高数空间几何向量典型例题

合集下载

高等数学 向量代数与空间解析几何题【精选文档】

高等数学 向量代数与空间解析几何题【精选文档】

第五章向量代数与空间解析几何5。

1。

1 向量的概念例1 在平行四边形中,设=a,=b.试用a和b表示向量、、和,这里是平行四边形对角线的交点(图5-8)解由于平行四边形的对角线互相平行,所以a+b==2即-(a+b)=2于是=(a+b)。

因为=-,所以(a+b)。

图5-8又因-a+b==2,所以=(b-a).由于=-,=(a-b).例2 设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的速度均为(常向量)v.设n为垂直于S的单位向量(图5-11(a)),计算单位时间内经过这区域流向n 所指向一侧的液体的质量P(液体得密度为)。

(a)(b)图5-11解该斜柱体的斜高|v |,斜高与地面垂线的夹角为v与n的夹角,所以这柱体的高为|v|cos,体积为A|v|cos=A v·n。

从而,单位时间内经过这区域流向n所指向一侧的液体的质量为P= A v·n.例3 设的三条边分别是a、b、c(图5-15),试用向量运算证明正弦定理证明注意到CB=CA+AB,故有CBCA=(CA+AB) CA=CACA+ABCA=ABCA=AB(CB+BA) =ABCB图5-15于是得到CBCA=ABCA =ABCB从而 |CBCA|=|ABCA| =|ABCB|即ab sin C=cb sin A=ca sin B所以5。

2 点的坐标与向量的坐标例1 已知点A(4,1,7)、B(-3,5,0),在y轴上求一点M,使得|MA|=|MB|。

解因为点在y轴上,故设其坐标为,则由两点间的距离公式,有解得,故所求点为例2 求证以三点为顶点的三角形是一个等腰三角形.解因为所以,即△为等腰三角形。

5.2。

2 向量运算的坐标表示例3 设有点,,求向量的坐标表示式.解由于,而,,于是即例4 已知两点A(4,0,5)和B(7,1,3),求与方向相同的单位向量e。

解因为=–=(7,1,3)-(4,0,5)=(3,1,–2),所以=,于是 e.例5 求解以向量为未知元的线性方程组其中a=(2,1,2),b=(—1,1,-2).解解此方程组得x=2a–3b , y =3a–5b以a,b代入,即得x=2(2,1,2)–3(–1,1,–2)=(7,–1,10)y=3(2,1,2)–5(–1,1,–2)=(11,–2,16)。

(完整版)高等数学空间解析几何与向量代数练习题与答案

(完整版)高等数学空间解析几何与向量代数练习题与答案

空间解析几何与矢量代数小练习一填空题 5’x9=45分1、平行于向量a=(6,7,-6)的单位向量为______________.2、设已知两点M1(4,2,1)和M2(3,0,2),计算向量M1M2的模_________________,方向余弦_________________和方向角_________________3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.4、方程x2+y2+z2-2x+4y+2z=0表示______________曲面.5、方程x2+y2=z表示______________曲面.6、x2+y2=z2表示______________曲面.7、在空间解析几何中y=x2表示______________图形.二计算题 11’x5=55分1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x轴且过两点(4,0,-2)和(5,1,7)的平面方程.3、求过点(1,2,3)且平行于直线x y-3z-12=1=5的直线方程.4、求过点(2,0,-3)且与直线⎧⎨x-2y+4z-7=0⎩3x+5y-2z+1=0垂直的平面方5、已知:OA=ϖi+3kϖ,OB=ϖj+3kϖ,求∆OAB的面积。

参考答案一填空题1、±⎨⎧67-6⎫⎩11,11,11⎬⎭2、M 11M 2=2,cos α=-2,cos β=22,cos γ=12,α=2π3,β=3ππ4,γ=33、(x -1)2+(y -3)2+(z +2)2=144、以(1,-2,-1)为球心,半径为6的球面5、旋转抛物面6、圆锥面7、抛物柱面二计算题1、3x -7y +5z -4=02、9y -z -2=03、x -1y -2z -32=1=5 4、16x -14y -11z -65=05S ∆=12OA ⨯OB =192。

高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析1.如图,长方体中,分别为中点,(1)求证:.(2)求二面角的正切值.【答案】(1)见解析(2)【解析】(1)由长方体及E、F分别为AB、C1D1的中点知,AE平行且等于C1F,所以AEC1F是平行四边形,所以C1E∥AF,由线面平行的判定定理知,C1E∥面ACF;(2)易证FG⊥面ABCD,过F作FH⊥AC于H,连结HG,因为FG⊥面ABCD,则FG⊥AC,所以∠FHG为二面角F—AC—G的平面角,然后通过解三角形,求出FG、GH的长,即可求出∠FHG的正切值,即为二面角F-AC-G的正切值.试题解析:(1)证明:在长方体中,分别为中点,且四边形是平行四边形3分,5分(2).长方体中,分别为中点,7分过做于,又就是二面角的平面角 9分,在中, 11分直角三角形中 13分二面角的正切值为 14分考点:线面平行的判定定理;二面角的计算;逻辑推理能力2.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1夹角的正弦值.【答案】(1)(2)【解析】解:(1)以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),∴=(2,0,-4),=(1,-1,-4).∵cos〈,〉===,∴异面直线A1B与C1D所成角的余弦值为.(2)设平面ADC1的法向量为n1=(x,y,z),∵=(1,1,0),=(0,2,4),∴n1·=0,n 1·=0,即x+y=0且2y+4z=0,取z=1,得x=2,y=-2,∴n1=(2,-2,1)是平面ADC1的一个法向量.取平面AA1B的一个法向量为n2=(0,1,0),设平面ADC1与平面ABA1夹角的大小为θ.由cosθ===,得sinθ=.因此,平面ADC1与平面ABA1夹角的正弦值为.3.已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若=+x+y,则x、y的值分别为()A.x=1,y=1B.x=1,y=C.x=,y=D.x=,y=1【答案】C【解析】如图,=+=+=+ (+).4.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.【答案】(1)(2)-(3)(4)【解析】解:设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°.=BD=c-a,=-a,=b-c,(1)·=(c-a)·(-a)=a2-a·c=;(2)·= (c-a)·(b-c)= (b·c-a·b-c2+a·c)=-;(3)=++=a+b-a+c-b=-a+b+ c.||2=a2+b2+c2-a·b+b·c-c·a=.即||=,所以EG的长为.(4)设、的夹角为θ.=b+c,=+=-b+a,cosθ==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.5.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【答案】D【解析】设,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.【考点】空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题.6.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.7.(2013•天津)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1﹣CE﹣C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.【答案】(1)见解析(2)(3)【解析】(1)证明:以点A为原点建立空间直角坐标系,如图,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).则,而=0.所以B1C1⊥CE;(2)解:,设平面B1CE的法向量为,则,即,取z=1,得x=﹣3,y=﹣2.所以.由(1)知B1C1⊥CE,又CC1⊥B1C1,所以B1C1⊥平面CEC1,故为平面CEC1的一个法向量,于是=.从而==.所以二面角B1﹣CE﹣C1的正弦值为.(3)解:,设0≤λ≤1,有.取为平面ADD1A1的一个法向量,设θ为直线AM与平面ADD1A1所成的角,则==.于是.解得.所以.所以线段AM的长为.8.如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.【答案】(1)见解析(2)【解析】(1)因为△DAB ≌△DCB,EA=EB=AB=1,所以△ECB是等边,,(2)建立空间坐标系如图,取向观点的坐标为, 向量设平面PBC的法向量平面PDC的法向量则【考点】本题主要考查空间垂直关系的证明、平行关系的运用,考查空间角的求解方法,考查空间想象能力、推理论证能力、计算能力.9.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值。

