第二章 光纤的基本理论(附件)
第二章 光纤传输的基本理论
分
形 式
E 电场强度矢量 H 磁场强度矢量 D 电位移矢量
磁感应强度矢量
D dS dV B
B dS 0
S
S
J 传导电流密度矢量
式中,D E;B H ;,分别为介质的介电常数 和磁导率。
是自由电荷体密度。
1
a
2 3
o1z源自图 2.2.3 光纤中的子午光线
图中n1、n2分别为纤芯和包层的折射率。要使光完全限制在光纤 内传输,光线在纤芯包层分界面上的入射角 须满足: 。 即:
n2 n2 sin 0 , 0 arcsin( ) n1 n1 n2 2 ) n1
0
或 sin 0 1 (
x 包层n 2 r 纤芯n 1
z
y
图 光纤中的圆柱坐标
E ( H )各分量的含义
Ez ( H z ): 光纤轴(纵)向分量
r x
Er ( H r ):光纤端面径向分量
E ( H ):光纤端面沿圆周方向分量
y
z
1 E 2 E ( E ) 0 2 (3) t (3)、(4)的解为 2 1 H 2 H ( ) H 0 2 (4) t E (r , , z, t ) E (r , ) exp[ j (t z )] (5) H (r , , z, t ) H (r , ) exp[ j (t z )] (6)
2
1 E 2 E ( E ) 0 2 (3) t 2 1 H 2 H ( ) H 0 2 (4) t
光纤通信原理及基础知识
t D • Δ PMD= pmd * LΛ0.5
•
PMD Link
y=
1
n
n k 1
x
2 k
1 2
• PMDQ :99.99% probability of 100000 y
光纤的基本参数
光纤的光学及传输特性参数之一------偏振模色散受限的最大理 论传输距离
偏振模色散受限的最大理论传输距离
光纤的通信原理及基础知识
第一章 光纤通信的基本原理 第二章 光纤的基本结构和分类 第三章 光纤的基本参数 第四章 光纤的制造方法
第一章 光纤、光缆的基本知识
§1.1 光纤通信的基本原理
信号 处理
发送端
光波导
信号 处理
接收端
光纤通信的基本原理
频谱分配
电磁波谱
低频
高频
微波
直流电
LW MW KW UKW dm cm
微观弯曲损耗:是指光纤受到不均匀应力的作
用,光纤轴产生的微小不规则弯曲所引入的附加损耗。
光纤的基本参数
参数典型值 光纤的光学及传输特性参数之一------
• 模场直径: • 衰减系数:
• 色散系数:
• 偏振模色散:
• 截止波长: • 弯曲损耗:
•1310nm: 8-10m; 1550nm: 9-11m
包层(SiO2+F )掺氟二氧化硅
125 µm
标准单模光纤
标准梯度折射率分布多模光纤
涂层(acrylic) 250 µm
涂层 250 µm
涂层
力学影响的防护
塑料光纤
涂层 1000 µm
光纤的基本结构和分类
光纤的分类
按材料分类:
光纤的基本理论
第一章 光纤的基本理论1、光纤的结构:光纤是截面很小的可绕透明长丝,它在长距离内具有束缚和传输光的作用。
光纤由纤芯、包层和涂覆层构成,折射率从里到外依次减小(n 纤芯>n 包层>n 涂覆层)2、光纤的分类:(1)按光纤横截面上折射率分布的不同,可以将光纤分为阶跃折射率分布光纤 (简称阶跃光纤,适用于短距离传输 )和渐变折射率分布光纤 (简称渐变光纤,适用于长距离传输 )。
(2)根据传导模式数量的不同,光纤可以分为单模光纤和多模光纤两类。
单模光纤的纤芯直径很小,为4μm~10μm ,包层直径为125μm 。
多模光纤的纤芯一般为50μm,包层的外径为125μm 。
(3)按光纤构成的原材料分为石英系光纤、多组分玻璃光纤、塑料包层光纤、全塑光纤。
(4)按光纤的套塑层可分为紧套光纤和松套光纤。
3、光纤的相对折射率差:其中n1为纤芯的折射率, n2为包层折射率。
4、光纤的数值孔径为:NA5、假若在长为L 的光纤中,走得最快的模式所用的时间为τmin ,走得最慢的模式所用的时间为τmax ,则最大时延差Δτmax 为6、在多模渐变折射率光纤中,相对折射率差定义为 其中n(0)、n2分别是r = 0处的和包层的折射率。
7、渐变光纤的本地数值孔径公式:其中n (r )为渐变光纤纤芯折射率。
8、亥姆霍兹方程 方程求解方法主要有两种:标量近似解和矢量解。
9、光纤的归一化频率10、归一化截止频率Vc 可求出截止波长λc(课本P15)当λ<λc 时,该模式可传输;而当λ>λc 时,该模式就截止。
11、图1—9(P16),注意横、纵坐标所表示的含义。
12、阶跃光纤中的模数量以M 表示,则M=V^2/2(详见课本P18)13、衡量光纤损耗特性的参数为衰减系数(损耗系数) ,定义为单位长度光纤引起的光功率衰减,其表达式为 其中Pi 为输入光纤的光功率,Po 为光纤输出的光功率。
14、造成光纤损耗的因素:引起光纤损耗的因素有吸收损耗、散射损耗和其它损耗,这些损耗又可以归纳为本征损耗、制造损耗和附加损耗等。
第2章光纤通信的基本原理
16、我总是站在顾客的角度看待即将推出的产品或服务,因为我就是顾客。2021年10月21日星期四12时3分57秒00:03:5721 October 2021
