泰勒公式及其应用开题报告

合集下载

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用泰勒公式是数学中的一种重要工具,它可以将一个可导函数在某个点附近展开成一个无限项的多项式,从而方便于研究函数的性质和行为。

在《高等数学》课程中,泰勒公式的应用非常广泛,涉及到数值逼近、极限计算、函数性质的研究等方面。

泰勒公式可以用于数值逼近。

我们知道,实际中很多函数的精确计算是非常困难的,特别是在计算机上进行数值计算时。

我们常常使用泰勒公式来近似计算函数的值。

泰勒公式展开后的多项式可以截断成一定项数,从而得到函数在某个点的近似值。

这样的逼近方法在实际应用中非常重要,比如在科学计算、工程设计、物理模拟等方面都有广泛的应用。

泰勒公式还可以用于函数的极限计算。

我们可以将一个函数在某个点附近进行泰勒展开,然后通过取极限的方式来研究函数在该点处的性质。

我们可以利用泰勒公式来求解不定形式的极限,如0/0、∞/∞、1^∞等形式的极限。

通过适当的泰勒展开和计算,我们可以得到这些极限的具体值或者给出它们的一些性质。

泰勒公式还可以用于研究函数的性质。

我们知道,泰勒公式展开后的多项式包含了函数的各阶导数信息,通过研究这些导数可以得到函数的一些特征。

通过观察函数的高阶导数可以判断函数的单调性、凹凸性、拐点等性质。

泰勒公式还可以用于研究函数的最值,通过求取泰勒多项式的导数信息,可以确定函数的最大值或最小值,并找到最值点的坐标。

泰勒公式还有一些特殊的应用。

在微积分学中,我们常常遇到一些复杂的函数,难以直接进行求导或积分。

而泰勒公式则可以将这些函数近似表示成一个多项式,从而使得计算和研究变得简便。

泰勒公式还可以用于构造一些特殊的函数,比如常用的三角函数、指数函数、对数函数等。

泰勒公式在《高等数学》课程中有着广泛的应用。

它不仅可以用于数值逼近和极限计算,还可以用于研究函数的性质和解决一些数学问题。

对于学习数学的学生来说,理解和掌握泰勒公式的应用,对于深入理解和掌握微积分学的基本原理和方法具有重要意义。

浅谈泰勒公式及其应用

浅谈泰勒公式及其应用

浅谈泰勒公式及其应用摘要:大学泰勒公式在数学分析中是极其重要的公式,并且在经济领域中也占有一席之地。

泰勒公式是研究函数极限和估计误差等方面不可或缺的数学工具,在近似计算上有着独特的优势,在微积分的各个方面有着重要的应用。

本文主要对泰勒公式在求极限、估计误差、证明求解积分、经济学计算等几个方面的应用给予举例说明进行研究。

关键词:泰勒公式 求极限 不等式 行列式泰勒公式的应用1、利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具。

利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项。

当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限。

例1 求2240cos limx x x e x -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单。

解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+-441()12x o x =-+ 故2442441()cos 112limlim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x ex-→-解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可。

24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x →-+=112=-带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单。

(完整版)泰勒公式及其应用(数学考研)

(完整版)泰勒公式及其应用(数学考研)