高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析1.如图,在四棱锥中,底面,,,,,点为棱的中点.(Ⅰ)证明:;(Ⅱ)若为棱上一点,满足,求二面角的余弦值.【答案】(Ⅰ)详见解析;(Ⅱ)余弦值为.【解析】思路一:坐标法.依题意,以点为原点建立空间直角坐标系(如图),写出各点的坐标,利用空间向量即可解决问题.思路二:几何法.(Ⅰ)如图,取中点,连接,.易得四边形为矩形,从而使问题得证.(Ⅱ)由于,那么BF在平面ABCD内的射影与AC垂直,故考虑作出BF在平面ABCD 内的射影.在中,过点作交于点.由题设可得,从而得,.在平面内,作交于点,于是.显然为二面角的平面角. 在三角形PAG中,由余弦定理可得二面角的余弦值.试题解析:解法一:坐标法.依题意,以点为原点建立空间直角坐标系(如图),可得,,,.由为棱的中点,得.(Ⅰ)向量,,故. 所以,.(Ⅱ)向量,,,.由点在棱上,设,.故.由,得,因此,,解得.即.设为平面的法向量,则即不妨令,可得为平面的一个法向量取平面的法向量,则.易知,二面角是锐角,所以其余弦值为.解法二:几何法.(Ⅰ)如图,取中点,连接,.由于分别为的中点,故,且,又由已知,可得且,故四边形为平行四边形,所以.因为底面,故,而,从而平面,因为平面,于是,又,所以.(Ⅱ)如图,在中,过点作交于点.因为底面,故底面,从而.又,得平面,因此.在底面内,可得,.在平面内,作交于点,于是.由于,故,所以四点共面.由,,得平面,故.所以为二面角的平面角.在中,,,,由余弦定理可得,在三角形PAG中,由余弦定理得.所以,二面角的余弦值为.【考点】1、空间直线的垂直关系;2、二面角.2.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力3.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是()A.(,-1,-1)B.(6,-2,-2)C.(4,2,2)D.(-1,1,4)【答案】D【解析】设平面α的法向量为n,则n⊥,n⊥,n⊥,所有与 (或、)平行的向量或可用与线性表示的向量都与n垂直,故选D.4.如图所示,已知空间四边形OABC中,|OB|=|OC|,且∠AOB=∠AOC,则、夹角θ的余弦值为()A.0B.C.D.【答案】A【解析】设=a,=b,=c.由已知条件∠AOB=∠AOC,且|b|=|c|,·=a·(c-b)=a·c-a·b=|a||c|cos∠AOC-|a||b|cos∠AOB=0,∴cosθ=0.故选A.5.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=________.【答案】2【解析】c-a=(0,0,1-x),2b=(2,4,2),由(c-a)·(2b)=-2,得(0,0,1-x)·(2,4,2)=-2,即2(1-x)=-2,解得x=2.6.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.【答案】(1)(2)-(3)(4)【解析】解:设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°.=BD=c-a,=-a,=b-c,(1)·=(c-a)·(-a)=a2-a·c=;(2)·= (c-a)·(b-c)= (b·c-a·b-c2+a·c)=-;(3)=++=a+b-a+c-b=-a+b+ c.||2=a2+b2+c2-a·b+b·c-c·a=.即||=,所以EG的长为.(4)设、的夹角为θ.=b+c,=+=-b+a,cosθ==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.7.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).8.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.B.C.D.【答案】C【解析】以C为原点,直线CA为x轴,直线CB为y轴,直线为轴,则设CA=CB=1,则,,A(1,0,0),,故,,所以,故选C.【考点】本小题主要考查利用空间向量求线线角,考查空间向量的基本运算,考查空间想象能力等数学基本能力,考查分析问题与解决问题的能力.9.如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA 的中点。

(完整word版)高三数学空间向量专题复习附答案

(完整word版)高三数学空间向量专题复习附答案

一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。

求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。

例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。

zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。

三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。

(完整word版)高三数学空间向量专题复习附答案

(完整word版)高三数学空间向量专题复习附答案

一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。

求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。

例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。

zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。

三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。

高中数学空间向量经典例题及解析

高中数学空间向量经典例题及解析

高中数学空间向量经典例题及解析一、引言空间向量是高中数学的一个重要知识点,它涉及到三维空间中向量的加法、数乘、数量积和向量积等运算。

这些运算在解决实际问题中有着广泛的应用,因此学好空间向量对于学生来说至关重要。

本篇文章将通过经典例题的方式,对空间向量的相关知识点进行深入解析,以期帮助学生更好地掌握这一知识点。

二、经典例题及解析【例题1】在空间四边形中,已知两个向量,,求异面直线的夹角(锐角或直角)。

【解析】本题考查空间向量的夹角问题,需要利用两个向量的夹角公式。

【解答】首先根据向量的定义,可得到向量,的坐标分别为(, )。

根据向量的加法,可得向量的坐标为(, )。

又因为两个向量垂直,所以它们的数量积为0,即,所以。

根据异面直线夹角公式,可得异面直线的夹角为。

【例题2】在长方体中,已知三个向量,,求异面直线的夹角(锐角或直角)。

【解析】本题除了需要用到向量的加法、数乘、数量积和向量积等运算,还需要用到长方体的性质。

【解答】首先根据向量的定义,可得到向量的坐标分别为(, , )。

又因为长方体中,所以可以表示为和的线性组合,即或。

设所在直线的方向向量,所在平面的法向量,则的坐标分别为(, )。

根据向量夹角公式和向量垂直的条件,可得垂直于平面,所以。

又因为两个向量垂直,所以它们的数量积为0,即,所以。

根据异面直线夹角公式,可得异面直线AB与CD的夹角为。

【例题3】已知长方体,设点,求与平面之间的距离。

【解析】本题需要利用长方体的性质和向量的数量积求解。

【解答】设平面的法向量,则所在直线的方向向量。

因为点在平面内,所以点在平面外,所以向量,即。

又因为向量与平面共线,所以向量,即。

根据向量的数量积和点到平面的距离公式,可得与平面之间的距离为。

三、总结空间向量是高中数学的一个难点也是重点,通过经典例题的解析,我们可以更好地掌握空间向量的相关知识点。

在解决实际问题时,我们需要灵活运用向量的加法、数乘、数量积和向量积等运算,同时还要注意向量的表示和坐标的确定。

空间向量立体几何(绝对经典)

空间向量立体几何(绝对经典)

