弹性力学中的有限元法

合集下载

有限元经典PPT第4章

有限元经典PPT第4章

Pii Kiiui
Ki1u1 Ki2u2 Kiiui K u i,i1 i1
ui
n
Kiiui Kiiui
Kiju j
4.1.2 平面应力问题有限元的基本思想和瑞雷-里兹法
v3 f3y
3
u3
f3x
f1y v1 u1
1 f1x
v2 f2y u2
2 f2x
给定一个三角形单元和作用在角点上 的六个力,要求得六个角点的位移。 或者是要求三角形角点发生指定的位 移,在三角形三个角点如何加力?
很显然,问题的精确解很困难。采用 瑞雷-里兹法求近似式解
e号单元的三个节点I,j,k的力对应的 力的平衡方程是第2i-1,2i;2j-1,2j;2k1,2k个平衡方程
e号单元的三个节点I,j,k的位移是第 2i-1,2i;2j-1,2j;2k-1,2k个未知数
弹性模量:E 横截面积:A
1
1 L
2
2L
3
局部系单元刚度阵:
k
1
EA L
1 -1
-1
1
2 集成总刚:
0 1
解得:
ux uy
L EA
3.8284L
EA
i
j
第一类位移条件:
Ki1u1 Ki2u2 Kiiui Ki1ui1
ui 0
令: Kij 0 i j
m
vi 0
Kii 1
um 0
Pi 0
ui 0
第二类位移条件:um um
大数
充大数法: Kii Kii
第一步:求转换矩阵
k2
EA 1 2L -1
-1
1
P
cos 0
T sin

二、 弹性力学有限元法基本原理(一)

二、 弹性力学有限元法基本原理(一)

1 6 12 8
引入约束条件:u1 0
即划去第一个方程,解出其余三个方程得到:
u2 13 3 cL u3 23 u 3 AE 27 4
结合单元位移模式 u N d 就得到整体上近似位移场。
s 是插值基函数矩阵,称为“形函数”矩阵。 L
L s N L
u1 d 称为单元1的节点位移列阵。 u2
其它两个单元也有同样的插值位移试探函数:
单元2:
u N d u N d
u2 , d u3
1 T U d k d 2
1 DT K D DT R 2 p 0 应用势能驻值条件: D
简写为: p
得到有限元求解方程——系统平衡方程:
K D R
即:
1 1 0 0 u1 1 2 1 0 u AE 2 cL2 L 0 1 2 1 u3 6 0 0 1 1 u4

这个做法正体现了有限元法的实质。

上面形式的分片位移试探函数有下列缺点: 必须对它进行调整,使其满足连续条件和边界约束条件; 多项式系数作为广义坐标缺乏明显的物理意义。
1) 2)

因此,上述不是通常意义上标准的有限元形式,仍然具有
局限性,如对于二维以上的问题使各单元之间分片多项式
保持连续性很难处理。

下面用节点位移未知量作为待定参数(广义坐标),得到 其标准有限元形式。

重新构造单元内位移试探函数
离散结构中,节点位移分量是问 题的基本未知量。
在每个单元内通过对节点位移插 值,分片建立位移试探函数:

第三章弹性力学有限元法

第三章弹性力学有限元法

3.3 单元分析
2.单元分析
K
11 rp

b a
rp(1
13r p
)
1
2
a b
r
p
(
1

1 3

r
p
)
其中:
K
12 rp

r p

1
2

r
p
K
22 rp

b a
r
p
(
1

1 3
r
p
)
1
2
a b
r p(1
1 3
r
p
)
K
21 rp

r p

a5 xy a11 xy

a6 y2 a12 y 2
i
j
l
3.3 单元分析
1. 单元的插值函数(各种多项式)
四节点矩形单元 的插值多项式
ue
v
e

a1 a7

a2 x a8 x

a3 a9
y y

a4 xy a11xy

N
i

1 (1 4
x a
)(1
y b
z
三角形环单元
O
y
x
3.2 连续体离散化
5.轴对称单元
四边形环单元
回转圆锥薄壳单元
z
O
y
x z
O
y
x
3.3 单元分析
1. 单元的插值函数(各种多项式)
m
u e
v
e

