概率论例题汇总

合集下载

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案导言:概率论是数学中的一门基础学科,主要研究随机现象的规律性和不确定性。

它广泛应用于统计学、金融、工程学、计算机科学等领域。

本文将给出一些概率论考试题及答案,旨在帮助读者加深对概率论知识的理解和掌握。

题目一:计算概率已知一副扑克牌,共有52张牌,其中13张为红心。

从中任意抽取5张牌,求至少一张红心的概率。

解答:首先计算没有红心的情况,即全是黑桃、方片和梅花的概率。

抽取第一张牌时,没有红心的概率为39/52;抽取第二张牌时,没有红心的概率为38/51;以此类推,抽取第五张牌时,没有红心的概率为35/48。

将每次抽取没有红心的概率相乘,即可得到全是非红心牌的概率为(39/52) * (38/51) * (37/50) * (36/49) * (35/48) ≈ 0.359。

因此,至少一张红心的概率为1 - 0.359 ≈ 0.641。

题目二:条件概率在一批产品中,有30%的次品。

已知次品中的20%是由机器A生产的,而合格品中的15%是由机器A生产的。

现从这批产品中随机选取一件,发现该件品质合格。

求此件产品是由机器A生产的概率。

解答:设事件B表示所选产品是由机器A生产的,事件A表示所选产品是合格品。

根据题意,已知P(B) = 0.3,P(A|B) = 0.15,需要求的是P(B|A)。

根据条件概率的定义,我们有P(B|A) = P(A∩B) / P(A)。

首先计算P(A∩B),即既是合格品又是由机器A生产的概率,即P(A∩B) = P(B) * P(A|B) = 0.3 * 0.15 = 0.045。

其次,计算P(A),即产品为合格品的概率。

合格品中由机器A生产的概率为0.15,由机器B生产的概率为1 - 0.15 = 0.85。

所以,P(A) = P(A∩B) + P(A∩B') = 0.045 + 0.85 * (1 - 0.2) ≈ 0.881。

最后,根据条件概率的公式,可得P(B|A) = P(A∩B) / P(A) = 0.045 / 0.881 ≈ 0.051。

概率论典型例题

概率论典型例题

P{ X 0} P{ X 2}
P{ X 0} P{ X 2} P{ X 5}
22 . 29
---
例2 设离散型随机变量 X 的分布函数为
0, x 1,
a,
1 x 1,
F
(
x
)
2 3
a,
1 x 2,
a b, x 2.
且 P{ X 2} 1 ,试确定常数a,b,并求 X 的分布律. 2
---
例5 设某仪器上装有三只独立工作的同型号电子 元件,其寿命(单位 : 小时)都服从同一指数分布,其
中参数 1 600,试求在仪器使用的最初200小时
内,至少有一只元件损坏的概率a. [思路] 以 Ai (i 1,2,3) 分别表示三个电子元件“在 使用的最初 200 小时内损坏”的事件, 于是 a P{ A1 A2 A3 } 1 P( A1 A2 A3 )
C B AB.
---
例3 假设目标出现在射程之内的概率为0.7,这时 射击命中目标的概率为0.6, 试求两次独立射击至 少有一次命中目标的概率.
[思路] 引进事件 A {目标进入射程}; Bi {第i次射击命中目标}, i 1,2.
故所求概率为事件B B1 B2的概率,由于目标 不在射程之内是不可能命中目标的, 因此 , 可利 用全概率公式来求解.
---
例4 设有来自三个地区的各10名、15名和25名考 生的报名表,其中女生的报名表分别为3份、7份和
5 份, 随机地取一个地区的报名表,从中先后抽出 两份.
(1) 求先抽到的一份是女生表的概率 p;
(2)已知后抽到的一份表是男生表,求先抽到 的一份是女生表的概率 p.
[思路] 由于抽到的表与来自哪个地区有关,故此 题要用全概率公式来讨论.

典型例题_概率论

典型例题_概率论

第一部分 随机事件及其概率例 1 设A B C 、、为三个随机事件,试用A B C 、、表示下列事件。

1)“A B 与发生,而C 不发生”(表示为A B C ); 2)“三个事件都发生”(表示为A B C ); 3)“三个事件至少有一个发生”(表示为A B C⋃⋃);4)“三个事件恰好有一个发生”(表示为A B C A B C A B C++);5)“三个事件至少有两个发生”(表示为A B B C A C ⋃⋃或A B CA B C A B C A B C+++)6)“三个事件至多有两个发生”(表示为A B C 或A B C⋃⋃)。