第2章 预备知识前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的.给定一个函数)(x f 在点0x 处可微,则有:)()()()(000x x x f x f x x f ∆+∆'+=∆+ο这样当1<<∆x 时可得近似公式x x f x f x x f ∆'+≈∆+)()()(000或))(()()(000x x x f x f x f -'+=,10<<-x x即在0x 点附近,可以用一个x 的线形函数(一次多项式)去逼近函数f ,但这时有两个问题没有解决:(1) 近似的程度不好,精确度不高.因为我们只是用一个简单的函数—一次多项式去替代可能是十分复杂的函数f .(2)近似所产生的误差不能具体估计,只知道舍掉的是一个高阶无穷小量)(0x x -ο,如果要求误差不得超过410-,用))(()(000x x x f x f -'+去替代)(x f 行吗?因此就需要用新的逼近方法去替代函数.在下面这一节我们就来设法解决这两个问题.2.1 Taylor 公式首先看第一个问题,为了提高近似的精确程度,我们可以设想用一个x 的n 次多项式在0x 附近去逼近f ,即令n n x x a x x a a x f )(...)()(0010-++-+= (2.1)从几何上看,这表示不满足在0x 附近用一条直线(曲线)(x f y =在点))(,(00x f x 的切线)去替代)(x f y =,而是想用一条n 次抛物线n n x x a x x a a x f )(...)()(0010-++-+=去替代它.我们猜想在点))(,(00x f x 附近这两条曲线可能会拟合的更好些.那么系数0a ,1a …n a 如何确定呢?假设f 本身就是一个n 次多项式,显然,要用一个n 次多项式去替代它,最好莫过它自身了,因此应当有n n x x a x x a a x f )(...)()(0010-++-+=于是得:)(00x f a =第2章 预备知识2求一次导数可得:)(01x f a '= 又求一次导数可得:!2)(02x f a ''= 这样进行下去可得:!3)(03x f a '''=,!4)(0)4(4x f a =,… ,!)(0)(n x f a n n = 因此当f 是一个n 次多项式时,它就可以表成:k nk k nn x x k x f x x n x fx x x f x f x f )(!)()(!)(...))(()()(000)(00)(000-=-++-'+=∑= (2.2) 即0x 附近的点x 处的函数值)(x f 可以通过0x 点的函数值和各级导数值去计算.通过这个特殊的情形,我们得到一个启示,对于一般的函数f ,只要它在0x 点存在直到n 阶的导数,由这些导数构成一个n 次多项式n n n x x n x f x x x f x x x f x f x T )(!)(...)(!2)())(()()(00)(200000-++-''+-'+=称为函数)(x f 在点0x 处的泰勒多项式,)(x T n 的各项系数!)(0)(k x fk ),...,3,2,1(n k = ,称为泰勒系数.因而n 次多项式的n 次泰勒多项式就是它本身.2.2 Taylor 公式的各种余项对于一般的函数,其n 次Taylor 多项式与函数本身又有什么关系呢?函数在某点0x 附近能近似地用它在0x 点的n 次泰勒多项式去替代吗?如果可以,那怎样估计误差呢?下面的Taylor 定理就是回答这个问题的.定理1]10[ (带拉格朗日型余项的Taylor 公式)假设函数)(x f 在h x x ≤-||0上存在直至1+n 阶的连续导函数,则对任一],[00h x h x x +-∈,泰勒公式的余项为10)1()()!1()()(++-+=n n n x x n f x R ξ其中)(00x x x -+=θξ为0x 与x 间的一个值.即有10)1(00)(000)()!1()()(!)(...))(()()(++-++-++-'+=n n nn x x n f x x n x fx x x f x f x f ξ (2.3) 推论1]10[ 当0=n ,(2.3)式即为拉格朗日中值公式:))(()()(00x x f x f x f -'=-ξ所以,泰勒定理也可以看作是拉格朗日中值定理的推广. 推论2]10[ 在定理1中,若令)0()()1(!)()(101)1(>--⋅=+-++p x x n p fx R n p n n n θξ则称)(x R n 为一般形式的余项公式, 其中0x x x --=ξθ.在上式中,1+=n p 即为拉格朗日型余项.若令1=p ,则得)0()()1(!)()(10)1(>--=++p x x n f x R n n n n θξ,此式称为柯西余项公式.当00=x ,得到泰勒公式:11)(2)!1()(!)0(...!2)0()0()0()(++++++''+'+=n n n n x n x f x n f x f x f f x f θ)(,)10(<<θ (2.4)则(2.4)式称为带有拉格朗日型余项的麦克劳林公式.定理2]10[ (带皮亚诺型的余项的Taylor 公式) 若函数f 在点0x 处存在直至n 阶导数,则有∑=-=nk k k n x x k x fx P 000)()(!)()(, )()()(x P x f x R n n -=.则当0x x →时,))(()(0n n x x x R -=ο.即有))(()(!)(...))(()()(000)(000n n n x x x x n x f x x x f x f x f -+-++-'+=ο (2.5)定理3所证的(2.5)公式称为函数)(x f 在点0x 处的泰勒公式,)()()(x P x f x R n n -=, 称为泰勒公式的余项的,形如))((0n x x -ο的余项称为皮亚诺型余项,所以(2.5)式又称为带有皮亚诺型余项的泰勒公式当(2.5)式中00=x 时,可得到)(!)0(...!2)0()0()0()()(2n nn x x n f x f x f f x f ο+++''+'+= (2.6)(2.6)式称为带有皮亚诺型余项的麦克劳林公式,此展开式在一些求极限的题目中有重要应用.由于))(()(0n n x x x R -=ο,函数的各阶泰勒公式事实上是函数无穷小的一种精细分析,也是在无穷小领域将超越运算转化为整幂运算的手段.这一手段使得我们可能将无理的或超越函数的极限,转化为有理式的极限,从而使得由超越函数所带来的极限式的奇性或不定性,得以有效的约除,这就极大的简化了极限的运算.这在后面的应用中给以介绍.第2章 预备知识4定理3 设0>h ,函数)(x f 在);(0h x U 内具有2+n 阶连续导数,且0)(0)2(≠+x f n ,)(x f 在);(0h x U 内的泰勒公式为10,)!1()(!)(...)()()(10)1(0)(000<<+++++'+=+++θθn n n n h n h x fh n x fh x f x f h x f (2.7)则21lim 0+=→n h θ. 证明:)(x f 在);(0h x U 内的带皮亚诺型余项的泰勒公式:)()!2()()!1()(!)(...)()()(220)2(10)1(0)(000++++++++++++'+=+n n n n n n n h h n x f h n x f h n x f h x f x f h x f ο将上式与(2.7)式两边分别相减,可得出)()!2()()!1()(-)(220)2(10)1(0)1(++++++++=++n n n n n n h h n x fhn x fh x fοθ,从而220)2(0)1(0)1()()!2()()()()!1(+++++++=-+⋅+n n n n n h h n x f h x f h x fn οθθθ,令0→h ,得)!2()()(lim )!1(10)2(0)2(0+=⋅⋅+++→n x fx f n n n h θ,故21lim 0+=→n h θ. 由上面的证明我们可以看得出,当n 趋近于无穷大时,泰勒公式的近似效果越好,拟合程度也越好.第3章 泰勒公式的应用由于泰勒公式涉及到的是某一定点0x 及0x 处函数)(0x f 及n 阶导数值:)(0x f ',)(0x f '',…,)(0)(x fn ,以及用这些值表示动点x 处的函数值)(x f ,本章研究泰勒公式的具体应用,比如近似计算,证明中值公式,求极限等中的应用.3.1 应用Taylor 公式证明等式例3.1.1 设)(x f 在[]b a ,上三次可导,试证: ),(b a c ∈∃,使得3))((241))(2()()(a b c f a b b a f a f b f -'''+-+'+= 证明: (利用待定系数法)设k 为使下列式子成立的实数:0)(241))(2()()(3=---+'--a b k a b b a f a f b f (3.1) 这时,我们的问题归为证明:),(b a c ∈∃,使得:)(c f k '''=令3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--=,则0)()(==b g a g . 根据罗尔定理,),(b a ∈∃ξ,使得0)(='ξg ,即:0)(82)()2()2()(2=---+''-+'-'a k a a f a f f ξξξξξ 这是关于k 的方程,注意到)(ξf '在点2ξ+a 处的泰勒公式:2))((812)()2()2()(a c f a a f a f f -'''+-+''++'='ξξξξξ 其中),(b a c ∈∃,比较可得原命题成立.例3.1.2 设)(x f 在[]b a ,上有二阶导数,试证:),(b a c ∈∃,使得3))((241)2()()(a b c f b a f a b dx x f ba-''++-=⎰. (3.2) 证明:记20ba x +=,则)(x f 在0x 处泰勒公式展开式为: 20000)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ (3.3)对(3.3)式两端同时取[]b a ,上的积分,注意右端第二项积分为0,对于第三项的积分,由于导数有介值性,第一积分中值定理成立:),(b a c ∈∃,使得第3章 泰勒公式的应用632020))((121)()())((a b c f dx x x c f dx x x f baba-''=-''=-''⎰⎰ξ 因此原命题式成立.因此可以从上述两个例子中得出泰勒公式可以用来证明一些恒等式,既可以证明微分中值等式,也可以证明积分中值等式.以后在遇到一些等式的证明时,不妨可以尝试用泰勒公式来证明.证明等式后我们在思考,它能否用来证明不等式呢?经研究是可以的,下面我们通过几个例子来说明一下.3.2 应用Taylor 公式证明不等式例3.4设)(x f 在[]b a ,上二次可微,0)(<''x f ,试证:b x x x a n ≤<<≤≤∀...21,0≥i k ,11=∑=n i i k ,∑∑==>ni i i n i i i x f k x k f 11)()(.证明:取∑==ni i i x k x 10,将)(i x f 在0x x =处展开))(()()(2)())(()()(00020000x x x f x f x x f x x x f x f x f i i i i i -'+<-''+-'+=ξ 其中()n i ,...,3,2,1=.以i k 乘此式两端,然后n 个不等式相加,注意11=∑=ni i k()00110=-=-∑∑==x x k x xk ni i i ni ii得:)()()(101∑∑===<ni i i ni i ix k f x f x f k.例3.2.2 设)(x f 在[]1,0上有二阶导数,当10≤≤x 时,1)(≤x f ,2)(<''x f .试证:当10≤≤x 时,3)(≤'x f .证明:)(t f 在x 处的泰勒展开式为:2)(!2)())(()()(x t f x t a f x f t f -''+-'+=ξ 其中将t 分别换为1=t ,0=t 可得:2)1(!2)()1)(()()1(x f x x f x f f -''+-'+=ξ (3.4) 2)(!2)())(()()0(x f x x f x f f -''+-'+=η (3.5)所以(3.4)式减(3.5)式得:22!2)()1(!2)()()0()1(x f x f x f f f ηξ''--''+'=- 从而,312)1(2)(21)1()(21)0()1()(2222=+≤+-+≤''+-''++≤'x x x f x f f f x f ηξ 例3.2.3 设)(x f 在[]b a ,上二阶可导,0)()(='='b f a f ,证明:),(b a ∈∃ξ,有|)()(|)(4|)(|2a fb f a b f --≥''ξ.证明:)(x f 在a x =,b x =处的泰勒展开式分别为:21)(!2)())(()()(a x f a x a f a f x f -''+-'+=ξ,),(1x a ∈ξ 22)(!2)())(()()(b x f b x b f b f x f -''+-'+=ξ,),(2b x ∈ξ令2ba x +=,则有 4)(!2)()()2(21a b f a f b a f -''+=+ξ,)2,(1ba a +∈ξ (3.6)4)(!2)()()2(22a b f b f b a f -''+=+ξ,),2(2b b a +∈ξ (3.7) (3.7)-(3.6)得:[]0)()(8)()()(122=''-''-+-ξξf f a b a f b f 则有[])()(8)()()(8)()()(122122ξξξξf f a b f f a b a f b f ''+''-≤''-''-=- 令{})(,)(max )(21ξξξf f f ''''='',即有|)()(|)(4|)(|2a fb f a b f --≥''ξ. 例3.2.4 设)(x f 二次可微,0)1()0(==f f ,2)(max 10=≤≤x f x ,试证:16)(min 10-≤''≤≤x f x .证明:因)(x f 在[]1,0上连续,故有最大值,最小值.又因2)(max 10=≤≤x f x ,0)1()0(==f f ,故最大值在()1,0内部达到,所以()1,00∈∃x 使得)(max )(100x f x f x ≤≤=于是)(0x f 为极大值,由费马定理有:0)(0='x f ,在0x x =处按Taylor 公式展开:)1,0(,∈∃ηξ使得:第3章 泰勒公式的应用82002)()()0(0x f x f f ξ''+==, (3.8) 200)1(2)()()1(0x f x f f -''+==η. (3.9)因此{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---=''''≤''≤≤202010)1(4,4min )(),(min )(min x x f f x f x ηξ 而⎥⎦⎤⎢⎣⎡∈1,210x 时,16)1(4)1(4,4min 202020-≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x , ⎥⎦⎤⎢⎣⎡∈21,00x 时,164)1(4,4min 202020-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x . 所以,16)(min 10-≤''≤≤x f x .由上述几个例题可以看出泰勒公式还可以用来证明不等式,例3.2.1说明泰勒公式可以根据题目的条件来证明函数的凹凸性,例3.2.2说明可以对某些函数在一定范围内的界进行估计,例3.2.3是用泰勒公式证明中值不等式,例3.2.4与例3.2.2很相似,只不过前者是界的估计,后者是对导数的中值估计.证明不等式有很多种方法,而学习了泰勒公式后,又增添了一种方法,在以后的学习中我们要会灵活应用.但前提是要满足应用的条件,那就是泰勒公式成立的条件.3.3 应用Taylor 公式求极限例3.3.1求422cos limxex x x -→-.