大学高数同济大学版PPT
合集下载
同济高等数学课件(完整版)详细
T
M
x0
x
切线方程为 y y0 f ( x0 )( x x0 ).
法线方程为
y
y0
f
1 (x
( x0 )
x0 ).
例7 求等边双曲线 y 1 在点(1 ,2)处的切线的 x2
斜率,并写出在该点处的切线方程和法线方程.
解 由导数的几何意义, 得切线斜率为
k y x1 2
( 1 ) x
x1 2
y
y
y f (x)
o
x
y f (x)
o
x0
x
例8
讨论函数
f
(x)
x
sin
1 x
,
x 0,
0, x 0
在x 0处的连续性与可导性.
解 sin 1 是有界函数 , lim x sin 1 0
x
x0
x
f (0) lim f ( x) 0 f ( x)在x 0处连续.
x0
1
但在x 0处有 y (0 x)sin 0 x 0 sin 1
h0
h
三、证明:若 f ( x)为偶函数且 f (0) 存在,则 f (0) 0 .
四、
设函数
f
(x)
x k
sin
1 x
,
x
0问
k
满足什么条
0 , x 0
件, f ( x)在 x 0处 (1)连续; (2)可导;
(3)导数连续.
五、
设函数
f
(x)
x2
,
x
1
,为了使函数
ax b , x 1
f ( x)在 x 1处连续且可导,a , b应取什么值.
高等数学-同济大学第六版--高等数学课件第一章函数与极限
函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
同济大学版本高数精品课件全册
1+ x
理解为:
f
(
∆
)
=
1− 1+
∆ ∆
(五)函数与图像
2、图像:平面点= 集 C {(x= , y) y f (x), x∈D}。
了解函数的直
例:画函数 y = x 的图像.
观手段!
y
一元函数的图像通常是二
维平面上的一条一维曲线.
注: 由曲线求取对应的函
数往往不易,由函数画图
o
x 像相对容易.
例如, 1 + 2 =3 1 − 2 =−1
负数的引入有实 际意义!如:记 帐有赢利亏欠, 温度有零上零 下…
2. Z(整数环)
对加法、减法都封闭; 对除法不能封闭。
例如, 1 ÷ 2 =0.5
3. Q(有理数域)
对加法、减法、乘法、除法都封闭;有理数域尽管稠密但不 连续,还有客观事物不能用有理数表示。
课后自测
1、 写出所有三角函数和反三角函数的定义域,并画出函数图像。
2、
已知函数
y
=
f
(x)
=
12+
x, x,
0≤ x ≤1 x >1
求
f
(
1 2
)
及
f
(
1 t
)
,
并写出定义域及值域 。
第十节 闭区间上连续函数的性质
一、有界性与最大值最小值定理 二、零点定理与介值定理
一、有界性与最大值最小值定理
二、预备知识
1、基本初等函数 (4) 三角函数
余弦函数 y = cos x 正切函数 y = tan x
余切函数 y = cot x
正割函数 y = sec x 余割函数 y = csc x
理解为:
f
(
∆
)
=
1− 1+
∆ ∆
(五)函数与图像
2、图像:平面点= 集 C {(x= , y) y f (x), x∈D}。
了解函数的直
例:画函数 y = x 的图像.
观手段!
y
一元函数的图像通常是二
维平面上的一条一维曲线.
注: 由曲线求取对应的函
数往往不易,由函数画图
o
x 像相对容易.
例如, 1 + 2 =3 1 − 2 =−1
负数的引入有实 际意义!如:记 帐有赢利亏欠, 温度有零上零 下…
2. Z(整数环)
对加法、减法都封闭; 对除法不能封闭。
例如, 1 ÷ 2 =0.5
3. Q(有理数域)
对加法、减法、乘法、除法都封闭;有理数域尽管稠密但不 连续,还有客观事物不能用有理数表示。
课后自测
1、 写出所有三角函数和反三角函数的定义域,并画出函数图像。
2、
已知函数
y
=
f
(x)
=
12+
x, x,
0≤ x ≤1 x >1
求
f
(
1 2
)
及
f
(
1 t
)
,
并写出定义域及值域 。
第十节 闭区间上连续函数的性质
一、有界性与最大值最小值定理 二、零点定理与介值定理
一、有界性与最大值最小值定理
二、预备知识
1、基本初等函数 (4) 三角函数
余弦函数 y = cos x 正切函数 y = tan x
余切函数 y = cot x
正割函数 y = sec x 余割函数 y = csc x
《同济版高数下》PPT课件
L
a
f ( x, y, z)dS f [x, y, z( x, y)] 1 zx2 zy2dxdy
Dxy
(dS面元素(曲))
R( x, y, z)dxdy f [x, y, z( x, y)]dxdy
Dxy
(dxdy面元素(投影))
其中 L Pdx Qdy L(P cos Q cos )ds
第一类: 第二类:
始终非负 有向投影
基本技巧 (1) 利用对称性及重心公式简化计算
注意公式使用条件 (2) 利用高斯公式
添加辅助面的技巧
(辅助面一般取平行坐标面的平面)
(3) 两类曲面积分的转化
2
2
例 求柱面 x3 y3 1在球面 x2 y2 z2 1内
的侧面积.