例2 将n 只球随机地放入N (N ≥n )个盒子中去,假定盒子装球容量不限, 试求1)每个盒子至多装一只球的概率,2)指定其中一个盒子装一只球的概率。

解: 设事件A =“N 个盒子中,每个盒子至多装一只球”,事件B=“指定其中一个盒子装一只球”。

1)一个球放入N 个盒子中的放法有N 种,n 个球放入N 个盒子中的放法有nN 种。

假设固定前n 个盒子各装一球,其分配方法有!n 种,从N 个盒子中任取n 个盒子各装一球,取法有nN C 种,所以,事件A 的样本点数为nNC !n ,即事件A 的概率为nn NNn CA P !)(=2)若指定一个盒子里装一只球,首先考虑球的取法有1nC 种,其次,剩余的1N-个盒子中,1n -只球的放法有1(1)n N --种,所以事件B 的样本点数为1n C 1(1)n N --,即事件B 的概率为11(1)()n n nC N P B N--=注:还可以将模型推广,如生日问题,求事件“n 个人中至少有两人的生日相同”的概率。

设想一年有365天,将“天”看成‘盒子’,n 个人好比‘n 只球’,考虑事件A 的对立事件A =“n 个人在一年中生日全不相同”,它等价于“n 个球装入365个盒子中各装一球”,由前面的计算知:nnn C A P 365!)(365=,所以nnn C A P 365!1)(365-=。

概率论_习题集(含答案)

概率论_习题集(含答案)

《概率论》课程习题集一、计算题1. 10只产品中有2只次品, 在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率:(1)两只都是正品;(2)一只是正品,一只是次品;(3)第二次取出的是次品。

2. 一个学生接连参加同一课程的两次考试。

第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为.2/p 求 (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率; (2)若已知他第二次已经及格,求他第一次及格的概率3. 用某种方法普查肝癌,设:A ={ 检验反映呈阳性 },C ={ 被检查者确实患有肝癌 },已知()()5.C A P ,.C A P 90950==()5.C P 000=且现有一人用此法检验呈阳性,求此人真正患有肝癌的概率.4. 两台机床加工同样的零件,第一台出现次品的概率是0.03, 第二台出现次品的概率是0.02,加工出来的零件放在一起,并且已知第一台加工的零件比第二台的多一倍。

(1)求随意取出的零件是合格品的概率(2)如果随意取出的零件经检验是次品,求它是由第二台机床加工的概率5. 某人有5把钥匙,但忘了开房门的是哪一把,现逐把试开,求∶(1) 恰好第三次打开房门锁的概率(2) 三次内打开房门锁的概率(3) 如5把钥匙内有2把是开房门的,三次内打开房门锁的概率6. 设X 是连续型随机变量,其密度函数为()()⎩⎨⎧<<-=其它020242x x x c x f求:(1);常数c (2){}.1>X P7. 设X ~⎩⎨⎧≤≤=其他,02,)(x o cx x f 求(1)常数c ;(2)分布函数)(x F ;8. 一工厂生产的某种元件的寿命X (以小时计)服从参数为σμ,160= 的正态分布。

若要求,80.0)200120(≥≤<X P 允许σ最大为多少?9. 证明:指数分布有无记忆性(或称无后效性),即证:如果)(~λE X ,则有)()|(t X P s X t s X P >=>+>,0,0≥≥t s10. 对球的直径作测量,设测量值均匀地分布在],[b a 内,求球的体积的概率密度.11. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其他,021),11(2)(2x xx f ,求X 的分布函数。

概率论习题及答案

概率论习题及答案

概率论习题及答案概率论习题及答案概率论是数学中的一个重要分支,研究随机事件发生的规律。

在日常生活和各个领域中,我们经常需要运用概率论的知识来解决问题。

下面我将给大家分享几个概率论习题及其解答,希望能帮助大家更好地理解和应用概率论。

习题一:抛硬币问题假设有一枚均匀的硬币,抛掷10次,求出现正面次数为5的概率。

解答:首先,我们需要知道抛硬币的结果只有两种可能,正面和反面,且每次抛掷都是独立的。

所以,抛硬币的结果可以看作是一个伯努利试验。

根据概率论的知识,我们可以使用二项分布来计算这个问题。

设X为出现正面的次数,根据二项分布的公式,可以得到:P(X=k) = C(10,k) * (1/2)^k * (1/2)^(10-k),其中C(10,k)表示从10次抛硬币中选出k次正面的组合数。

所以,出现正面次数为5的概率为:P(X=5) = C(10,5) * (1/2)^5 * (1/2)^(10-5) = 252 * (1/2)^10 ≈ 0.246。