例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。

(如图)A BCD A 1B 1C 1D 1G1)1(AA AD AB ++1111)1(AC CC AC AA AC AA AD AB =+=+=++解M 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式OP=OA+t 其中向量叫做直线的方向向量.ll aaOABP a若P为A,B中点,则()12=+ OP OA OB2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使, a b yx , p ,a b OM a b A B A 'Pp p xa yb =+ 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有=+MP xMA yMB =++ OP OM xMA yMB 注意:空间四点P 、M 、A 、B 共面⇔存在唯一实数对,,x y MP xMA yMB =+ ()使得(1)OP xOM yOA zOB x y z ⇔=++++= 其中,例1:已知m,n 是平面α内的两条相交直线,直线l 与α的交点为B ,且l ⊥m ,l ⊥n ,求证:l ⊥α。

n mg g m n αl l 证明:在α内作不与m、n重合的任一条直线g,在l、m、n、g上取非零向量l、m、n、g ,因m与n相交,得向量m、n 不平行,由共面向量定理可知,存在唯一的有序实数对(x,y),使g =x m +y n ,l ·g =x l ·m +y l ·n∵ l ·m =0,l ·n =0∴ l ·g =0∴ l⊥g∴ l⊥g这就证明了直线l垂直于平面α内的任一条直线,所以l⊥α巩固练习:利用向量知识证明三垂线定理αa A O P ().,0,,,,0,0,PA a PA a a OA a PO a PA OAy PO x PA y x OA PO OA PO a OA a OA a PO a PO PO aa ⊥⊥∴=⋅+⋅=⋅∴+==⋅∴⊥=⋅∴⊥∴⊥即使有序实数对定理可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量证明:在αPA a OAa a PA OA PA PO ⊥⊥⊂求证:且内的射影,在是的垂线,斜线,分别是平面已知:,,ααα复习:2. 向量的夹角:a bO ABabθ0a b π≤≤ ,a b ,向量 的夹角记作:a b 与a b = ||||cos ,a b a b 1.空间向量的数量积:111222(,,),(,,)a x y z b x y z == 设121212x x y y z z =++cos ||||a ba b a b =,121212222222111222++=++⋅++x x y y z z x y z x y z 5.向量的模长:2222||a a x y z ==++ (,,)a x y z = 设4.有关性质:(1)两非零向量111222(,,),(,,)a x y zb x y z == 1212120x x y y z z ++=0a b a b ⊥⇔=⇔ (2)||||||a b a b ≤ ||||,a b a b a b =⇒ 同方向||||,a b a b a b =-⇒ 反方向注意:此公式的几何意义是表示长方体的对角线的长度。

高数典型题解-向量与空间解析几何

高数典型题解-向量与空间解析几何
向量与空间解析几何
1. 求点 M ( x, y, z ) 与 x 轴, xOy 平面及原点的对称点坐标. 解: M ( x, y, z ) 关于 x 轴的对称点为 M 1 ( x, y, z ) ,关于 xOy 平面的对称点为 M 2 ( x, y , z ) ,关于原点的对称 点为 M 3 ( x, y, z ) . 2. 下列向量哪个是单位向量? (1) r i j k , (2) a 解: (1) r 1 1 1
i ab 1 2
j k 1 2 3, 3,0 . 2 1

16. 证明向量 a 1,0, 1与向量 b 1,1, 1垂直. 证明: a b 1 ( 1) 0 1 1 1 0 ,
第 3 页 共 7 页
由于平面与该直线垂直,故可取平面的法向量 n 为该方向向量 s ,即 n s = {1 , 2 , 3} , 由点法式得平面方程 x 1 2( y 2) 3( z 1) 0 ,即 x 2 y 3 z 0 . 24. 求通过点 P0 (2 , 1 , 3) 且与直线
因此,由平面的点法式方程,得 4( x 1) 0( y 5) 2( z 1) 0 ,即 2 x z 3 0 . 解二 利用平面的一般式方程。设所求的平面方程为 Ax By Cz D 0 , 由于平面平行于 y 轴,所以 B 0 ,原方程变为 Ax Cz D 0 ,又所求平面过点 A (1, 5, 1)与 B (3 , 2, 3),将 A, B 的坐标代入上述方程,得 平面方程为 2 x z 3 0 . 7. 求点 M 1 (5,10,15) 到点 M 2 ( 25,35,45) 之间的距离. 解:距离 d M 1 M 2