a1 a4

第2章_弹性力学基础及有限元法的基本原理1

第2章_弹性力学基础及有限元法的基本原理1

W U
当外力的形式是多样的时,外力的虚功等于:
W f Pc f Pv dV f Ps dS
T T T v s
• 1.4 平面问题定义
严格地讲,任何结构都是空间的。对于某些特殊情 况,空间问题可以转化为平面问题。
(1)平面应力问题 满足条件: 1)几何条件 厚度尺寸远远小于截面尺寸; 2)载荷条件 载荷平行于板平面且沿厚度方向均匀 分布,而板平面不受任何外力作用。
1)位移函数 分片插值→ 假设一种函数来表示单元位移分布 一般选取多项式(简单而且易求导)
可用于离散的单元: • 三角形单元; • 矩形单元; • 不规则四边形单元。 DOF 节点的自由度:节点所具有的位移分量的数量。 一个单元所有节点的自由度总和称为单元自由度。 (1)单元参数只能通过节点传递到相邻单元 (2)单元和节点必须统一编号
2.2 单元分析(位移、应力、应变) 任务:形成单元刚度矩阵,建立单元特性方程 因此必须建立坐标系,如下图:
1D问题的弹性模量
E杨氏弹性模量
泊松比是指材料在单向受拉或受压时,横向正应变与轴向 正应变的绝对值的比值,也叫横向变形系数,它是反映材 料横向变形的弹性常数。 若在弹性范围内加载,横向应变εx与纵向应变εy之间存 在下列关系: εx=- νεy 式中ν为材料的一个弹性常数,称为泊松比。泊松比是 量纲为一的量。 可以这样记忆:空气的泊松比为0,45#钢0.3,水的泊松 比为0.5,中间的可以推出。
• 未知数 应力 6个+应变 6个+位移 3个=15个 • 方程个数 平衡方程 3个+几何方程6个+物理方程6个=15个 原则上可以根据15个方程求出15个未知物理量 但实际求解时先求出一部分再通过方程求解剩下的。 目前有限元法主要采用的是位移法,以三个位移 分量为基本未知量。位移-应变-应力,应力和外力平衡

四、 弹性力学有限元法基本原理(三)

四、 弹性力学有限元法基本原理(三)


该单元位移模式及其形函数的构造可采用根据形函数性质直接
构造插值函数的方法。或从对应的二维单元进行推广,再用形
函数性质进行验证。 • 为了突破这类单元几何上的限制,得到实用的单元,必须引
入等参变换。
第二节 等参单元
• 问题的提出
从前面介绍的各种二、三维单元看出,这些单元可能有两个方面 的约束: 第一是单元的精度,显然单元的节点数越多,单元精度越高。因 此在这一点上,矩形单元优于简单三角形单元,六面体单元优于四面 体单元; 第二是单元几何上的限制。单独使用矩形或长方体单元都不能 模拟任意形状几何体,且网格中单元大小无法过渡。所有上述单元
n
n
n
n

显然,只要形函数满足性质 满足。
N
i 1
n
i
1 ,等参单元的完备性就得到
六、等参单元力学特性分析
• 等参单元特性分析的所有公式的导出原理与前面介绍的其它单元相同。

等参单元的形函数矩阵、应变矩阵、应力矩阵均用自然坐标描述。应变 矩阵中涉及到形函数对总体x,y,z坐标求导数时,须进行坐标变换。

该单元在母单元中的位移模式为包含完全二次式的不完全三次多项式。
插值基函数可以用形函数性质直接构造。对应图中局部节点编号,8个节 点形函数为:
1 (1 i )(1 i )( i i 1)(i 1,2,3,4) 4 1 N i (1 2 )(1 i )( i 5,6) 2 1 N i (1 2 )(1 i )(i 7,8) 2 Ni
一、等参单元的概念
• 图4-3为一个4节点任意四边形单元(Q4),单元有8个自由度。将矩 形单元放松为4节点任意四边形单元将带来许多好处。 • 但在建立单元位移模式时产生了新的问题:

有限元法的理论基础

有限元法的理论基础

有限元法的理论基础有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。

能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。

下面介绍有限元法中经常使用的虚位移原理和最小势能原理。

1.虚位移原理虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。

反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。

可以看出,虚位移原理等价于平衡微分方程与力学边界条件。

所以虚位移原理表述了力系平衡的必要而充分的条件。

虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。

2.最小势能原理最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。

根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。

最小势能原理仅适用于弹性力学问题。

2.2有限元法求解问题的基本步骤弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。

2.2.1问题的分类求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。

对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。

2.2.2建模在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。

第2章 弹性力学平面问题有限单元法(1-3节)