习题二:扑克牌问题一副标准扑克牌中,红桃牌有13张,黑桃牌有13张,梅花牌有13张,方块牌有13张。

从中随机抽取5张牌,求其中至少有一张红桃牌的概率。

解答:首先,我们需要知道一副标准扑克牌共有52张牌。

根据概率论的知识,我们可以使用组合数来计算这个问题。

设A为至少有一张红桃牌的事件,设B为从52张牌中抽取5张牌的事件。

根据概率的加法定理,我们可以得到:P(A) = 1 - P(A'),其中A'为没有红桃牌的事件。

根据概率的乘法定理,我们可以得到:P(A') = C(39,5) / C(52,5),其中C(n,m)表示从n个元素中选出m个元素的组合数。

所以,至少有一张红桃牌的概率为:P(A) = 1 - P(A') = 1 - C(39,5) / C(52,5) ≈ 0.651。

习题三:生日问题在一个房间里,有n个人,假设他们的生日是均匀分布的,即每一天出生的概率相等。

概率论试题及答案

概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。

2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。

三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。

求在一小时内至少有一台机器发生故障的概率。

2. 一个班级有50名学生,其中30名男生和20名女生。

如果随机选择一名学生,这名学生是男生的概率是0.6。

求这个班级中男生和女生的人数。

四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。

2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。

如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。

求第二次取出的球是蓝球的概率。

答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。

至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。

2. 设男生人数为x,女生人数为y。

根据题意,x/(x+y) = 0.6,且x+y=50。

解得x=30,y=20。

四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。

计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。

高等数学(概率论)习题及解答

高等数学(概率论)习题及解答

高等数学(概率论)习题及解答高等数学(概率论)题及解答
1. 题一
1.1. 题目
已知事件A和B的概率分别为P(A) = 0.2,P(B) = 0.3,且P(A∪B) = 0.4,求P(A∩B)。

1.2. 解答
根据概率的加法定理,有:
P(A∪B) = P(A) + P(B) - P(A∩B)
代入已知数据得:
0.4 = 0.2 + 0.3 - P(A∩B)
P(A∩B) = 0.1
所以,P(A∩B)的概率为0.1。

2. 题二
2.1. 题目
已知某城市一天中的天气分为晴天、阴天和雨天三种情况,其中晴天的概率为0.4,阴天的概率为0.3。

现已知,当下为晴天时,随后一天也是晴天的概率为0.7;当下为阴天时,随后一天为晴天的概率为0.5。

求当下为晴天时,随后一天为阴天的概率。

2.2. 解答
设事件A为当下为晴天,事件B为随后一天为阴天。

根据条件概率的定义,有:
P(B|A) = P(A∩B) / P(A)
已知 P(A) = 0.4,P(B|A) = 0.5,代入并整理得:
0.5 = P(A∩B) / 0.4
P(A∩B) = 0.5 * 0.4
P(A∩B) = 0.2
所以,当下为晴天时,随后一天为阴天的概率为0.2。

以上是高等数学(概率论)习题及解答的部分内容,如有更多问题或需要补充,请随时告知。

概率与事件综合经典题(含详解答案)

概率与事件综合经典题(含详解答案)

概率与事件综合经典题(含详解答案)问题一:投色子小明和小王玩一个游戏,游戏规则为两个人轮流投掷一个均匀的六面色子,投到点数为6的人获胜。

若小明先投,请问小明获胜的概率是多少?解析:设小明获胜的概率为p,则小王获胜的概率为1-p。

若小明投到6,则小明获胜;若小明投到1、2、3、4、5,则轮到小王投掷。

所以小明获胜的概率为:p = 1/6 + (1-p) * 1/6 + (1-p)^2 * 1/6 + (1-p)^3 * 1/6 + ... ...化简得到:p = 1/7,即小明获胜的概率为1/7。

问题二:选球有10个编号为1到10的球,从中不放回地抽取3个,求编号之和为偶数的概率。

解析:球的编号之和为偶数有两种情况:1. 选出的三个球编号均为偶数。

2. 选出的三个球编号中有两个是奇数,一个是偶数。

情况1的概率为:C(5,3)/C(10,3) = 5/42。

情况2的概率为:C(5,2) * C(5,1)/C(10,3) = 10/42。

所以编号之和为偶数的概率为:5/42 + 10/42 = 5/21。

问题三:小球分组有10个编号为1到10的球,其中2个是红球,3个是黄球,5个是白球。

现从中任意抽取5个球,求其中恰好有3个白球的概率。

解析:从10个球中任意选出5个的组合数为:C(10,5) = 252。

从5个白球中任选出3个,从5个非白球中任选出2个的组合数为:C(5,3) * C(5,2) = 100。

所以恰好有3个白球的概率为:100/252 = 25/63。

概率论典型例题共102页

概率论典型例题共102页
概率有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!