高考数学空间向量例题15页

高考数学空间向量例题15页

高考数学空间向量例题15页一 、单选题(本大题共 8小题,共 40分)1.(5分) 如图,点D 是空间四边形OABC 的边BC 的中点, OA ⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗ =c ,则 为()A.12(a +b ⃗ )−c B.12(c +a )−b ⃗ C.12(b ⃗ +c )−a D.a +12(b ⃗ +c ) 2.(5分)在三棱锥O-ABC 中, OA ⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗ =c ,AM⃗⃗⃗⃗ =2MO ⃗⃗⃗⃗⃗ ,N 为BC 中点,则 MN ⃗⃗⃗⃗⃗ =() A.12a −23b ⃗ +12c B.−13a +12b ⃗ +12cC.12a +12b ⃗ −12c D.13a +23b ⃗ −12c 3.(5分) 已知点M(0,1,3), N(-1,- 2,4), 则 ()A.(1,3,- 1)B.(1,3,1)C.(-1,-3,1)D.(1,-3,- 1)4.(5分) 已知A, B, C 三点不共线,对空间内任意一点O,若( ,则P,A, B, C 四点()A.不共面B.共面C.不一定共面D.无法判断是否共面5.(5分) 如图已知正方体ABCD -A'B'C'D'中,E 是CC'的中点, a=12AA ⃗⃗⃗ ′,b =12AB ⃗⃗⃗ , c =13AD ⃗⃗⃗ ,AE ⃗⃗⃗ =xa +yb +zc ,则( )A. x=1, y=2, z=3B.x =12,y =1,z =1 C. x=1, y=2, z=2 D.x =12,y =1,z =326.(5分)如图所示,在平行六面体 ABCD -A ₁B ₁C ₁D ₁中, ()A.AB ⃗⃗⃗⃗⃗ 1B.DC ⃗⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗D.BA ⃗⃗⃗⃗⃗7.(5分)在正四面体PABC 中,点O 为4ABC 的中心,N 为棱PC 上靠近点C 的三等分点,则 NO ⃗⃗⃗=()A.13PA ⃗⃗⃗⃗⃗ +13PB ⃗⃗⃗⃗⃗ −13PC ⃗⃗⃗⃗⃗ B.13PA ⃗⃗⃗⃗⃗ +13PB ⃗⃗⃗⃗⃗ +13PC⃗⃗⃗⃗⃗ C.13PA ⃗⃗⃗⃗⃗ +23PB ⃗⃗⃗⃗⃗ +13PC ⃗⃗⃗⃗⃗ D.13PA ⃗⃗⃗⃗⃗ −13PB ⃗⃗⃗⃗⃗ +13PC ⃗⃗⃗⃗⃗ 8.(5分)如图,在平行六面体ABCD -A ₁B ₁C ₁D ₁中,M 为A ₁C ₁与B ₁D ₁的交点,若(则下列向量中与 相等的向量是()A.−12a +12b ⃗ +c B.−12a −12b ⃗ +c C.12a +12b ⃗ +c D.12a −12b ⃗ +c 二 、多选题(本大题共5小题,共 25分)9.(5分) 在长方体ABCD-A ₁B ₁C ₁D ₁中,则 ()A.A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ −A 1A ⃗⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗B.BC ⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗ 1−D 1C 1⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ −DD ⃗⃗⃗⃗⃗⃗ 1D.B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ −A 1A ⃗⃗⃗⃗⃗⃗⃗ +DD⃗⃗⃗⃗⃗⃗ 1 10.(5分)在四面体PABC 中,下列说法正确的是()A.若 AD ⃗⃗⃗=13AC ⃗⃗⃗ +23AB ⃗⃗⃗ ,则 BC ⃗⃗⃗ =3BD ⃗⃗⃗B.若点 Q 为△ABC的重心,则.C.若则 0D.若四面体PABC 的各棱长都为2, M, N 分别为PA, BC 的中点,则|11.(5分) 在平行六面体ABCD-A ₁B ₁C ₁D ₁中, ∠BAD =∠A 1AB =∠A 1AD =π3,各棱长均为1,则下列命题中正确的是( )不是空间的一个基底B.⟨AD ⃗⃗⃗⃗⃗ ,DD⃗⃗⃗⃗⃗⃗ 1⟩=23π C.|BD⃗⃗⃗⃗⃗⃗ 1|=√2 D. BD⊥平面ACC ₁A ₁12.(5分)对于向量 和实数,下列命题中的假命题是()A.若 0 则 0或 0B.若 0则λ= 0或 0C.若 则 或D.若 则 是锐角13.(5分)如图,一个结晶体的形状为平行六面体ABCD-A ₁B ₁C ₁D ₁,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是()A.(AA 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=2(AC ⃗⃗⃗⃗⃗ )2B.AC⃗⃗⃗⃗⃗ 1⋅(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )=0 C.向量 与 的夹角60° 与 所成角的余弦值为 √三 、填空题(本大题共5小题,共 25分)14.(5分)已知A, B, C, D 为空间中任意四点,化简( ( )( ) .15.(5分)如图,已知空间四边形OABC,其对角线为OB,AC, M, N 分别为OA, BC 的中点,点G 在线段MN 上,且 若 则x+y+z= .16.(5分)已知空间向量 a =(1,2,3),b =(3,−1,2),c=(−1,0,1),则 . 17.(5分)在四面体O-ABC 中, OA ⃗⃗⃗ =a ,OB ⃗⃗⃗ =b ,OC ⃗⃗⃗ =c ,D 为BC 的中点,E 为AD 的中点,则 (用 表示)18.(5分)已知向量( {,,} {,0,} 若 则实数k= .四 、解答题(本大题共5小题,共 60分)19.(12分)如图,四棱锥P-OABC 的底面OABC 是矩形, PO⊥平面OABC,设( , E, F 分别是PC, PB 的中点,试用{ { , , }表示20.(12分)已知四棱锥P-ABCD 的底面是平行四边形,E 为棱PC 上的点,且CE =2 EP,试用 表示向量(21.(12分)已知 a =(1,0,−1),b=(−1,1,2). (1)求 与a 的夹角的余弦值.(2)若 与 平行,求k 的值.(3)若 与 垂直,求k 的值.22.(12分)如图,在三棱柱 ABC-A₁B₁C₁中,D是棱B₁C₁的中点,设=a ,AC⃗⃗⃗⃗⃗ =b⃗,AA⃗⃗⃗⃗⃗ 1=c.(1)试用向量表示向量.(2)石AD=AL=AA1=3, ∠BAL=∠A1AD=∠A1AL=60°, 水|BE|.23.(12分)在平行六面体ABCD−A′B′C′D′中,AB=4,AD=6,AA′=8,∠BAD= 90°,∠BAA′=∠DAA′=60°,P是CC₁的中点.(Ⅰ)用'表示(Ⅱ)求AP的长.。

高中数学空间向量与立体几何经典题型与答案

高中数学空间向量与立体几何经典题型与答案

空间向量与立体几何经典题型与答案1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90底面ABCD ,且12PA AD DC ===,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P M(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故(Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使14,00,.25AN MC AN MC x z λ⊥=-==只需即解得),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角30304||,||,.5552cos(,).3||||2arccos().3AN BN AN BN AN BN AN BN AN BN ===-∴==-⋅-故所求的二面角为2 如图,在四棱锥V ABCD -中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD(Ⅰ)证明:AB ⊥平面VAD ;(Ⅱ)求面VAD 与面DB 所成的二面角的大小证明:以D 为坐标原点,建立如图所示的坐标图系(Ⅰ)证明:不防设作(1,0,0)A ,则(1,1,0)B , )23,0,21(V , )23,0,21(),0,1,0(-==VA AB由,0=⋅VA AB 得AB VA ⊥,又AB AD ⊥,因而AB 与平面VAD 内两条相交直线VA ,AD 都垂直∴AB ⊥平面VAD(Ⅱ)解:设E 为DV 中点,则)43,0,41(E , ).23,0,21(),43,1,43(),43,0,43(=-=-=DV EB EA由.,,0DV EA DV EB DV EB ⊥⊥=⋅又得 因此,AEB ∠是所求二面角的平面角,,721||||),cos(=⋅⋅=EB EA EB EA EB EA 解得所求二面角的大小为.721arccos3 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底V面ABCD ,3AB =,1BC =,2PA =, E 为PD 的中点(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出点N 到AB 和AP 的距离解:(Ⅰ)建立如图所示的空间直角坐标系,则,,,,,A B C D P E 的坐标为(0,0,0)A 、(3,0,0)B 、(3,1,0)C 、(0,1,0)D 、(0,0,2)P 、1(0,,1)2E ,从而).2,0,3(),0,1,3(-==PB AC 设PB AC 与的夹角为θ,则,1473723||||cos ==⋅⋅=PB AC PB AC θ ∴AC 与PB 所成角的余弦值为1473 (Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(,0,)x z ,则)1,21,(z x NE --=,由NE ⊥面PAC 可得,⎪⎩⎪⎨⎧=+-=-⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--⎪⎩⎪⎨⎧=⋅=⋅.0213,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(.0,0x z z x z x AC NE AP NE 化简得即 ∴⎪⎩⎪⎨⎧==163z x 即N 点的坐标为)1,0,63(,从而N 点到AB 和AP 的距离分别为31,64 如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中14,2,3,1AB BC CC BE ====(Ⅰ)求BF 的长; (Ⅱ)求点C 到平面1AEC F 的距离解:(I)建立如图所示的空间直角坐标系,则(0,0,0)D ,(2,4,0)B1(2,0,0),(0,4,0),(2,4,1),(0,4,3)A C E C 设(0,0,)F z∵1AEC F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II)设1n 为平面1AEC F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由 ⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为α,则 .333341161133||||cos 1111=++⨯=⋅⋅=n CC n CC α ∴C 到平面1AEC F 的距离为.11334333343cos ||1=⨯==αCC d5 如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AD 上移动 (1)证明:11D E A D ⊥;(2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4π 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C(1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为(2)因为E 为AB 的中点,则(1,1,0)E ,从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD ,设平面1ACD 的法向量为),,(c b a n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD n AC n 也即⎩⎨⎧=+-=+-002c a b a ,得⎩⎨⎧==c a ba 2,从而)2,1,2(=n ,所以点E 到平面1ACD 的距离为.313212||||1=-+=⋅=n n E D h (3)设平面1D EC 的法向量),,(c b a n =,∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD C D x CE由⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅.0)2(02,0,01x b a c b CE n C D n 令1,2,2b c a x =∴==-, ∴).2,1,2(x n -= 依题意.225)2(222||||||4cos211=+-⇒=⋅⋅=x DD n DD n π∴321+=x (不合,舍去),322-=x∴23AE =-时,二面角1D EC D --的大小为4π6 如图,在三棱柱111ABC A B C -中,AB ⊥侧面11BB C C ,E 为棱1CC 上异于1,C C 的一点,1EA EB ⊥,已知112,2,1,3AB BB BC BCC π===∠=,求:(Ⅰ)异面直线AB 与1EB 的距离;(Ⅱ)二面角11A EB A --的平面角的正切值解:(I)以B 为原点,1BB 、BA 分别为,y z 轴建立空间直角坐标系ﻩ由于,112,2,1,3AB BB BC BCC π===∠=ﻩ在三棱柱111ABC A B C -中有1(0,0,0),(0,0,2),(0,2,0)B A B ,)0,23,23(),0,21,23(1C C -设即得由,0,),0,,23(11=⋅⊥EB EA EB EA a E)0,2,23()2,,23(0a a --⋅--= ,432)2(432+-=-+=a a a a .,04343)02323()0,21,23()0,21,23(),(2321,0)23)(21(11EB BE EB BE E a a a a ⊥=+-=⋅⋅-⋅=⋅===--即故舍去或即得又AB ⊥侧面11BB C C ,故AB BE ⊥ 因此BE 是异面直线1,AB EB 的公垂线,则14143||=+=BE ,故异面直线1,AB EB 的距离为1 (I I)由已知有,,1111EB A B EB EA ⊥⊥故二面角11A EB A --的平面角θ的大小为向量EA A B 与11的夹角.22tan ,32||||cos ),2,21,23(),2,0,0(111111==⋅=--===θθ即故因A B EA A B EA EA BA A B7 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PF EC ⊥ 已知,21,2,2===AE CD PD 求(Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E PC D --的大小解:(Ⅰ)以D 为原点,DA 、DC 、DP 分别为,,x y z 轴建立空间直角坐标系由已知可得(0,0,0),(0,0,2),(0,2,0)D P C则(2EF =-由0EF PC ⋅=得又由F 在PC 上得,(2222EF =-因,,EF PC DG PC ⊥⊥故E -的大小为向量EF DG 与的夹角22||||DG EF DG EF ⋅=4。