17、当有机会获利时,千万不要畏缩不前。当你对一笔交易有把握时,给对方致命一击,即做对还不够,要尽可能多地获取。上午12时3分57秒上午12时3分00:03:5721.10.21
2.1光纤的结构与分类
2.按传输模式的数量分类 按光纤中传输的模式数量,可以将光纤分为多模
光纤(Multi-Mode Fiber,MMF)和单模光纤(Single Mode Fiber,SMF)。
多模光纤和单模光纤是由光纤中传输的模式数目 决定的,判断一根光纤是不是单模传输,除了光纤自身的 结构参数外,还与光纤中传输的光波长有关。
2.1光纤的结构与分类
3.按光纤截面上折射率分布分类 按照截面上折射率分
布的不同可以将光纤分为阶跃 型光纤(Step-Index Fiber, SIF)和渐变型光纤(GradedIndex Fiber,GIF),其折射 率分布如右图所示。
光纤的折射率分布
2.1光纤的结构与分类
阶跃型光纤是由半径为a、折 射率为常数n1的纤芯和折射率 为常数n2的包层组成,并且 n1>n2, n1=1.463~1.467, n2=1.45~1.46。
2n12
n1
2.2光纤传光原理
数值孔径NA是表达光纤接受和传输光的能力的参数,它与 光纤的纤芯、包层折射率有关,而与光纤尺寸无关。
NA或θc越大,光纤接收光的能力越强,从光源到光纤的 耦合效率越高。对于无损耗光纤,在2θc内的入射光都能 在光纤中传输。NA越大,纤芯对光能量的束缚越强,光纤 抗弯曲性能越好。但NA越大,经光纤传输后产生的信号崎 变越大,色散带宽变差,限制了信息传输容量。
《光纤通信第二章》PPT课件
co m p o n en ts
num erical solving
精选ppt
β mn
37
1. 波动方程和电磁场表达式
设光纤没有损耗,折射率n变化很小,在光纤中传播的是
角频率为ω的单色光,电磁场与时间t的关系为exp(jωt),则标量
波动方程为
T2EK2E0
(2.30)
T2HK2H0
(2.31)
精选ppt
24
2.光纤传输原理
精选ppt
25
2.1 光纤的射线光学传输理论
光纤是一种高度透明的玻璃丝,由纯石英经复杂的 工艺拉制而成。
光纤中心部分(芯Core)+同心圆状包裹层(包层 Clad)+涂覆层
树脂被覆层 包层
芯
n n 特点: core> clad 光在芯和包层之间的界面上反复
进行全反射,并在光纤中传递下去。
11
主要用途:
突变型多模光纤只能用于小容量短距离系统。
渐变型多模光纤适用于中等容量中等距离系统。
单模光纤用在大容量长距离的系统。
特种单模光纤大幅度提高光纤通信系统的水平
1.55μm色散移位光纤实现了10 Gb/s容量的100 km的超大容 量超长距离系统。
色散平坦光纤适用于波分复用系统,这种系统可以把传输 容量提高几倍到几十倍。
17ps/nm.km
G.652
20
EDFA
10
频带 G.653
0
-10
-20
1300
1400
波长(nm)
1500
1600
1700
衰减 (dB/km) 色散(ps/nm.km)
精选ppt
13
传输光纤的改进(2) : G.655非零色散位移光纤
第二章 光纤传输机理的光线理论分析—2
d r分量: ds
①
②
(2.58)
③
上式适用于介质折射率分布函数为 n n(r ,,z ) 的一般情况。 实际上,对介质折射率分布非均匀的圆柱光纤(如渐变折射率 光纤),其折射率的分布规律一般遵循:折射率的分布与z无关, 即在垂直于光纤轴线的任意截面均与光纤端面的折射率分布一 致,因而 ;折射率分布亦与方位角 无关,即过光轴的任 n 0 意子午面内其折射率分布均相同,因而 。最终光纤中折 z n 0 射率的分布实际上只与r有关,即 。
①
②
(2.52)
③
(3)圆柱坐标系中的光线微分方程 对于圆柱光纤,其标量形式的光线微分方程更适用圆柱坐 标系。为将直角坐标系形式的光线微分方程转换为圆柱坐标 系形式的光线微分方程,首先需建立坐标转换方程。如图2. 8 所示,两组坐标系间应有如下变换关系:
x r cos y r sin
1.程函方程的导出 从亥姆霍兹方程(1.40)式出发,对电场矢量E应有
E k E 0
2 2
对于E的任意直角坐标分量(以符号形式v表示),应有标量形 式亥姆霍兹方程:
V k V 0
2 2
设其试探解为
V V0(r) e
jk
V0(r) e
jk0(x ,y , z)
jk 0( nr )
d ds
dr d 2r 0 n ds 0或 2 ds
由上式可解出
dr n =ct ds
最终的解为矢量线性方程:
(2.50)
r s a + b
(2.51)
式中,a,b为常数基矢量。上式表明,解为一矢量直线方程,该 直线是沿着基矢a的方向,并通过r=b端点的一条直线(如图2. 7 所示)。图中表明,在各向同性的均匀介质中,由位置矢量r的 矢径端点轨迹构成的光线为一条直线。
第二章 光纤传输机理的光线理论分析—3
图2.13 一般空间光线轨迹及端面投影
②特殊情况:空间光线中存在一部分特殊空间光线,其轨迹上的各点 距光纤轴线为等半径,因而光线轨迹为圆柱螺旋光线(halical ray)。 此时,一般空间光线的两个圆柱焦散面重合为一,即有r1 = r2,并 且所有螺旋光线在二轴方向速度完全一致,色散为零。圆柱螺旋光 线轨迹在光纤端面投影图像为一个圆,如图2.12(a)、(b)所示。