第2章 弹性力学平面问题有限单元法(1-3节)

第二章 弹性力学平面问题有限单元法§2-1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。

一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。

在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。

即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。

构造位移函数的方法是:以结点(i,j,m)为定点。

以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。

在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x y ααα==++546(,)v v x y x y ααα==++ (2-1-2)a{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。

将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j jm mx u A x u x u =2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为:m m i j i a x y x y =-m ij by y =- (,,)i j mm i jc x x =-(,,)i j m表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。

弹性力学第6章:用有限元法解平面问题(徐芝纶第五版)

弹性力学第6章:用有限元法解平面问题(徐芝纶第五版)
其中,
Ni (ai bi x ci y) / 2A。 (i, j, m)
第六章 用有限单元法解平面问题
应变
应用几何方程,求出单元的应变列阵 :
ε ( u v v u )T x y x y
ui
1 2A
b0i ci
0 ci bi
bj 0 cj
0 cj bj
bm 0 cm
0
vi
cm bm
于单元,称为结点力,以正标向为正。
Fi (Fix Fiy T
--单元对结点的 作用力,与 Fi 数值 相同,方向相反,作 用于结点。
Fiy vi
Fix i
ui
Fiy
y v j Fjy i
Fix
j
uj
F jx
vm Fmy
um
m Fmx
o
x
第六章 用有限单元法解平面问题
求解方法
(5)将每一单元中的各种外荷载,按虚功 等效原则移置到结点上,化为结点荷 载,表示为
第六章 用有限单元法解平面问题
FEM的概念
§6-2 有限单元法的概念
FEM的概念,可以简述为:采用有限自由度的离 散单元组合体模型去描述实际具有无限自由度的 考察体,是一种在力学模型上进行近似的数值计 算方法,其理论基础是分片插值技术与变分原理。
FEM的分析过程:
1.将连续体变换为离散化结构; 2.单元分析; 3.整体分析。
第六章 用有限单元法解平面问题
FEM
第六章 用有限单元法解平面问题
概述 1.有限元法(Finite Element Method)
简称FEM,是弹性力学的一种近似解法。 首先将连续体变换为离散化结构,然后再利用 分片插值技术与虚功原理或变分方法进行求解。

第五章弹性力学平面问题的有限单元法解析

第五章弹性力学平面问题的有限单元法解析
严格地说,实际的弹性结构都是空间结构,并处于空间受力状 态,属于空间问题,然而,对于某些特定问题,根据其结构和外力 特点可以简化为平面问题来处理。这种近似,可大大减少计算工作 工作量,为有限元分析提供方便。弹性力学平面问题可分为两类:
(1) 平面应变问题: 如图柱形管道和长柱形坝体,具有如下特点:a纵向尺寸远大 于横向尺寸,且各横截面尺寸都相同;b 载荷和约束沿纵向不变, 因此可以认为,沿纵向的位移分量 等于零。
一悬臂梁的力学模型简化和单元划分如图: 在确立了力学模型的基础上,再把原来连续的弹性体离散化, 分为有限个单元,这些单元可以是三结点三角形、四结点任意四边 形、八结点曲边四边形等等。单元之间只在结点处相联结。平面问 题的结点为铰结点。完成单元划分以后,需要对所有单元按次序编 号,就得到了有限元的计算模型。
A
S
U
(
A
*
xx
*
yy
xy
* xy
)
t
dx
dy
上面三个积分的意义为:
W 中的第一个积分表示全部体积力作的虚功;第二个积分表示
自由边界S 上的表面力作的虚功。U 中的积分为
dU
(
x
* x
y
* y
xy
* xy
)
t
dx
dy
它表示单面体四个侧面上的应力在虚应变上作的虚功。
1 力学模型的简化 用有限元法研究实际工程结构的强度与刚度问题,首先要从工 程实际问题中抽象出力学模型,即要对实际问题的边界条件,约束 条件和外载荷进行简化,这种简化应尽可能反映实际情况,使简化 后的弹性力学问题的解答与实际相近,但也不要带来运算上的过分 复杂。 在力学模型简化过程中,必须明确以下几点 ①判断实际结构的问题类型,是 二维问题还是三维 问题;对于 平面问题,是平面应变 问题还是平面应力 问题。 ②结构是否对称 。如果是对称的,要充分利用对称条件,以简 化计算。 ③简化的力学模型必是静定 的或超静定的。