解:在这里我们用泰勒公式求解,考虑到极限,用带皮亚诺型余项的麦克劳林公式展开,则有)(2421cos 542x x x x ο++-=)(82154222x x x ex ο++-=-)(12cos 5422x x ex x ο+-=--所以,121)(12lim cos lim4540242-=+-=-→-→xx x xex x x x ο. 像这类函数用泰勒公式求极限就比较简单,因为使用洛毕达法则比较麻烦和复杂.例 3.3.2 设函数)(x ϕ在[)+∞,0上二次连续可微,如果)(lim x x ϕ+∞→存在,且)(x ϕ''在[)+∞,0上有界,试证:0)(lim ='+∞→x x ϕ.证明:要证明0)(lim ='+∞→x x ϕ,即要证明:0>∀ε,0>∃δ.当M x >时()εϕ<'x . 利用Taylor 公式,0>∀h ,2)(21)()()(h h x x h x ξϕϕϕϕ''+'+=+ (3.10)即[]h x h x h x )(21)()(1)(ξϕϕϕϕ''--+=' (3.11) 记)(lim x A x ϕ+∞→=,因)(x ϕ''有界,所以0>∃M ,使得M x ≤'')(ϕ, )0(≥∀x故由(3.11)知[]h x A A h x h x |)(|21)()(1)(ξϕϕϕϕ''+-+-+≤' (3.12) 0>∀ε,首先可取0>h 充分小,使得221ε<Mh , 然后将h 固定,因)(lim x A x ϕ+∞→=, 所以0>∃δ,当δ>x 时[]2)()(1εϕϕ<-+-+x A A h x h 从而由(3.12)式即得:εεεϕ=+<'22)(x .即0)(lim ='+∞→x x ϕ例3.3.3 判断下列函数的曲线是否存在渐近线,若存在的话,求出渐近线方程. (1)32)1)(2(+-=x x y ;(2))1(cos 2215x e xx y --=.解:(1)首先设所求的渐近线为 b ax y +=,并令 xu 1=,则有:第3章 泰勒公式的应用100)(1lim )()321)(321(lim )1()21(lim])1)(2([lim 003231032=+--=+--+-=--+-=--+-→→→∞→uu bu a u u bu a u u ubu a u u b ax x x u u u x οο从中解出:1=a ,0=b .所以有渐近线:x y =.(2)设b ax y +=,xu 1=,则有 0)()4221)(2421(lim cos lim ])1(cos [lim 554424205542021522=+--⋅+-+-=---=---→-→-∞→u u bu au u u u u u bu au e u b ax e x x u u u xx ο从中解出:121-=a ,0,1==b a . 所以有渐近线:x y 121-=.从上面的例子中我们可以看得出泰勒公式在判断函数渐近线时的作用,因而我们在判断函数形态时可以考虑这个方法,通过求极限来求函数的渐进线.上述三个例子都是泰勒公式在求极限的题目上的应用,例3.3.1是在具体点或者是特殊点的极限,而第二个例子是求无穷远处的极限,第三个是利用极限来求函数的渐近线,学习了数学分析,我们知道求极限的方法多种多样,但对于有些复杂的题目我们用洛必达法则或其他方法是很难求出,或者是比较复杂的,我们不妨用泰勒公式来解决.3.4 应用Taylor 公式求中值点的极限例3.4.1]4[ 设(1))(x f 在),(00δδ+-x x 内是n 阶连续可微函数,此处0>δ; (2)当)1(,...,3,2-=n k 时,有0)(0)(=x f k ,但是0)(0)(≠x f n ;(3)当δ<≠h 0时有))(()()(000h h x f hx f h x f θ+'=-+. (3.13)其中1)(0<<h θ,证明:101)(lim -→=n h nh θ. 证明:要求出)(h θ的极限必须设法解出)(h θ,因此将(3.13)式左边的)(0h x f +及右端的))((0h h x f θ+'在0x 处展开,注意条件(2),知)1,0(,21∈∃θθ使得())(!)()()(10000h x f n h x f h x f h x f n n θ++'+=+, (3.14) ))(()!1())(()())((20)(1100h h x f n h h x f h h x f n n n θθθθ+-+'=+'--, (3.15)于是(3.13)式变为=++'-)(!)(10)(10h x f n h x f n n θ))(()!1())(()(20)(110h h x f n h h x f n n n θθθ+-+'--从而120)(10)())(()()(-++=n n n h h x nf h x f h θθθθ. 因)1,0()(,,21∈h θθθ,利用)()(x f n 的连续性,由此可得101)(lim -→=n h nh θ. 这个例子可以作为定理来使用,但前提是要满足条件.以后只要遇到相关的题目就可以简单应用.3.5 应用Taylor 公式近似计算由于泰勒公式主要是用一个多项式去逼近函数,因而可用于求某些函数的近似值,或根据误差确定变量范围.特别是计算机编程上的计算.例3.5.1 求:(1)计算e 的值,使其误差不超过610-;(2)用泰勒多项式逼近正弦函数x sin ,要求误差不超过310-,以2=m 的情形讨论x 的取值范围.解:(1) 由于x e 的麦克劳林的泰勒展开式为: 10,)!1(!...!2112<<++++++=+θθn xn x x n e n x x x e 当1=x 时,有)!1(!1...!2111++++++=n e n e θ故)!1(3)!1()1(+<+=n n e R n θ. 当9=n 时,有第3章 泰勒公式的应用 12691036288003!103)1(-<<=R 从而省略)1(9R 而求得e 的近似值为: 718285.2!91...!31!2111≈+++++≈e (2) 当2=m 时, 6sin 3x x x -≈,使其误差满足: 355410!5!5cos )(-<≤=x x x x R θ 只需6543.0<x (弧度),即大约在原点左右37°29′38″范围内,上述三次多项式逼近的误差不超过310-.3.6 应用Taylor 公式求极值定理3.1 ]12[ 设f 在0x 附近有1+n 阶连续导数,且)(0x f ')(0x f ''=0)(...0)(===x f n , 0)(0)1(≠+x f n(1)如果n 为偶数,则0x 不是f 的极值点.(2)如果n 为奇数,则0x 是f 的严格极值点,且当0)(0)1(>+x fn 时,0x 是f 的严格极小值点;当0)(0)1(<+x f n 时,0x 是f 的严格极大值点.证明:将f 在0x 点处作带皮亚诺型余项的Taylor 展开,即:))(()()!1()()()(10100)1(0+++-+-++=n n n x x x x n x f x f x f ο 于是1010100)1(0)()())(()!1()()()(++++-⎥⎦⎤⎢⎣⎡--++=-n n n n x x x x x x n x f x f x f ο 由于)!1()()())(()!1()(lim 0)1(10100)1(0+=⎥⎦⎤⎢⎣⎡--++++++→n x f x x x x n x f n n n n x x ο 故0>∃δ,),(00δδ+-x x 中,10100)1()())(()!1()(+++--++n n n x x x x n x f ο与)!1()(0)1(++n x f n 同号. (1)如果n 为偶数,则由10)(+-n x x 在0x 附近变号知,)()(0x f x f -也变号,故0x 不是f 的极值点.(2)如果n 为奇数,则1+n 为偶数,于是,10)(+-n x x 在0x 附近不变号,故)()(0x f x f -与)!1()(0)1(++n x f n 同号. 若0)(0)1(>+x f n ,则)()(0x f x f >,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极小值点. 若0)(0)1(<+x f n ,则)()(0x f x f <,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极大值点.例3.6.1 试求函数34)1(-x x 的极值.解:设34)1()(-=x x x f ,由于)47()1()(23--='x x x x f ,因此74,1,0=x 是函数的三个稳定点.f 的二阶导数为)287)(1(6)(22+--=''x x x x x f ,由此得,0)1()0(=''=''f f 及0)74(>''f .所以)(x f 在74=x 时取得极小值. 求三阶导数)4306035(6)(23-+-='''x x x x x f ,有0)0(='''f ,0)1(>'''f .由于31=+n ,则2=n 为偶数,由定理3.1知f 在1=x 不取极值.再求f 的四阶导数)1154535(24)(23)4(-+-=x x x x f ,有0)0()4(<f .因为41=+n ,则3=n 为奇数,由定理3.1知f 在0=x 处取得极大值.综上所述,0)0(=f 为极大值,82354369127374)74(34-=-=)()(f 为极小值. 由上面的例题我们可以了解到定理3.1也是判断极值的充分条件.3.7 应用Taylor 公式研究函数图形的局部形态定理3.2]12[ 设R X ∈为任一非空集合,X x ∈0,函数R X f →:在0x 处n 阶可导,且满足条件:)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n .(1)n 为偶数,如果)0(0)(0)(<>x f n ,则曲线)(x f y =在点))(,(00x f x 的邻近位于曲线过此点的切线的上(下)方.(2)n 为奇数,则曲线)(x f y =在点))(,(00x f x 的邻近位于该点切线的两侧,此时称曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.证明:因为f 在0x 处n 阶可导,并且)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n ,所以f 在0x 的开邻域 ),(0δx B 内的n 阶Taylor 公式为第3章 泰勒公式的应用 14))(()(!)())(()()(000)(000n n n x x x x n x f x x x f x f x f -+-+-'+=ο )(0x x → 于是[]⎥⎦⎤⎢⎣⎡--+-=-'+-n n n nx x x x n x f x x x x x f x f x f )())((!)()())(()()(000)(0000ο 由于!)()())((!)(lim 0)(000)(0n x f x x x x n x f n n n n x x =⎥⎦⎤⎢⎣⎡--+→ο 由此可见:0>∃δ,),(0δx B X x ∈∀,有:[]))(()()(000x x x f x f x f -'+-与n n x x n x f )(!)(00)(-同号. (1)当n 为偶数,如果0)(0)(>x f n ,则[]0))(()()(000>-'+-x x x f x f x f ,),(0δx B X x ∈∀这就表明在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上方;如果0)(0)(<x f n ,则有[]0))(()()(000<-'+-x x x f x f x f ,),(0δx B X x ∈∀因此,在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下方.(2)当n 为奇数,这时若)0(0)(0)(<>x f n ,则[])0(0))(()()(000<>-'+-x x x f x f x f , ),(0δx B X x+∈∀ [])0(0))(()()(000><-'+-x x x f x f x f , ),(0δx B X x-∈∀ 由此知,在0x 的右侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上(下)方;而在0x 的左侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下(上)方.因此,曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.3.8 应用Taylor 公式研究线形插值例 3.8.1(线形插值的误差公式) 设R b a f →],[:为实一元函数,l 为两点))(,(a f a 与))(,(b f b 所决定的线形函数,即)()()(b f a b a x a f a b x b x l --+--=,l 称为f 在区间],[b a 上的线形插值.如果f 在区间],[b a 上二阶可导,f 在],[b a 上连续,那么,我们可以对这种插值法带来的误差作出估计.应用带Lagrange 型余项Taylor 公式:),(x a ∈∃ξ,),(b x ∈∃η,使得 [][])(2))(()()(2))(()()(21)()()()(21)()()()()()()()(22ζηξηξf a x x b f a b x b f a b a x a x x b f x b x f x b a b a x f x a x f x a a b x b x f b f ab a x x f a f a b x b x f x l ''--=⎥⎦⎤⎢⎣⎡''--+''----=⎥⎦⎤⎢⎣⎡''-+'---+⎥⎦⎤⎢⎣⎡''-+'---=---+---=-其中,),(b a ∈ζ,最后一个式子是由于0>--a b x b ,0>--ab a x . )}(),(max{)()())}((),(min{)}(),(min{ηξηξηξηξf f f ab x b f a b a x ab x b a b a x f f f f ''''≤''--+''--≤--+--''''='''' 以及Darboux 定理推得.如果M 为)(x f ''的上界(特别当)(x f ''在],[b a 上连续时,根据最值定理,取)(max ],[x f M b a x ''=∈),则误差估计为 M a b f a x x b x f x l 2)(|)(|2))(()()(2-≤''--≤-ζ,],[b a x ∈∀ 这表明,M 愈小线性插值的逼近效果就会愈好,当M 很小时,曲线)(x f y =的切线改变得不剧烈,这也是符合几何直观的.3.9 应用Taylor 公式研究函数表达式例3.9.1]4[ 设在内有连续三阶导数,且满足方程:)()()(h x f h x f h x f θ+'+=+,10<<θ.(θ与h 无关) (3.16)试证:)(x f 是一次或二次函数.证明:要证)(x f 是一次或二次函数,就是要证0)(≡''x f 或0)(≡'''x f .因此要将(3.16)式对h 求导,注意θ与h 无关,我们有)()()(h x f h h x f h x f θθθ+''++'=+' (3.17)从而)()()()()(h x f hh x f x f x f h x f θθθ+''=+'-'+'-+' (3.18) 令0→h ,对(3.17)式两边取极限得:)()()(x f x f x f ''=''-''θθ,即第3章 泰勒公式的应用16 )(2)(x f x f ''=''θ 若21≠θ,由此知0)(≡''x f ,)(x f 为一次函数; 若21=θ,则(3.17)式变成:)21(21)21()(h x f h h x f h x f +''++'=+'.此式两端同时对h 求导,减去)(x f '',除以h ,然后令0→h 取极限,即得0)(≡'''x f ,即)(x f 为二次函数.实际上在一定条件下证明某函数0)(≡x f 的问题,我们称之为归零问题, 因此上例实际上也是)(x f '',)(x f '''的归零。

