计中,准确的荷载取值是至关重要的。

本工程考虑的荷载主要包括恒载、活载、风荷载和地震作用。

恒载包括结构自重、建筑装修和设备重量等。

活载根据不同的使用功能,按照相关规范进行取值。

风荷载根据当地的气象资料和建筑的体型系数进行计算。

地震作用根据抗震设防烈度和场地类别,采用反应谱法进行计算。

四、结构分析采用专业的结构分析软件对结构进行了整体计算分析。

分析结果表明,结构的各项指标均满足规范要求。

在水平荷载作用下,框架和核心筒协同工作,有效地抵抗了风荷载和地震作用。

结构的位移比、周期比、层间位移角等指标均在规范允许的范围内。

五、构件设计(一)框架柱根据计算结果,框架柱的截面尺寸和配筋进行了合理设计。

柱的纵筋采用高强度钢筋,箍筋采用复合箍筋,以保证柱的承载能力和延性。

(二)核心筒剪力墙剪力墙的厚度和配筋根据不同楼层的受力情况进行变化。

底部加强区的剪力墙厚度较大,配筋率较高,以提高其抗震性能。

(三)梁梁的截面尺寸和配筋根据跨度和受力情况进行设计。

高层建筑结构设计-剪力墙结构

高层建筑结构设计-剪力墙结构
寸时,可忽略对墙体影响 受力特点: 可视为上端自由,下端固定的竖
向悬臂构件
高层建筑结构设计- 剪力墙结构分析与设计
3.剪力墙结构的分类
整体小开口墙 洞口面积超过墙体面积的16%。 洞口至墙边净距>洞孔长边尺寸时,
可忽略对墙体影响 受力特点: 水平荷载下,由于洞口的存在,墙肢已
出现局部弯曲,其截面应力可认为由 墙体的整体弯曲和局部弯曲两者叠加 组成,截面变形仍然接近于整截面墙。
高层建筑结构设计- 剪力墙结构分析与设计
混凝土剪力墙
高层建筑结构设计- 剪力墙结构分析与设计
3.剪力墙结构的分类
联肢剪力墙 剪力墙沿竖向开一列或多列较大洞口。 由于洞口较大,剪力墙整体性已破坏。 剪力墙由连梁和联肢组成,也称双肢