【高考必做题】高二数学——空间向量(后附参考答案与解析)

【高考必做题】高二数学——空间向量(后附参考答案与解析)

空间向量-期中必做题12为的中点,,.平面,如图.所成角的正弦值.,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由.3所成角的正弦值.上是否存在点,使得平面?若存在,求出的值.若不存在,请4)的平面展开图(如图)中,四边形为边长为的正方形,均为正三角形.在三棱锥中:(图1)(图2)证明:平面平面.(1)5 67 8 910所成角最小时,求线段的长.11,.12平面.,求二面角的余弦值.13的正方形中,,分别为的中点,沿将矩形折起使得所示,点在上,,分别为中点.平面.的余弦值.14中,侧面为等边三角形且垂直于底面三角形,,是的中点.15的中点,点在线段上.点到直线1617 D.个的三等分点,到各顶点的距离的不同取181920 2122D.4个23坐标平面上的一组正投影图像如.24椭圆的一部分 D.抛物线的一部分25 D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(262728D.29,的中点,为上一动).30空间向量-期中必做题1,..,连接...,,,因为,为的中点,所以因为平面,平面,所以平面因为平面平面,平面所以平面.因为.所以平面.设直线与平面所成角为,则所以直线与平面所成角的正弦值为由()知,设平面的法向量为,则有,即,令,则,. 即所以.由题知二面角为锐角,所以它的大小为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用2所成角的正弦值.,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由..,分别为,的中点, ∴,.,又为的中点,. ∵ 平面平面,且平面, ∴平面.,连接,∴.,.如图建立空间直角坐标系.由题意得,,∴,设平面的法向量为则即令,则,,∴设直线和平面所成的角为则∴ 直线和平面所成角的正弦值为线段上存在点适合题意.设,其中.设,则有∴,从而∴,又∴令整理得.解得,舍去.∴ 线段上存在点适合题意,且立体几何与空间向量立体几何初步空间向量空间向量的应用3所成角的正弦值.上是否存在点,使得平面?若存在,求出的值.若不存在,请证明见解析.如图,在矩形中,,为中点,,的中点,由题意可知,,平面,平面,平面,,,.在中,由,则所以,设平面的一个法向量为则,,令所以,设直线与平面所成角为,所以直线与平面所成角的正弦值为假设在线段上存在点,满足设,由,所以,若平面,则,所以,解得所以.立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用(图1)(图2)证明:平面平面.(1)求二面角的余弦值.(2)若点在棱上,满足,,点在棱上,且范围.(3)4由题意,因为在中,,为所以,因为在中,,所以,因为,,平面所以平面,因为平面,所以平面平面.方法:设的中点为,连接,.因为在中,,为所以,因为,因为在中,,为所以.因为在中,,为所以.因为,,平面所以平面,因为平面,所以.因为,,平面所以平面,因为平面.所以平面平面.由平面,,则,,,由平面,故平面的法向量为由,设平面的法向量为由,得:令,得,,即由二面角是锐二面角,所以二面角的余弦值为设,,则令,得即,是关于当时,,所以.立体几何与空间向量立体几何初步空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用567空间直角坐标系空间向量及其运算空间向量的应用8空间向量空间向量及其运算空间向量的应用910所成角最小时,求线段的长.轴,建立空间直角坐标系,考点设平面的一个法向量,,,,所示二面角的余弦值为.设,∵在线段上,直线上点坐标满足,∵,,,设,整理得:,,解得,∴当与夹角最小时,,此时解得,,∴点坐标为,∵,长度为.(2)立体几何与空间向量空间向量空间直角坐标系11?并说明理由.,的延长线于,连结.∵平面平面,平面平面∴平面,即是直线设,,则∴.∵,∴,∴.解得.∵,,∴.∴,方程无解.∴直线与平面所成的角不能为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的垂直12如图在直角梯形中,,,且折起,使,得到如下的立体图形.平面.,求二面角的余弦值.证明见解析.由题可得,,则,,且,所以平面.平面,所以平面平面.方法一、过点作交于点,,则平面,.,,平面,.,则,.为坐标原点,方向为轴正方向,建立如图所示的空间直角坐标系.则,,,,因为,所以.又平面平面,所以因为,且,,所以所以,即四边形是平行四边形.所以.从而平面.所以作交于点,连结,因为,,所以平面所以,所以是二面角过点做交于点,连结,则平面,又,,13则中位线且又且,所以且所以四边形是平行四边形,所以,又平面,法二:如图,延长因为且,所以为中点,所以中位线,又平面,面,所以法一:如图,因为,所以又.所以∴,∴,又∵,,∴平面,面,∴又,所以平面,又为中点,所以所以平面,,所以中,,,∴二面角的余弦值为法二:如图,∵,∴∴,∴∴,∴,,又∵,,∴平面,面,∴,又,所以平面,面,∴则,,,而是平面的一个法向量,设平面的法向量为则令,则,面的一个法向量为所以所以,二面角的余弦值为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用14空间直角坐标系空间向量及其运算15为边长为的等边三角形,面积为截得的平面图形中,正六边形如图所示分别为各边中点,边长为,面积为.故答案为;.立体几何与空间向量立体几何初步空间几何体16∵,底面,∴四边形是矩形.∴,又平面,平面∴平面.∴直线上任一点到平面的距离是两条异面直线∵平面平面.17在侧面中,.由勾股定理知,设点,则点轨迹为而,则立体几何与空间向量立体几何初步空间中的垂直解析几何双曲线双曲线的定义、图形及标准方程双曲线的性质B.个 D.个如图,在正方体).18B∵,即∴,,,,∴点到各顶点的距离的不同取值有故选.立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系19的正方体中,点,,则满足条件的点的个数为若满足的点的个数为(1)(2)(1)如下图所示,。