(2.90)
n En
1 1
2 5
3 61
4 1385
将双曲正割函数代入(2.79)式,则有
z
r
r
0
N 0dr
n sech ( r ) 2 N0 2 n sech ( r0 )
2 1 2 1 2 1/2
r
r
0
N 0dr
ch ( r0 ) 2 N0 2 ch ( r )
(2.89)
En n 2n n r n1 sech( r ) n1 1 (1) ( r ) (2n )! 1 5 61 2 4 6 n1 1 ( r ) + ( r ) ( r ) + L 2 24 720
式中,E n 为尤拉数,其取值如表2. 2所示。
上式表明,双曲正割函数分布光纤中,其子午光线的轨迹 为正弦函数,且其周期长度 为常数,与r0、N0等初始 条件无关。因而,由一点发出的不同角度(即不同N0)的 子午光线,在传播过程中均满足等光程条件,即可周期性 地会聚于半波长点,如图2. 12所示。
N 0 sh( r ) N 0 sh( r0 ) 1 (2.92) z arcsin arcsin 1/2 1/2 2 2 2 2 ch ( r ) N ch ( r ) N 0 0 0
光纤通信概论第二章2
满足f(ax+by)=af(x)+bf(y)称为线性系统: 是各分量互不相干的独立贡献 一分耕耘,一分收获! 否则称为非线性系统! 非线性是相互作用,而正是这种相互作用,使得 整体不再是简单地等于部分之和,而可能出现不 同于"线性叠加"的增益或亏损。 在光学中,线性与非线性分别表示非功率依赖和功 率依赖。 如果一个光纤系统的参数依赖于光强,就称为非 线性的
材料色散与波导色散
色散(ps/nm.km)
20
材料色散 G652光纤色散 零色散点
单模光纤的色散 D=DM+DW
G653光纤色散 0 波导色散 12701310 1550 在光纤通信波长范围内,波导色散系数为负,在一定的波长范 围内,材料色散和波导色散符号相反 材料色散一般大于波导色散,但在零色散波长附近二者大小可 以相比拟,普通单模光纤在1.31μm处这两个值基本相互抵消
模式色散
High-order Mode (Longer path) Axial Mode (shortest path) core
模式色散:
cladding
Low-order Mode (shorter path)
以不同入射角进入光纤的光线将经历不同的途径,虽然在输 入端同时入射并以相同的速度传播,但到达光纤输出端的时 间却不同,出现了时间上的分散,导致脉冲严重展宽
2
FWMratio
PFWM P
P
f 2 A eff
D
色散的分类
模式色散:不同模式不同传输速度,多模光纤特有 色度色散(Chromatic Dispersion): 通常简称的 色散概念! 材料色散:不同波长(频率)信号的折射率不同, 传输速度不同 波导色散:光纤的波导结构(不同区域折射率不同) 引起的色散效应 偏振模色散:不同偏振态不同传输速度
第二章_光纤传输理论及传输特性(2011)
按缆芯结构
中心束管、层绞、骨架和带状
按加强件和护层
金属加强件、非金属加强、铠装
按使用场合
长途/室外、室内、水下/海底等
按敷设方式
架空、管道、直埋和水下
19
光缆的结构(成缆方式)
层绞式 骨架式 中心束管式 带状式
20
光缆结构示意图
层绞式
中心束管式
带状式
纤芯直径(um) 包层直径(um) 材料 二氧化硅 二氧化硅 二氧化硅 二氧化硅 二氧化硅
A1a
A1b A1c A1d A2a A2b A2c A3a A3b A3c A4a A4b A4c
50
62.5 85 100 100 200 200 200 200 200 980-990 730-740 480-490
21
松套层绞3
金属加强自承式光缆
24
微束管室内室外光缆*
微束管室内室外光缆适合大楼和多层住宅楼的管道引入使用,适合室 内和室外两种环境,芯数一般为12~32。微束管松套光纤为半干式结构, 便于室内光缆分支和施工。
25
分支型室内布线光缆*
分支型室内布线光缆采 用单芯子单元光缆结构,适 合在大楼竖井内中长距离上 的多处分纤终端,每条光缆 子单元均可用现场连接器直 接与终端相连接。光缆为全 介质结构,具有优良的防火 阻燃性能。抗拉强度和防火 等级满足室内垂直/水平布线 光缆的等级要求。芯数有 4/6/8/12/24多种。 与分支型室内布线光缆类似,还有一种束状室内布线光缆,使用 0.9mm紧套光纤,干式结构,纤芯密度高,重量轻。
光纤通信与数字传输
南京邮电大学
通信与信息工程学院
第二章 光纤传输理论及传输特性
光纤光学-第2章-光纤光学原理及应用(第二版)-张伟刚-清华大学出版社
