药物微粒分散系的基础理论
(完整版)药剂学复习重点归纳_人卫版
第一章绪论1.药剂学:研究药物制剂的基本理论、处方设计、制备工艺、质量控制及合理使用的综合性应用技术科学2.剂型:为适应治疗或预防的需要而制备的不同给药形式,称为药物剂型,简称剂型(Dosage form)3.制剂:为适应治疗或预防的需要而制备的不同给药形式的具体品种,称为药物制剂,简称药剂学任务:是研究将药物制成适于临床应用的剂型,并能批量生产安全、有效、稳定的制剂,以满足医疗卫生的需要。
药物剂型的重要性:改变药物作用性质,降低或消除药物的毒副作用,调节药物作用速度,靶向作用,影响药效药剂学的分支学科工业药剂学物理药剂学药用高分子材料学生物药剂学药物动力学临床药剂学药典作为药品生产、检验、供应和使用的依据第二章:药物制剂的稳定性药物制剂稳定性的概念药物制剂的稳定性系指药物在体外的稳定性,是指药物制剂在生产、运输、贮藏、周转,直至临床应用前的一系列过程中发生质量变化的速度和程度。
药用溶剂的种类(一)水溶剂是最常用的极性溶剂。
其理化性质稳定,能与身体组织在生理上相适应,吸收快,因此水溶性药物多制备成水溶液(二)非水溶剂在水中难溶,选择适量的非水溶剂,可以增大药物的溶解度。
1.醇类如乙醇、2.二氧戊环类 3.醚类甘油。
4.酰胺类二甲基乙酰胺、能与水混合,易溶于乙醇中。
5.酯类油酸乙酯。
6.植物油类如豆油、玉米油、芝麻油、作为油性制剂与乳剂的油相。
7.亚砜类如二甲基亚砜,能与水、乙醇混溶。
介电常数(dielectric constant)溶剂的介电常数表示在溶液中将相反电荷分开的能力,它反映溶剂分子的极性大小。
溶解度参数溶解度参数表示同种分子间的内聚能,也是表示分子极性大小的一种量度。
溶解度参数越大,极性越大。
溶解度(solubility)是指在一定温度下药物溶解在溶剂中达饱和时的浓度,是反映药物溶解性的重要指标。
溶解度常用一定温度下100g溶剂中(或100g溶液,或100ml溶液)溶解溶质的最大克数来表示,亦可用质量摩尔浓度mol/kg或物质的量浓度mol/L来表示。
药物微粒分散系
第三节 与微粒分散体系物理稳定性有关的理论 微粒聚结动力学 >1μm微粒不稳定(聚沉速度相对快) 快聚结 ΦT=0时势垒为0 ,一经碰撞就聚结,聚结速度由碰撞速率决定,碰撞速率由布朗运动决定即由扩散速度决定。 快聚结速度与微粒大小无关,若温度黏度固定,与微粒浓度平方成正比。
第三节 与微粒分散体系物理稳定性有关的理论 微粒聚结动力学 慢聚结 当势垒存在时,聚结速度比公式预测小。电解质有显著影响浓度降低聚结速度降低明显。浓度低反离子少双电层斥力大。 架桥聚结 聚合物有效覆盖微粒表面时能发挥空间结构的保护作用;当被吸附的聚合物只覆盖微粒一小部分表面时,使微粒对电解质敏感性大大增加,称此种絮凝作用称为敏化,可减少絮凝所需的电解质用量。这时吸附在微粒表面的高分子聚合物长链可能同时吸附在另一颗粒表面形成分子桥。
第十一章 药物微粒分散系的基本理论 第二节 微粒分散体系的性质与特点 微粒分散体系的动力学稳定性 两方面 减少粒径是防止沉降速度最有效方法,同时增加粘度,减少微粒和分散介质之间的密度差,控制温度,可阻止沉降
三、微粒光学性质(光散射丁泽尔效应) 四、微粒电学性质(电泳、双电层)
第十一章 药物微粒分散系的基本理论 第二节 微粒分散体系的性质与特点
第二篇 药物制剂的基本理论 第十一章 药物微粒分散体系的基础理论
01
04
02
05
添加标题
第一节 概述
添加标题
微粒给药系统
添加标题
第二篇 药物制剂的基本理论
添加标题
粗分散体系:混悬剂、乳剂、微囊
07
08
添加标题
胶体分散体系:纳米微乳、脂质体、
添加标题
纳米粒、纳米囊(<1000nm)
第十一章 药物微粒分散系的基本理论 第三节 与微粒分散体系物理稳定性有关的理论 二、DLVO理论 (四)临界聚沉浓度 通常势垒为零或很小时才发生聚沉。微粒凭借动能可克服势垒障碍,一旦越过势垒,微粒间相互作用的势能随彼此接近而降低,最后势能曲线在第一极小处达平衡,如势能较高足以阻止微粒在此处聚结。但在第二极小处足以阻挡微粒动能发生聚结,且由于微粒间距较远,聚集体呈松散结构,易破坏和恢复,有触变性。 第一极小处发生聚结称聚沉 第二极小处发生聚结称絮凝
微粒分散体系
I
I0
24 3V 2 ( n 2 n02 ) 2
n 2n 4
2
2
I
I0
24 3V 4
2
( n2 n02 n2 2n02
)2
0
I—散射光强度;I0_ —入射光强度;n —分散相的折射率; n0 — 分散介质的折射率;—入射光波长;V —单个粒子的 体积;ν —单位体积中粒子数目。
17
五、微粒的电学性质
• 微粒带电原因:电离、吸附、摩擦。
(一)电泳(electro phoresis)
• 定义:微粒分散系中的微粒在电场作用 下,向阴极、阳极做定向的移动。
• 微粒受力:静电力、摩擦力
E / 6r
粒子越小,移动越快
18
(二)微粒的双电层结构
•
微粒表面带同种电荷,通过静电引力,使反离
• 1980年已制得热力学稳定的氢氧化铝 溶胶,说明制备热力学稳定的微粒分散系 是可能的。
23
二、动力学稳定性
• 动力稳定性表现在: 布朗运动 沉降 • 粒子的沉降(上浮)速度符合Stokes方程:
V 2r 2 ( 1 2 ) g 9
防止沉降方法 1. 减少粒度(增加均匀性) 2. 增加粘度 3. 降低密度差 4. 防止晶型转变 5. 控制温度变化
力学、光学、电学性质) • 微粒分散系的物理稳定性(动力学、
热力学)进行较深入的讨论。
1
第一节 概述
• *分散体系:一种或几种物质高度分散在某 种介质中所形成的体系。
• 按分散相粒子大小分类: • 微粒分散体系:1nm~100µm • 微粒给药系统: • 微粒分散体系的特点:多相、热力学不稳定、
微粒分散体系-精品医学课件 (2)
药物微粒分散体系
粗 Suspension 分 Sol 散 Emulsion 体 Microcapsule 系 microsphere
粒径 100nm-100μm
nanoemulsion 胶
Liposome
体
nanoparticle 分
Nanocapsule
散 体
Nanomicell
系