2019/5/6
习题课
第十一章
线面积分的计算
一、 曲线积分的计算法 二、曲面积分的计算法
一、主要内容
(一)曲线积分与曲面积分 (二)各种积分之间的联系 (三)场论初步
(一)曲线积分与曲面积分
对弧长的 曲线积分
对面积的 曲面积分
曲
曲
线
联计
联计 面
积
系算
系算 积
分
分
对坐标的 曲线积分
对坐标的 曲面积分
曲线积分
对弧长的曲线积分
其中 L为由点(a,0)到点(0,0)的上半圆周 x2 y2 ax, y 0.
2019/5/6
24
例 计算
L
xdy 4x2
yyd2x,其中L是以
1,
0
为
为中心,R为半径 R 1的圆,逆时针方向
《同济版高数》课件
数学是一门美丽而强大的学 科,它存在于生活的方方面 面,深深影响着我们的世界。
持续学习
高等数学是学习其他学科的 基础,要不断提高自己的数 学能力。
勇于挑战
数学中的难题和挑战并不可 怕,要勇敢面对并寻求解决 方法。
采用多样化的教学方法和工具, 激发学生对数学的兴趣和思考 能力。
倡导学生参与式学习,鼓励讨 论和合作,提高学生的学习效 果。
问题解决
培养学生的问题解决能力,注 重实际应用和创新思维。
PPT动效运用
1
简洁清晰
使用适度的动效,突出重点,让学生
过渡自然
2
更清晰地理解内容。
平滑的过渡效果,使切换页面更加流
提供大量习题,巩固理论知识并锻炼解题 能力。
教材简介
《同济版高数》是一套针对高等数学课程编写的教材系列。内容丰富、结构清晰,旨在帮助学生全面理 解和掌握高等数学的核心概念和方法。
PPT目录结构
第一章
函数与极限
第三章
函数的应用
第二章
导数与微分
第四章
微分中值定理与导数的应用
教学设计理念
创新教学
互动学习
畅,保持学生的专注度。
3
视觉引导
运用动画和视觉引导,帮助学生理解 步骤和概念。
学习效果评估
1 定期测评
设置阶段性测验,及时检查学生的学习进展和掌握情况。
2 反馈指导
提供个性化的学习反馈和指导,帮助学生改进学习方法和提高成绩。
3 课堂讨论
鼓励学生参与课堂讨论,提高学习的互动性和深度。
结论和要点
数学的魅力
《同济版高数》PPT课件
探索《同济版高数》的世界,与高数的魅力相遇。让我们一起学习,展现数 学的美妙与力量。
持续学习
高等数学是学习其他学科的 基础,要不断提高自己的数 学能力。
勇于挑战
数学中的难题和挑战并不可 怕,要勇敢面对并寻求解决 方法。
采用多样化的教学方法和工具, 激发学生对数学的兴趣和思考 能力。
倡导学生参与式学习,鼓励讨 论和合作,提高学生的学习效 果。
问题解决
培养学生的问题解决能力,注 重实际应用和创新思维。
PPT动效运用
1
简洁清晰
使用适度的动效,突出重点,让学生
过渡自然
2
更清晰地理解内容。
平滑的过渡效果,使切换页面更加流
提供大量习题,巩固理论知识并锻炼解题 能力。
教材简介
《同济版高数》是一套针对高等数学课程编写的教材系列。内容丰富、结构清晰,旨在帮助学生全面理 解和掌握高等数学的核心概念和方法。
PPT目录结构
第一章
函数与极限
第三章
函数的应用
第二章
导数与微分
第四章
微分中值定理与导数的应用
教学设计理念
创新教学
互动学习
畅,保持学生的专注度。
3
视觉引导
运用动画和视觉引导,帮助学生理解 步骤和概念。
学习效果评估
1 定期测评
设置阶段性测验,及时检查学生的学习进展和掌握情况。
2 反馈指导
提供个性化的学习反馈和指导,帮助学生改进学习方法和提高成绩。
3 课堂讨论
鼓励学生参与课堂讨论,提高学习的互动性和深度。
结论和要点
数学的魅力
《同济版高数》PPT课件
探索《同济版高数》的世界,与高数的魅力相遇。让我们一起学习,展现数 学的美妙与力量。
第一课同济大学高等数学上预备知识ppt课件
例 设 X 1 ,2 ,3 ,Y 2 ,4 ,6 ,8 ,
T
X Y,
x
2 x,
则T 是 X 到 Y 的映射.
例 设 X 1 ,1 ,Y , ,
X Y
T
x
tan
2
x
则T 是 X 到 Y 的映射.
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例 试说明函数 f x 1 sin 1 在 x 0 的任何空心邻
xx
域内是无界函数.
解 只要证明在 x 0 的任何空心邻域内,无论对怎样的
正数 M 0,总是存在该邻域内一点 x 0 ,使得
f x0 M.
1
现设
M
0,取
x0
2n
/
,
2
其中取
n
1
2
M
2
的正整数,
并且使得 x 0 在空心邻域内,
例:设 X R ,Y 1 ,1 ,Z 0 ,1 ,
X Y,
T1
x
sin
x,
Y Z,
T2
y
y2,
则复合映射T2 T1为
X Z, T x(sinx)2.
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
同济大学 高等数学 第一册 函数 课件
证明: 证明: 任 x1, 2 ∈(0,+∞ 且 1 < x2, ) x 取 x 则
f ( x1 ) − f ( x 2 )
= x −x
2 1
2 2
= (x1 − x2 )( x1 + x2 )< 0
∴ f ( x1 ) < f ( x 2 )
∴ y = x 2在(0, ∞ )单调增加。 + 单调增加。
x 2 +1
2
y = 1 − x2
y = eu , u =
u
x2 + 1
2
y = e , u = v , v = x + 1.