《泰勒公式及其应用》的开题报告.doc

《泰勒公式及其应用》的开题报告.doc

《泰勒公式及其应用》的开题报告《泰勒公式的验证及其应用》的关键词:泰勒公式的验证数学开题报告范文中国开题报告1.本课题的目的及研究意义目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。

泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。

研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。

如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。

对泰勒公式的研究就是为了解决上述问题的。

2.本课题的研究现状数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。

泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。

对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。

本课题将从以下几个方面展开研究:一、介绍泰勒公式及其证明方法二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。

三、结论。

4.本课题的实行方案、进度及预期效果实行方案:1.对泰勒公式的证明方法进行归纳;2.灵活运用公式来解决极限、级数敛散性等问题;3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。

实行进度:研究时间为第8 学期,研究周期为9周。

泰勒定理及应用

泰勒定理及应用

泰勒定理及应用一、主要定理回顾 1、Taylor 定理若()f x 满足:(1)在闭区间[],a b 上存在()f x 直到n 阶的连续导数;(2)在开区间(),a b 内存在()f x 的1n +阶导数;则对∀0,[,]x x a b ∈,有()()()n n f x P x R x =+,其中()20000000()()()()()()()()2!!n n n f x f x P x f x f x x x x x x x n ′′′=+−+−++−",称为Taylor多项式,()0()()nn R x x x ο=−(当0x x →),称为皮亚诺(Piano)型余项;或 (1)10()()()(1)!n n n f R x x x n ξ++=−+,称为拉格朗日(Lagrange)型余项。

2、马克劳林(Maclaurin)公式(常用)当00x =时,()()2(0)(0)()(0)(0)2!!n nn f f f x f f x x x R x n ′′′=+++++",其中()()()()()()111!n nn n n f R x o xR x x n ξ++==+或3、常用函数的Maclaurin 展开式(1)()231,2!3!!nxn x x x e x R x x R n =++++++∈" ()()()()()1,1!x nn n n e R x o xR x x n θ+==+(2)()()()()12135721sin ,1,2,3,3!5!7!21!n n n x x x x x x R x x Rn n −−−=−+−+++∈=−""()()()()2212221sin 2,21!n n n n n x R x o x R x x n θπ++⎛⎞+⎜⎟⎝⎠==+(3)()()()()2246211cos 1,1,2,3,2!4!6!2!nn n x x x x x R x x Rn n +−=−+−+++∈=""()()()()2122212122cos 2,22!n n n n n x R x o x R x x n θπ+++++⎛⎞+⎜⎟⎝⎠==+(4)()()()(]1231ln 1,1,123n n n x x x x x R x x n −−+=−++++∈−"()()()()()()111,11nnn n n n R x o xR x x n x θ++−==++ (5)()()()()()2111112!!n n n x x x x R x n ααααααα−−−++=+++++""()()()()()()()()111,1,1,11!n nn n n n R x o xR x x x x n ααααθ−−+−−==+∈−+"(6)()()2311(1),1,11n n n x x x x R x x x=−+−++−+∈−+" ()()()112(1),(1)n nn n n n R x o xR x x x θ+++−==+ 以上各式中()0,1θ∈二、典型题型解析1、应用Taylor 公式证明含有中间值的等式、不等式例1、设()f x 在[],a b 上连续, 在(),a b 内有二阶连续导数,证明:(),a b ξ∃∈,使()()()()2224b a a b f b f f a f ξ−+⎛⎞′′−+=⎜⎟⎝⎠(1)关键词:()f x 在(),a b 内有二阶连续导数 (2)分析:考虑三个已知点,,2a ba b +,在2a b +处对()f x 做二阶Taylor 展开,有 ()()212222!2f a b a b b a b a f a f f ξ′′++−−⎛⎞⎛⎞⎛⎞⎛⎞′=+−+−⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠()212222!2f a b a b b a b a f f ξ′′++−−⎛⎞⎛⎞⎛⎞′=−+⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠()()212222!2f a b a b b a b a f b f f ξ′′++−−⎛⎞⎛⎞⎛⎞′=++⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,从而()()()()()()212228b a a b f a f f b f f ξξ−+⎛⎞′′′′−+=+⎜⎟⎝⎠,再利用介值定理即可。

泰勒公式在高等数学中的应用研究定稿

泰勒公式在高等数学中的应用研究定稿

泰勒公式在高等数学中的应用研究曾璐数学与信息科学学院 数学与应用数学 1229S002【摘要】本文主要介绍了泰勒公式及其几个常见函数的泰勒展式在高等数学应用中的六个问题,即用泰勒公式求极限,证明不等式,进行近似计算,求高阶导数在某些点的数值、泰勒公式在常微分方程数值求解及敛散性判断中的应用。

【关键词】极限 不等式 近似计算 敛散性 高阶导数及常微分方程,。

1 引言泰勒公式是高等数学中一个重要的公式,它有带皮亚诺余项和带拉格朗日余项两种形式。

这两种形式对解决高等数学中的一些复杂的问题有很大的帮助,下面对它具体的应用进行分析,以此来说明泰勒公式的基本思想及其重要性。

2 基本知识点2.1 泰勒公式介绍由一般的函数f ,它在某点0x 存在有n 阶导数,我们把求得的各阶导数组合,则可以重新构成一个n 次多项式为:()()()()()()()()n n n x x n x f x x x f x x x f x f x T 0020000!...!2''!1'0'-++-+-+=,这个多项式称为函数f 在该点0x 处的泰勒(Taylor)多项式,其中每一项的系数()()......,...,2,1!0n k k x fk=被称为多项式的泰勒系数。

如果一般的函数f 如果在某点0x 处存在到n 阶导数,这时构成新的一个多项式: ()()()()()()()()()()n n n x x x x n x f x x x f x x x f x f x f 00020000!...!2''!1'0'-+-++-+-+=ο它为函数f 在该点0x 处的泰勒公式,而()()()x T x f x R n n -=为泰勒公式的余项。