粒径 <100nm
临界聚沉浓度
三、 空间稳定理论
(一) 实验规律
相对分子质量大小高分子对微粒保护作用的影响
(a)较小相对分子量高分子;(b)中等相对分子量高分子;(c)较高相对分子量高分子
敏化作用(sensitization) :高分子在粒子表面覆
盖度q =0.5时絮凝效果最好,微粒聚集下沉
(二) 理论基础 1、两种稳定理论
3
r3( 0)g
在高度为dh的体积内粒子所受的总扩散力:
F扩散 Ad ARTdC
粒子总数为: LCdV LCAdh
每一个粒子所受到的扩散力:F扩散
ARTdC LCAdh
RT LC
dC dh
(二)沉降与沉降平衡
达平衡时,重力与扩散力大小相等、方向相反:
F扩散
1)体积限制效应理论: 两微粒接近时,彼此的吸附层不能互相穿透 2)混合效应理论: 微粒表面上的高分子吸附层可以互相穿透。
四、空缺稳定理论
亦称自由聚合物稳定理论。
五、微粒聚结动力学
快聚结 慢聚结
架桥聚结 聚合物
有效覆盖 微粒表面
小部分覆盖 微粒表面
空间保护作用 架桥聚结
★
Tyndall现象的本质 是粒子对光的散射
药剂学:药物微粒分散体系的基础理论
三、微粒分散系的光学性质
当一束光照射到微粒分散系时,可以出现光的吸
(二)沉降——Stokes’定律
• 粒径 较 大 的 微 粒 受 重力作 用 ,静 置 时 会 自 然 沉降 , 其沉降速度服从 Stokes ’ 定律: (4-11)
r愈大,微粒和分散介 质的密度差愈大,分散 介质的粘度愈小,粒子 的沉降速度愈大。
2r 2 ( 1 2 ) g V 9
– 小分子真溶液(<10-9m;<1nm) – 胶体分散体系(10-7~10-9m;1~100nm) – 粗分散体系(>10-7m;>100nm) • 微粒:直径在10-9~10-4m的微粒,其构成的分散体系统称为 微粒分散体系。如微米与纳米级大小的各种给药载体/系统。
微粒分散体系的特殊性能:
①多相体系:
微球表面形态
Scanning electron micrography of ADM-GMS(阿霉素明胶微球)
微球橙红色,形态圆整、均匀,微球表面可见孔 隙,部分微球表面有药物或载体材料结晶。
2.激光散射法——动态光散射法
• 对于溶液,散射光强度、散射角大小与溶液的性质、溶质 分子量、分子尺寸及分子形态、入射光的波长等有关,对 于直径很小的微粒,雷利(瑞利)散射公式:
微粒大小与体内分布
< 50nm 的微粒能够穿透肝脏内皮, 通过毛细血管末梢或
淋巴传递进入骨髓组织。
静脉注射、腹腔注射0.1~3.0m的微粒能很快被单核吞噬 细胞系统吞噬,浓集于巨噬细胞丰富的肝脏和脾脏等部位。 人肺毛细血管直径为2m,>2m的粒子被肺毛细血管滞 留下来,<2m的微粒则通过肺而到达肝、脾等部位。 。 注射> 50m 的微粒,可使微粒分别被 截留在肠、肾等相 应部位。
药剂学18章
乳滴分散在另一种液体中形成的胶体分散系 统,其乳滴多为球形,大小比较均匀,透明 或半透明,经热压灭菌或离心也不能使之分 层,通常属热力学稳定系统。
亚纳米乳(subnanoemulsion) 粒径在
100~500nm之间,外观不透明,呈浑浊或乳 状,稳定性也不如纳米乳,虽可加热灭菌, 但加热时间太长或数次加热,也会分层。
2.接枝聚合物胶束:通常由疏水骨架链和 亲水支链沟壑的两亲性接枝聚合物胶束。
三、聚合物胶束的分类
3.聚电解质胶束:将嵌段聚电解质与带相反电荷 的另一聚电解质混合时,形成以聚电解质复合 物为核,以溶解的不带电荷的嵌段为壳的水溶 性胶束。
4.非共价键胶束:一种基于大分子间氢键作用, 促使多组分高分子在某种选择性溶剂中自组装 形成胶束的方法。
(3)双连续相型:是纳米乳特有的结构。
(二)纳米乳的形成机制
1.混合膜理论 纳米乳能自发形成的原因,是表面活性剂 和助表面活性剂的混合膜可在油-水界面 上形成暂时的负界面张力。油相和水相分 别在表面活性剂两侧,形成水膜和油膜两 个界面,称双成膜。
2.增溶理论
增溶作用是纳米乳自发形成的原因之一。 纳米乳是油相和水相分别增溶与胶束或反 胶束中,溶胀到一定粒径范围形成的。
W/O型微乳所需乳剂HLB值3~6O/W微乳
所需乳化剂HLB值8~18
(二)纳米乳的制备
1.制备纳米乳的步骤 (1)确定处方:处方种的必需成分通常石油、
水、乳化剂和助乳化剂。当油、乳化剂和 助乳化剂确定了之后,可通过三相图找出 纳米乳区域,从而确定它们的用量。 (2)配制纳米乳:由相图确定处方后,将各 成分按比例混合即可制得纳米乳,且与各 成分加入的次序无关。通常制备W/O型纳米 乳比O/W型纳米乳容易。
药物微粒分散系的基础理论
当入射电子穿透到离核很近的地方被反射,而没有能
量损失,则在任何方向都有散射,即形成背景散射;
如果入射电子撞击样品表面原子外层电子,把它激
发出来,就形成低能量的二次电子,在电场作用下可
目前二十八页\总数四十五页\编于十一点
(一)微粒间的Vander Waals吸引能
Hamaker假设:微粒间的相互作用等于组成它们的各 分子之间的相互作用的加和。
对于两个彼此平行的平板微粒,得出单位面积上相互作用
能ΦA: ΦA= - A/12πD2 对于同一物质,半径为a的两个球形微粒之间的相互
具有明显的布朗运动、丁铎尔现象、电泳 等性质, ②微粒分散体系首先是多相体系,分散相与
分散介质之间存在着相界面,因而会出现
大量的表面现象;
③随分散相微粒直径的减少,微粒比表面积
显著增大,使微粒具有相对较高的表面自 由能,所以它是热力学不稳定体系,因此,
微粒分散体系具有容易絮凝、聚结、沉降 的趋势。
目前二页\总数四十五页\编于十一点
体系中加入一定量的某种电解质,使微 粒的物理稳定性下降,出现絮凝状态。
反絮凝过程可使微粒表面的ζ电位升高。
目前二十六页\总数四十五页\编于十一点
二、DLVO理论
DLVO理论是关于微粒稳定性的理论。 (一)微粒间的Vander Waals吸引能(ΦA)
(二)双电层的排斥作用能( ΦR) (三)微粒间总相互作用能( ΦT) (四)临界聚沉浓度
当一束光线在暗室通过胶粒分散系,在其侧面
可看到明显的乳光,即Tyndall现象。丁铎尔 现象是微粒散射光的宏观表现。 低分子溶液—透射光;粗分散体系—反射光; 胶体分散系—散射光。