光纤光学》《光纤光学第二章光纤光学的基本理论南开大学张伟刚教授第2 章光纤光学的基本理论2.1 引论2.2 光纤的光线理论222.3光纤的波动理论2.1引论2.1.1光线理论可以采用几何光学方法分析光线的入1.优点:的多模光纤时2.不足:2.1.2波动理论2.不足:2.1.3分析思路麦克斯韦方程光线理论波动理论2.2光纤的光线理论 2.2.1程函方程问题2.1:(r , t )z y x e z e y ex r ˆˆˆ++=G ),(t r E G G ),(t r H G G G G G G G G )0,0(0===t r E E )0,0(0===t r H H )(r G φφ=(2.1) 00ik i t E E e ϕω−+=G G (2.2)00ik i t H H e ϕω−+=G G 000)()()(000E e e E e E E ik ik ik G G G G ×∇+×∇=×∇=×∇−−−φφφik ik −−G G []φφφ00000)()(e E ik e E ×∇−×∇=φ0ik e E ik E −×∇−×∇=G G (2.3)[]φ000)((2.3)G G G G (24)[]φφφ000000)()(ik ik e H ik H e H H −−×∇−×∇=×∇=×∇(2.4) (21)(22)(25)(28)(2.1)(2.2)(2.5)(2.8)B ∂G G t E ∂−=×∇G (2.5)(26)t D H ∂∂=×∇G (2.6)G G 0=⋅∇D (2.7)(28)0=⋅∇B (2.8)(2.9)(2.10)(2.9)E D G G ε=G G (210))HB μ=(2.10) 因光纤为透明介质(无磁性),于是0μμ≈ωi t =∂∂φμωμ0000ik e H c ik H i E −−=−=×∇G G G (2.11) φεωε0ik e E i c ik E i H −==×∇G G G (2.12) 00()(2.32.3))(2.112.11))(2.42.4))(2.122.12))G G G −=−000000)(H c ik E ik E μφ×∇×∇00000)(E c ik H ik H G G G εφ=×∇−×∇1G G G ∇=−(213)00000)(E ik H c E ××∇μφ1H k E c H G G G ×∇=+×∇ε(2.13) (2.14) 0000)(ik φ()H G 0[]000200)(1)(1)(1)(E c E E E G G G G εφφφφμφ−=∇−∇⋅∇=×∇×∇000c c c μμ(2.15)λ→0000)(H c E G G μφ=×∇(2.16) 00)(E c H G G εφ−=×∇(2.17)问题2.2:(2.15)(2.16)000E H ϕϕ⋅∇=⋅∇=G G (2.18a) (218b)∇∇G G (2.18b)0E H ϕϕ⋅∇=⋅∇=G G 、、三个矢量相互垂直三个矢量相互垂直!!0E 0H ϕ∇(2.1(2.188)(2.1(2.155)r c εεμεμφ===∇00221)((2.19)22(220)με00)(n =∇φ(2.20)G G =)()(r n r ∇φ(2.21)221)G (2.21)“程函方程” ()r φ程函方程的物理意义:讨论讨论:r G ∇()φ)(r G φ∇“”n r G 场源()(2.2.2121))),,(),,(),,(),,(2222z y x n z z y x y z y x x z y x =⎥⎦⎤⎢⎣⎡∂∂+⎥⎤⎢⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂φφφ(2.22)⎦⎣问题2.3:(2.2.2121))2.2.2 光线方程根据折射率分布,可由程函方程求出光程函()r Gφ为此,可从程函方程出发推导光线方程。
光纤的基本理论
3. 按光纤构成的原材料分类
石英系光纤 多组分玻璃光纤 塑料包层光纤 全塑光纤 目前光纤通信中主要使用石英系光纤
4. 按光纤的套塑层分类
紧套光纤 松套光纤
1.1.2 多模阶跃折射率光纤的射
线光学理论分析
图示为阶跃光纤的子午光线。
在多模阶跃光纤的纤芯中,光按直线传输, 在纤芯和包层的界面上光发生反射。由于 光纤中纤芯的折射率n1大于包层的折射率 n2,所以在芯包界面存在着临界角φc 。
射线轨迹法
在光纤半径和波长之比很大时,可得到很 好的近似结果,所谓“短波长极限”。
光射线与模式的联系
沿光纤轴方向传播的导波模可以分解 为一系列平面波的叠加,即在光纤轴的横 方向形成驻波分布。
任一平面波都与其相前垂直的射线联 系。
根据射线描述,只要入射角大于临界 角的任何射线都可以在光纤中传播,加上 驻波条件后,允许的角度就只有有限个。
围表示,也可用 频率范围 f来表示
它们的关系为
f
f
、f分别是光源的
中心波长和中心频
率
1.5.2 光纤色散的种类
模式色散 材料色散 波导色散 偏振模色散
1.5.3 光纤色散的表示法
特定模式传输群速度
vg
d d
单位长度光纤的群时延
g
1 vg
d d
1 d
c dk
2 d 2 c d
最大时延差
传导模 对于e j(t z) 中 n2k n1k时 截止模 当 n2k时,模式截止。 泄露模 n2k 时出现,仍被约束在纤
芯内传播一段距离。
归一化频率V
V
2 a
(n12
1
n22 )2
2 a
NA
光纤光学课后答案
光纤光学课后答案【篇一:光纤应用习题解第1-7章】>1.详述单模光纤和多模光纤的区别(从物理结构,传播模式等方面)a:单模光纤只能传输一种模式,多模光纤能同时传输多种模式。
单模光纤的折射率沿截面径向分布一般为阶跃型,多模光纤可呈多种形状。