2.2 麦克劳林公式的推导以上提到的泰勒公式是在任意点0x 处得到的,如果点0x 是一个特殊的点,那函数f 是否可得到新的一个多项式组合。

《关于泰勒公式的应用》开题报告格式范例_开题报告_

《关于泰勒公式的应用》开题报告格式范例_开题报告_

《关于泰勒公式的应用》开题报告格式范例格式范例如下文1 课题研究意义在初等函数中,多项式是最简单的函数。

因为多项式函数的运算只有加、减、乘三种运算。

如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。

那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具.2 文献综述为了写好文章我着重查阅参考了以下文献:人民教育出版社出版江泽坚编写的《数学分析》,这本书给出了泰勒(taylor)定理的具体定义,及其麦克劳林 (maclaurin) 公式定义. 洛阳工业高等专科学校学报王素芳和陶荣写的《泰勒公式在计算及证明中的应用》,这篇文章阐述了泰勒公式在证明不等式中应用的具体方法,具体分为三个方面:有关一般不等式的证明、有关定积分不等式的证明、有关定积分等式证明的具体方法、步骤. 天津工业学院学报张励写的《泰勒公式的应用》,这篇文章中阐述了taylor公式在计算极限中应用的几种方法.以及其他的一些书目报刊.3 主要内容我的准备阐述泰勒(taylor)公式和麦克劳林(maclaurin)公式在数学分析中几个重要的应用. 准备从这两方面写这篇文章: taylor定理的应用.taylor公式的应用1 taylor公式在计算极限中的应用对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题. 满足下列情况时可考虑用泰勒公式求极限:(1)用洛比达法则时,次数较多,且求导及化简过程较繁;(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;(3)所遇到的函数展开为泰勒公式不难.当确定了要用泰勒公式求极限时,关键是确定展开的阶数. 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式. 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数.2 taylor公式在证明不等式中的应用有关一般不等式的证明针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题. 证明思路:(1)写出比最高阶导数低一阶的taylor公式;(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放.有关定积分不等式的证明针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号.证题思路:直接写出的taylor展开式,然后根据题意对展开式进行缩放.有关定积分等式的证明针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题.证明思路:作辅助函数,将在所需点处进行taylor展开对taylor 余项作适当处理.3 taylor公式在近似计算中的应用利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计.4 研究方法为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献. 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作. 具体采用了数学归纳法、分析法、反证法、演绎法等方法.5 进度计划为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作.以上是开题报告格式范例。

【精品】泰勒公式及其应用90907

【精品】泰勒公式及其应用90907

泰勒公式及其应用摘要:泰勒公式是数学分析这门课中的一个重要公式,在分析和研究数学问题中有着重要作用,使它成为分析和研究其他数学问题的有力杠杆。

它可以应用于求极限、进行近似计算、不等式证明、行列式计算、判断函数极值等方面。

我们在这里主要来说明泰勒公式及若干应用.关键词:泰勒公式;函数;极限;不等式;近似计算;证明;收敛性。

ApplicationoftheTaylorFormulaAbstract:Taylorformulaisamathematicalanalysisofthisclassinanimportantformula,TheTaylorformulaplaysanimportantpartinanalyzingandresearchingthemathproblem sandmakeinapowerfulleverinothermathematicalproblems。

Itcanbeusedinordertolimit,todeterminethefunctionextremumseekinghigher—orderderivativevaluesatsomepointtodeterminetheconvergenceofseriesandgeneral izedintegral,approximatecalculation,inequalityprovedintegralproblems,differentialequatio nproblemandsoon。

WearemainlyexplicatingtheTaylorformulasandanumberofapplications.目录1。

泰勒公式........................................... 错误!未指定书签。

1.1泰勒多项式..................................... 错误!未指定书签。

泰勒公式及其应用探索

泰勒公式及其应用探索

泰勒公式及其应用探索摘要:文章主要对泰勒公式在广义积分敛散性中的应用关于界的估计、和泰勒公式展开的唯一性问题做了简单系统的介绍和分析,从而体现泰勒公式式在微分学中占有很重要的地位。

关键词:泰勒公式一、引言近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作。

泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒在微积分学中将函数展开成无穷级数而定义出来的。

泰勒将函数展开成级数得到泰勒公式,对于一般函数,设它在点存在直到阶的导数,由这些导数构成一个次多项式:称为函数在点处的泰勒多项式,若函数在点存在直至阶导数,则有即:称为泰勒公式。

众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可缺少的数学工具,集中体现了微积分“逼近法”的精髓。

在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用。

泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

这篇主要在于探索泰勒公式及其应用的新方法,借助泰勒公式的广泛应用,将泰勒公式的知识应用到数学解题的各个方面和领域中去,得出泰勒公式在数学各方面的应用和求解方法的简便性。

二、泰勒公式的应用2.1利用泰勒公式解经济学问题我们知道泰勒公式在解定积分中有着广泛的应用,而定积分在经济学中是不可缺的,在这里将以定积分为平台,利用泰勒公式去解决经济学问题。

例1:完全竞争行业中某厂商的成本函数为STC=,假设产品的价格为66元,求:(1)由于竞争市场供求发生变化,由此决定新的价格为30元,在心的价格下,厂商是否会发生亏损,如果会,最小的亏损额是多少?解:(1)由于市场供求发生变化,新的价格为27元,厂商是否发生亏损仍需要根据P=MC所决定的均衡产量计算利润为正还是为负,不论利润最大还是亏损最小,均衡条件都是P=MC,成本函数为STC=,令=由泰勒公式我们知道,……所以,STC=,又因为P=MC,即27=,所以。

【论文】泰勒公式及其应用开题报告

【论文】泰勒公式及其应用开题报告
签名:201年月日
九、开题审查小组意见
开题审查小组组长签名:201年月日
此文档是由网络收集并进行重新排版整理.word可编辑版本!
七、主要参考文献
[1]刘云,王阳,崔春红.浅谈泰勒公式的应用[J].和田师范专科学校学报,2008,(2):196-197.
[2]邓晓燕,陈文霞.泰勒公式的推广及其应用[J].高等函授学报(自然科学版),2012,(1):61-63.
[3]张云艳.Taylor公式的应用补遗[J].洛阳师范学院学报,2007,(5):175-176.
在2002年—2012年十年为时间范围,以“泰勒公式”和“泰勒公式的应用”为关键词,在中国知网以及万方数据等数据库中共搜索到30余篇文章。
在这些文献中作者在不等式或者等式的证明或者计算时都充分利用了泰勒公式的定理和性质,但方法新颖又恰到好处,值得借鉴和学习。泰勒公式的应用是非常广泛的,对于泰勒公式的研究还在进行中,我相信通过今后的不断努力研究,泰勒公式还能发挥出更多的作用。
四川大学数学学院陈丽教授在《关于泰勒公式课堂教学的尝试与体会》一文中把当下最流行的明星模仿秀的概念引用到函数上来,把函数比喻成明星然后用其他的简单函数来模仿明星函数,通过认识其他简单函数来认识明星函数,将深奥难懂的数学知识与时代流行结合起来,这样学生对与函数的理解就深刻多了,对泰勒公式的应用也就轻松了。
第四阶段:2013年1月9日—3月初,提交毕业论文电子稿和纸质稿各一份交给指导老师审查,便于老师及时提出修改意见。
第五阶段:2013年3月初至4月初,修改论文,将毕业论文的修订稿交与指导老师审查,并最终确定论文的内容,并根据论文规范写作。最后提交论文,做论文答辩。
第六阶段:2013年4月6日—4月21日,论文答辩阶段,整理相关材料,做好毕业论文答辩准备工作。

泰勒公式及其应用论文

泰勒公式及其应用论文

学士学位论文泰勒公式及其应用2012年5月18日毕业论文成绩评定表院(系):数学与信息学院学号:独创声明本人在此声明:本篇论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议.尽我所知,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明.此声明的法律后果由本人承担.作者签名:二〇一二年五月十八日毕业论文使用授权声明本人完全了解鲁东大学关于收集、保存、使用毕业论文的规定.本人愿意按照学校要求提交论文的印刷本和电子版,同意学校保存论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文;同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文的部分或全部内容,允许他人依法合理使用.(保密论文在解密后遵守此规定)论文作者(签名):二〇一二年五月十八日目录1.引言 (1)2. 泰勒公式及其应用 (1)2.1预备知识 (1)3 泰勒公式的应用 (3)3.1利用泰勒公式求极限 (3)3.2利用泰勒公式求不等式 (3)3.3利用泰勒级数判断级数的敛散性 (4)3.4利用泰勒公式证明根的唯一性 (5)3.5利用泰勒公式判断函数的极值 (5)3.6利用泰勒公式求初等函数的幂级展开式 (6)3.7利用泰勒公式进行近似计算 (6)3.8利用泰勒公式判断函数的凸凹性和拐点 (7)3.9利用泰勒公式求高阶导数在某点的数 (8)参考文献 (8)致谢 (8)泰勒公式及其应用(数学与信息学院 数学与应用数学 2008级数本2班20082112010)摘要:在数学分析中泰勒公式是一个重要的内容.本文论述了泰勒公式的定义,内容 ,并介绍了泰勒公式的9个应用及举例说明.利用泰勒公式求不等式,求极限,证明敛散性,根的唯一性等一系列泰勒函数的应用,使我们更加清楚地认识泰勒公式的重要性.关键词:泰勒公式 皮亚诺余项 拉格朗日余项 应用Taylor formula and it ’s application(20082112010 Class 2 Grade 2008 Mathematics & Applied Mathematics School of Mathematics & Information)Abstract:In the mathematical analysis Taylor formula is a important content. This paperdiscusses the definition of Taylor formula, content, and introduces the Taylor formula nine application and give an example. Use Taylor formula for inequality, please limit, folding proof scattered sex, theuniqueness of root, a series of Taylor function of application, make us more clearly know the importance of Taylor formula.Keywords: Taylor ’s formula The emaining of the Piano The remaining of the LagrangianApplication1.引言泰勒公式将一些复杂函数近似的表示为简单的多项式函数,是高等数学中重要部分.作者通过查阅一些参考文献,从中搜集了大量的习题,通过认真计算,其中部分难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳总结.由于本文的主要内容是介绍泰勒公式的应用,所以,本文以例题为主进行讲解说明.2. 泰勒公式及其应用2.1 预备知识定义[]12.1 若函数f 在0t 存在n 阶导数,则有()()()()()()()()()()20000001!2!!n n nn n f t f t f t f t f t t t t t t t o t t n '''=+-+-++-+-(1)这里()()0no t t -为皮亚诺余项,称(1)f 在点0t 的泰勒公式.当0t =0时,(1)式变成()()()()()()200001!2!!n nn f f f f t f t t t o t n '''=+++++称此式称为(带皮亚诺余项的)麦克劳林公式.定义2.2 若函数f 在0t 某邻域内为存在直至n+1阶的连续导数,则()()()()()()()()200000()1!2!!n nn n n f t f t f t f t f t t t t t t t R t n '''=+-+-++-+(2)这里R (n )为拉格朗日余项()()()110()()1!n n f R n t t n α++=++,其中α在t 与0t 之间,称(2)为f 在0t 的泰勒公示.当0t =0时,(2)式变成()()()()()20000()1!2!!n nn f f f f t f t t t R t n '''=+++++称此式为(带有拉格朗日余项的)麦克劳林公式.其中,常见函数的展开式:()()()()21135212224222311212!!(1)!sin (1)()3!5!21!cos (1)()2!4!2!ln 1(1)()231111n n a n n nn nnn n n n n n a a e e a a n n t t t t t o t n t t t t t o t n t t t x t o t n t t t t t++++++=++++++=-+++-++=-+-+-++=-+-+-++=+++++-定理[]12.1 (介值定理)设函数g 在闭区间],[21x x 上连续。