第四章药物微粒分散系的基础理论幻灯片
1.电子显微镜法
扫描电子显微镜 (SEM): 二次电子、背景散射 电子共同用于扫描电镜的成像。 特点:立体感强,制样简单,样品的电子损失 小等特点。在观察形态方面效果良好,常用于 研究高分子材料的制剂,如微球等。
1.电子显微镜法
透射电子显微镜( TME) 是把经加速和聚集的 电子束投射到非常薄的样品上,电子与样品 中的原子碰撞而改变方向,从而产生立体角 散射。散射角的大小与样品的密度、厚度相 关,因此可以形成明暗不同的影像。放大倍 数为几万~百万倍。 特点:常用于介质中微粒的研究。如脂质体 等。
2.激光散射法
散射光强度与粒子体积 V 的平方成正比,利 用这一特性可以测定粒子大小及分布。
对于溶液,散射光强度、散射角大小与溶液的性 质、溶质分子量、分子尺寸及分子形态、入射光
的波长等有关,对于直径很小的微粒,雷利散射
公式:
243V2
II0 4
n2n02 n22n02
2
I分-散散射介光质强折度射;率I0;-入λ-射入光射的光强波度长;;nV--分单散个相粒折子射体率积;;nυ0--
电子显微镜法的测定原理
电子束射到样品上,如果能量足够大就能穿过 样品而无相互作用,形成透射电子,用于透射 电镜(TEM)的成像和衍射;
当入射电子穿透到离核很近的地方被反射,而 没有能量损失,则在任何方向都有散射,即形
成背景散射;
如果入射电子撞击样品表面原子外层电子,把
它激发出来,就形成低能量的二次电子,在电
布朗运动是液体分子热运动撞击微粒的结果。 布朗运动是微粒扩散的微观基础,而扩散现象
又是布朗运动的宏观表现。
布朗运动使很小的微粒具有了动力学稳定性。 微粒运动的平均位移Δ可用布朗运动方程表示:
药剂学试题及答案(2)
药剂学试题及答案第十一章药物微粒分散系的基础理论一、单项选择题1.下列属于胶体分散体系的粒径范围是()A.直径小于10-9;B. 直径大于10-7;C.直径在10-9~10-7;D. 直径在10-9~10-4。
2.丁达尔现象是微粒()的宏观表现。
A.反射光;B. 散射光;C. 吸收光;D. 透射光3.以下何种方法可增加微粒分散体系的热力学稳定性()A.增加微粒表面积;B. 增加微粒表面张力;C. 增加微粒表面积并减小微粒表面张力;D. 减小微粒表面积及表面张力4.根据Stokes定律,混悬微粒沉降速度与下列哪个因素成正比()A混悬微粒半径B混悬微粒粒径C混悬微粒半径平方D混悬微粒粉碎度E混悬微粒直径二、名词解释1. 分散体系2. 电泳3. 絮凝作用答案及注解一、单项选择题二、名词解释1.分散体系:disperse system,是一种或几种物质高度分散在某种介质中所形成的体系。
被分散的物质称为分散相(disperse phase),而连续的介质称为分散介质(disperse medium)。
2.电泳:electrophoresis,如果将两个电极插入微粒分散体系的溶液中,再通以电流,则分散于溶液中的微粒可向阴极或阳极移动,这种在电场作用下微粒的定向移动就是电泳。
3.絮凝作用:flocculation,如在体系中加入一定量的某种电解质,可中和微粒表面的电荷,降低表面电荷的电量,降低ζ电位及双电层的厚度,使微粒间的斥力下降,从而使微粒的物理稳定性下降,微粒聚集成絮状,形成疏松的纤维状结构,但振摇可重新分散均匀,这种作用叫做絮凝作用,加入的电解质叫絮凝剂。
第十二章药物制剂的稳定性一、单项选择题1、下面稳定性变化中属于化学稳定性变化的是()A.乳剂分层和破乳B.混悬剂的结晶生长C.片剂溶出度变差D.混悬剂结块结饼E.药物发生水解2、药物有效期是指()A.药物降解50%的时间B.药物降解80%的时间C.药物降解90%的时间D.药物降解10%的时间E.药物降解5%的时间3、下列药物中易发生水解反应的是()A.酰胺类B.酚类C.烯醇类D.芳胺类E.噻嗪类4、下列影响药物稳定性的因素中,属于处方因素的是()A.温度B.湿度C.金属离子D.光线E.离子强度5、下列影响药物稳定性的因素中,属于外界因素的是()A.pH值B.溶剂C.表面活性剂D.离子强度E.金属离子6、相对湿度为75%的溶液是()A.饱和氯化钠溶液B.饱和硝酸钾溶液C.饱和亚硝酸钠溶液D.饱和氯化钾溶液E.饱和磷酸盐缓冲液7、相对湿度为92.5%的溶液是()A.饱和氯化钠溶液B.饱和硝酸钾溶液C.饱和亚硝酸钠溶液D.饱和氯化钾溶液E.饱和磷酸盐缓冲液8、加速试验通常是在下述条件下放置六个月()A.温度(40±2)℃,相对湿度(75±5)%B.温度(25±2)℃,相对湿度(60±5)%C.温度(60±2)℃,相对湿度(92.5±5)%D.温度(40±2)℃,相对湿度(92.5±5)%E.温度(60±2)℃,相对湿度(92.5±5)%9、药物阴凉处贮藏的条件是()A.零下15℃以下B.2℃-8℃C.2℃-10℃D.不超过20℃E.不超过25℃10、每毫升含有800单位的抗生素溶液,在25℃条件下放置,一个月后其含量变为每毫升含600单位,若此抗生素的降解符合一级反应,则其半衰期为()A.72.7天B.11天C.30天D.45天E.60天11、每毫升含有800单位的抗生素溶液,在25℃条件下放置,一个月后其含量变为每毫升含600单位,若此抗生素的降解符合一级反应,则其有效期为()A.72.7天B.11天C.30天D.45天E.60天12、下列哪种辅料不宜作为乙酰水杨酸的润滑剂()A.滑石粉B.微粉硅胶C.硬脂酸D.硬脂酸镁E.十八酸13、下列抗氧剂中不易用于偏酸性药液的是()A.硫代硫酸钠B.亚硫酸氢钠C.焦亚硫酸钠D.生育酚E.二丁甲苯酚14、对于易水解的药物,通常加入乙醇、丙二醇增加稳定性,其重要原因是()A.介电常数较小B.介电常数较大C.酸性较大D.酸性较小E.离子强度较低15、一些易水解的药物溶液中加入表面活性剂可使稳定性提高原因是()A. 两者形成络合物B.药物溶解度增加C.药物进入胶束内D.药物溶解度降低E.药物被吸附在表面活性剂表面16、 Arrhenius公式定量描述()A.湿度对反应速度的影响B.光线对反应速度的影响C.PH值对反应速度的影响D.温度对反应速度的影响E.