弹性力学平面问题的有限元法

弹性力学平面问题的有限元法
形状函数
用于描述四节点四边形单元内任意一点的位移和 应力状态。
刚度矩阵
由四节点四边形单元的形状函数和弹性力学基本 公式构建,用于描述单元的刚度特性。
平面六面体八节点单元
六面体八节点单元
是一种三维有限元单元, 具有六个面和八个节点。
形状函数
用于描述六面体八节点 单元内任意一点的位移 和应力状态。
刚度矩阵
对复杂问题的处理能力有限
对于一些高度非线性或耦合问题,有限元法可能难以获得准确解,需要采用其他数值方法 或实验手段。
对高维问题的处理难度较大
随着问题维度的增加,有限元法的计算量和内存消耗会急剧增加,限制了其在高维问题中 的应用。
未来发展方向与挑战
高效算法设计
研究更高效的有限元算法,提高计算速度和精度,降低计算成本。
载荷向量的确定
根据边界条件和外力分布,确定每个节点的载荷 向量。
3
系统刚度矩阵与总载荷向量
将各个单元的刚度矩阵和载荷向量组合起来,形 成系统刚度矩阵和总载荷向量。
求解线性方程组
线性方程组的求解
利用数值方法(如Gauss消去法、迭代法等)求解由 系统刚度矩阵和总载荷向量构成的线性方程组。
解的收敛性与稳定性
02 弹性力学基本方程
应力和应变的关系
01
02
03
胡克定律
在弹性范围内,应力与应 变之间存在线性关系,即 应力与应变成正比。
应变分量
描述物体变形的量,包括 线应变和角应变。
应力分量
描述物体内部受力情况的 量,包括正应力和剪切应 力。
平衡方程
静力平衡
物体在无外力作用下保持静止状态, 即合力为零。
弹性力学平面问题的有限元法

弹性力学平面问题有限元法

弹性力学平面问题有限元法

度之间相关的是应力在其作用截面的法线方向和
z
C
τ zx +
∂τ zx dz ∂z ∂τ yz σx ∂τ xz dy τ yz + τ xz + dx ∂y ∂x fz τxy τyx ∂σ y fy fx σy + dy ∂τ xy τxz σy ∂y τ xy + dx ∂τ yx ∂x ∂σ x τ yx + dy σx + dx ∂y ∂x τ B
yz
σz +
∂σz dz ∂z ∂τ zy dz τ zy + ∂z
P
τzy
τzx
A
σz
o
y
x
正六面单元体的取法
经过物体内任一点如P 经过物体内任一点如P点取出一个微小的正六面 体,它的棱边分别平行于三个坐标轴而长度分别 为: PA = ∆x, PB = ∆y, PC = ∆z。将每个面上的应力分 解为一个正应力和两个切应力。 解为一个正应力和两个切应力。正应力用 σ 表 表示。 示,切应力用 τ 表示。 应力下标的含意: 应力下标的含意:
物理方程的表达形式
以应力表示应变
以应变表示应力
τxy 1 εx = σx −v(σy +σz ) γ xy = E G τ yz 1 ε y = σy − v(σx +σz γ yz = E G τxz 1 εz = σz −v(σx +σy ) γ xz = E G
σx =λθ +2Gεx τxy =Gγxy σy =λθ +2Gεy τyz =Gγ yz σz =λθ +2Gεz τxz =Gγxz
θ = εx + ε y + εz

弹性力学有限元法基本原理(二)