注意:一个函数要作为复合函数, 注意:一个函数要作为复合函数,必须 仅仅依赖 选择合适的中间变量 中间变量u,使得y仅仅 选择合适的中间变量 ,使得 仅仅依赖 仅仅依赖于x. 于u,而u仅仅依赖于 , 仅仅依赖于
用来描述某一点的附近。 用来描述某一点的附近。
数集 { x x − a < δ }称为点 a的 δ 邻域 ,
表示以点 a为中心 、以δ为半径的开区间 . δ δ
x a+δ 记作 U ( a , δ ) = { x a − δ < x < a + δ }. a
a−δ
点 a的去心的 δ 邻域 ,
记作 U (a , δ ) = { x 0 < x − a < δ }.
y
y = f ( x)
y
f ( x2 )
y = f ( x)
f ( x1 )
f ( x2 )
f ( x1 )
o
I
x
o
I
x
图形:单调增加函数的图形从左到右往上升. 图形:单调增加函数的图形从左到右往上升. 单调减少函数的图形从左到右往下降. 单调减少函数的图形从左到右往下降.
f ( x1 ) − f ( x 2 )
= x −x
2 1
2 2
= (x1 − x2 )( x1 + x2 )< 0
∴ f ( x1 ) < f ( x 2 )
∴ y = x 2在(0, ∞ )单调增加。 + 单调增加。
x 2 +1
2
y = 1 − x2
y = eu , u =
u
x2 + 1
2
y = e , u = v , v = x + 1.
注意:一个函数要作为复合函数, 注意:一个函数要作为复合函数,必须 仅仅依赖 选择合适的中间变量 中间变量u,使得y仅仅 选择合适的中间变量 ,使得 仅仅依赖 仅仅依赖于x. 于u,而u仅仅依赖于 , 仅仅依赖于
用来描述某一点的附近。 用来描述某一点的附近。
数集 { x x − a < δ }称为点 a的 δ 邻域 ,
表示以点 a为中心 、以δ为半径的开区间 . δ δ
x a+δ 记作 U ( a , δ ) = { x a − δ < x < a + δ }. a
a−δ
点 a的去心的 δ 邻域 ,
记作 U (a , δ ) = { x 0 < x − a < δ }.
y
y = f ( x)
y
f ( x2 )
y = f ( x)
f ( x1 )
f ( x2 )
f ( x1 )
o
I
x
o
I
x
图形:单调增加函数的图形从左到右往上升. 图形:单调增加函数的图形从左到右往上升. 单调减少函数的图形从左到右往下降. 单调减少函数的图形从左到右往下降.
高等数学(同济,永久免费下载,吐血推荐!) ppt课件-文档资料
(2) 初等函数 由常数及基本初等函数 经过有限次四则运算和复合步
骤所构成 , 并可用一个式子表示的函数 , 称为初等函数 .
否则称为非初等函数 .
例如 ,
y xx, ,
x0 x0
可表为 y
x2 , 故为初等函数.
又如 , 双曲函数与反双曲函数也是初等函数 .
( 自学, P17 – P20 )
目录 上页 下页 返回 结束
定义 3 . 给定两个集合 A, B, 定义下列运算:
并集 A B x 交集 A B x
或 且
A B
B A
差集 A \ B x
且 xB
A\B AB
余集 BAc A \ B (其中B A)
直积 A B (x, y) x A, y B
目录 上页 下页 返回 结束
(3) 奇偶性
x D, 且有 x D,
若
则称 f (x) 为偶函数;
y
若
则称 f (x) 为奇函数.
说明: 若 f (x) 在 x = 0 有定义 , 则当 x O x x
f (x) 为奇函数时, 必有 f (0) 0.
例如,
y f (x) ex ex 偶函数
例如 ,
O
x
指数函数 y ex , x (, )
对数函数
互为反函数 ,
它们都单调递增, 其图形关于直线
对称 .
目录 上页 下页 返回 结束
(2) 复合函数
设有函数链
y f (u), u Df
①
且 Rg D f
②
则
称为由①, ②确定的复合函数 , u 称为中间变量.
同济大学 高数PPT课件
D
= 4∫∫ dxdy
D1
∫ ∫ = 4
π
6 dθ
a
2cos 2θ
rdr
0
a
= a2 ( 3 − π). 3
2010年5月21日11时28
二重积分的计算法(21)
15
分
二、小结
二重积分在极坐标下的计算公式
∫∫ f (r cosθ ,r sinθ )rdrdθ
∫ ∫ D
=
β
dθ
ϕ2(θ ) f (r cosθ ,r sinθ )rdr.
∫ ∫ 2、将积分
2
dx
3x f ( x2 + y2 )dy 化为极坐标形式的
0
x
二次积分为_________________________________.
二、试将对极坐标的二次积分
π
2a cos θ
∫ ∫ I =
4 −π
dθ
0
f (r cos θ, r sin θ)rdr
4
交换积分次序.
2010年5月21日11时28
R 2R
{ x ≥ 0, y ≥ 0} 显然有 D1 ⊂ S ⊂ D2
∵ e− x2 − y2 > 0,
∫∫ ∫∫ ∫∫ ∴ e−x2− y2dxdy < e− x2 − y2 dxdy < e− x2 − y2 dxdy.