氧气浓度对反应速度的影响17、药品的稳定性受到多种因素的影响,下属哪一项为影响药品稳定性的环境因素()A.药品的成分B.化学结构C.剂型D.辅料E.湿度18.下列关于药剂稳定性研究范畴的陈述,错误的是()A.固体制剂的吸湿属物理学稳定性变化B.制剂成分在胃内水解属化学稳定性变化C.糖浆剂的染菌属生物学稳定性变化D.乳剂的分层属于物理学稳定性变化19.防止制剂中药物水解,不宜采用的措施为()A.避光B.使用有机溶剂C.加入Na2S2O3D.调节批pH值20.测得某药50和70分解10%所需时间分别为1161小时和128小时,该药于25下有效期应为()A.2.5年B.2.1年C.1.5年D.3.3年21.正确论述用留样观察法测定药剂稳定性是()A.在一年内定期观察外观形状和质量检测B.样品只能在室温下放置C.样品只能在正常光线下放置D.此法易于找出影响稳定性的因素,利于及时改进产品质量E.成品在通常包装下放置22.留样观察法与加速实验法相比的特点是()A.按一定时间,检查有关指标:B.置不同温度条件下试验C.实验时要确定指标成分和含量测定方法D.反映药品的实际情况E.确定药物的有效期的依据23. 留样观察法中错误的叙述为()A.符合实际情况,真实可靠B.一般在室温下C.可预测药物有效期D.不能及时发现药物的变化及原因E.在通常的包装及贮藏条件下观察24. 防止药物水解的主要方法是()A.避光B.加入抗氧剂C.驱逐氧气D.制成干燥的固体制剂E.加入表面活性剂25.药物化学降解的主要途径是()A.聚合B.脱羧C.异构化D.酵解E.水解与氧化26.易发生氧化降解的药物为()A.维生素CB.乙酰水杨酸C.盐酸丁卡因D.氯霉素E.利多卡因27.下列关于制剂中药物水解的错误表述为()A.酯类、酰胺类药物易发生水解反应B.专属性酸与碱可催化水解反应C.药物的水解速度常数与溶剂的介电常数无关H PO对青霉素G钾盐的水解有催化作用D.34E、pH m表示药物溶液的最稳定pH值28.一般药物稳定性试验方法中影响因素考察包括()A.600C或400C高温试验B.250C下相对湿度(75±5)%C.250C下相对湿度(90±5)%D.(4500±500)lx的强光照射试验E.以上均包括29.关于药品稳定性的正确叙述是()A.盐酸普鲁卡因溶液的稳定性受湿度影响,与PH值无关B.药物的降解速度与离子强度无关c.固体制剂的赋型剂不影响药物稳定性D.药物的降解速度与溶剂无关E.零级反应的反应速度与反应物浓度无关30、盐酸普鲁卡因的降解的主要途径是()A、水解B、光学异构化C、氧化D、聚合E、脱羧31、关于药物稳定性叙述错误的是()A. 通常将反应物消耗一半所需的时间为半衰期B. 大多数药物的降解反应可用零级、一级反应进行处理C. 药物降解反应是一级反应,药物有效期与反应物浓度有关D. 大多数反应温度对反应速率的影响比浓度更为显著E. 温度升高时,绝大多数化学反应速率增大32、影响易于水解药物的稳定性,与药物氧化反应也有密切关系的是()A、pHB、广义的酸碱催化C、溶剂D、离子强度E、表面活性剂33、在pH—速度曲线图最低点所对应的横坐标,即为()A、最稳定pHB、最不稳定pHC、pH催化点D、反应速度最高点E、反应速度最低点34、关于药物稳定性的酸碱催化叙述错误的是()A. 许多酯类、酰胺类药物常受H+或OH—催化水解,这种催化作用也叫广义酸碱催化B. 在pH很低时,主要是酸催化C. pH较高时,主要由OH—催化D. 在pH—速度曲线图最低点所对应的横座标,即为最稳定pHE.一般药物的氧化作用也受H+或OH—的催化35、对于水解的药物关于溶剂影响叙述错误的是()A. 溶剂作为化学反应的介质,对于水解的药物反应影响很大B. lgk=lgk∞—k’ZAZB/ε表示溶剂介电常数对药物稳定性的影响C.如OH—催化水解苯巴比妥阴离子,在处方中采用介电常数低的溶剂将降低药物分解的速度D. 如专属碱对带正电荷的药物的催化,采取介电常数低的溶剂,就不能使其稳定E. 对于水解的药物,只要采用非水溶剂如乙醇、丙二醇等都可使其稳定36、对于水解的药物关于离子强度影响叙述错误的是()A. 在制剂处方中,加入电解质或加入盐所带入的离子,对于药物的水解反应加大B. lgk=lgk0+1.02 ZAZBμ表示离子强度对药物稳定性的影响C. 如药物离子带负电,并受OH—催化,加入盐使溶液离子强度增加,则分解反应速度增加D. 如果药物离子带负电,而受H+催化,则离子强度增加,分解反应速度低E. 如果药物是中性分子,因ZAZB=0,故离子强度增加对分解速度没有影响37、影响药物稳定性的环境因素不包括()A、温度B、pH值C、光线D、空气中的氧E、包装材料38、焦亚硫酸钠(或亚硫酸氢钠)常用于()A、弱酸性药液B、偏碱性药液C、碱性药液D、油溶性药液E、非水性药液39、适合弱酸性水性药液的抗氧剂有()A、亚硫酸氢钠B、BHAC、亚硫酸钠D、硫代硫酸钠E、BHT40、适合油性药液的抗氧剂有()A、焦亚硫酸钠B、亚硫酸氢钠C、亚硫酸钠D、硫代硫酸钠E、BHA41、关于稳定性试验的基本要求叙述错误的是()A. 稳定性试验包括影响因素试验、加速试验与长期试验B. 影响因素试验适用原料药和制剂处方筛选时稳定性考察,用一批原料药进行C. 加速试验与长期试验适用于原料药与药物制剂,要求用一批供试品进行D. 供试品的质量标准应与各项基础研究及临床验证所使用的供试品质量标准一致E. 加速试验与长期试验所用供试品的容器和包装材料及包装应与上市产品一致42、影响因素试验中的高温试验要求在多少温度下放置十天()A、40℃B、50℃C、60℃D、70℃E、80℃43、加速试验要求在什么条件下放置6个月()A、40℃RH75%B、50℃RH75%C、60℃RH60%D、40℃RH60% E、50℃RH60%44、某药降解服从一级反应,其消除速度常数k=0.0096天—1,其有效期为()A、31.3天B、72.7天C、11天D、22天E、88天二、配伍选择题[1-3]A.温度(40±2)℃,相对湿度(75±5)%B.温度(30±2)℃,相对湿度(60±5)%C.温度(25±2)℃,相对湿度(60±5)%D.温度(40±2)℃,相对湿度(92.5±5)%E.