概率论考试题和答案解析

概率论考试题和答案解析

概率论考试题和答案解析一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,下列说法正确的是:A. P(X > 0) = 0.5B. P(X > 1) = 0.5C. P(X > 2) = 0.5D. P(X > 3) = 0.5答案:A解析:标准正态分布的均值μ=0,标准差σ=1。

由于正态分布曲线关于均值对称,所以P(X > 0) = 0.5。

2. 设随机变量X服从二项分布B(n, p),下列说法正确的是:A. E(X) = npB. D(X) = np(1-p)C. P(X = k) = C(n, k)p^k(1-p)^(n-k)D. 以上说法都正确答案:D解析:二项分布的期望E(X) = np,方差D(X) = np(1-p),概率质量函数P(X = k) = C(n, k)p^k(1-p)^(n-k)。

3. 设随机变量X服从泊松分布,下列说法正确的是:A. E(X) = λB. D(X) = λC. P(X = k) = λ^k / k!D. 以上说法都正确答案:D解析:泊松分布的期望E(X) = λ,方差D(X) = λ,概率质量函数P(X = k) = λ^k / k!。

4. 设随机变量X服从均匀分布U(a, b),下列说法正确的是:A. E(X) = (a + b) / 2B. D(X) = (b - a)^2 / 12C. P(a ≤ X ≤ b) = 1D. 以上说法都正确答案:D解析:均匀分布的期望E(X) = (a + b) / 2,方差D(X) = (b - a)^2 / 12,概率P(a ≤ X ≤ b) = 1。

5. 设随机变量X服从指数分布,下列说法正确的是:A. E(X) = 1/λB. D(X) = 1/λ^2C. P(X > x) = e^(-λx)D. 以上说法都正确答案:D解析:指数分布的期望E(X) = 1/λ,方差D(X) = 1/λ^2,累积分布函数F(x) = 1 - e^(-λx),所以P(X > x) = 1 - F(x) = e^(-λx)。

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。

下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

概率则是衡量随机事件发生可能性大小的数值。

例 1:抛掷一枚均匀的硬币,求正面朝上的概率。

解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。

知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。

例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。

知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。

二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。

如果一个人的检测结果为阳性,求他真正患病的概率。

解:设 A 表示患病,B 表示检测结果为阳性。

则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。

根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。

再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。

知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。

三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。

概率论与数理统计习题及答案

概率论与数理统计习题及答案

概率论与数理统计习题及答案概率论与数理统计是数学中的重要分支,涉及到随机现象的规律性和不确定性的研究。

通过习题的练习和答案的掌握,可以帮助我们加深对这门学科的理解和应用。

本文将从概率论和数理统计两个方面,介绍一些常见的习题及其答案,帮助读者更好地掌握这门学科。

一、概率论习题及答案1. 一个骰子被掷一次,求出现奇数的概率。

答案:骰子有6个面,其中3个是奇数(1、3、5),所以出现奇数的概率为3/6=1/2。

2. 从一副扑克牌中随机抽取一张牌,求抽到红心的概率。

答案:一副扑克牌有52张牌,其中有13张红心牌,所以抽到红心的概率为13/52=1/4。

3. 甲、乙两个人轮流掷硬币,甲先掷,掷到正面则甲胜,掷到反面则乙胜,求甲胜的概率。

答案:甲先掷硬币,掷到正面的概率为1/2,乙再掷硬币,掷到正面的概率也为1/2。

所以甲胜的概率为1/2*1/2=1/4。

二、数理统计习题及答案1. 一批产品的重量服从正态分布,均值为10kg,标准差为2kg。

从中随机抽取一件产品,求其重量大于12kg的概率。

答案:首先计算出标准差的Z值,Z=(12-10)/2=1。

然后查找标准正态分布表,得到Z=1时的概率为0.8413。

所以重量大于12kg的概率为1-0.8413=0.1587。

2. 一家电商平台的用户购买金额服从指数分布,平均购买金额为100元。

求一个用户购买金额小于50元的概率。

答案:指数分布的概率密度函数为f(x)=λe^(-λx),其中λ为参数。

平均购买金额为100元,所以λ=1/100。

将x=50代入概率密度函数,得到f(50)=1/100*e^(-1/2)=0.0067。

所以一个用户购买金额小于50元的概率为0.0067。

3. 一批产品的寿命服从正态分布,均值为1000小时,标准差为200小时。

求寿命在800-1200小时之间的产品所占的比例。

答案:首先计算出800和1200的标准差Z值,Z1=(800-1000)/200=-1,Z2=(1200-1000)/200=1。

概率论例题汇总

概率论例题汇总

求:(1) c;
0.3
1
2
0
0
1
0.1
0.1
0.1
0.2
0.2
0.3
0.4
0.3
0.5
0.5
设(X,Y)的概率密度是
*
求 (1) c的值;(2) 两个边缘密度;
解 (1)
例5
x
y
0
1
所以
y
x
(2)
所以
y
x
(2)
x
y
例1 已知 ( X, Y ) 的联合密度函数为 (1) (2) 讨论X ,Y 是否独立?
Y的边缘分布
X的边缘分布
所以 X,Y 的边缘分布律分别为
*
若改为无放回摸球,则(X,Y)的联合分布律为
边缘分布为
边缘分布为 与有放回的情况比较, 但边缘分布却完全相同。 两者的联合分布完全不同, 若改为无放回摸球,则(X,Y)的联合分布律为
例2 设二维随机变量(X,Y )的联合分布为