D1
S
D2
2010年5月21日11时28
二重积分的计算法(21)
9
分
∫∫ 又∵ I = e−x2− y2 dxdy
分
二重积分的计算法(21)
7
∫∫ 例 2 计算 e−x2− y2dxdy,其中 D 是由中心在
同济大学第五版高等数学课件D81基本概念
微分方程的问题
微分方程的定义
微分方程是描述函数及其导数之间关系的数 学模型,通常用来描述自然现象或工程问题 中的动态变化过程。
微分方程的解法
微分方程的解法包括分离变量法、常数变易 法、参数变易法等,这些方法可以帮助我们 求解微分方程并得到其通解或特解。
空间解析几何的问题
要点一
空间解析几何的基本概念
基础性
同济大学第五版高等数学(下)课件 D81是学习高等数学的基础,对于后 续的学习具有重要的支撑作用。
同济大学第五版高等数学(下)课件D81的应用场景
科学计算
同济大学第五版高等数学(下)课件D81的概念在科学计算中有着广泛的应用 ,如物理、工程、经济等领域的研究和计算。
实际问题解决
通过同济大学第五版高等数学(下)课件D81的概念,可以解决许多实际问题 ,如优化问题、统计分析等。
同济大学第五版高 等数学(下课件 D81基本概念
目录
• 同济大学第五版高等数学(下)课件 D81的简介
• 同济大学第五版高等数学(下)课件 D81的基本概念
目录
• 同济大学第五版高等数学(下)课件 D81的基本定理
• 同济大学第五版高等数学(下)课件 D81的基本问题
01
同济大学第五版高等数学 (下)课件D81的简介
积分的问题
01
积分的定义
积分是描述函数在某个区间上的面积 的数学概念,即函数在某个区间上的 定积分值等于该区间上所有小区间上 函数的增量之和的极限。
02
积分的性质
积分具有一些重要的性质,如线性性 、可加性、积分中值定理等,这些性 质在研究函数的性质和解决数学问题 中具有重要的作用。
03
积分的计算
积分的计算是高等数学中的基本技能 之一,包括换元法、分部积分法、有 理函数积分法等,这些方法可以帮助 我们快速准确地计算出函数的积分值 。
同济大学高等数学课件D121基本概念
可微性:偏导数是多元函数的偏导数之和,因此偏导数是可微 的 输入你的智能图形项正文,请尽量言简意赅的阐述观点。
全微分的定义 全微分的基本性质 全微分与偏导数的关系 全微分在多元函数中的应用
偏导数的定义
全微分的定义
偏导数与全微 分的关系
偏导数与全微 分的应用
二重积分的定义:二重 积分是定积分在二维空 间上的推广,表示函数 在某个区域上的面积。
输入你的智能图形项正文,请尽量言简意赅的阐述观点。
逼近性:傅里叶级数可以逼近任何周期函数
输入你的智能图形项正文,请尽量言简意赅的阐述观点。
三角恒等式:傅里叶级数中的系数满足三角恒等式
输入你的智能图形项正文,请尽量言简意赅的阐述观点。
傅里叶级数是无穷级数的一种特殊 形式
傅里叶级数的收敛性和基本性质
计算方法:定积分可以使 用牛顿-莱布尼茨公式计 算,不定积分可以使用微 积分的基本原理计算。
应用:定积分可以用于求 解面积、体积、平均值等 问题,不定积分可以用于 求解原函数、导数、微分 等问题。
偏导数的定义:对于多元函数,偏导数表示函数在某一自变量 固定,其他自变量变化时函数的变化率 输入你的智能图形项正文,请尽量言简意赅的阐述观点。
二重积分和三重积分的计算方法基本相同,都是通过累加累减的方式进行
二重积分和三重积分的物理意义不同,二重积分表示面积,而三重积分表示体积
二重积分和三重积分的几何意义也不同,二重积分表示二维平面上的曲线与x轴围成的面积, 而三重积分表示三维空间中的曲面与x轴、y轴围成的体积
定义:常微分方程是描述一个或多个未知函数及其 导数之间关系的方程
分类:线性偏微分方程和非线性偏微分方程 偏微分方程的解法
偏微分方程的解法
有限差分法:用离散的有限个点上的近似值 来逼近偏微分方程的解
全微分的定义 全微分的基本性质 全微分与偏导数的关系 全微分在多元函数中的应用
偏导数的定义
全微分的定义
偏导数与全微 分的关系
偏导数与全微 分的应用
二重积分的定义:二重 积分是定积分在二维空 间上的推广,表示函数 在某个区域上的面积。
输入你的智能图形项正文,请尽量言简意赅的阐述观点。
逼近性:傅里叶级数可以逼近任何周期函数
输入你的智能图形项正文,请尽量言简意赅的阐述观点。
三角恒等式:傅里叶级数中的系数满足三角恒等式
输入你的智能图形项正文,请尽量言简意赅的阐述观点。
傅里叶级数是无穷级数的一种特殊 形式
傅里叶级数的收敛性和基本性质
计算方法:定积分可以使 用牛顿-莱布尼茨公式计 算,不定积分可以使用微 积分的基本原理计算。
应用:定积分可以用于求 解面积、体积、平均值等 问题,不定积分可以用于 求解原函数、导数、微分 等问题。
偏导数的定义:对于多元函数,偏导数表示函数在某一自变量 固定,其他自变量变化时函数的变化率 输入你的智能图形项正文,请尽量言简意赅的阐述观点。
二重积分和三重积分的计算方法基本相同,都是通过累加累减的方式进行
二重积分和三重积分的物理意义不同,二重积分表示面积,而三重积分表示体积