弹性力学有限元法基本原理(二)
x x0 a y y0 b
由于ξ,η在单元4个节点上的值分别为±1,因此称为自然坐标。
(2)单元位移模式
• 单元共有8个自由度,因此单元位移试探函数设为如下形式:
u 1 2 3 4 v 5 6 7 8
1 ~ 8为广义坐标。这是包含完全一次式的非完全二次多项式函数,由
于在各坐标轴方向呈线性变化,因此称为双线性位移模式。
• 根据里兹法的原理,如果单元的位移插值多项式能够精确拟合真 正解,则很粗糙的单元划分就能得到精确的解答。比如,假设位 移精确解是二次函数,而单元位移模式包含了完全二次多项式, 则有限元解一定是精确的。
▪ 对于一般的实际位移场,一点附近的位移可以展开为Taylor级数。
根据前面结论,在一个单元范围内,有限元解可以拟合实际位移的
具有C0连续性(函数值连续)。
满足上述要求的单元称为协调元。
理论上可以证明,同时满足完备性和协调性的单元一定收 敛。但协调性不是收敛的必要条件,某些具有非协调位移模式 的单元只要满足一定条件也是收敛的。
2、对收敛性和收敛准则的理解
• 根据前面分析,对于有限元位移法,有两个途径得到不断逼近 精确解的有限元解序列:第一,网格不变,不断增加位移模式 多项式的阶数;第二,单元位移模式不变,不断增加单元数, 即单元尺寸趋于零。通常所指有限元解的收敛性是第二种情况 。
• 该单元要求两个边平行于坐标轴,因而不能模拟复杂几何边界, 这是矩形单元的固有缺点。可以同3节点三角形单元结合使用。
• 如果突破这个几何上的限制,成为任意方位的任意四边形单元, 便成为很实用的单元。增加三角形单元节点数也是提高精度的有 效途径。
2、 六节点三角形单元
(1)单元概述
• 三角形单元天然具有很好的几何适应性,如果增加三角形单元 位移模式多项式的阶数,就能成为实用的单元。考虑图3-2所 示6节点三角形单元,单元每个边上设一个节点,单元有12个 自由度,因此位移模式恰好取完全二次多项式:

弹性力学问题的有限元法_三维问题

弹性力学问题的有限元法_三维问题
3
1. 四面体单元
l
设P(x,y,z)为四面体中任一点,则点P分别与 四面体ijml的4个三角形平面构成4个小四面体。
m
1 x y z Vi 1 1 x j y j z j 6 1 x m y m z m 1 x l y l z l

V
Li L j L m Ll d V
b c d
3 ! a !b !c ! d !
a b c d
3!
V
2012-6-20
三维单元
5
1. 四面体单元
应变矩阵和应力矩阵 将三维问题的应变分量写成向量形式为 ε
e e
T
式中
Br
T
b r 0 0 c r 0 d r 1 0 c r 0 b r d r 0 6V 0 0 d r 0 c r b r
r i , j , m , l
1 1 1 1 1 1
2 6 5 ζ 7 8
η
1 ξ 4
3
每个位移分量由8个节点位移 进行插值,插值多项式中包括 T 如下各项 1 x y z xy yz zx xyz
2012-6-20 三维问题 9
2. 六面体单元
β 1 2 3
T
j
0
为广义坐标。
y,v
x,u 4节点四面体单元
2012-6-20 三维单元 2
将各节点的坐标和位移值代入上 式可求出广义坐标β。将求得的 β代回上式并加以整理后可得
1. 四面体单元
u u v w N u I N i I N j I N m I N l u

弹性力学-第5章 有限元法

弹性力学-第5章 有限元法
生成实体模型的两种方法: –(上-下)或(下-上)
(a)从上到下建模 从生成体(或面)开始,并结合其它方
法生成最终的形状。

用于产生最终形状的合并称为布尔运算
提示: 当生成二维体素时,ANSYS定义一个面及其它所包含 的线和关键点。当生成三维体素时,ANSYS定义一个 体及其所包含的面、线及关键点。 如果低阶的图元连在高阶图元上,则低阶图元不能删除.
§5-2 建模
一. 有限元模型的建立
a.建模的方法 b.坐标系统与工作平面 c.实体建模
1.建模方法
有限元模型的建立方法可分为: (1)直接法
直接根据机械结构的几何外型建立节点和单元,因此直接 法只适应于简单的机械结构系统。
(2)间接法(Solid Modeling)
适用于节点及单元数目较多的复杂几何外型机械结构系 统。该方法通过点、线、面、体积,先建立实体模型, 再进行网格划分,以完成有限元模型的建立。
第五章 有限元法解平面问题
§5-1有限元法简介 一. 有限元法的基本思想
1.将连续的问题域离散为有限数目的单元; 2.单元之间通过节点相连; 3.每一个单元都有精确的方程来描述它如何对一定载 荷去响应; 4.单元内部的待求量可由单元节点量通过选定的函数 关系插值得到; 5.模型中所有单元的响应之和给出设计的总响应。
由于单元形状简单,易于建立节点量的平衡关系和能量关 系方程式,然后将各单元方程集组成总体代数方程组,计 入边界条件后可对方程求解。
二. 有限元法的位移解法 1.有限元法的单元和节点
1.有限元法的单元和节点 2.有限元的基本未知量(DOFs) 3.单元形函数
节点自由度是随 单元类型 变化的。
J 三维杆单元 (铰接) UX, UY, UZ

弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析弹性力学是固体力学的一个重要分支,是研究弹性固体在受外力作用、温度改变、边界约束或其他外界因素作用下而发生的应力、形变和位移状态的科学。

有限单元法是力学、数学、物理学、计算方法、计算机技术等多种学科综合发展和结合的产物,是随着计算机技术的广泛应用而迅速发展起来的一种数值分析方法。

有限元法的基本思想就是化整为零,分散分析,再集零为整。

即用结构力学方法求解弹性力学问题,实质是将复杂的连续体划分为有限多个简单的单元体,单元体之间仅仅通过结点相连,实现化无限自由度问题为有限稀有度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。

有限元方法经过近半个世纪的发展,目前已经成为各种工程问题特别是结构分析问题的标准分析方法,而有限元软件也已成为现代结构设计中不可缺少的工具。

有限元软件是有限元理论通向实际工程应用的桥梁,它的应用极大地提高了力学学科解决自然科学和工程实际问题的能力,进一步促进了有限元方法的发展。

ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,广泛用于机械制造、石油化工、航空航天、汽车交通、土木工程、造船、水利等一般工业及科学研究。

ANSYS 软件的组成:(一)前处理模块该模块为用户提供了一个强大的实体建模及网格划分工具,可以方便的构造有限元模型,软件提高了100种以上的单元类型,用来模拟工程中的各种结构和材料。

包括:1.实体建模:参数化建模,布尔运算及体素库,拖拉、旋转、拷贝、蒙皮、倒角等。

2.自动网格划分,自动进行单元形态、求解精度检查及修正。

3.在集合模型上加载:点加载、分布载荷、体载荷、函数载荷。

4.可扩展的标准梁截面形状库。

(二)分析计算模块该模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。

有限元法基础-3弹性力学问题有限元法

有限元法基础-3弹性力学问题有限元法

插值函数--线性完备的多项式
u 1 2 x 3 y v 4 5 x 6 y
1 u φ 0 v 0 φ u = 6
φ [1, x, y]
i 为待定系数,称为广义坐标
ai x j ym xm y j bi y j ym ci x j xm
1 xi yi yj ym
1 (ci vi c j v j cm vm ) 2A
1 ui 1 2 1 uj 2A 1 um
1 xi 1 3 1 xj 2A 1 xm
1 yj (bi ui b j u j bmum ) 2A ym
16
有限元法基础
3.1 弹性力学平面问题的有限元格式
单元等效节点载荷列阵
e T T e e Q6 1 N 63 F31 tdxdy e N 63 T31 tdS QF QT e S
1)均质等厚单元质量
0 F g
Qix N Qi i e 0 Qiy
function).
位移插值函数的矩阵表示为
Ni u Nq 0
e
0 Ni
Nj 0
0 Nj
Nm 0
0 T ui , vi , u j , v j , um , vm Nm
6
有限元法基础
3.1 弹性力学平面问题的有限元格式 形函数的性质
(1) Ni ( x j , y j ) ij
矩阵表达式
1 p (u) ( TCε F T u)tdxdy T T u tdS 2 S
应用到离散系统
1 p ep ( TCε F T u)tdxdy e T T u tdS S e e e 2 1 T T q eT TCB tdxdy q e q eT N F tdxdy N T tdS e e e S 2 e e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学中的有限元法FINITE ELEMENT METHOD
同济大学土木工程学院
第章
第一章弹性力学与有限元
弹性力学的任务
弹性力学的求解体系
弹性力学的解析求解
实际科学和工程求解的需求
有限单元法
弹性力学的求解体系=任意弹性问
15个
()i i ij u u ,,,1+=ε0,+i j ij X σ题均应满足
右边的控制
j j j j 2
ij
ij kk ij μεδλεσ2+=方程
弹性力学问题的求解困难
存在15个未知量,相应地建立了15个基本方程,好像已经完成了弹性力学的任务?!
但是,进一步应用就会发现,时至今日,这15个微分方程组的求解在数学上的遇到困难也是非常巨大的。