求:(1) c;
(2)
*
设X表示机床A一天生产的产品废品数,Y 表示机床B一天生产的产品废品数,它们的概率分布如下:
X
0
1
2
0.5
P
3
0.3
0.1
0.1
例1

Y
0
1

0.6
P
3
0.1
0.2
0.1
问:两机床哪台质量好?设两台机床的日产量相等。
均值相等, 据此不能判断优劣,再求方差.
X
0
1
2
0.5
P
3
0.3

概率论习题集与答案

概率论习题集与答案

概率论习题一、填空题1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 .2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率.3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 .4、()0.7,()0.3,P A P A B =-= 则().P AB =5、()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ⋃=6、掷两枚硬币,至少出现一个正面的概率为..7、设()0.4,()0.7,P A P A B =⋃= 假设,A B 独立,则().P B =8、设,A B 为两事件,11()(),(|),36P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是.10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 .11、一枚硬币独立的投3次,记事件A =“第一次掷出正面〞,事件B =“第二次掷出反面〞,事件C =“正面最多掷出一次〞。

那么(|)P C AB = 。

12、男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的表示为互不相容事件的和是 。

15、,,A B C 中不多于两个发生可表示为 。

二、选择题1、下面四个结论成立的是〔 〕2、设()0,P AB =则以下说法正确的选项是〔 〕3、掷21n +次硬币,正面次数多于反面次数的概率为〔 〕4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有〔 〕5、设A 、B 相互独立,且P (A )>0,P (B )>0,则以下等式成立的是〔 〕.A P (AB )=0.B P (A -B )=P (A )P (B ).C P (A )+P (B )=1 .D P (A |B )=06、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有〔 〕.A P (AB )=l.B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=17、()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =〔 〕.A 0.2 .B 0.45 .C 0.6 .D8、同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为〔 〕.A 0.125 .B 0.25.C 0.375 .D 0.509、设事件,A B 互不相容,()0.4P A =,()0.5P B =,则()P AB =〔 〕.A .B .C .D 110、事件A ,B 相互独立,且()0P A >,()0P B >,则以下等式成立的是〔 〕11、设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则〔 〕..A 事件A 与B 互不相容.B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立12、对于任意两事件A 和B ,)(B A P -=〔 〕.13、设A 、B 是两事件,且P 〔A 〕=0.6,P(B)=0.7则P 〔AB 〕取到最大值时是〔 〕.A 0.6 .B 0.7 .C 1 .D14、某人忘记了 号码的最后一个数字,因而他随意地拨号。

概率论 数学题集

概率论 数学题集

概率论数学题集概率论数学题集概率论数学题集概率论题集一1.甲、乙、丙三人各向目标射击一发子弹,以a、b、c分别表示甲、乙、丙命中目标,试用a、b、c的运算关系表示下列事件:a1:“至少存有一人击中目标”:“恰有一人命中目标”:a2:“恰存有两人击中目标”:a3:“最多有一人命中目标”:a4:“三人均击中目标”:a5:a6:“三人均未命中目标”:2.存有三个子女的家庭,设立每个孩子就是男就是女的概率成正比,则至少存有一个男孩的概率就是多少?3(摸求问题)设合中存有3个白球,2个红球,现从合中任扣2个球,求得至一红一白的概率。

4(分球问题)将3个球随机的放入3个盒子中去,问:(1)每盒恰存有一球的概率就是多少?(2)空一盒的概率是多少?5(分组问题)30名学生中存有3名运动员,将这30名学生平均值分为3组与,谋:(1)每组有一名运动员的概率;(2)3名运动员分散在一个组的概率。

6(随机取数问题)从1到200这200个自然数中任取一个;(1)求得至的数能被6相乘的概率;(2)求取到的数能被8整除的概率;(3)求得至的数既能够被6相乘也能够被8相乘的概率.7某市有甲,乙,丙三种报纸,订每种报纸的人数分别占全体市民人数的30%,其中有10%的人同时定甲,乙两种报纸.没有人同时订甲乙或乙丙报纸.求从该市任选一人,他至少订有一种报纸的概率.8在110这10个自然数中任挑一数,谋(1)取到的数能被2或3整除的概率,(2)算出的数即为无法被2也无法被3相乘的概率,(3)取到的数能被2整除而不能被3整除的概率。