泰勒公式证明及应用

泰勒公式证明及应用

一、摘要 (3)前言 (3)二、泰勒公式极其极其证明.................... (3)(一).............. 带有皮亚诺型余项地泰勒公式 3(二)............ 带有拉格朗日型余项地泰勒公式 4(三)................ 带有柯西型余项地泰勒公式 5(四)............................ 积分型泰勒公式6(五) ............................. 二元函数地泰勒公式..7三、泰勒公式地若干应用 (8)(一)..................................... 利用泰勒公式求极限8(二)..................................... 利用泰勒公式求高阶导数9(三)................... 利用泰勒公式判断敛散性10(四)................. 利用泰勒公式证明中值定理12(五)................... 利用泰勒公式证明不等式13(六)............. 利用泰勒公式求近似和值误差估计15(七)................. 利用泰勒公式研究函数地极值16四、我对泰勒公式地认识 (16)参考文献 (17)英文翻译..................................... 1 7Taylor公式地证明及应用【摘要】数学中地著名地公式都是一古典地数学问题,它们在数学,化学与物理领域都有很广泛地运用•在现代数学中Taylor公式有着重要地位,它对计算极限,敛散性地判断,不等式地证明、中值问题及高阶导地计算以及近似值地计算等方面都有很大地作用•在本文中,我将谈到关于公式地几种形式及其证明方法并对以上几个方面进一步地运用,和我对几者之间地一些联系和差异地看法•并通过具体事例进行具体地说明相关运用方法b5E2RGbCAP【关键词】泰勒公式佩亚诺余项拉格朗日余项极限级数1、常见Taylor公式定义及其证明我们通常所见地Taylor公式有皮亚诺型、拉格朗日型、柯西型与积分型,还有常用地二元函数地Taylor公式和高阶函数地Taylor公式.定义:设函数存在n阶导数,由这些导数构成n次多项式,称为函数在该点处地泰勒多项式各项系数称为泰勒系数.plEanqFDPw1.1首先是带皮亚诺型余项地Taylor公式:若函数f在点X)存在且有n阶导数,则有f(x)二「(X)r((x-X0门即f(x) = f(X o) f'(X o)(X-X o) f (X0)(X _X。

泰勒公式及其在在计算方法中的应用讲解

泰勒公式及其在在计算方法中的应用讲解

泰勒公式在计算方法中的应用摘要:泰勒公式是高等数学中的一个重要公式,同时它是求解高等数学问题的一个重要工具,在此结合例子简要讨论了泰勒公式在计算方法中的误差分析、函数值估测及近似计算、数值积分、常微分方程的数值解法中的应用。

通过本文的论述,可知泰勒公式可以使数值问题的求解简便.关键词:泰勒公式;误差分析;近似计算;数值积分§1 引言泰勒公式是高等数学中的一个重要公式,利用泰勒公式能将一些初等函数展成幂级数,进行函数值的计算;而且函数的Taylor 公式是函数无穷小的一种精细分析,也是在无穷小邻域将超越运算转化为整幂运算的手段,从而可将无理函数或超越函数的极限转化为有理式的极限而求解,有效简化计算.泰勒公式作为求解高等数学问题的一个重要工具,在计算方法中有重要的应用.§2泰勒(Taylor )公式定理 1 设函数()f x 在点0x 处的某邻域内具有1+n 阶导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得:()20000000()()()()()()()()()2!n n n f x f x f x f x f x x x x x x x R x '''=+-+-+-+……+n!(1)其中 (1)10()()()(1)!n n n f R x x x n ξ++=-+ (2)公式(1)称为()f x 按0()x x -的幂展开的带有拉格朗日型余项的n 阶泰勒公式,()n R x 的表达式(2)称为拉格朗日型余项.定理2 若函数()f x 在点0x 存在直至n 阶导数,则有()200000000()()()()()()()()(())2!n n n f x f x f x f x f x x x x x x x o x x '''=+-+-+-+-……+n!(3)公式(3)称为()f x 按0()x x -的幂展开的带有佩亚诺型余项的n 阶泰勒公式,形如(())no x x -的余项称为佩亚诺型余项. 特别地:在泰勒公式(1)中,如果取00x =,则ξ在0与x 之间,因此可令(01),x ξθθ=<<从而泰勒公式就变成比较简单的形式,即所谓带有拉格朗日型余项的麦克劳林(Maclaurm )公式:()()()112(0)(0)()()(0)(0)2!(1)!nn n n f f f x f x f f x x x xn θ++'''=+++++……+n!(01)θ<<(4)在公式(3)中,如果取00x =,则得带有佩亚诺型余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!n nn f f f x f f x x x o x '''=++++……+n!(5)§3 泰勒公式的求法(1)带佩亚诺余项的泰勒公式的求法只要知道()f x 在x =0x 处n 阶可导,就存在x =0x 带佩亚诺余项的n 阶泰勒公式。

浅谈泰勒公式及其应用

浅谈泰勒公式及其应用

论文提要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具集中体现了微积分“逼近法”的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具,它的用途很广泛,本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。