纤芯尺寸及纤芯和包层的折射率差:单模纤芯直径在10um左右,多模一般在50um以上;单模光纤的相对折射率差在0.01以下,多模一般在0.01—0.02之间。
2.解释数值孔径的物理意义,并给出推导过程。
a::na的大小表征了光纤接收光功率能力的大小,即只有落入以m为半锥角的锥形区域之内的光线,才能够为光纤所接收。
3.比较阶跃型光纤和渐变型光纤数值孔径的定义,可以得出什么结论?a:阶跃型光纤的na与光纤的几何尺寸无关,渐变型光纤的na是入射点径向坐标r的函数,在纤壁处为0,在光纤轴上为最大。
4.相对折射率差的定义和物理意义。
n12-n22n1-n2a:d=2n12n1d的大小决定了光纤对光场的约束能力和光纤端面的受光能力。
5.光纤的损耗有哪几种?哪些是其固有的不能避免,那些可以通过工艺和材料的改进得以降低?a:固有损耗:光纤材料的本征吸收和本征散射。
非固有损耗:杂质吸收,波导散射,光纤弯曲等。
6.分析多模光纤中材料色散,模式色散,波导色散各自的产生机理。
a:材料色散是由于不同的光源频率所对应的群速度不同所引起的脉冲展宽。
波导色散是由于不同的光源频率所对应的同一导模的群速度不同所引起的脉冲展宽。
多模色散是由于不同的导模在某一相同光源频率下具有不同的群速度所引起的脉冲展宽。
7.单模光纤中是否存在模式色散,为什么?a:单模光纤中只传输基模,不存在多模色散,但基模的两个偏振态存在色散,称为偏振模色散。
8.从射线光学的观点计算多模阶跃光纤中子午光线的最大群时延差。
a:设光纤的长度为l,光纤中平行轴线的入射光线的传输路径最短,为l;以临界角入射到纤芯和包层界面上的光线传输路径最长,为linfc。
光纤通信专业知识讲座
图 2.3 光纤旳折射率分布
②按传播模式旳数量分类,能够将光纤分为: 多模光纤(Multi-Mode Fiber,MMF),
在一定旳工作波上,能够有多种模式在 光纤中传播。
(纵向)方向传播,纵向传播常数为 ,
场相对于时间旳变化是 e jt 。
x
2d
z y
图 2.7光波导旳构造及坐标选用
波导中旳场能够写为:
E
E0
x,
yexp
jt
z
H
H0 x,
yexp jt
z
Ex
j K2
H z y
E z x
Ey
j K2
H z x
E z y
Hx
K
j
2
H z x
E z y
Hy
j K2
J
m
J
m
U
a
U
r
cos m sin m
e
jz
H r1
j
a
2
UH 0
U a
Jm J
' Ur a
m U
j 1 E0 m r
J
m
J
m
U
a
U
r
sin m cos m
e
jz
E1
j
a U
2
0UH a
0
J
m
'
Ur a
J m U
jE0 m r
J
m
J
m
U
a
第二章 光纤传输理论及特性
2.1.2 光纤的分类
3.单模光纤的型号
ITU-T建议规范了G.652、G.653、G.654和G.655单模光纤 (1)G.652光纤
G.652光纤,也称标准单模光纤(SMF),是指色散零点(即色 散为零的波长)在1 310nm附近的光纤,具有如下特点:
➢ 1310nm色散(1~3ps.nm-1.km-1),衰减0.34dB/km; ➢ 1550nm色散(17ps.nm-1.km-1),衰减0.20dB/km; ➢ 成本低,大多数已安装的光纤均为G.652,低损耗 ; ➢ 大有效面积,有利于克服非线性效应; ➢ 色散斜率大,大色散系数,色散受限距离短; ➢ 可用G.652+DCF方案升级扩容,但成本高;
光纤通信光纤通信76264264光纤中的非线性效应光纤中的非线性效应受激散射非线性折射弹性散射非弹性散射参量过程自相位调制spm和色散配合产生光孤子交叉相位调制xpm高速光开关四波混频fwm参量放大器三次谐波拉曼散射光纤放大布里渊散射光纤传感光纤通信光纤通信77264264光纤中的非线性效应光纤中的非线性效应2srs受激拉曼散射当一定强度的光入射到光纤中时会引起光纤材料的分子振动进而调制光强产生间隔恰好为分子振动频率的边带
带状光纤单元放入凹槽内或松套管内,形成骨架式或层绞式结构。
如图2-27、2-28所示。
图2-27 中心束管式带状光缆
图2-28 层绞式带状光缆
2.1.3 光缆的结构
(5)单芯结构光缆 单芯结构光缆简称单芯软光缆,如图2-29所示。 这种结构的光缆主要用于局内(或站内)或用来制作仪表测试软 线和特殊通信场所用特种光缆以及制作单芯软光缆的光纤。
图2-29 单芯软光缆
2.5.1 射线方程
光纤光学光纤传输的基本理论
MAXWELL’S EQUATIONS ∇ · B = 0 ∇ · D = ρ ∇×E = −∂B/∂t ∇×H = J +∂D/∂t From the first line, the normal ponents of D and B are continuous across a dielectric interface From the second line, the tangential ponents of E and H are continuous across a dielectric interface
由于渐变型多模光纤折射率分布是径向坐标r的函数,纤芯各点数值孔径不同.