二重积分和三重积分的几何意义也不同,二重积分表示二维平面上的曲线与x轴围成的面积, 而三重积分表示三维空间中的曲面与x轴、y轴围成的体积
定义:常微分方程是描述一个或多个未知函数及其 导数之间关系的方程
分类:线性偏微分方程和非线性偏微分方程 偏微分方程的解法
偏微分方程的解法
有限差分法:用离散的有限个点上的近似值 来逼近偏微分方程的解
高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点
《高数同济》课件
引发学生对下一次课程的兴趣,告知学生需要进行的预习,以便更好地理解和掌握。
《高数同济》PPT课件
本《高数同济》PPT课件演示文稿旨在向大家介绍高等数学的基本概念和定理, 以及解释常见的数学公式。通过实例和练习题的讲解,帮助学生更好地掌握 课程内容。课件结构概述,总结回顾,还将提醒学生预习下一讲内容。
课件结构概述
第一部分
引言和课件目的
第三部分
基本公式和定理的说明
第五部分
总结与回顾
4 拉普拉斯变换
将函数在时域与频域之间转换
实例和练习题讲解
1
ห้องสมุดไป่ตู้
实例分析
通过实际例子,演示高数解决实际问题的应用
2
练习题展示
挑战学生的数学能力,让他们灵活运用所学知识
3
答疑解惑
为学生解答他们在实例和练习中遇到的问题
总结与回顾
回顾本次课程的重点内容,总结关键知识点,强化学生的记忆和理解。
提醒学生预习下一讲内容
第二部分
基本概念和定义的解释
第四部分
实例和练习题讲解
第六部分
提醒学生预习下一讲内容
基本概念和定义的解释
详细解释高等数学中的基本概念,例如函数、导数、积分等,并介绍相关的 数学定义。
基本公式和定理的说明
1 牛顿-莱布尼茨公式
计算定积分与不定积分的联系
3 泰勒展开式
用多项式逼近函数
2 微分中值定理
描述函数在某区间内任意两点间的关系
《高数同济》PPT课件
本《高数同济》PPT课件演示文稿旨在向大家介绍高等数学的基本概念和定理, 以及解释常见的数学公式。通过实例和练习题的讲解,帮助学生更好地掌握 课程内容。课件结构概述,总结回顾,还将提醒学生预习下一讲内容。
课件结构概述
第一部分
引言和课件目的
第三部分
基本公式和定理的说明
第五部分
总结与回顾
4 拉普拉斯变换
将函数在时域与频域之间转换
实例和练习题讲解
1
ห้องสมุดไป่ตู้
实例分析
通过实际例子,演示高数解决实际问题的应用
2
练习题展示
挑战学生的数学能力,让他们灵活运用所学知识
3
答疑解惑
为学生解答他们在实例和练习中遇到的问题
总结与回顾
回顾本次课程的重点内容,总结关键知识点,强化学生的记忆和理解。
提醒学生预习下一讲内容
第二部分
基本概念和定义的解释
第四部分
实例和练习题讲解
第六部分
提醒学生预习下一讲内容
基本概念和定义的解释
详细解释高等数学中的基本概念,例如函数、导数、积分等,并介绍相关的 数学定义。
基本公式和定理的说明
1 牛顿-莱布尼茨公式
计算定积分与不定积分的联系
3 泰勒展开式
用多项式逼近函数
2 微分中值定理
描述函数在某区间内任意两点间的关系
《同济版高数》课件
BIG DATA EMPOWERS TO CREATE A NEW
ERA
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,如分别求极限 、累次极限等。
多元函数的连续性
理解连续性的概念,掌握判断多 元函数在某点或某区域的连续性 的方法。
极限的概念与性质
总结词
极限是高数的核心概念,理解极限的概念和性质是学习高数的关键。
详细描述
极限是指当自变量趋近某一值时,因变量的变化趋势。极限的性质包括唯一性 、局部有界性、局部保序性等。这些性质在高数的各个章节中都有重要的应用 。
极限的运算规则
总结词
掌握极限的运算规则是解决极限问题的关键。
详细描述
一阶常微分方程的解法
总结词
掌握一阶常微分方程的解法是解决这类问题的关键。
详细描述
一阶常微分方程的一般形式是dy/dx = f(x, y),可以 通过分离变量法、积分因子法、公式法等求解。
高阶常微分方程的解法
总结词
理解高阶常微分方程的解法一般形式是y''(x) + p1(x)y'(x) + p2(x)y(x) = f(x),可以通过降 阶法、变量代换法、积分因式分解法等求解
则更加注重应用和与其他学科的交叉融合,不断涌现出新的分支和领域。
高数与其他学科的联系
要点一
总结词
高数与其他学科有着密切的联系,如物理、工程、计算机 科学等。这些学科在高数的理论和方法的基础上不断发展 。
要点二
详细描述
高数与物理学的联系尤为紧密,许多物理问题的解决需要 高数的理论和方法。例如,在力学、电磁学、光学等领域 中,高数的微积分和向量分析被广泛应用。在工程领域中 ,高数的理论和方法也是解决实际问题的关键工具。计算 机科学在高数的基础上发展出了算法设计和数据结构等重 要领域。此外,经济学、统计学等领域也与高数有着密切 的联系。
同济大学 高等数学 课件 .ppt
设数列
lim
n
xn 存在,则对于
xn
的任一子列(xnk )
有
lim
n
xn
lim
k
xn k
.