空间几何与向量练习题及解析

空间几何与向量练习题及解析

空间几何与向量练习题及解析一、选择题1. 已知向量A = 3A + 2A− A,向量A= −2A + A + 3A,求A与A的数量积A·A的值为:A. 1B. -1C. -10D. 10解析:数量积公式为:A·A = AAAA + AAAA + AAAA,其中AA、AA、AA分别表示向量A和A的A、A、A分量的乘积。

带入已知的A和A的分量进行计算:A·A = (3)(-2) + (2)(1) + (-1)(3) = -6 + 2 - 3 = -7答案:选项A. 12. 在空间直角坐标系中,已知点A(2, 1, 3)和点A(-1, 4, 2),向量A的末端与向量A的起点重合,A·A的值为:A. 3B. 17C. 11D. -9解析:点A(2, 1, 3)和点A(-1, 4, 2)可以确定唯一的向量A和A。

根据数量积A·A的定义,可以先求出A和A的分量,然后进行运算:A·A = (2)(-1) + (1)(4) + (3)(2) = -2 + 4 + 6 = 8答案:选项B. 17二、填空题1. 设向量A = 2A + 3A− A,向量A = 4A + A,若A = A + AAA,则A和A分别为______、______。

解析:根据已知条件,A的A分量为-1,而A的A分量为1。

因此A = 4,A = -1。

答案:4、-12. 已知点A(1, 2, 3)和点A(4, -1, -2),则向量AA的大小为________。

解析:向量AA可以由终点坐标减去起点坐标得到,即AA = (4-1)A + (-1-2)A + (-2-3)A = 3A - 3A - 5A。

根据向量的模的定义,可以得到:|AA| = √((3)^2 + (-3)^2 + (-5)^2) = √(9 + 9 + 25) = √43答案:√43三、计算题1. 已知向量A = 3A - 2A + 4A,向量A = A + A,求向量A与向量A 的夹角A的余弦值cos A。

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。

空间向量典型例题

空间向量典型例题

空间向量典型例题空间向量与立体几何一、非坐标系向量法1.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()。

答案:(B)2/3.2.等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为1/3,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于。

答案:3/4.3.已知正四面体ABCD中,E、F分别在AB,CD上,且CF=CD,AE=AB/4,则直线DE和BF所成角的余弦值为()。

答案:(C)-13/13.4.如图,已知四棱柱ABCD-A1,CB=CD,∠C1CB=∠C1CD,证明:C1C垂直于BD;当∠C1CB的值为多少时,能使A1CB1D是菱形且A1C垂直于平面C1BD?请给出证明。

二、坐标系向量法1.如图,在直三棱柱ABCD-A1B1C1D1中,点M是AC的中点,点N是BD的中点,求异面直线AN和B1M所成角的余弦值,以及平面A1B1C1和平面ABC所成二面角的正弦值。

2.如图,在直棱柱ABCD-A1B1C1D1中,AB=BC=1,AC=BD=√2,点M是AC的中点,点N是BD的中点。

证明:(1)MN⊥平面A1B1C1D1;(2)直线MN和平面A1B1C1D1所成二面角的正弦值为1/√10.3.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC。

求证:PC⊥AB;求二面角B-AP-C的大小。

4.如图,已知点P在正方体ABCD-A1B1C1D1的对角线BD1上,∠PDA=60°。

求(1)DP与CC1所成角的大小;(2)DP与平面A1AD1所成角的大小。

5.如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=90°,OA⊥底面ABCD,OA=2,M为OA的中点。