温度(60±2)℃,相对湿度(75±5)%1、加速试验条件通常是指()2、对温度特别敏感的药物制剂(只能在4℃-8℃贮存使用),其加速试验条件为()3、泡腾片剂和泡腾颗粒剂的加速试验条件为()[4-5]A. 2℃-10℃B. -15℃以下C.不超过20℃D.不超过25℃E.室温4、冷处保存是指()5、阴凉处保存是指()[6-9]A.亚硫酸氢钠B.亚硫酸钠C.二丁甲苯酚D.依地酸二钠E.硫代硫酸钠6、适用于偏酸性溶液的水溶性抗氧剂是()7、适用于偏碱性溶液的水溶性抗氧剂是()8、只能用于偏碱性溶液的水溶性抗氧剂是是()9、油溶性抗氧剂是()A.生育酚B.焦亚硫酸钠C.依地酸二钠D.磷酸E.吐温80[10-13]10、水溶性抗氧剂是()11、抗氧剂协同剂是()12、金属离子螯合剂()13、油溶性抗氧剂是()[14—17]A、弱酸性药液B、乙醇溶液C、碱性药液D、非水性药E、油溶性维生素类(如维生素A、D)制剂下列抗氧剂适合的药液为14、焦亚硫酸钠15、亚硫酸氢钠16、硫代硫酸钠17、BHA三、多项选择题1 药物稳定性试验方法中,影响因素试验包括()A、酶降解试验B、高温试验C、强光照射试验D、高湿度试验E、 pH影响试验2 药物水解反应表述,正确的是()A、水解反应速度与介质的pH值无关B、水解反应与溶剂的极性无关C、酯类酰胺类药物易发生水解反应D、当使用缓冲液时水解反应符合一级动力学规律E、一级反应的水解速度常数K=0.693 / t0.53、下列稳定性变化中,属于物理稳定性变化的是()A.水解B.混悬剂结晶生长C.乳剂破裂D.片剂溶出度差E.氧化4、化学动力学原理在药物稳定性研究中主要应用于以下几个方面()A.药物降解机理的研究B.药物降解速度的影响因素的研究C.药物制剂有效期的预测D.药物稳定性评价E.防止药物降解的措施与方法的研究5、下列各类药物中易发生氧化的有()A.酚类B.烯醇类C.芳胺类D.酰胺类E.内酯类6、制剂中药物的化学降解途径主要包括()A.水解B.氧化C.异构化D.聚合E.脱羧7、为了避免金属离子对制剂稳定性的影响,采取的措施有()A.操作过程避免使用金属器皿B.加入金属螯合剂C.将金属螯合剂与抗氧剂合用D.加入表面活性剂E.加入无机盐8、从改进剂型和生产工艺的角度考虑,增加药物稳定性的措施有()A.制成固体剂型B.制成微囊或饱和物C.制成药物的衍生物D.采用直接压片或包衣E.加入干燥剂或改善包装9、影响因素试验包括()A.高温试验B.高湿试验C.隔绝空气试验D.光照试验E.氧化试验10.固体制剂吸湿,可导致制剂的()A、生物学稳定性变化B、有效成分的水解C、某些药物晶型变化D、有效成分的氧化E、崩解性能的变化11.防止制剂中药物氧化,可采用的措施有()A、调节pH值B、避免光线C、防止吸潮D、加入NaSO4E、加入酒石酸12.只需在两个较高温度下进行的加速实验方法有()A、经典恒温法B、初均速法C、温度系数法D、活化能估算法E、温度指数法13、影响药剂稳定性的因素有()A 、化学方面B 、物理方面C 、生物方面D 、药理方面E 、病理方面14.关于药物氧化降解反应的正确表述为()A、药物的氧化反应与晶型有关B、维生素C的氧化降解与pH值有关C、金属离子可催化氧化反应D、含有酚羟基结构的药物易氧化降解E、氧化降解反应速度与温度无关15.关于固体制剂稳定性的正确表述是()A、亚稳定晶型的转变属于药物的物理稳定性B、固体制剂较液体制剂稳定性好C、固体药物与辅料间的相互作用不影响制剂的稳定性D、环境的相对湿度RH影响固体制剂的稳定性E、温度可加速固体制剂中药物的降解16.提高易氧化药物注射剂稳定性的方法()A、处方中加入适宜的抗氧剂B、加入金属离子络合剂作辅助抗氧剂C、制备时充入NO2气体D、处方设计时选择适宜的pH值E、避光保存17.关于药物制剂包装材料的正确表述为()A、对光敏感的药物可采用棕色瓶包装B、玻璃容器可释放碱性物质合脱落不溶性玻璃碎片C、塑料容器的透气透湿性不影响药物制剂的稳定性D、乳酸钠注射液应选择耐碱性玻璃容器E、制剂稳定性取决于处方设计,与包装材料无关18、关于药物稳定性的酸碱催化叙述正确的是()A、许多酯类、酰胺类药物常受H+或OH—的催化水解,这种催化作用也叫专属酸碱催化B、在pH很低时,主要是碱催化C、 pH较高时,主要由酸催化D、在pH—速度曲线图最低点所对应的横坐标,即为最稳定pHE、一般药物的氧化作用,不受H+或OH—的催化19、对于水解的药物关于离子强度影响叙述错误的是()A、在制剂处方中,加入电解质或加入盐所带入的离子,对于药物的水解反应加大B、 lgk=lgk0+1.02ZAZBμ表示溶剂对药物稳定性的影响C、如药物离子带负电,并受OH¬—催化,加入盐使溶液离子强度增加,则分解反应速度降低D、如果药物离子带负电,而受H+催化,则离子强度增加,分解反应速度加快E、如果药物是中性分子,因ZAZB=0,故离子强度增加对分解速度没有影响20、对于药物稳定性叙述错误的是()A、一些容易水解的药物,加入表面活性剂都能使稳定性的增加B、在制剂处方中,加入电解质或加入盐所带入的离子,对于药物的水解反应减少C、须通过实验,正确选用表面活性剂,使药物稳定D、聚乙二醇能促进氢化可的松药物的分解E、滑石粉可使乙酰水杨酸分解速度加快21、关于药物水解反应的正确表述()A、水解反应大部分符合一级动力学规律B、一级水解速度常数K=0.693/t0.9C、水解反应速度与介质的pH有关D、酯类、烯醇类药物易发生水解反应E、水解反应与溶剂的极性无关22、防止药物氧化的措施()A、驱氧B、避光C、加入抗氧剂D、加金属离子络合剂E、选择适宜的包装材料23、包装材料塑料容器存在的三个问题是()A、有透气性B、不稳定性C、有透湿性D、有吸着性E、有毒性24、凡是在水溶液中证明不稳定的药物,一般可制成()A、固体制剂B、微囊C、包合物D、乳剂E、难溶性盐25、在药物稳定性试验中,有关加速试验叙述正确的是()A、为新药申报临床与生产提供必要的资料B、原料药需要此项试验,制剂不需此项试验C、供试品可以用一批原料进行试验D、供试品按市售包装进行试验E、在温度(40±2)℃,相对湿度(75±5)%的条件下放置三个月26、药物稳定性试验方法用于新药申请需做()A、影响因素试验B、加速试验C、经典恒温法试验D、长期试验E、活化能估计法四、填空1. 药物制剂的基本要求为、、。