连梁
受力特点: 连梁对墙肢有一定的约束作用,墙肢局
部弯矩较大,整个截面正应力已不再 呈直线分布
高层建筑结构设计- 剪力墙结构分析与设计
2.剪力墙结构的特点 – 优点和缺点(建筑 和结构两方面)
缺点: 1. 墙体较多,开间小:受楼板跨度限制(一般
为3-8m),剪力墙间距不能太大,建筑平面布 置不够灵活。 2. 刚度过大,重量大。导致地震作用大
高层建筑结构设计- 剪力墙结构分析与设计
3.剪力墙结构的分类
高层建筑结构设计- 剪力墙结构分析与设计
1.剪力墙结构的概念和力学机理
传统框架结构水平荷载与竖向荷载弯矩差别很大: 水平荷载:抗侧力刚度小,水平位移大
高层建筑结构设计- 剪力墙结构分析与设计
2.剪力墙结构的特点 – 优点和缺点(建筑 和结构两方面)
优点: 1. 房屋中没有梁柱,比较美观 2. 结构刚度大、顶部和层间位移均较小 3. 空间整体性好,抗震能力强 4. 较框架结构施工快,适用高度大于框架结构 5. 用钢量少,较经济
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 高层建筑的内力与位移计算方法
1.3.1 一般规定 1.3.2 计算参数 1.3.3 重力二阶效应结构稳定验算 1.3.4 水平地震作用标准值下楼层建立验算 1.3.5 水平位移限值和舒适度要求
1.4 作用效应组合与构建承载力计算方法
• 1.4.1 作用效应组合 • 无地震效应组合 • 有地震效应组合 • 1.4.2 构件承载力计算
1.1 高层建筑结构的选型与布置
• 1.1.2 高层建筑结构的布置 • 结构平面布置 • 结构竖向布置
1.2 高层建筑结构的荷载与地震作用
• 1.2.1 高层建筑结构的荷载 • 恒载 • 楼面活荷载 • 屋面活荷载 • 雪荷载 • 风荷载
1.2 高层建筑结构的荷载与地震作用
• 1.2.2 地震作用 • 一般规定 • 底部剪力法 • 振型分解反应谱法 • 考虑扭转影响的地震作用计算 • 竖向地震作用计算
3.1 设计任务书
某高层住在楼,采用 剪力墙结构,地下一 层,地上15层,地下 室层高3.9m,电梯机 房高3.2m,水箱高 3.1m,室内外高差 0.3m。设计使用年限 为50年。
图3.1 结构平面布置图
各片剪力墙的尺寸
壁式框架
整体墙
各片剪力墙的尺寸
壁式框架
双肢墙
各片剪力墙的尺寸
整体墙
整体小开口墙
3.12.2 整体小开口墙7截面设计
截面尺寸验算 (剪压比)
为防止发生 斜压破坏
3.12.2 整体小开口墙7截面设计
竖向分布钢筋 名义受压区高度
端部钢筋计算
3.12.2 整体小开口墙7截面设计
剪跨比
按构造要求配水平分布钢筋
验算承载力
构造配筋已经满 足承载力要求
3.12.2 整体小开口墙7截面设计
• 梁自重、墙体自重荷载标准值
• 门框重量标准值
• 设备重量标准值
示例
3.4 荷载计算
风振系数
3.4 荷载计算
风荷载体型系数
3.4 荷载计算
3.4 荷载计算
将各层风荷载转化为 倒三角形分布荷载
3.4 荷载计算
3.5 水平地震作用计算
均布荷载
3.5 水平地震作用计算
顶点位移法(P70)
计值计算 3.10.2 壁式框架1在竖向荷载作用下结构内力
设计值计算 (略)
3.11 内力组合
比较各片剪力墙非地震时内力和地震时 Nhomakorabea力 可知,墙肢平面内力偏压、偏拉内力、连梁内力 均由地震内力控制。故内力组合时对非地震内力 仅列出轴力。
荷载效应组合 (教材P81)
3.12 截面配筋
3.12.1 实体墙5截面设计 3.12.2 整体小开口墙7截面设计 3.12.3 壁式框架1截面设计 3.12.4 双肢墙4截面设计
3.1 设计任务书
3.2 剪力墙类型判别
判别方法
3.2 剪力墙类型判别
剪力墙类型判别
3.2 剪力墙类型判别
3.2 剪力墙类型判别
利用整体性系数 判别剪力墙类型
3.3 剪力墙刚度计算
• 3.3.1 各片剪力墙刚度计算 • (1)实体墙
3.3 剪力墙刚度计算
整体小开口墙等 效刚度计算公式
高层建筑结构设计实例讲解
1 基本知识
1.1 高层建筑结构的选型与布置 1.2 高层建筑结构的荷载与地震作用 1.3 高层建筑的内力与位移计算方法 1.4 作用效应组合与构建承载力计算方法
1.1 高层建筑结构的选型与布置
• 1.1.1 高层建筑结构的选型 • 各种高层建筑结构形式及其优缺点 • 高层建筑的最大适用高度 • 高层建筑结构适用的最大高宽比 • 楼盖结构形式 • 高层建筑基础形式
3.5 水平地震作用计算
地震作用计算选 用方法分析
地震影响系数
结构等效重力荷载
3.5 水平地震作用计算
顶部集中 荷载判别
计算公式
3.5 水平地震作用计算
将水平地震作用等效 为倒三角形分布荷载
3.6 结构水平位移验算 层间位移
层间位 移验算
3.7 刚重比和剪重比验算
满足此要求,则不 用考虑重力二阶效
应的不利影响
3.7 刚重比和剪重比验算
n
VEki G j ji
水平地震作用计算时, 结构各楼层对应于地 震作用标准值的剪力
应符合公式要求
3.8 水平地震作用下结构内力设计值计算 • 3.8.1 总剪力墙、总框架内力设计值计算
总剪力墙剪力 总框架剪力
总剪力墙弯矩
总剪力墙剪力 总剪力墙弯矩
3.12.1 实体墙5截面设计
验算墙体截面尺寸, 防止发生斜压破坏
3.12.1 实体墙5截面设计
180+300=480 名义受压区高度
3.12.1 实体墙5截面设计
按构造要求确定分 布钢筋,然后进行 端部钢筋面积计算
剪压比:
(3)斜截面受剪承载力计算
教材P186
为防止发生斜 压破坏,进行
剪压比计算
3 高层剪力墙结构设计例题
3.1 设计任务书 3.2 剪力墙类型判别 3.3 剪力墙刚度计算 3.4 荷载计算 3.5 水平地震作用计算 3.6 结构水平位移验算
3 高层剪力墙结构设计例题
3.7 刚重比和剪重比验算 3.8 水平地震作用下结构内力设计值计算 3.9 风荷载作用下结构内力设计值计算 3.10 竖向荷载作用下结构内力设计值计算 3.11 内力组合 3.12 截面配筋
3.3 剪力墙刚度计算
双肢墙等效刚 度计算公式
3.3 剪力墙刚度计算
(4)壁式框架1和3(略)。
3.3 剪力墙刚度计算
框架剪力墙结构 内力计算思路
3.3 剪力墙刚度计算
3.3 剪力墙刚度计算
刚度特征值
3.4 荷载计算
• 3.4.1 重力荷载标准值计算(方便内力组合)
• 屋面及楼面荷载标准值
弯矩图
1在风荷载作用下 壁梁剪力、壁柱
轴力图
3.10 竖向荷载作用下结构内力设计值计算
3.10 竖向荷载作用下结构内力设计值计算
(2)内力计算
3.10 竖向荷载作用下结构内力设计值计算 3.10.2 整体小开口墙7在竖向荷载作用下结构
内力设计值计算 3.10.2 双肢墙4在竖向荷载作用下结构内力设
剪力墙内力计算方法
3.8 水平地震作用下结构内力设计值计算
(2)(整体小开口墙)7墙肢及连梁内力设计值 (3)双肢墙4内力设计值计算 3.8.3 壁式框架内力设计值(略) 壁柱弯矩设计值计算 壁梁弯矩设计值计算 壁梁剪力及壁柱轴力设计值计算
3.9 风荷载作用下结构内力设计值计算
1在风荷载作用 下壁梁、壁柱
相关文档
最新文档