9盒中存有3个红球,2个白球,每次从袋中余因子一只,观测其颜色后送回,并再放进一只与所出之球颜色相同的球,若从合中已连续取球4次,试求第1、2次获得白球、第3、4次获得红球的概率。

10市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为2%、1%、3%,试求市场上该品牌产品的次品率。

概率论考研题目及答案

概率论考研题目及答案

概率论考研题目及答案题目一:概率论基本概念问题:某工厂生产的零件,合格率为0.95。

求:1. 随机抽取一个零件,它是合格品的概率。

2. 随机抽取两个零件,至少有一个是合格品的概率。

答案:1. 由于合格率为0.95,随机抽取一个零件是合格品的概率即为合格率,即 P(合格) = 0.95。

2. 抽取两个零件至少有一个是合格品的概率可以通过计算两个零件都不合格的概率,然后用1减去这个概率来得到。

两个零件都不合格的概率是 (1 - 0.95) * (1 - 0.95) = 0.0025。

因此,至少有一个是合格品的概率为 1 - 0.0025 = 0.9975。

题目二:条件概率问题:某地区有两家医院,A医院的产妇数量占70%,B医院占30%。

在A医院出生的婴儿中,男孩的比例是60%,在B医院出生的婴儿中,男孩的比例是70%。

现在随机选择了一个男孩,求这个男孩是在A医院出生的概率。

答案:设事件A为在A医院出生,事件B为在B医院出生,事件M为是男孩。

根据题意,我们有:- P(A) = 0.7- P(B) = 0.3- P(M|A) = 0.6- P(M|B) = 0.7使用全概率公式,我们可以计算出P(M):\[ P(M) = P(A)P(M|A) + P(B)P(M|B) = 0.7 \times 0.6 + 0.3\times 0.7 = 0.63 \]现在我们要求的是P(A|M),即在已知是男孩的条件下,这个男孩是在A医院出生的概率。

使用贝叶斯公式:\[ P(A|M) = \frac{P(M|A)P(A)}{P(M)} = \frac{0.6 \times0.7}{0.63} \approx 0.6985 \]题目三:随机变量及其分布问题:一个随机变量X服从参数为λ的泊松分布。

求:1. X的期望值和方差。

2. X=k的概率,其中k是一个给定的正整数。

答案:1. 泊松分布的期望值(E[X])和方差(Var(X))都等于参数λ。

概率论部分习题及答案

概率论部分习题及答案

7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,1)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率. 解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<=所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f y yyyyyXYY π,即)( )1(2)(2+∞<<-∞+=y e e y f yyY π. 8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan(),(y C x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度.解:(1)由0)0,(,0),0(,1),(=-∞=∞+=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2y x y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π (3)X 及Y 的边缘分布函数分别为 xxxX xdx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan1)4(2),()(2ππ2arctan 121x π+=yxyY ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f 求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dye e dy y xf x f xy x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰0030006),()(3032y y ex x dxe e dx y xf y f yy x Y(4)⎰⎰⎰⎰---==∈x y xRdy e dx edxdy y x f R Y X P 32203326),(}),{(636271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有 ⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx2713)322(92922132102=-++=x x x x .13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++=212222212221μσμσσσ++=.四、100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%,求:(1) 任一时刻有70至86台车床在工作的概率; (2) 任一时刻有不少于80台车床在工作的概率. 解:设ξ表示“任一时刻正在工作的车床数”,则)8.0,100(~B ξ.808.0100=⨯=ξE . 16)8.01(8.0100=-⨯⨯=ξD .(1))5.2()5.1()168070()168086()8670(1,01,01,01,0-Φ-Φ=-Φ--Φ≈<<ξP 927.019938.09332.0)]5.2(1[)5.1(1,01,0=-+=Φ--Φ=(2))16800()168080([1)800(1)80(1,01,0-Φ--Φ-≈<<-=≥ξξP P )20()0(2)20()0(11,01,01,01,0Φ-Φ-=-Φ+Φ-=5.015.02=--=.五、在一家保险公司里有10000人参加保险,每人每年付12元保险费.在一年内一个人死亡的概率为0.006,死亡时其家属可向保险公司领得1000元.问: (1) 保险公司亏本的可能性是多大?(2) 保险公司一年的利润不少于50000元的概率是多少? 解:设X 表示“一年内死亡的人数”,则)006.0,10000(~B X .60006.010000=⨯=EX . 84.59)006.01(006.010000=-⨯⨯=DX .(1))84.596012084.596084.59600(1)1200(1)12100001000(-≤-≤--≈≤≤-=⨯>ξP X P X P 0)7.7(22)]7.7()7.7([11,01,01,0=-=---≈ΦΦΦ.即保险公司不可能亏本.(2))84.591084.596084.5960()700()5000010001210000(≤-≤-=≤≤=≥-⨯X P X P X P9032.01)756.7()293.1()756.7()293.1(≈-Φ+Φ=-Φ-Φ≈. 即保险公司一年利润不少于50000元的概率为9032.0.。