药物微粒分散体系的基础理论
注:溶胶粒子表面电荷旳起源
电离作用:胶粒旳基团解离;硅胶粒子表面旳SiO2分子与 水生成H2SiO3,若解离生成SiO32-,使硅溶胶带负电,介质 具有H+离子而带正电。
吸附作用:胶粒优先吸附与本身有相同成份旳离子。如 AgNO3与KI→AgI,可吸附Ag+或I-带电。
¨ 当一束光线在暗室经过胶粒分散系,在其侧面可 看到明显旳乳光,即Tyndall现象。丁铎尔现象是 (胶体)微粒散射光旳宏观体现。
¨ 低分子溶液—透射光;粗分散体系—反射光; ¨ 胶体分散系—散射光。
丁达尔现象
• 丁达尔现象(Tyndall phenomena)
• 在暗室中,将一束光经过溶胶时,在侧面 可看到一种发亮旳光柱,称为乳光,即丁 达尔(Tyndall)现象。
又是布朗运动旳宏观体现。
• 布朗运动使很小旳微粒具有了动力学稳定性。 • 微粒运动旳平均位移Δ可用布朗运动方程表达:
RTt
3rN A
(4-1)
t-时间;T-热力学温度;η-介质粘度;r-微粒半径;NA-介质微粒数目
★ r愈小,介质粘度愈小,温度愈高,粒子旳平均位
移愈大,布朗运动愈明显。
布朗运动:粒子永不断息旳无规则旳直线运动
布朗运动是粒子在每一瞬间受介质分子碰撞旳 合力方向不断变化旳成果。因为胶粒不断运动, 从其周围分子不断取得动能,从而可抗衡重力 作用而不发生聚沉。
(二)沉降——Stokes’定律
• 粒径较大旳微粒受重力作 用,静置时会自然沉降, 其沉降速度服从Stokes’ 定律: (4-11)
V 2r2(1 2)g 9
摩擦带电:非导体构成旳体系中,介电常数较大旳一相易带 正电,另一相带负电。如玻璃(15)在水中(81)带负电,苯中 (2)带正电。
fg6药剂学流变学基础
A-牛顿流体 B-塑性流体 C-假塑性流体 D-胀性流体 E-触变性流体
直线
凹型曲线 凸型曲线 环形曲线
四、粘弹性〔viscoelasticity〕
❖ 粘弹性——高分子物质或分散体系具有粘性和弹性 双重特性
❖应力缓和〔stress relaxation〕——物质被施加一 定的压力而变形,并使其保持一定应力时,应力随 时间而减少的现象
即剪切应力S与剪切速度D成正比---牛顿流动定律
—— 粘度或粘度系数,是表示流体粘度的 物理常数,是流变曲线斜率的倒数 单位Pa·s〔SI单位〕
❖牛顿流体:服从牛顿流动定律的液体 ❖牛顿流体的特点: ①一般为低分子的纯液体或稀溶液 ②在一定温度下,牛顿液体的粘度为常数,它
只是温度的函数,随温度升高而减小
❖掌握制剂处方对乳剂流动性的影响非常重要-- 相体积比、粒度、粘度等
相体积比: ✓ φ<0.05,牛顿流动 ✓ φ ——流动性下降,假塑性流动——塑性流动 ✓ φ接近0.74——相转移,粘度 ,粒径 粒径:
粒径较大时,在同样的平均粒径条件下,粒 度分布范围广的系统粘度低 连续相粘度: ✓切变速度 ——粘度 〔液滴间距离增大〕 ✓乳化剂类型、浓度
一切流体的流变性都可以用切变速度D与 剪切力S之间的关系曲线来描述,这种关系曲 线称为流变曲线〔粘度曲线〕。不同流变性 的流体具有不同的流变曲线,根据流变曲线 的不同,流体可以分为以下几种:
一、牛顿流体
二、非牛顿流体
一、牛顿流动
D 为剪切速度 S 为剪切应力
曲线的特点:一条通过坐标原点的直线
S=F/A=D =S/ D
第十四章 流变学基础
第十一章 药物微粒分散 体系的基础理论要点
脂溶性药物
水溶性药物 类脂质双分子层
亲水基团 亲油基团
脂质体靶向给药系统
微粒大小与测定方法
• 单分散体系: 微粒大小完全均一 的体系; 多分散体系:微粒大小不均一的体系。 • 绝大多数微粒分散体系为多分散体系。常 用平均粒径来描述粒子大小。 • 常用的粒径表示方法 :几何学粒径、比表 面粒径、有效粒径等。
I I0
24 V
3
2
4
n n 2 n 2n
2
2 0 2 0
2
(11-1)
• I- 散射光强度; I0- 入射光的强度; n - 分散相折射率; n0-分散介质折射率;λ-入射光波长;V-单个粒子体积; υ-单位体积溶液中粒子数目。
• 由上式,散射光强度与粒子体积V的平方成正比, 利用这一特性可测定粒子大小及分布。
微粒分散体系的动力学稳定性主要表现 在两个方面。
当微粒较小时,主要是分子热运动产
生的布朗运动;提高微粒分散体系的 物理稳定性
当微粒较大时,主要是重力作用产生
的沉降。降低微粒分散体系的物理稳 定性
(一)Brown运动
• 布朗运动是液体分子热运动撞击微粒的结果。 • 布朗运动 是微粒扩散的微观基础,而扩散现象 又是布朗运动的宏观表现。 • 布朗运动使很小的微粒具有了动力学稳定性。 • 微粒运动的平均位移Δ可用布朗运动方程表示 :
第二节
微粒分散系的性质和特点
一、微粒分散体系的热力学性质
微粒分散体系是典型的多相分散体系。随着 微粒粒径的变小,表面积 A不断增加,表面自由 能的增加ΔG为:
△G
= σ△A
(11-2)
σ— 表面张力; △ A— 表面积的增加。对于 常见的不溶性微粒的水分散体系, σ为正值,而 且数值也比较大。
初级药师考试复习笔记——药剂学药物微粒分散系的基础理论、流变学基础、药物制剂的稳定性、药物制剂的设计
药剂学药物微粒分散系的基础理论、流变学基础、药物制剂的稳定性、药物制剂的设计一、药物微粒分散系的基础理论1.概述概念:一种或多种物质高度分散在某种介质中所形成的体系小分子真溶液(直径<10-9m )微粒分散体系分类胶体分散体系(直径在10-7 ~10-9m 范围):主要包括纳米微乳、脂质体、纳米粒、纳米囊、纳米胶束等,他们的粒径全都小于1000nm粗分散体系(直径>10-7m ):主要包括混悬剂、乳剂、微囊、微球,他们的微粒在500~100μm 范围内微粒:10-9 ~10-4m 范围的分散相统称微粒多相体系,出现大量的表面现象微粒分散体系特殊的性能热力学不稳定体系粒径更小的分散体系还有明显的布朗运动、丁铎尔现象、电泳现象性质有助于提高药物的溶解速度及溶解度,有利于提高难溶性药物的生物利用度有利于提高药物微粒在分散介质中的分散性和稳定性在体内分布上有一定的选择性一般具有缓释作用2.