用此定理,即可说明数列 1n 的极限不存在。事
实上:
lim
n
x2n1
1,
lim
n
x2n
1,
所以,lim n
xn
不存在.
值得注意的是,对于函数,我们不能用此定理来证明
个不同的子列,使函数收敛到两个不同的值,则说明函
数在这一点无极限.
lim
n
f
(xn )
y
A
lim
xx0
f
(x).
f (x2 )
f (x4 )
A
f (xn )
f (x3 )
f (x1)
O x1 x3
xn x0
y f x
lim
n
xn
x0,
x4 x2
x
例 证明函数 f (x) sin 在x 0时极限不存在.
即: f x 在x0的某个空心邻域内有界.
局部有界的几何意义
从图中可以看出局部有界的含义:函数 f x 在 x0 处 o
的极限为 A,则存在点x0的一个空心邻域 U (x0, ), 当
点 x0 在该邻域中,对应
的函数图形在某一个带
y
A+1
y f x
形区域中,而该邻域外 A
的点所对应的函数图形, A-1
x
证令
1
1
xn 2n 1 , yn 2n ,
2
同济大学高等数学课件
同济大学高等数学课件
目录
• 函数与极限 • 导数与微分 • 不定积分与定积分 • 多元函数微积分 • 常微分方程
01
函数与极限
函数的概念与性质
函数定义
01
函数是数学上的一个概念,它定义了一个输入值对应一个输出
值的规则。
函数的性质
02
函数的性质包括奇偶性、单调性、周期性等,这些性质对于理
解和应用函数都非常重要。
03
全微分的概念与计 算
理解全微分的概念,掌握全微分 的计算方法,理解全微分在近似 计算中的应用。
二重积分
1 2
总结词
理解二重积分的概念及性质,掌握计算二重积分 的方法。
二重积分的定义与性质
理解二重积分的定义,掌握二重积分的计算方法 ,理解二重积分在面积和体积计算中的应用。
3
二重积分的几何意义与物理应用
分部积分法
通过将两个函数的乘积进行积分,将问题转化为求两个函数的原函 数的问题。
04
多元函数微积分
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,包括累次极限 和同时极限的概念及计算方法。
导数的计算
基本初等函数的导数
对于一些常见的初等函数,如幂函数、指数函数、三角函数等, 可以直接查表得到它们的导数。
链式法则
如果一个复合函数由两个或多个函数组成,那么它的导数可以通 过链式法则进行计算。
参数式函数的导数
对于参数式函数,可以通过对参数求导来得到函数的导数。
微分的概念与性质
微分的定义
微分是函数在某一点的变化率的近似值,表示函数在 该点附近的小增量。
目录
• 函数与极限 • 导数与微分 • 不定积分与定积分 • 多元函数微积分 • 常微分方程
01
函数与极限
函数的概念与性质
函数定义
01
函数是数学上的一个概念,它定义了一个输入值对应一个输出
值的规则。
函数的性质
02
函数的性质包括奇偶性、单调性、周期性等,这些性质对于理
解和应用函数都非常重要。
03
全微分的概念与计 算
理解全微分的概念,掌握全微分 的计算方法,理解全微分在近似 计算中的应用。
二重积分
1 2
总结词
理解二重积分的概念及性质,掌握计算二重积分 的方法。
二重积分的定义与性质
理解二重积分的定义,掌握二重积分的计算方法 ,理解二重积分在面积和体积计算中的应用。
3
二重积分的几何意义与物理应用
分部积分法
通过将两个函数的乘积进行积分,将问题转化为求两个函数的原函 数的问题。
04
多元函数微积分
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,包括累次极限 和同时极限的概念及计算方法。
导数的计算
基本初等函数的导数
对于一些常见的初等函数,如幂函数、指数函数、三角函数等, 可以直接查表得到它们的导数。
链式法则
如果一个复合函数由两个或多个函数组成,那么它的导数可以通 过链式法则进行计算。
参数式函数的导数
对于参数式函数,可以通过对参数求导来得到函数的导数。
微分的概念与性质
微分的定义
微分是函数在某一点的变化率的近似值,表示函数在 该点附近的小增量。
同济大学高等数学ppt第一章
同济大学高等数 学ppt第一章
contents
目录
• 第一章绪论 • 第一章极限论 • 第一章连续论 • 第一章导数论 • 第一章微分论 • 第一章不定积分论
01
CATALOGUE
第一章绪论
高等数学的研究对象
变量与函数
级数与广义积分 空间解析几何与向量代数
极限理论 微积分学
高等数学的发展历程
线性性质
不定积分具有线性性质,即对于 任意常数C1,C2,有 (C1+C2)*f(x)=C1*f1(x)+C2*f2( x)。
积分常数
不定积分的结果是一个函数,其 常数项为0。
区间可加性
如果在区间(a,b)上有f(x)=f(x), 则在(a,b)上,f(x)的积分等于f(x) 在(a,b)上定积分的值。
不定积分的计算方法
直接积分法
利用不定积分的定义和性质,将 已知函数进行恒等变形,从而得 到其原函数。
换元积分法
通过引入新的变量,将已知函数 进行换元,从而将复杂函数分解 为简单函数的组合,以便于计算 。
分部积分法
通过将两个函数乘积的导数与其 中一个函数求导再与另一个函数 乘积进行交换,从而得到两个函 数的积的不定积分的一种方法。
利用微分的近似性,我们可以对一些复杂的 函数进行近似计算,从而简化计算过程。例 如,当我们需要计算一个复杂函数的值时, 我们可以先找到这个函数在某一点的微分, 然后用这个微分来近似计算函数的值。
微分在近似计算中的应用
在实际的科学研究和工程设计中,经常会遇 到一些复杂的数学问题,如求解方程、优化 问题等。在这些情况下,利用微分进行近似 计算可以提供一种有效的解决问题的方法。