概率的复习题及答案

概率的复习题及答案

概率的复习题及答案1. 事件A和事件B是互斥事件,且P(A)=0.5,求P(B)。

答案:由于事件A和事件B是互斥事件,所以P(A∪B)=P(A)+P(B)。

又因为P(A)=0.5,所以P(B)=1-P(A)=1-0.5=0.5。

2. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:袋子里总共有8个球,其中5个是红球。

因此,抽到红球的概率为P(红球)=5/8。

3. 已知随机变量X服从参数为λ的指数分布,求P(X>3)。

答案:指数分布的概率密度函数为f(x)=λe^(-λx),其中x≥0。

因此,P(X>3)=∫(3, +∞)λe^(-λx)dx=e^(-3λ)。

4. 抛一枚公平硬币两次,求至少一次正面朝上的概率。

答案:抛硬币两次,所有可能的结果有HH、HT、TH、TT四种。

至少一次正面朝上的结果有HH、HT、TH三种。

因此,至少一次正面朝上的概率为P(至少一次正面)=3/4。

5. 一个工厂生产的零件,合格率为90%,求连续生产3个零件,至少有2个合格的概率。

答案:设合格事件为A,不合格事件为B,则P(A)=0.9,P(B)=0.1。

连续生产3个零件,至少有2个合格的情况包括2个合格1个不合格和3个都合格两种情况。

因此,至少有2个合格的概率为P(至少2个合格)=P(2个合格)+P(3个合格)=C_3^2(0.9)^2(0.1)+(0.9)^3=0.9^3+3×0.9^2×0.1=0.729+0.243=0.972。

6. 一个随机变量X服从正态分布N(μ, σ^2),求P(|X-μ|<σ)。

答案:对于正态分布,P(|X-μ|<σ)表示随机变量X落在均值μ的一个标准差σ范围内的概率。

根据正态分布的性质,这个概率约为0.6827。

7. 一个袋子里有7个红球和3个绿球,随机抽取一个球,不放回,再抽取第二个球,求第二次抽到绿球的概率。

答案:第一次抽取后,袋子里剩下9个球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 A2 1 2 A5 10
边缘分布为
7
若改为无放回摸球,则(X,Y)的联合分布律为
X
Y
0
3 10 3 10 3 5
1
3 10 1 10 2 5
3 5 2 5
X
Y
0
9 25 6 25
3 5
1
6 25 4 25 2 5 3 5 2 5
0
1
0
1
边缘分布为
与有放回的情况比较, 两者的联合分布完全不同,
i 1
5 0.1 2 0.2 1 0.3 4 0.4 1 .
EX 2 xi2 pi
i 1 4
4 0.1 1 0.2 0 0.3 1 0.4 1 .
24
例2 设随机变量 X ~ N (0,1), 求 E ( X 2 ) 解 E( X )
4 xy, 0 x 1, 0 y 1 (1) f1 ( x, y ) 其他 0,
8 xy, 0 x y, 0 y 1 (2) f 2 ( x, y ) 其他 0,
讨论X ,Y 是否独立?
16
4 xy, 0 x 1, 0 y 1 f1 ( x, y ) 其他 0, 1 解 (1)经计算得边缘密度为
( 3 ) 概 率 P{ X Y 1 } .
y x