微粒分散系的主要性质与特点单分散体系:微粒大小完全均一的体系多分散体系:微粒大小不均一的体系微粒粒径表示方法:几何学粒径、比表面粒径、有效粒径测定方法:光学显微镜法、电子显微镜法、激光散射法、库尔特计数法、Stokes 沉降法、吸附法小于50nm 的微粒能够穿透肝脏内皮,通过毛细血管末梢通过淋巴传递进入骨髓组织静脉注射、腹腔注射0.1~0.3μm 的微粒分散体系能很快被网状内皮系统的巨噬细胞所吞噬,最终多数药物微粒浓集于肝脏和脾脏等部位7~12μm 的微粒,由于大部分不能通过肺的毛细血管,结果被肺部机械性的滤取,肺是静脉注射给药后的第一个能贮留的靶位若注射大于50μm 的微粒指肠系膜动脉、门静脉、肝动脉或肾动脉,可使微粒分别被截留在肠、肝、肾等相应部位微粒的动力学性质:布朗运动是微粒扩散的微观基础,而扩散现象又是布朗运动的宏观表现纳米体系:丁铎尔现象微粒的光学性质粗分散体系:反射光为主,不能观察到丁铎尔现象低分子的真溶液:透射光为主,不能观察到丁铎尔现象电泳微粒分散体系在药剂学中的意义微粒大小与测定方法微粒大小与体内分布微粒的电学性质微粒的双电层结构:吸附层、扩散层布朗运动重力产生的沉降:服从Stokes 定律V= 絮凝与反絮凝二、流变学基础剪切应力与剪切速度是表征体系流变性质的两个基本参数牛顿流动纯液体和多数低分子溶液在层流条件下的剪切应力S 与剪切速度D 成正比。
药物微粒分散系的基础理论5
基础理论
药物微粒分散系的基础理论
第一节 概 述 第二节 微粒分散系的主要性质与特点 第三节 微粒分散体系的物理稳定性
第一节 概 述
分散体系(disperse system) :一种或几种 物质高度分散在某种介质中所形成的体系。
分散相(disperse phase),被分散的物质 分散介质(disperse medium):连续的介质
I I0 2434V2 nn222nn0202
I~散射光强度;I0~入射光的强度;n~分散 相的折射率;no~分散介质的折射率;λ~入 射光波长;V~单个粒子的体积;υ~单位体 积溶液中粒子数目
I∝V2,利用这一特性可以测定粒子大小及 分布
二、 微粒大小与体内分布
不同大小的微粒分散体系在体内具有不同的分布 特征。
三、 微粒的动力学性质
布朗运动是微粒扩散的微观基础,而扩散现象 又是布朗运动的宏观表现。正是由于布朗运动 使很小的微粒具有了动力学的稳定性。
微粒作布朗运动时的平均位移Δ可用布朗运动 方程表示
RTt
3rN A
t~时间;T~系统温度;η~介质粘度;r~微粒 半径;NA~介质中微粒的数目
四、微粒的光学性质
在本章节中,以微粒分散系的物理稳 定性为中心,介绍基本性质及有关稳 定性的基本理论
第二节 微粒分散系的主要性质与特点
微粒分散体系的性质包括其热力学性质、 动力学性质、光学性质和电学性质等 。
首先介绍粒径大小和物理稳定性有关的基 本性质 。 一、微粒大小与测定方法;二、 微粒大小与体内分布;三、 微粒的动力学 性质;四、微粒的光学性质; 五、微粒的 电学性质。
粗分散体系的微粒给药系统主要包括:
混悬剂、乳剂、微囊、微球等,粒径在 500nm~100μm范围内;
4. 药物微粒分散系的基础理论
22
Ⅰ-散射光强度;Ⅰ0-入射光的强度; -分散相 的折射率; -分散介质的折射率;λ-入射光波 长;V-单个粒子的体积;v -单位体积溶液中 粒子数目。由该公式得到,散射光强度与粒 子体积V的平方成正比,利用这一特性可以 测定粒子大小及分布。
2a ( ) g u 9
2 0
式中,a——微粒的半径;g——重力加速度; η——分散介质的粘度;ρ和ρ0——微粒和分散 介质的密度。
当微粒半径a>1μm后,则微粒就要沉降或上浮, 动力稳定性较差。因此为了减小微粒沉降或上 浮的速度,则通过增加分散介质的粘度,加入 增稠剂,调节微粒与分散介质的密度差,使 ρ≈ρ0。这样可提高此微粒分散制剂的稳定性。 但最主要的是减小微粒的半径,当微粒半径a 从 10μm减小为 1μm时,其沉降速度从 4.36×102μm/s降低为4.36μm/s,相差100倍。
一、絮凝与反絮凝 微粒表面具有扩散双电层,使微粒表面 带有同种电荷,因相互排斥而稳定 絮凝与反絮凝 ξ = 20~25mV ξ >50mV
二、DLVO理论
微粒的稳定性取决于微粒之间吸引与排斥作用的相 对大小。 Derjaguin-Landau和Verwey-Overbeek四人以微 粒间的相互吸引和相互排斥力为基础,提出DLVO 理论,它能够比较完善地解释电解质对微粒多相分 散系稳定性的影响。以下主要讨论粒子间的吸引力 和排斥力的计算。
18
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 (11-1)
? I分-散散射介光质强折度射;率I;0-入λ-射入光射的光强波度长;;nV--分单散个相粒折子射体率积;;nυ0--
单位体积溶液中粒子数目。
? 由上式, 散射光强度与粒子体积 V的平方成正比 , 利用这一特性可测定粒子大小及分布。
第二节 微粒分散系的性质和特点
一、微粒分散体系的热力学性质
三、微粒分散系的光学性质
? 当一束光照射到微粒分散系时,可以出现
光的吸收、反射和散射等。 光的吸收主要
由微粒的化学组成与结构所决定;而光的
反射与散射主要取决于微粒的大小。
? 当一束光线在暗室通过胶粒分散系,在其 侧面可看到明显的乳光,即 Tyndall 现象。
丁铎尔现象是微粒散射光的宏观表现。
? 低分子溶液—透射光;粗分散体系—反射 光;胶体分散系—散射光。
? 分散体系按分散相粒子大小分为:
小分子真溶液(<10-9m) 胶体分散体系(10-7~10-9m) 粗分散体系(>10-7m)
? 微粒:直径在10-9~10-4m的微粒,其构成的
分散体系统称为微粒分散体系。
微粒分散体系的特殊性能:
①多相体系:分散相与分散介质之间存在着 相界面,因而会出现大量的表面现象;
微粒分散体系是典型的多相分散体系。随着 微粒粒径的变小,表面积 A不断增加,表面自由 能的增加 ΔG为:
△G = σ △A
(11-2)
σ— 表面张力; △A—表面积的增加。对于 常见的不溶性微粒的水分散体系, σ 为正值,而
且数值也比较大。
二、微粒分散系的动力学性质
?微粒分散体系的动力学稳定性主要表现 在两个方面。
??