即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值。

浅谈泰勒公式及其应用摘 要: 本文介绍了泰勒公式及几个常见函数的展开式,针对泰勒公式的应用讨论了八个问题.即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值.关键词:泰勒公式泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明.1 预备知识定义 1.1 若函数f 在点0x 存在直至n 阶导数,则有()()()n n f x T x T x ==+()0no x x +,即()()()()()()()()()().!!2000200000n n n x x o x x n x f x x x f x x x f x f x f -+-+⋯+-''+-'+=为⑴式.⑴式称为函数f 在点0x 处的泰勒公式,()()()x T x f x R n n -=称为泰勒公式的余项,形如()nx x o 0-的余项称为佩亚诺型余项.所以⑴式又称为带有佩亚诺余项的泰勒公式.当00=x 时,得到泰勒公式:()()()()()()()n n x o n f x f x f f x f ++⋯+''+'+=!0!20002.它也称为(带有佩亚诺余项的)麦克劳林公式.定义1.2 若函数f 在[]b a ,上存在直至n 阶的连续导函数,在()b a ,内存在()1+n 阶导函数,则对任意给定的x ,[]b a x ,0∈,至少存在一点()b a ,∈ξ,使得()()()()()()()()()()()()()100100200000!1!!2++-++-+⋯+-''+-'+=n n n n x x n x fx x n x f x x x f x x x f x f x f 为⑵式.⑵式同样称为泰勒公式,它的余项为()()()()()()()()1001!1++-+=-=n n n n x x n x f x T x f x R , ()00x x x -+=θξ ()10<<θ,称为拉格朗日型余项.所以⑵式又称为带有拉格朗日型余项的泰勒公式.当00=x 时,得到泰勒公式()()()()()()()()()112!1!0!2000+++++⋯+''+'+=n n n n x n x f x n f x f x f f x f θ.它也称为(带有拉格朗日余项的)麦克劳林公式. 常见函数的展开式:⑴()n xx xx o n n x e ++⋯+++=!!221; ⑵()()m m m x o m x x x x x 212153)!12(1!5!3sin +--+⋯++-=--;⑶()()12242)!2(1!4!21cos ++-+⋯++-=m m m x o m xx x x ;⑷()()()n nn x o nx x x x x +-+⋯++-=+-1321321ln ; ⑸()()()n nax o x n n a a a a a axx ++-⋯-+⋯+++=+!)1()1(!2111; ⑹()n n x o x x x x++⋯+++=-2111.2.泰勒公式的应用2.1利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数极限转化为类似多项式有理式的极限,就能简捷地求出.例2.1 求 0lim→x xx x x 3sin )cos (sin -. 证 设()()x x f sin =, ()x x g cos =用泰勒公式在0=x 处展开 它们的导数是有规律的分别按x cos ,x sin -,x cos -,x sin 和x sin -,x cos -,x sin , x cos 循环.f 在0=x 处的1,2,……阶导数分别为1,0,1-,0,1……(循环);g 在0=x 处的1,2,……阶导数分别为1,0,1-,0,1……(循环);()()⋯⋯-+-+=-+=∑∞=!5!3!10!0)0(0sin 530x x x i f x f x i i i()()⋯⋯-+-=-+=∑∞=!4!21!0)0(0cos 420x x i g x g x i i ii f ,i g , f ,g 为i 的阶导数代入所求式中原式0lim x →= ⎥⎦⎤⎢⎣⎡⋯⋯+-⎥⎦⎤⎢⎣⎡⋯⋯+---32353!31!11)!51!41()!31!21()(x x x x 20231111()()2!3!4!5!lim 111!3!x x x →⎡⎤---+⋯⋯⎢⎥⎣⎦=⎡⎤-+⋯⋯⎢⎥⎣⎦()112!3!=- 13=2.2 利用泰勒公式证明中值公式例2.2 设)(x f 在[]b a ,上三次可导,试证:∃(,)c a b ∈使得3)())((241)(2)()(a b c f a b b a f a f b f n -+-⎪⎭⎫⎝⎛+'+= ①证(待定常数法)设k 为使下式成立的实数0)(241)(2)()(3=---⎪⎭⎫⎝⎛+'--a b k a b b a f a f b f ② 这时,我们的问题回归为证明:),(b a c ∈∃使得)(c f k '''= ③令 3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--= ④ 则0)()(==b g a g根据罗尔定理,),(b a ∈∃ξ,使得,0)(='ξg 有④式,即:()028222)(2=--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+''-⎪⎭⎫ ⎝⎛+'-'ξξξξξk a a f a f f ⑤这是关于k 的方程,注意到()ξf '在点2ξ+a 处的泰勒公式; ()2221222⎪⎭⎫⎝⎛-'''-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+''+⎪⎭⎫ ⎝⎛+'='a f a a f a f f ξξξξξ ⑥其中()b a c ,∈,比较⑤,⑥可得③式证毕2.3利用泰勒公式判断函数敛散性当要求判断极限的敛散性且条件出现有二阶和二阶以上导数时,考虑用泰勒公式展开判断极限敛散性.例2.3设)(x f 在点0=x 的某一邻域内具有二阶连续导数,且()0lim=→xx f x .证明:级数)1(1∑∞=n nf 绝对收敛. 分析:可以先用泰勒公式求出)(x f 在点0=x 处的二阶导数,利用二阶导数判断0→x 时)(x f 的趋势.证 由()0lim=→xx f x ,又)(x f 在0=x 的邻域内具有二阶连续导数,可以推出0)0(=f ,0)0(='f .将)(x f 在0=x 的邻域内展开成一阶泰勒公式:=)(x f ()()2221!21)0()0(x f x f f f ξξ''=''+'+,其中ξ在0与x 之间. 由于题设,()x f ''在邻域内包含原点的一个小闭区间上连续,因此,0>∃M 使得M x f ≤'')(,于是:222)(21)(x M x f x f ≤''=ξ. 令n x 1=,则212)(n M x f ⋅≤.因为∑∞=121n n 收敛,所以∑∞=1)1(n n f 绝对收敛.2.4 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例2.4 当0≥x 时,证明≥x sin -x 361x . 证 取()x f 361sin x x x +-=, 00=x ,则 ()00=f ,()00='f , ()00=''f , ()='''0f x cos 1-, ()0)(n f ≥0.带入泰勒公式,其中3=n ,得()3!3cos 1000x x x f θ-+++=,其中10<<θ. 故 当0≥x 时,≥x sin 361x x -.2.5利用泰勒公式判断函数的极值例2.5(极值的第二充分条件)设f 在0x 的某邻域()δ;0x U 内一阶可导,在=x 0x 处二阶可导,且()00='x f , ()00≠''x f . (ⅰ)若()00<''x f ,则f 在0x 取得极大值. (ⅱ)若()00>''x f ,则f 在0x 取得极小值.证 由条件,可得f 在0x 处的二阶泰勒公式()()()()()()()22002000!2o x x o x x x fx x x f x f x f -+-+-'+= .由于()00='x f ,因此()()=-0x f x f ()()()20012x x o x f -⎥⎦⎤⎢⎣⎡+''. ① 又因()00≠''x f ,故存在正数δδ≤',当x ()δ'∈;0x U 时,()021x f ''与 ()()1210o x f +'' 同号.所以,当()00<''x f 时,①式取负值,从而对任意()δ'∈;0o x U x 有 ()()00<-x f x f , 即 f 在0x 取极大值.同样对()00>''x f ,可得f 在0x 取极小值. 2.6 利用泰勒公式求初等函数的幂级数展开式利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些比较复杂的初等函数的幂级数展开式.例2.6 求函数x e x -1在0=x 处的幂级数展开式,并确定它收敛于该函数的区间.解 由于()=++⋯+++=n xx xx o n n x e !!221∑∞=0!n nn x ()+∞∞-∈,x 而=-x11∑∞=0n nx()1,1-∈x ,则=-xe x1=∑∞=0nn!x n n n x n ∑∞=⎪⎭⎫ ⎝⎛+⋯+++0!1!21!111 ()1,1-∈x , 2.7 利用泰勒公式进行近似计算利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用()x f 麦克劳林展开得到函数的近似计算式为()()()()()()nn x n f x f x f f x f !0!20002+⋯+''+'+≈,其误差是余项()x R n .例2.7 计算8.1ln 2.1ln +, 误差小于001.0.8.1ln 2.1ln +()()2.012.01ln -+= ()04.01ln -=()--=04.0()()⋯--+-304.0204.032由于第二项已经001.0<,所以只取前两项即可 结果是0408.00008.004.0-=--.2.8利用泰勒公式求高阶导数在某些点的数值如果)(x f 泰勒公式已知,其通项中的加项n x x )(0-的系数正是)(!10)(x f n n ,从而可反过来求高阶导数数值,而不必再依次求导.例2.8求函数x e x x f 2)(=在1=x 处的高阶导数)1()100(f .解 设1+=u x ,则e e u e u u g xf u u ⋅+++==+2)1(2)1()1()()(,)0()1()()(n ug f =, 0=u e u 在的泰勒公式为)(!100!99!9811001009998u o u u u u e u++++⋯++=, 从而))(!100!99!981)(12()(10010099982u o u u u u u u e u g ++++⋯++++=, 而)(u g 中的泰勒展开式中含100u的项应为()100100!100)0(u g ,从)(u g 的展开式知100u 的项为100)!1001!992!981(u e ++,因此 ())!1001!992!981(!100)0(100++=e g ,()10101)0(100⋅=e g ,()().10101)0()1(100100e g f ==本文主要介绍了泰勒公式以及它的八个应用,使我们对泰勒公式有了更深一层的理解.怎样应用泰勒公式解题有了更深一层的认识,只要在解题训练中注意分析,研究题设条件及其形式特点并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献[1]华东师范大学数学系,数学分析(第三版)[M]高等教育出版社1981.[2]陈传章金福林:《数学分析》(下)北京:高等教育出版社,1986.[3]张子兰崔福菊:《高等数学证题方法》陕西:陕西科学出版社,1985.[4]王向东:《数学分析的概念和方法》上海:上海科学技术出版社,1989[5]同济大学数学教研室主编:高等数学[M].北京:人民教育出版社,1999.[6]刘玉琏傅沛仁:数学分析讲义[M].北京:人民教育出版社,2000.。

泰勒公式及其应用(1)【范本模板】

泰勒公式及其应用(1)【范本模板】

毕业论文题目:泰勒公式及其应用系别:数理系专业:金融数学姓名:覃茜学号:171406106指导教师:李华河南城建学院2010年 5 月20 日目录摘要 (1)英文摘要 (2)第一章绪论 (3)第二章泰勒公式 (5)1。

1泰勒公式的意义 (5)1.2泰勒公式余项的类型 (5)1.3泰勒公式 (6)第三章泰勒公式的实际应用 (7)2.1利用泰勒公式求极限 (7)2。

2利用泰勒公式进行近似计算 (8)2.3在不等式证明中的应用 (9)2.4泰勒公式在外推上的应用 (10)2.5求曲线的渐近线方程 (11)2。

6泰勒公式在函数凹凸性及拐点判断中的应用 (13)2。

7在广义积分敛散性中的应用 (14)2.8泰勒公式在关于界的估计 (15)2。

9泰勒公式展开的唯一性问题 (15)结束语 (16)致谢 (17)参考文献 (18)泰勒公式及其应用(河南城建学院数理系河南平顶山 467044)摘要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,集中体现了微积分“逼近法"的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具, 它的用途很广泛。

本文详细介绍泰勒公式及其应用在数学领域上的几个应用作论述。

文章除了对泰勒公式在常用的近似计算、求极限、不等式的证明、外推和求曲线的渐近线方程上作解求证明外,特别地,泰勒公式还对函数凹凸性及拐点判断、广义积分敛散性中的应用、界的估计和展开的唯一性问题这4个领域的应用做详细的介绍。