解 (1)
1 0


x 0


f ( x , y ) dxdy
0 1 x
dx cy( 2 x ) dy
c 1 5 24 2 ( 2 x ) x dx c 1 , c . 5 2 0 24
2 x, 0 x 1, f X ( x) 其他 0,
2 y, 0 y 1, fY ( y ) 其他 0,
1
显然, f1 ( x, y) f X ( x) fY ( y)
故 X ,Y 相互独立
17
8 xy, 0 x y, 0 y 1 f 2 ( x, y ) 其他 0,
P ( X 0, Y 0) P ( X 0, Y 1) P ( X 1, Y 0) 0.1 0.3 0.2 0.6 .
11
例5
设(X,Y)的概率密度是
cy ( 2 x ), 0 x 1, 0 y x f ( x, y) 0 , 其他 求 (1) c的值;(2) 两个边缘密度; y
1
32 9 P{X 0, Y 0} 2 5 25 23 6 P{ X 1, Y 0} 2 5 25
Y
3 2 6 P{ X 0, Y 1} 2 5 25 2 2 4 P{ X 1, Y 1} 2 5 25
X
0
9 25
6 25
1
6 25
X
0 0.5
1 0.5
Y
0 0.3
1 0.4
2
P
P
0.3
10
例2
设二维随机变量(X,Y )的联合分布为
X 0
1
Y
0
1
2
0.1
0.2 0.3
0.3
0.1 0.4
0.1
0.2 0.3
0.5 0.5
求:(1) c; (2) X ,Y 的边缘分布;( 3) P ( X Y 1) . 解
( 3) P ( X Y 1)
0
1
所以 X,Y 的边缘分布律分别为
X
P
0
3 5
1
2 5
Y
P
0
3 5
1
2 5
X的 边缘 分布
6
若改为无放回摸球,则(X,Y)的联合分布律为
X
Y
0
3 10 3 10 3 5
1
3 10 1 10 2 5
3 5 2 5
0
1
A32 3 2 A5 10
23 3 2 A5 10
3 2 3 2 A5 10
(2)经计算得边缘密度为
1
4 x(1 x 2 ), 0 x 1, f X ( x) 其他 0,
3 4 y , 0 y 1, fY ( y ) 其他 0,
1
显然, f 2 ( x, y ) f X ( x) fY ( y )
故 X ,Y 不独立
18
min(X , Y )
0
1 8
0
1 8
0
1 8
(X,Y )
X Y
( 0, 0) ( 0, 1) ( 0, 2)
0 0 0
1 4
(1, 0)
1 1
(1, 1) (1, 2)
2 2
1
1 4
1 1
2 4
3 5
1
1 8
X 2 Y 2
min( X,Y)
0
1 8
0
1 8
0
1 8
X Y P
0
1 4
1
1 4

e
2 x
dx e y dy
0
x
x
y
O
0
e
2 x
(1 e )dx
1 . 3
x
5
例1 袋中有2只白球3只 黑球,有放回摸球两次, 定义X为第一次摸得的白 球数,Y为第二次摸得的 白球数,则(X,Y)的联合 分布律为 Y的边缘分布
X
Y
0
9 25 6 25
3 5
1
6 25 4 25 2 5 3 5 2 5
1
y x
0
1
x
所以
24 3 y2 y( 2 y ), 0 y 1 fY ( y ) 5 2 2 其他 0,
14
24 y ( 2 x ), 0 x 1, 0 y x f ( x, y) 5 0 , 其他
( 3 ) P{ X Y 1 }

E( X )

1 0
xf ( x ) dx
2

3 x 3 x dx . 4
23
例1 设随机变量X的概率分布如下: X P -2 0.1
4
-1 0.2
0 0.3
1 0.4
求 E(3 X 1) , EX 2 .

E ( 3 X 1) ( 3 xi 1) pi
0 1 1.
25
例3 设随机变量(X,Y )的联合分布律为
X
Y
0
1 4 1 8
1
1 8 1 4
2
1 8 1 8
0
1
解 (1) X P
求:(1) E(X); (2) E(Y);
0
1 2
1
1 2
1 1 1 E ( X ) 0 1 . 2 2 2
(2) Y
P
0
3 8
1
3 8
2


x f ( x ) dx
2 x2 2
2
1 x e dx 2 x2 1 2 xd ( e ) 2 x2 x2 1 2 1 2 x e e dx 2 2




e
x2 2
dx 2
x
13
24 y ( 2 x ), 0 x 1, 0 y x f ( x, y) 5 0 , 其他
(2) fY ( y ) f ( x, y ) dx

y
24 y( 2 x ) dx y 5 24 3 y2 y( 2 y ) , 0 y 1 5 2 2
但边缘分布却完全相同。
8
例2
设二维随机变量(X,Y )的联合分布为
X 0
1
Y
0
1 c 0.1
2
0.1
0.2
0.1
0.2
求:(1) c; (2) X ,Y 的边缘分布; ( 3) P ( X Y 1) . 解 (1) 0.1 c 0.1 0.2 0.1 0.2 1 c 0.3 .
X
Y
1
1 4 1 8 1 12 1 16
2
0
1 8 1 12 1 16
3
0 0
1 12 1 16
4
0 0 0
1 16
3
P{ X i ) P{Y j | X i ) 1
1 1 , 1 j i 4 4 i
P{ X 3, Y 2}
1 1 1 1 1 2 . 4 8 8 12 12 3
A 2.
0
e
2 x
dx
0
e y dy
1 A 1, 2
4
2e (2 x y ) , x 0, y 0 f ( x, y ) 其他 0,
(2) P{Y X }
0
dx f ( x, y ) dy
0
x
2
2
0
4 25
2
0
1
例2
令随机变量 X 表示在 1,2,3,4 中等可能地取一个值, 令随机变量 Y 表示在 1 到 X 中等可能地取一个值。求 ( X , Y ) 的联合分布律及 P{ X 3, Y 2} .
(X , Y ) 解 由于 Y 的取值依赖于 X 的取值,由乘法公式得
的联合分布律为
pij P{ X i , Y j}
2
3 8
3
1 8
相关文档
最新文档