求(1)异面直线AB与MD所成角的大小;(2)点B到平面OCD的距离。

高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析1.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力2.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.(1)证明:MF⊥BD;(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.【答案】(1)见解析(2)【解析】(1)证明由已知得△ADF为正三角形,所以MF⊥AD,因为平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,MF⊂平面ADEF,所以MF⊥BD.(2)设AB=x,以F为原点,AF,FE所在直线分别为x轴,y轴建立如图所示的空间直角坐标系,则F(0,0,0),A(-2,0,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).因为EF⊥平面ABF,所以平面ABF的法向量可取n1=(0,1,0).设n2=(x1,y1,z1)为平面BFD的法向量,则可取n2=.因为cos〈n1,n2〉==,得x=,所以AB=.3.已知向量=(2,4,5),=(3,x,y),若∥,则() A.x=6,y=15B.x=3,y=C.x=3,y=15D.x=6,y=【答案】D【解析】∵==,∴x=6,y=,选D项.4.如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则()A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC.EF与BD1相交D.EF与BD1异面【答案】B【解析】以D点为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E(,0,),F(,,0),B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=(,,-),=(-1,-1,1),=-,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.故选B.5.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.【答案】60°【解析】由题意得(2a+b)·c=0+10-20=-10.即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,∴cos〈b,c〉===-,∴〈b,c〉=120°,∴两直线的夹角为60°.6.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).7.如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.(1)证明:为的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若,,梯形的面积为6,求平面与底面所成二面角大小.【答案】(1)为的中点;(2);(3).【解析】(1)利用面面平行来证明线线平行∥,则出现相似三角形,于是根据三角形相似即可得出,即为的中点.(2)连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.先表示出和,就可求出,从而.(3)可以有两种方法进行求解.第一种方法,用常规法,作出二面角.在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.第二种方法,建立空间直角坐标系,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,再利用向量求出二面角.(1)证:因为∥,∥,,所以平面∥平面.从而平面与这两个平面的交线相互平行,即∥.故与的对应边相互平行,于是.所以,即为的中点.(2)解:如图,连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.,,所以,又所以,故.(3)解法1如第(20)题图1,在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.因为∥,,所以.又因为梯形的面积为6,,所以.于是.故平面与底面所成二面角的大小为.解法2如图,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,由得,所以.又因为平面的法向量,所以,故平面与底面所成而面积的大小为.【考点】1.二面角的求解;2.几何体的体积求解.8.如图,正方形与梯形所在的平面互相垂直,,∥,,,为的中点.(1)求证:∥平面;(2)求证:平面平面;(3)求平面与平面所成锐二面角的余弦值.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MN,N为中点,在中,利用中位线得到,且,结合已知条件,可证出四边形ABMN为平行四边形,所以,利用线面平行的判定,得∥平面;第二问,利用面面垂直的性质,判断面,再利用已知的边长,可证出,则利用线面垂直的判定得平面BDE,再利用面面垂直的判定得平面平面;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.(1)证明:取中点,连结.在△中,分别为的中点,所以∥,且.由已知∥,,所以∥,且.所以四边形为平行四边形,所以∥.又因为平面,且平面,所以∥平面. 4分(2)证明:在正方形中,.又因为平面平面,且平面平面,所以平面.所以. 6分在直角梯形中,,,可得.在△中,,所以. 7分所以平面. 8分又因为平面,所以平面平面. 9分(3)(方法一)延长和交于.在平面内过作于,连结.由平面平面,∥,,平面平面=,得,于是.又,平面,所以,于是就是平面与平面所成锐二面角的平面角. 12分由,得.又,于是有.在中,.所以平面与平面所成锐二面角的余弦值为. 14分(方法二)由(2)知平面,且.以为原点,所在直线分别为轴,建立空间直角坐标系.易得.平面的一个法向量为.设为平面的一个法向量,因为,所以,令,得.所以为平面的一个法向量.12分设平面与平面所成锐二面角为.则.所以平面与平面所成锐二面角的余弦值为. 14分【考点】中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角.9.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.10.在如图所示的几何体中,平面,∥,是的中点,,.(1)证明:∥平面;(2)求二面角的大小的余弦值.【答案】(1)详见解析;(2)【解析】(1)要证明直线和平面平行,只需证明直线和平面内的一条直线平行,取中点,连接,则,且,由已知得,且,故,则四边形是平行四边形,可证明,进而证明∥平面,或可通过建立空间直角坐标系,用坐标表示相关点的坐标,证明直线的方向向量垂直于平面的法向量即可;(2)先求半平面和的法向量的夹角的余弦值,再观察二面角是锐二面角还是钝二面角,来决定二面角的大小的余弦值的正负,从而求解.(1)因为,∥,所以平面.故以为原点,建立如图所示的空间直角坐标系,则相关各点的坐标分别是,,,,,.所以,因为平面的一个法向量为,所以,又因为平面,所以平面. 6分(2)由(1)知,,,.设是平面的一个法向量,由得,取,得,则设是平面的一个法向量,由得,取,则,则设二面角的大小为,则,故二面角的大小的余弦值为.【考点】1、直线和平面平行的判断;2、二面角的求法.11.如图,在四棱锥中,底面是直角梯形,,,平面平面,若,,,,且.(1)求证:平面;(2)设平面与平面所成二面角的大小为,求的值.【答案】(1)参考解析;(2)【解析】(1)由,所以.又,.在三角形PAO中由余弦定理可得.所以.即.又平面平面且平面平面=AD,平面PAD.所以平面.(2)由题意可得建立空间坐标系,写出相应点的坐标,平面PAD的法向量易得,用待定系数写出平面PBC的法向量,根据两向量的法向量夹角的余弦值,求出二面角的余弦值.(1)因为,,所以, 1分在中,由余弦定理,得, 3分,, 4分, 5分又平面平面,平面平面,平面,平面. 6分(2)如图,过作交于,则,,两两垂直,以为坐标原点,分别以,,所在直线为轴,建立空间直角坐标系, 7分则,,8分,, 9分设平面的一个法向量为,由得即取则,所以为平面的一个法向量. 11分平面,为平面的一个法向量.所以, 12分. 13分【考点】1.线面垂直的证明.2.二面角.3.空间坐标系的表示.4.向量的夹角.12.如图,在直三棱柱中,已知,,.(1)求异面直线与夹角的余弦值;(2)求二面角平面角的余弦值.【答案】(1),(2).【解析】(1)利用空间向量求线线角,关键在于正确表示各点的坐标. 以为正交基底,建立空间直角坐标系.则,,,,所以,,因此,所以异面直线与夹角的余弦值为.(2)利用空间向量求二面角,关键在于求出一个法向量. 设平面的法向量为,则即取平面的一个法向量为;同理可得平面的一个法向量为;由两向量数量积可得二面角平面角的余弦值为.试题解析:如图,以为正交基底,建立空间直角坐标系.则,,,,所以,,,.(1)因为,所以异面直线与夹角的余弦值为. 4分(2)设平面的法向量为,则即取平面的一个法向量为;所以二面角平面角的余弦值为. 10分【考点】利用空间向量求线线角及二面角13.如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.(1)若PM=PA,求证:MN⊥AD;(2)若二面角M-BD-A的大小为,求线段MN的长度.【答案】(1)详见解析;(2).【解析】(1)由于这是一个正四棱锥,故易建立空间坐标系,易得各点的坐标,由,得,由,得,即可求得向量的坐标:.不难计算出它们的数量积,问题得证;(2)利用在上,可设,得出点的坐标,表示出,进而求出平面的法向量n=(λ-1,0,λ),由向量的夹角公式可得,解得,从而确定出,由两点间距离公式得.试题解析:证明:连接交于点,以为轴正方向,以为轴正方向,为轴建立空间直角坐标系.因为,则.(1)由,得,由,得,所以.因为.所以. 4分(2)因为在上,可设,得.所以.设平面的法向量,由得其中一组解为,所以可取n=(λ-1,0,λ). 8分因为平面的法向量为,所以,解得,从而,所以. 10分【考点】1.线线垂直的证明;2.二面角的计算14.如图,已知四棱锥的底面的菱形,,点是边的中点,交于点,(1)求证:;(2)若的大小;(3)在(2)的条件下,求异面直线与所成角的余弦值。

高等数学第七章空间解析几何与向量代数试题[1]

高等数学第七章空间解析几何与向量代数试题[1]

(一)选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( )A )B )C ) 6D )9532. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ;A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )-2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( )A )B )C )D )2π4π3ππ5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( )A )5焦耳B )10焦耳C )3焦耳D )9焦耳6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( )A )B )C )D )2π4π3ππ7. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( )A ) B C ) D )13811815818. 设求是:(),23,a i k b i j k =-=++r r r r r r r a b ⨯r r A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k9. 设⊿的顶点为,求三角形的面积是:( ABC (3,0,2),(5,3,1),(0,1,3)A B C -)A )B )C )D )33623643210. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( )A )2x+3y=5=0B )x-y+1=0C )x+y+1=0D )01=-+y x .填空题(1) a ∙b = (公式)(2) a ·b = (计算)(3).=⨯b a r r (4)][c b a r r r =(5) 平面的点法式方程是(6) 三维向量 21M M 的模为| 21M M |=(7) 坐标面的曲线绕轴旋转生成的旋转曲面的方程是:yoz 0),(=z y f z (8) 已知两点与,与向量方向一致的单位向量= 。