关键词泰勒公式佩亚诺余项拉格朗日余项AbstractTaylor’s formula is the mathematical analysis of the important part, it has become a research function theory method and estimat —ed error limit of the indispensable tools such as a concentrated e xp—ression of the calculus, “approximation” of the essence,which is the value of the Calculus theorem is also of high order derivat ive function of an important tool for state, its use is very wide. T his paper introduces the Taylor formula and its applications in math ema-tics for discussion on several applications。

泰勒公式的应用

泰勒公式的应用

泰勒公式和其应用摘要文章简要介绍了泰勒公式的证明和其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。

关键词:泰勒公式,最优化理论,应用一、泰勒公式1.1 一元泰勒公式若函数)(x f 在含有的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和:10)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1()(++-+n n x x n f ξ在和之间的一个数,该余项)(x R n 为拉格朗日余项。

1.1.1 泰勒公式的推导过程我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式:n n x x a x x a x x a a x p )()()()(0202010-++-+-+=来近似表达函数)(x f ;设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以)(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''=n n a n x p !)(0)(=,所以有!)(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(!)()(!2)())(()()(00)(200000-++-''+-'+= 1.1.2 泰勒公式余项的证明我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项):设)()()(x p x f x R n -=于是有0)()()(000=-=x p x f x R n所以有0)()()()(0)(000===''='=x R x R x R x R n n n n n根据柯西中值定理可得:n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ是在和之间的一个数; 对上式再次使用柯西中值定理,可得:)1(022*******))(1()()0))(1(()()())(1()(--+''=--+'-'=-+'n n n n n n n x n n R x n x R R x n R ξξξξξξ是在和之间的一个数; 连续使用柯西中值定理1+n 次后得到:)!1()()()()1()1(0+=-++n R x x x R n n n n ξ 这里是介于和之间的一个数。

泰勒公式的应用开题报告

泰勒公式的应用开题报告

泰勒公式的应用开题报告1. 引言泰勒公式是数学中的一个重要公式,它描述了一个函数在某一点附近的局部近似。

通过使用泰勒公式,我们可以在数学和科学领域中进行各种精确计算和逼近。

本文将探讨泰勒公式在实际应用中的一些常见和重要的例子。

2. 泰勒公式的基本原理泰勒公式的基本原理是使用函数在某一点的导数来近似该函数在该点附近的取值。

泰勒公式的一般形式如下:f(x)=f(a)+f′(a)(x−a)+f″(a)2!(x−a)2+f‴(a)3!(x−a)3+⋯+f(n)(a)n!(x−a)n+R n(x)其中,f(x)是待求函数,f′(x)是函数的一阶导数,f″(x)是函数的二阶导数,以此类推。

a是泰勒公式展开的中心点,n是展开的阶数,R n(x)是余项,用来表示近似的误差。

3. 物理学中的应用3.1 运动学中的位移计算在物理学中,泰勒公式常被用于近似计算物体的位移。

以一维运动为例,如果我们已知物体的初始位置、速度和加速度,并希望计算物体在某一时刻的位置,我们可以使用泰勒公式进行近似计算。

假设物体在时刻t的位置为x(t),其速度为v(t),加速度为a(t)。

根据泰勒公式展开,我们可以得到以下近似公式:x(t)=x(t0)+v(t0)(t−t0)+12a(t0)(t−t0)2+⋯这样,我们就能够通过已知的初始条件,近似计算物体在任意时刻的位置。

3.2 电路中的电压计算在电路分析中,泰勒公式也有广泛的应用。

例如,当我们分析一个电阻、电容或电感等元件的电压响应时,可以使用泰勒公式对电压进行近似计算。

假设电压响应为V(t),电流为I(t),我们可以利用泰勒公式得到以下近似公式:V(t)=V(t0)+dVdt(t−t0)+d2Vdt2(t−t0)2+⋯通过这样的近似计算,我们能够更好地了解电路中的电压变化情况,并作出相应的分析和设计。

4. 经济学中的应用4.1 边际分析在经济学中,泰勒公式的应用十分广泛,尤其是在边际分析中。

泰勒公式及其应用开题报告

泰勒公式及其应用开题报告
除此之外,泰勒公式及‎泰勒级数的‎应用,往往能峰回‎路转,使问题 便的‎ 简单易解。
二、国内外研究‎ 现状分析: 国内外同类‎课题研究现‎状及发展趋‎势: 泰勒公式的‎证明与应用‎方面
的研究‎对于科研者‎来说一直具‎有强大的吸‎引力, 许多研究者‎已在此领域‎ 获得许多研‎究成果,例如:湖南科技学‎院数学系的‎唐仁献 在文章《泰勒 公式的‎新证明及其‎推广》中在推广了‎罗尔定理的‎基础上重新‎证明了 泰勒 公式; 洛阳工业高‎等专科校计‎算机系王素‎芳、 陶容、 张永胜在所‎著的 文章《泰 勒公式在计‎算及证明中‎的应用》中研究了泰‎勒公式在极‎限运算、 等式及不等‎式证 明中的应用‎,解决了用其‎它方法较难‎解决的问题‎,于此 类似的‎研究成果还‎有湖北 师范学院数‎学系的蔡泽‎林、陈琴的《定积分不 等‎式的几种典‎型证法》和潍坊高等‎ 专科学校的‎陈晓萌所著‎的《泰勒公式 在‎不等式中的‎应用》等等。
实现途径:
一、对泰勒公式‎的证明方法‎进行归纳; 二、灵活运用公‎式来解决极‎限、级数敛散性‎等问题;
三、研究实际数‎学问题中有‎关泰勒公式‎应用题目,寻求解决问‎题 题的途径‎ 。
3. 完成本课题‎所需工作条‎件(如工具书、计算机、实验、调研等)及解 决办法‎ :
为了写好论‎文我到中国‎ 期刊网、中国知识网‎和中国数字‎化期刊群查‎ 找相关论文‎的发表日期‎、刊名、作者,接下来要到‎图书馆四楼‎过刊室查 找‎相关文献,到电子阅览‎室查找相关‎期刊文献. 从图书馆借‎阅相关书 籍‎,仔细阅读,细心分析,通过自己的‎耐心总结、研究,老师的指导‎、 改正,争取做好毕‎业论文工作‎ . 具体采用了‎数学归纳法‎、分析法、反证 法、演绎法等方‎法.
毕 业设 计(论文) 开题报 告
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。通过对数学分析的学习,我感觉到泰勒公式是高等数学中最重要的内容,在各个领域有着广泛的应用,例如在函数值估测及近似运算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。
2.本课题的任务、重点内容、实现途径
课题任务:介绍泰勒公式的证明方法和泰勒公式的应用
重点内容:对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。
本课题将从以下几个方面展开研究:
一、介绍泰勒公式及其证明方法
二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。
毕业设计(论文)开题报告
1.本课题的目的及意义,国内外研究现状分析
一、选题的目的及研究意义:
选题目的:了解有关泰勒公式及其应用问题,主要介绍了几种泰勒公式几种常见的应用。泰勒公式作为《数学分析》这门课的最基础最重要的内容,作为一种研究将一些复杂函数近似地表示为简单的多项式函数的有效工具,是必须要牢固掌握的,是我们学习《数学分析》的必备知识。本文将归纳的泰勒公式及其应用方法,使我们能够对泰勒公式及其应用有一个总体上的认识,这将有助于我们对泰勒公式及其应用理论的理解和掌握,从而能够帮助我们更深的理解《数学分析》这门基础课程,进而学好这门课程。
在2002年—2012年十年为时间范围,以“泰勒公式”和“泰勒公式的应用”为关键词,在中国知网以及万方数据等数据库中共搜索到30余篇文章。
在这些文献中作者在不等式或者等式的证明或者计算时都充分利用了泰勒公式的定理和性质,但方法新颖又恰到好处,值得借鉴和学习。泰勒公式的应用是非常广泛的,对于泰勒公式的研究还在进行中,我相信通过今后的不断努力研究,泰勒公式还能发挥出更多的作用。
三、结论。
实现途径:
一、对泰勒公式的证明方法进行归纳;
二、灵活运用公式来解决极限、级数敛散性等问题;
三、研究实际数学问题中有关泰勒公式应用题目,寻求解决问题题的途径 。
3.完成本课题所需工作条件(如工具书、计算机、实验、调研等)及解决办法 :
为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献. 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作. 具体采用了数学归纳法、分析法、反证法、使问题便的简单易解。
二、国内外研究现状分析:
国内外同类课题研究现状及发展趋势:泰勒公式的证明与应用方面的研究对于科研者来说一直具有强大的吸引力,许多研究者已在此领域获得许多研究成果,例如:湖南科技学院数学系的唐仁献在文章《泰勒公式的新证明及其推广》中在推广了罗尔定理的基础上重新证明了泰勒公式;洛阳工业高等专科校计算机系王素芳、陶容、张永胜在所著的文章《泰勒公式在计算及证明中的应用》中研究了泰勒公式在极限运算、等式及不等式证明中的应用,解决了用其它方法较难解决的问题,于此类似的研究成果还有湖北师范学院数学系的蔡泽林、陈琴的《定积分不等式的几种典型证法》和潍坊高等专科学校的陈晓萌所著的《泰勒公式在不等式中的应用》等等。
相关文档
最新文档