02
微分的近似性
contents
目录
• 第一章绪论 • 第一章极限论 • 第一章连续论 • 第一章导数论 • 第一章微分论 • 第一章不定积分论
01
CATALOGUE
第一章绪论
高等数学的研究对象
变量与函数
级数与广义积分 空间解析几何与向量代数
极限理论 微积分学
高等数学的发展历程
线性性质
不定积分具有线性性质,即对于 任意常数C1,C2,有 (C1+C2)*f(x)=C1*f1(x)+C2*f2( x)。
积分常数
不定积分的结果是一个函数,其 常数项为0。
区间可加性
如果在区间(a,b)上有f(x)=f(x), 则在(a,b)上,f(x)的积分等于f(x) 在(a,b)上定积分的值。
不定积分的计算方法
直接积分法
利用不定积分的定义和性质,将 已知函数进行恒等变形,从而得 到其原函数。
换元积分法
通过引入新的变量,将已知函数 进行换元,从而将复杂函数分解 为简单函数的组合,以便于计算 。
分部积分法
通过将两个函数乘积的导数与其 中一个函数求导再与另一个函数 乘积进行交换,从而得到两个函 数的积的不定积分的一种方法。
利用微分的近似性,我们可以对一些复杂的 函数进行近似计算,从而简化计算过程。例 如,当我们需要计算一个复杂函数的值时, 我们可以先找到这个函数在某一点的微分, 然后用这个微分来近似计算函数的值。
微分在近似计算中的应用
在实际的科学研究和工程设计中,经常会遇 到一些复杂的数学问题,如求解方程、优化 问题等。在这些情况下,利用微分进行近似 计算可以提供一种有效的解决问题的方法。
02
微分的近似性
同济版高数课件-PPT
2
2 cos xdx
0
;
2
五、水利工程中要计算拦水闸门所受的水压力,已知 闸门上水的压强 P 是水深 h 的 函数,且有
p 9.8h(千米 米2 ),若闸门高H 3米 ,宽 L 2米 ,求水面与闸门顶相齐时闸门所受的水
压力P (见教材图 5-3).
练习题答案
n
一、1、lim 0 i1
f ( i )xi ;
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形如图所示, 在区间[a,b]内插入若干
个分点,a x0 x1 x2 xn1 xn b, 把区间[a,b] 分成 n y
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
2
2
于是
2 e xdx
2
xdx.
0
0
性质5的推论:
(1)如果在区间[a, b]上 f ( x) g( x),
则
b
a
f
(
x
)dx
b
a
g(
x)dx
i 1
(3)取极限 max{t1,t2 ,,tn }
n
路程的精确值
s
lim
0
i 1
v(
i
)ti
二、定积分的定义
定义 设函数 f ( x) 在[a, b]上有界,在[a, b]中任意插入
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( n 1, 0! 1)
( n) 设 y sin x , 求 y . 例5 解:y cos x sin( x ) 2 y cos( x ) sin( x ) sin( x 2 ) 2 2 2 2 y cos( x 2 ) sin( x 3 ) 2 2
u
( n)
v
( n)
(2) (Cu )
( n 1)
( n)
Cu
( n)
(3) (u v)
(n)
u v nu
(n)
n(n 1) ( n 2 ) v u v 2!
n(n 1) (n k 1) ( n k ) ( k ) (n) u v uv k!
x0
2.
x ( n) 设 y a ( a 0 , a 1 ), 求 y . 例2
解: y a ln a,
x
y a ln a,
x 2
y a ln a,
x 3
(a ) a ln a
x ( n) x n
特殊地: (e ) e
x ( n)
x
例3
设 y x ( R), 求y ( n) .
f ( x) f (0) f (0) lim x 0 x0 lim ( x 1)( x 2) ( x 99) 99!
x 0
方法2 利用求导公式.
f ( x) ( x)
x
f (0) 99!
x, 3.设 f ( x ) ln( 1 x ),
1 y d dx d dy dy dy
d2x 2 dy
1 d y dx dx dy
y 1 y 2 3 g( x ) y y y
y d 3 3 2 y dx d x d d x 3 2 dy dy dy dx dy
1 x
1 x
2 2x 2 ( 3 x 1 ) y ( ) 2 2 (1 x ) (1 x 2 ) 3 2x f (0) 2 2 x 0 0; (1 x )
(1 x ) 2
2( 3 x 2 1) f (0) (1 x 2 ) 3
x ( n) x n
a ln a
x ( n)
e
x
(5) (ln x )
( n)
( 1)
n 1
( n 1)! xn
1 ( n) n n! ( ) ( 1) n 1 x x
1 (5) 例7 设 y 2 , 求y . x 1
1 1 1 1 ) 解: y 2 ( x 1 2 x 1 x 1
k ( nk ) ( k ) Cn u v k 0 n
莱布尼兹公式
(uv) uv uv 特别地 (uv) uv 2uv uv
2 2x ( 20 ) 设 y x e , 求 y . 例6
设u e , v x , 则由莱布尼兹公式知 解:
f ( x) f (a) ( x a ) ( x) f (a ) lim lim x a x a xa xa
lim ( x) (a)
x a
2. 设 f ( x) x ( x 1)( x 2)( x 99), 求 f (0). 解: 方法1 利用导数定义.