高数空间几何向量典型例题

高数空间几何向量典型例题

例1 已知长方体ABCD -A 1B 1C 1D 1中,棱长AB =BC =3,BB 1=4,连结B 1C ,过B 点作B 1C 的垂线交CC 1于点E ,交B 1C 于点F .(1)求证:A 1C ⊥平面EBD ;(2)设A 1C ∩平面EBD =K ,求线段A 1K 的长; (3)求A 1B 与平面BDE 所成角的大小.解法1:(1)证BE C A ⊥1,BD C A ⊥1,可得A 1C ⊥平面EBD .(2)在平面1BC 中用平几知识可求得49=CE ,在对角面1AC 中,设AC 与BD 交于点O ,可求得22CE OC OE +=4173=,由面积法得34349=CK ,2121AA AC C A +=34=,34342511=-=CK C A K A . (3)∵A 1C ⊥平面B DE ,∴∠A 1BK 就是所求的直线A 1B 与平面BDE 所成的角. ∴BK A 1sin ∠B A K A 11=34345=,∴直线A 1B 与平面BDE 所成的角为34345arcsin . 解法2:(1)以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D-xyz ,则D (0,0,0),A (3,0,0),C (0,3,0),B (3,3,0),A 1(3,0,4),D 1(0,0,4),C 1(0,3,4),B 1(3,3,4).设E (0,3,z ),则∵BE ⊥B 1C ,∴BE ·C B 1=0,BE =(-3,0,z ),B 1=(-3,0,-4),∴·B 1C=(-3,0,z )·(-3,0,-4)=9-4z=0,∴z=49, ∴E(0,3,49), ∴A 1·=-3×3+3×3=0,A 1·=3×3-4×49=0,∴A 1⊥,A 1⊥,∴A 1⊥DB ,A 1C ⊥DE , ∴A 1C ⊥平面BDE . (2)DK =m +n =m (3,3,0)+n (0,3,49)=(3m ,3m +3n ,49n ), ∴K (3m ,3m +3n ,49n ),∴A 1=(3m -3,3m +3n ,49n-4),A 1⊥⇔A 1·=(3m -3,3m +3n ,49n -4)·(3,3,0)=0, ABCD1A 1B 1C 1D EFy∴2m +n -1=0,及=K A 1⊥⇔·=(3m-3,3m+3n ,49n-4)·(0,3,49)=0,∴16m +25n -16=0,∴m =349,n =178, ∴K (-3475,3475,-1750)=A 1,∴|A 1|=343425这就是所求的线段A 1K 的长. (3)∵A 1C ⊥平面BDE ,∴∠CA 1B 就是所求的直线A 1B 与平面BDE 所成的角的余角.A 1=(0,3,-4),|A 1|=5,∴sin∠A 1BK ==34345,∴sin ∠A 1BK =arcsin=34345,即直线A 1B 与平面BDE 所成的角的大小为arcsin 为34345. 例2.用向量法解题(请按照图形,建立坐标系):正四棱锥S ABCD -中,所有棱长都是2,P 为SA 的中点.(1)求二面角B SC D --的大小;(2)如果点Q 在棱SC 上,那么直线BQ 与PD 由.解:(1)取SC 的中点E ,连结,BE DE ,SCB ∆∆与角形,∴SC BE ⊥,SC DE ⊥,∴BED ∠是二面角B SC D --的平面角, 在BED ∆中,2223381cos 263BE DE BD BED BE DE +-+-∠===-⋅,∴1arccos 3BED π∠=-,故二面角B SC D --的大小为1arccos 3π-.(2)设ACBD O =,以射线,,OA OB OS 分别为,,x y z 轴建立空间直角坐标系,设CQ x =,则(0,B D ,(()2222P Q x x -,222(,2,),()2222DP BQ x x ==,30DP BQ x ⋅=-≠(∵0[∈x ,]2,∴BQ 与PD 不可能垂直.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 已知长方体ABCD -A 1B 1C 1D 1中,棱长AB =BC =3,BB 1=4,连结B 1C ,过B 点作B 1C 的垂线交CC 1于点E ,交B 1C 于点F .
(1)求证:A 1C ⊥平面EBD ;
(2)设A 1C ∩平面EBD =K ,求线段A 1K 的长; (3)求A 1B 与平面BDE 所成角的大小.
解法1:(1)证BE C A ⊥1,BD C A ⊥1,可得A 1C ⊥平面EBD .
(2)在平面1BC 中用平几知识可求得4
9
=
CE ,在对角面1AC 中,设AC 与BD 交于点O ,可求得22CE OC OE +=4173=,由面积法得34
34
9=CK ,
2
121AA AC C A +=34=,34
342511=
-=CK C A K A . (3)∵A 1C ⊥平面B DE ,∴∠A 1BK 就是所求的直线A 1B 与平面BDE 所成的角. ∴BK A 1sin ∠B A K A 11=
34345=
,∴直线A 1B 与平面BDE 所成的角为34
34
5arcsin . 解法2:(1)以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴,y 轴,
z 轴建立空间直角坐标系D-xyz ,则D (0,0,0),A (3,0,0),C (0,3,0),B (3,3,0),A 1(3,0,4),D 1(0,0,4),C 1(0,3,4),
B 1(3,3,4).
设E (0,3,z ),则∵BE ⊥B 1C ,∴BE ·C B 1=0,BE =(-3,0,z ),B 1=(-3,0,-4),
∴·B 1C=(-3,0,z )·(-3,0,-4)=9-4z=0,∴z=49
, ∴E(0,3,4
9), ∴A 1·=-3×3+3×3=0,A 1·=3×3-4×4
9=0,
∴A 1⊥,A 1⊥,∴A 1⊥DB ,A 1C ⊥DE , ∴A 1C ⊥平面BDE . (2)DK =m +n =m (3,3,0)+n (0,3,49)=(3m ,3m +3n ,4
9n ), ∴K (3m ,3m +3n ,49n ),∴A 1=(3m -3,3m +3n ,4
9n-4),
A 1⊥⇔A 1·=(3m -3,3m +3n ,
4
9
n -4)·(3,3,0)=0, A
B
C
D
1
A 1
B 1
C 1
D E
F
y
∴2m +n -1=0,及=A 1⊥⇔·=(3m-3,3m+3n ,49
n-4)·(0,3,4
9)=0,
∴16m +25n -16=0,∴m =34
9
,n =178, ∴K (-3475,3475,-1750)=K A 1,
∴|A 1|=
34
34
25这就是所求的线段A 1K 的长. (3)∵A 1C ⊥平面BDE ,∴∠CA 1B 就是所求的直线A 1B 与平面BDE 所成的角的余角.
A 1=(0,3,-4),|A 1|=5,∴sin
∠A 1BK =
=
34
34
5,∴sin ∠A 1BK =arcsin=
34345,
即直线A 1B 与平面BDE 所成的角的大小为arcsin 为
34
34
5. 例2.用向量法解题(请按照图形,建立坐标系):正四棱锥S ABCD -中,所有棱长都是2,P 为SA 的中点.
(1)求二面角B SC D --的大小;
(2)如果点Q 在棱SC 上,那么直线BQ 与PD 由.
解:(1)取SC 的中点E ,连结,BE DE ,SCB ∆∆Q 与角形,
∴SC BE ⊥,SC DE ⊥,∴BED ∠是二面角B SC D --的平面角, 在BED ∆中,
2223381cos 263
BE DE BD BED BE DE +-+-∠===-⋅,
∴1arccos 3BED π∠=-,故二面角B SC D --的大小为1
arccos 3
π-.
(2)设AC BD O =I ,以射线,,OA OB OS 分别为,,x y z 轴建立空间直角坐标系,
设CQ x =,则(0,B D ,(
()2222
P Q x x -,
(()2222
DP BQ x x ==u u u r u u u r ,30DP BQ x ⋅=-≠u u u r u u u r (∵0[∈x ,
]2,∴BQ 与PD 不可能垂直.。

相关文档
最新文档