01
单击此处添加小标题
局部数值孔径NA(r)和最大数值孔径NAmax
组层与层之间有细微的折射率变化的薄层, 其中在中心轴线处的层具有的折射率为n1,在包层边界的折射率为n2。这也是制造商如何来制造光纤的方法。
= r1 (1.13)
01
An(0) sin(Az) cos(Az)
cos(Az)
02
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
r
03
这个公式是自聚焦透镜的理论依据。
θ*
由此可见,渐变型多模光纤的光线轨迹是传输距离z的正弦函数,对于确定的光纤,其幅度的大小取决于入射角θ0, 其周期Λ=2π/A=2πa/ , 取决于光纤的结构参数(a, Δ), 而与入射角θ0无关。
波动方程
麦克斯韦方程组
时、空坐标分离:亥姆霍兹方程,是关于E(x,y,z)和H(x,y,z)的方程式
单色波:
矢量的Helmholtz方程
空间坐标纵、横分离:得到关于E(x,y)和H(x,y)的方程式;
第二章 光纤与光缆
38
波动方程的求解
运用分离变量法求解波动方程经过一系列数学处 理,可得
d 2Ez dr2
1 r
dEz dr
(n2k2 0
2
m2 r2
)Ez
0
d 2Hz dr 2
1 r
dH z dr
(n2k 2 0
2
m2 r2 )Hz
0
上式是贝塞尔方程,式中m是贝塞尔函数的阶数,称为方 位角模数,它表示纤芯沿方位角 绕一圈场变化的周期数。
23
光缆结构示意图
层绞式
中心束管式
带状式
24
2.2 光纤传输原理
2.2.1 射线光学分析方法 2.2.2 波动光学分析方法
25
★光的传输理论
光纤的三个基本性能指标
(1)定义临界角θc的正弦为数值孔径 (Numerical
Aperture, NA)
物理意义:数值孔径反映了光纤的集光能力,值越 大,集光能力越强。
2.1.3 光纤制造工艺
改进的化学汽相沉积法(MCVD) 轴向汽相沉积法(VAD) 棒外化学汽相沉积法(OVD) 等离子体激活化学汽相沉积法(PCVD)
19
光纤接续方法
□ 永久接续法 □ 连接器接续法
20
2.1.4 光缆及其结构
光缆是以光纤为主要通信元件,通过加强件 和外护层组合成的整体。光缆是依靠其中的光纤 来完成传送信息的任务,因此光缆的结构设计必 须要保证其中的光纤具有稳定的传输特性。
单模光纤 多模光纤
14
单模光纤---色散最小
r n2 n1
2a =8.3m 2 b =125m
n(r) 2a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、三种基本类型光纤的折射率分布(a) 突变型多模光纤; (b) 渐变型多模光纤; (c ) 单模光纤二、ITU-T 建议规范的单模光纤(主要为前四种:G .652、G .653、G .654和G .655)(a)(b)(c)三、光纤的导光原理1.折射和折射率光线在不同的介质中以不同的速度传播,描述介质的这一特征的参数就是折射率,或称折射指数。
折射率可由下式确定:n = c/v其中ν是光在某种介质中的速度,с是光在真空中的速度。
在折射率为n的介质中,光传播速度变为c/n,光波长变为λ0/n(λ0表示当一条光线照射到两种介质相接的边界时,入射光线分成两束:反射光线和折射光线光的折射光的反射斯涅耳定律给出了定义这些光线方向的规则:θ1 = θ3n1sin θ1 = n2sin θ2全反射是光信号在光纤中传播的必要条件。
2.光的偏振光波属于横波,即光的电磁场振动方向与传播方向垂直。
如果光波的振动方向始终不变,只是光波的振幅随相位改变,这样的光称为线偏振光,如下图(c)和(d)所示。
从普通光源发出的光不是偏振光,而是自然光,如下图(a)所示。
自然光在传播的过程中,由于外界的影响在各个振动方向的光强不相同,某一个振动方向的光强比其他方向占优势,这种光称为部分偏振光,如下图(b)所示。
光的偏振3.光的色散如下图所示,当日光通过棱镜或水雾时会呈现按红橙黄绿青蓝紫顺序排列的彩色光谱。
这是由于棱镜材料(玻璃)或水对不同波长(对应于不同的颜色)的光呈现的折射率n不同,从而使光的传播速度不同和折射角度不同,最终使不同颜色的光在空间上散开。
自然光的色散四、光纤的几何特性光纤的几何特性包括芯直径、包层直径、纤芯/包层同心度、不圆度等。
1.芯直径芯直径主要是对多模光纤的要求。
ITU-T规定,多模光纤的芯直径为50±3μm。