在随后的100多年的时间里,数学、力学家们为了弹性力学的求解付出了艰苦的劳动和努力。

弹性力学问题的解析求解
平面问题的应力函数解法:
寻找一个满足双调和方程
的应力函数U(亦称Airy应力函数)。

则其应力解答为
该应力解答还必须满足应力及位移边界条件。

弹性力学问题的解析求解扭转问题的扭转函数解法:
寻找满足泊松方程
的扭转函数F(x,y),其应力解为
其应力解还必须满足力的边界条件:
弹性力学问题的解析求解空间轴对称问题的Love位移函数解法:寻找满足双调和方程
的Love位移函数Ψ(r,z),其位移解为
该位移解还必须满足边界条件
薄板问题的挠曲函数解法:弹性力学问题的解析求解寻找一个满足双调和方程
的挠曲函数w 。

则其应力解答为
……
该应力解答还必须满足应
力及位移边界条件。

最小势能原理及近似解法
最小势能原理:在满足位移边界条件(约束所允许的)一切位移中,真实的位移使弹性体的总势能取极值(极小值)。

近似解法:根据最小势能原理与弹性力学求解体系的等价性,可以提出弹性力学的近似解法求解微分方程求泛函的极值
瑞利李兹近似解法瑞利-李兹近似解法
选择一组满足位移边界条件的试探函
数u (x ,y ,z ):
将上述位移函数u (x ,y ,z )代入几何方程求出应变εij 、代入物理方程求出应力σij ,进而可以求得分析物体的总势能Π
()
m m m C B A f V U ,,=+=∏
瑞利李兹近似解法
瑞利-李兹近似解法
利用最小势能原理,对总势能取极值:
可以得到一组以A
m 、B
m
、C
m
为未知系数的代数
方程组。

求解该代数方程组得到系数A m、B m、C m,代u x
回位移函数(,y,z)就可以得到所需的解答。

用瑞利-李兹法求如右图所示的问题,可经过分析假设位移函数如下:
y
弹性力学解法小结
回顾上述的所有解法可以发现:
尽管作了大量的简化和努力,这些解法能够求解的仍是极其简单和少数的弹性力学问题。

适合于任何弹性体的求解控制方程组已完整建立,其求解却如此困难!
实际科学和工程求解的需求
苏州河水闸工程
苏州河水闸工程
四号线原位修复
险情发生后、基坑开挖等对临江花苑桩基承载力的影响(四号线修复)
水电地下洞室群稳定性分析
困扰了无数学者近个世纪的难困扰了无数学者近一个世纪的难题在上世纪五十年代终于得到了圆满的解答,那就是有限单元法的提出。

也正是有限单元法的提出才最终使得弹性力学及其相关的一些学科真正走得弹性力学及其相关的些学科真正走向了科学和工程应用。

有限单元法的基本思路弹性力学解法的问题
在于:不论是应力函
数解法、扭转函数解
法、挠曲函数解法,
还是基于最小势能原
理的瑞利-李兹等方
法,其困难在于如何
给出一个在全求解区
域上均成立的试探函
数。

移或应力函数得到了巧妙的解决。

i j
m
x
有限单元法的基本思路
对于任意单元(i ,j ,m ),以结点位移(u i ,u j ,u m )为待定系数,可以给出该单元的插值函数:
m
m j j i i u y x N u y x N u y x N u ),(),(),(++=将上述位移函数代入几何方程
求出单元应变εij 、再代入物理
方程求出单元应力σij 。

进而可以求得单元总势能。

任意单元i j m
有限单元法的意义
有限单元法的出现使理论体系上已经非常完善的弹性力学求解方法真正走向了科学和工程应用。

人们常说,土木工程是一门古老而又年青的学科,指的是……
分析与计算是岩土及地下结构设计的基础,掌握现代有限元的基础理论以及一些功能强大的商用和专用有限元软件(如Ansys、Flac等)的使用,让岩土工程由定性向定量转变,理所当然应该是本专业所必需的要求。

有限元算例
9悬臂梁
9水坝
9房屋
9边坡稳定性分析
9裂纹扩展
9盾构隧道的施工沉降及影响。

相关文档
最新文档