RTt
3 ? ? rN A
(11-3)
t-时间;T-热力学温度;η-介质粘度;r-微粒半径;NA-介质微粒数目
r 愈小,介质粘度愈小,温度愈高,粒子的平均位 移愈大,布朗运动愈明显。
? 布朗运动:粒子永不停息的无规则的直线运动
? 布朗运动是粒子在每一瞬间受介质分子碰撞的 合力方向不断改变的结果。由于胶粒不停运动, 从其周围分子不断获得动能,从而可抗衡重力 作用而不发生聚沉。
? 微粒大小的 测定方法: 光学显微镜法、电 子显微镜法、激光散射法、库尔特计数法、 Stokes 沉降法、吸附法等。
1.电子显微镜法
? 测定原理:电子束射到样品上,如果能量足够 大就能穿过样品而无相互作用,形成透射电子, 用于透射电镜( TEM)的成像和衍射;
? 当入射电子穿透到离核很近的地方被反射,而 没有能量损失,则在任何方向都有散射,即形
?静脉注射 、腹腔注射 0.1~3.0? m 的微粒能
很快被单核吞噬细胞系? m,>2? m的粒子被
肺毛细血管滞留下来,<2? m的微粒则通过 肺而到达肝、脾等部位。 。 ?注射>50?m的微粒,可使微粒分别被 截留 在肠、肾等相应部位。
脂溶性药物 水溶性药物
类脂质双分子层
亲水基团 亲油基团
脂质体靶向给药系统
微粒大小与测定方法
? 单分散体系: 微粒大小完全均一 的体系;
多分散体系:微粒大小不均一的体系。
? 绝大多数微粒分散体系为多分散体系。常 用平均粒径来描述粒子大小。
? 常用的粒径表示方法 :几何学粒径、比表 面粒径、有效粒径等。
?当微粒较小时,主要是分子热运动产
生的布朗运动;提高微粒分散体系的
物理稳定性
?当微粒较大时,主要是重力作用产生
的沉降。降低微粒分散体系的物理稳
定性
(一)Brown 运动
? 布朗运动是液体分子热运动撞击微粒的结果。 ? 布朗运动是微粒扩散的微观基础,而扩散现象
又是布朗运动的宏观表现。
? 布朗运动使很小的微粒具有了动力学稳定性。 ? 微粒运动的平均位移Δ可用布朗运动方程表示 :
②热力学不稳定体系:随分散相微粒的减小,
微粒比表面积显著增大,使微粒具有较高 的表面自由能。因此,微粒分散系具有易
絮凝、聚结、沉降的趋势;
③胶体分散体系:还具有明显的 布朗运动、 丁铎尔现象、电泳等性质。
微粒分散系在药剂学的重要意义
①生物利用度 :难溶性药物减小粒径,有助于 提高药物的溶解速度及溶解度,有利于提高 生物利用度;
药剂学 pharmaceutics
第十一章 药物微粒分散 体系的基础理论
主讲教师:丁 红 山西医科大学药剂教研室
第一节 概述
? 分散体系 (disperse system) 是一种或几种物 质高度分散在某种介质中形成的体系。被分
散的物质称为分散相(disperse phase) ,连续 的介质称为分散介质(disperse medium) 。
? 微球橙红色,形态圆整、均匀,微球表面可见孔 隙,部分微球表面有药物或载体材料结晶。
2.激光散射法
? 对于溶液,散射光强度、散射角大小与溶液的性 质、溶质分子量、分子尺寸及分子形态、入射光 的波长等有关,对于直径很小的微粒,雷利散射 公式:
? ? I
?
I0
24? 3?V2 ?4
n2 ? n02 n2 ? 2n02
(二)Stoke's 定律
? 粒径较大的微粒受重力作用,静置时会自 然沉降,其沉降速度服从Stoke's 定律:
V ? 2r 2 (?1 ? ? 2 )g 9?
(11-4)
V-微粒沉降速度;r-微粒半径;ρ1、ρ2-分别为微粒和分
散介质密度;? -分散介质粘度;g-重力加速度常数。
r愈大,微粒和分散介质的密度差愈大,分散介质 的粘度愈小,粒子的沉降速度愈大。
②靶向性 :大小不同的微粒在体内分布上具有 一定的选择性;
③缓释性 :微囊、微球等微粒具有明显的缓释 作用,可延长药物体内的作用时间,减少剂 量,降低毒副作用;
④稳定性 :有利于提高药物微粒在分散介质中 的分散性与稳定性;还可以改善药物在体内 外的稳定性。
微粒大小与体内分布
?<50nm 的微粒能够穿透肝脏内皮, 通过毛 细血管末梢或淋巴传递进入骨髓组织。
成背景散射;
? 如果入射电子撞击样品表面原子外层电子,把
它激发出来,就形成低能量的 二次电子,在电
场作用下可呈曲线运动,翻越障碍进入检测器, 使表面凸凹的各个部分都能清晰成像。
? 二次电子和背景散射电子共同用于 扫描电镜 (SEM)的成像。
微球表面形态
Scanning electron micrography of ADM-GMS