2.包层直径包层直径指光纤的外径,ITU-T规定,多模及单模光纤的包层直径均要求为125±3μm。
目前,光纤生产制造商已将光纤外径规格从125.0±3μm提高到125.0±1μm。
3.纤芯/包层同心度和不圆度纤芯/包层同心度是指纤芯在光纤内所处的中心程度。
目前光纤制造商已将纤芯/包层同心度从≤0.8μm的规格提高到≤0.5μm的规格。
不圆度包括芯径的不圆度和包层的不圆度。
ITU-T规定,芯径不圆度≤6%,包层不圆度(包括单模)<2%。
4. 模场直径和有效面积模场直径是指描述单模光纤中光能集中程度的参量。
有效面积与模场直径的物理意义相同,通过模场直径可以利用圆面积公式计算出有效面积。
模场直径越小,通过光纤横截面的能量密度就越大。
当通过光纤的能量密度过大时,会引起光纤的非线性效应,造成光纤通信系统的光信噪比降低,影响系统性能。
因此,对于传输光纤而言,模场直径(或有效面积)越大越好。
下图为模场直径示意图。
模场直径五、光纤传输特性的几个图形展示1、色散引起的脉冲展宽示意图光脉冲中的不同频率或模式在光纤中的群速度不同,这些频率成分和模式到达光纤终端有先有后,使得光脉冲发生展宽,这就是光纤的色散,如上图所示。
色散一般用时延差来表示,所谓时延差,是指不同频率的信号成分传输同样的距离所需要的时间之差。
2、偏振模色散(PMD)由于光信号的两个正交偏振态在光纤中有不同的传播速度而引起的色散称偏振模色散。
3、码间干扰(ISI)色散将导致码间干扰。
由于各波长成分到达的时间先后不一致,因而使得光脉冲加长了(T+ΔT),这叫作脉冲展宽,如下图。
脉冲展宽将使前后光脉冲发生重叠,形成码间干扰,码间干扰将引起误码,因而限制了传输的码速率和传输距离。
4、光纤的机械特性光纤的机械特性主要包括耐侧压力、抗拉强度、弯曲以及扭绞性能等,使用者最关心的是抗拉强度。
(1)光纤的抗拉强度光纤的抗拉强度很大程度上反映了光纤的制造水平。
影响光纤抗拉强度的主要因素是光纤制造材料和制造工艺。
①预制棒的质量。
②拉丝炉的加温质量和环境污染。
③涂覆技术对质量的影响。
④机械损伤。
(2)光纤断裂分析存在气泡、杂物的光纤,会在一定张力下断裂,如下图所示。
光纤断裂和应力关系示意图(3)光纤的寿命光纤的寿命,习惯称使用寿命,当光纤损耗加大以致系统开通困难时,称其已达到了使用寿命。
从机械性能讲,寿命指断裂寿命。
(4)光纤的机械可靠性一般来说,二氧化硅包层光纤的机械可靠性已经得到广泛的认可。
为了提高光纤的机械可靠性,在光纤的外包层中掺入二氧化钛,从而增加网络的寿命。
5、光纤的温度特性光纤的温度特性,是指在高、低温条件下对光纤损耗的影响,一般是损耗增大,如下图所示。
光纤低温特性曲线六、各种典型结构的光缆(1)层绞式结构光缆把经过套塑的光纤绕在加强芯周围绞合而构成。
层绞式结构光缆类似传统的电缆结构,故又称之为古典光缆。
下图所示是目前在市话中继和长途线路上采用的几种层绞式结构光缆的示意图(截面)。
6芯紧套层绞式光缆12芯松套层绞式直埋光缆12芯松套层绞式直埋防蚁光缆6~48芯松套层绞式水底光缆12芯松套+8芯×2线对层绞式直埋光缆(2)骨架式结构光缆骨架式结构光缆是把紧套光纤或一次涂覆光纤放入加强芯周围的螺旋形塑料骨架凹槽内而构成。
骨架结构有中心增加螺旋型、正反螺旋型、分散增强基本单元型,图1(b)为螺旋型结构,图2为基本单元结构。
目前,我国采用的骨架式结构光缆,都是采用如图1所示的结构。
图3所示是采用骨架式结构的自承式架空光缆。
图1 2芯骨架式光缆图2 70芯骨架式光缆图3 骨架式自承式架空光缆(3)束管式结构光缆把一次涂覆光纤或光纤束放入大套管中,加强芯配置在套管周围而构成。
图1所示的光缆结构即属护层增强构件配制方式。
图2、3所示是属于分散加强构件配置方式的束管式结构光缆。
图1 12芯束管式光缆图2 6~48芯束管式光缆图3 LEX束管式光缆(4)带状结构光缆把带状光纤单元放入大套管中,形成中心束管式结构;也可把带状光纤单元放入凹槽内或松套管内,形成骨架式或层绞式结构。
如下图所示。
中心束管式带状光缆层绞式带状光缆(5)单芯结构光缆单芯结构光缆简称单芯软光缆,如下图所示。
这种结构的光缆主要用于局内(或站内)或用来制作仪表测试软线和特殊通信场所用特种光缆以及制作单芯软光缆的光纤。
单芯软光缆(6)特殊结构光缆特殊结构的光缆,主要有光/电力组合缆、光/架空地线组合缆和海底光缆和无金属光缆。
这里只介绍后两种。