(a x ) a x ln a 1 (loga x ) x ln a
(e x ) e x (l n x )
2
(arcsin x )
1
1 x 1 (arctan x ) 1 x2
(arccos x )
1 x 1
1 x2 1 ( arccot x ) 1 x2
y
3
y y 3 y y 1 6 y y
2
3 y yy . 5 y
2
第四节 隐函数及其由参数所确定
的函数的导数 相关变化率
主要内容
1.隐函数的导数 2.由参数方程所确定的函数的导数 3.相关变化率
d3y . 二阶导数的导数称为三阶导数, f ( x ), y, 3 dx 4 d y (4) (4) . 三阶导数的导数称为四阶导数, f ( x ), y , 4 dx
d 2 y d 2 f ( x) . 记作 f ( x ), y , 2 或 2 dx dx
一般地 , 函数f ( x )的n 1阶导数的导数称为 函数f ( x )的n阶导数 , 记作
n n d y d f ( x) (n) (n) f ( x ), y , 或 . n n dx dx
二阶和二阶以上的导数统称为高阶导数.
相应地, f ( x )称为零阶导数 ; f ( x )称为一阶导数 .
二、 高阶导数求法举例
☻直接法:
由高阶导数的定义逐步求高阶导数.
例1 设 y arctan x, 求f (0), f (0). 2x 1 1 解: y y ( ) 2 2 2
若 为自然数n, 则
y
( x ) n! , y
n ( n)
( n 1)
(n! ) 0.
注意:求n阶导数时,求出1-3或4阶后,不要急于合并, 分析结果的规律性,写出n阶导数.(数学归纳法可证明)
例4 设 y ln(1 x ), 求y .
( n)
1 解: y 1 x
y
(n)
(sin x) sin( x n
(n)
同理可得 (cos x ) ( n )
( n)
2 cos( x n ) 2
)
(sinkx) k sin( kx n
n
2
)
☻高阶导数的运算法则:
设函数u和v具有n阶导数, 则
(1) (u v)
( n)
7
函数与极限
一、高阶导数的定义
问题:变速直线运动的加速度.
设 s f ( t ), 则瞬时速度为v( t ) f ( t )
加速度a是速度v对时间t的变化率
a( t ) v ( t ) [ f ( t )] .
定义 如果函数f ( x)的导数f ( x)在点x处可导,即 f ( x x) f ( x) ( f ( x)) lim x 0 x 存在, 则称( f ( x))为函数f ( x)在点x处的二阶导数 .
2 2 (1 x ) 3! (4) y (1 x ) 4
( n) n 1 ( n 1)! ln(1 x ) (1) n
ln x ( n)
(1 x ) n 1 ( n 1)! ( 1) ( n 1, 0! 1) n x
y
( 5)
1 5! 5! 5 5 [(1) (1) ] 6 6 2 ( x 1) ( x 1)
1 1 60[ ] 6 6 ( x 1) ( x 1)
dx 1 d2x d3x 已知 ,求 2 , . 3 dy y dy dy
分 析:
本题应视x为y的函数 ,即x x( y), 在此观点下 , y y( x ) y[ x( y)]应视为 以y作自变量 , x为中间变量的复合函数 . 利用复合函数求导法即 可.
2x 2
y
( 20 )
(e ) x 20(e ) ( x ) 20(20 1) 2 x (18) 2 (e ) ( x ) 0 0 2!
2 x ( 20 ) 2 2 x (19 ) 2
20 19 18 2 x 2 e x 20 2 e 2 x 2 e 2 2!
2.函数的和、差、积、商的求导法则 设 u u( x ), v v ( x )可导,则 (1)( u v ) u v , (2)(cu) cu ( C 是常数)
v uv u u (3)( uv ) u v uv , (4)( ) ( v 0) . 2 v v 3.复合函数的求导法则 设y f ( u), 而u ( x )则复合函数 y f [ ( x )]的 dy dy du 导数为 或 y( x ) f ( u) ( x ). dx du dx
第二章
导数与微分
复习
1.常数和基本初等函数的导数公式
( x ) x 1 (cos x ) si n x (cot x ) csc2 x (csc x ) csc x cot x
(C ) 0 (si nx ) cos x
2 (tan x ) se c x (se cx ) se cx tan x
x0 x0
, 求f ( x ).
解 当x 0时, f ( x ) 1,
ln(1 x h) ln(1 x ) 当x 0时, f ( x ) lim h 0 h 1 1 h lim ln(1 ) h 0 h 1 x 1 x
(0 h) ln(1 0) 当x 0时, f (0) lim h 0 h
21
函数与极限
一、隐函数的导数
2 2 x y
隐函数
dy 问题: x y 1, xy e e 0, 如何求 ? dx
隐函数:F ( x, y) 0
显函数:y f ( x )
隐函数的显化
隐函数不易显化或不能显化如何求导?
隐函数求导法则:
dy 例1 x y 1, 求 . dx 2 2 解:方程两边对x求导, x ( y( x )) 1