①海底光缆有浅海光缆和深海光缆两种,图1所示为典型的浅海光缆,图2所示是较为典型的深海光缆。
②无金属光缆无金属光缆是指光缆除光纤、绝缘介质外(包括增强构件、护层)均是全塑结构,适用于强电场合,如电站、电气化铁道及强电磁干扰地带。
浅海光缆深海光缆七、光缆的种类1.按传输性能、距离和用途分可分为市话光缆、长途光缆、海底光缆和用户光缆。
2.按光纤的种类分可分为多模光缆、单模光缆。
3.按光纤套塑方法分可分为紧套光缆、松套光缆、束管式光缆和带状多芯单元光缆。
4.按光纤芯数多少分可分为单芯光缆、双芯光缆、四芯光缆、六芯光缆、八芯光缆、十二芯光缆和二十四芯光缆等。
5.按加强件配置方法分光缆可分为中心加强构件光缆(如层绞式光缆、骨架式光缆等)、分散加强构件光缆(如束管两侧加强光缆和扁平光缆)、护层加强构件光缆(如束管钢丝铠装光缆)和PE外护层加一定数量的细钢丝的PE细钢丝综合外护层光缆。
6.按敷设方式分光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。
7.按护层材料性质分光缆可分为聚乙烯护层普通光缆、聚氯乙烯护层阻燃光缆和尼龙防蚁防鼠光缆。
8.按传输导体、介质状况分光缆可分为无金属光缆、普通光缆和综合光缆。
9.按结构方式分光缆可分为扁平结构光缆、层绞式结构光缆、骨架式结构光缆、铠装结构光缆(包括单、双层铠装)和高密度用户光缆等。
10.目前通信用光缆可分为(1)室(野)外光缆——用于室外直埋、管道、槽道、隧道、架空及水下敷设的光缆。
(2)软光缆——具有优良的曲挠性能的可移动光缆。
(3)室(局)内光缆——适用于室内布放的光缆。
(4)设备内光缆——用于设备内布放的光缆。
(5)海底光缆——用于跨海洋敷设的光缆。
(6)特种光缆——除上述几类之外,作特殊用途的光缆。
八、光缆型号的表示光缆型号由它的型式代号和规格代号构成,中间用一短横线分开。
(1)光缆型式由五个部分组成,如下图所示。
光缆型式的组成部分图中:Ⅰ:分类代号及其意义为:GY——通信用室(野)外光缆;GR——通信用软光缆;GJ——通信用室(局)内光缆;GS——通信用设备内光缆;GH——通信用海底光缆;GT——通信用特殊光缆。
Ⅱ:加强构件代号及其意义为:无符号——金属加强构件;F——非金属加强构件;G——金属重型加强构件;H——非金属重型加强构件。
Ⅲ:派生特征代号及其意义为:D——光纤带状结构;G——骨架槽结构;B——扁平式结构;Z——自承式结构。
T——填充式结构。
Ⅳ:护层代号及其意义为;Y——聚乙烯护层;V——聚氯乙烯护层;U——聚氨酯护层;A——铝-聚乙烯粘结护层;L——铝护套;G——钢护套;Q——铅护套;S——钢-铝-聚乙烯综合护套。
Ⅴ:外护层的代号及其意义为:外护层是指铠装层及其铠装外边的外护层,外护层的代号及其意义如下表所示。
(光缆的规格组成部分图中:Ⅰ:光纤数目用1、2、……,表示光缆内光纤的实际数目。
Ⅱ:光纤类别的代号及其意义。
J——二氧化硅系多模渐变型光纤;T——二氧化硅系多模突变型光纤;Z——二氧化硅系多模准突变型光纤;D——二氧化硅系单模光纤;X——二氧化硅纤芯塑料包层光纤;S——塑料光纤。
Ⅲ:光纤主要尺寸参数用阿拉伯数(含小数点数)及以μm为单位表示多模光纤的芯径及包层直径,单模光纤的模场直径及包层直径。
Ⅳ:带宽、损耗、波长表示光纤传输特性的代号由a、bb及cc三组数字代号构成。
a——表示使用波长的代号,其数字代号规定如下:1——波长在0.85μm区域;2——波长在1.31μm区域;3——波长在1.55μm区域。
注意,同一光缆适用于两种及以上波长,并具有不同传输特性时,应同时列出各波长上的规格代号,并用“/”划开。
bb——表示损耗常数的代号。
两位数字依次为光缆中光纤损耗常数值(dB/km)的个位和十位数字。
cc——表示模式带宽的代号。
两位数字依次为光缆中光纤模式带宽分类数值(MHz·km)的千位和百位数字。
单模光纤无此项。
Ⅴ:适用温度代号及其意义。
A——适用于−40℃~+40℃B——适用于−30℃~+50℃C——适用于−20℃~+60℃D——适用于−5℃~+60℃光缆中还附加金属导线(对、组)编号,如下图所示。
其符合有关电缆标准中导电线芯规格构成的规定。
光缆中附加金属导线编号示意图例如,2个线径为0.5mm的铜导线单线可写成2×1×0.5;;4个线径为0.9mm的铝导线四线组可写成4×4×0.9L;4个内导体直径为2.6mm,外径为9.5mm的同轴对,可写成4×2.6/9.5。