算法设计与分析.ppt
合集下载
算法分析与设计回溯法ppt课件
问题求解的方法
硬性处理法
– 列出所有候选解,逐个检查是否为所需要的解 – 理论上,候选解数量有限,并且通过检查所有或部分
候选解能够得到所需解时,上述方法可行
– 实际中则很少使用,因为候选解的数量通常都非常大 (比如指数级,甚至是大数阶乘),即便采用最快的 计算机也只能解决规模较小的问题。
回溯或分枝限界法
这种以深度优先方式搜索问题的解的方法称为 回溯法
回溯法思想
第一步:为问题定义一个状态空间(state space)。这 个空间必须至少包含问题的一个解
第二步:组织状态空间以便它能被容易地搜索。典型 的组织方法是图或树
第三步:按深度优先的方法从开始结点进行搜索
– 开始结点是一个活结点(也是 E-结点:expansion node) – 如果能从当前的E-结点移动到一个新结点,那么这个新结点将
权衡:限界函数生成结点数和限界函数 本身所需的计算时间
效率分析
效率分析中应考虑的因素
– (1)—(3)与实例无关 – (4)与实例相关
有可能只生成O(n)个结点,有可能生成 几乎全部结点
最坏情况时间
– O(p(n)2n),p(n)为n的多项式 – O(q(n)n!),q(n)为n的多项式
Monte Carlo效率估计(1)
解空间
隐式约束描述了xi必须彼此相关的情况, 如0/1背包问题中的背包重量M
回溯法求解的经典问题(1) 8-皇后问题
在一个8*8棋盘上放置8个皇后,且使得每两个 之间都不能互相“攻击”,也就是使得每两个 都不能在同一行、同一列及同一条斜角线上。
8皇后问题的解可以表示为8-元组(x1,…,x8) , 其中其中xi是第i行皇后所在的列号。
回溯法求解的经典问题(2) 子集和数问题
《算法设计与分析》课件
常见的贪心算法包括最小生成树算法 、Prim算法、Dijkstra算法和拓扑排 序等。
贪心算法的时间复杂度和空间复杂度 通常都比较优秀,但在某些情况下可 能需要额外的空间来保存状态。
动态规划
常见的动态规划算法包括斐波那契数列、背包 问题、最长公共子序列和矩阵链乘法等。
动态规划的时间复杂度和空间复杂度通常较高,但通 过优化状态转移方程和状态空间可以显著提高效率。
动态规划算法的时间和空间复杂度分析
动态规划算法的时间复杂度通常为O(n^2),空间复杂度为O(n)。
04 经典问题与算法实现
排序问题
冒泡排序
通过重复地遍历待排序序列,比较相邻元素的大小,交换 位置,使得较大的元素逐渐往后移动,最终达到排序的目 的。
快速排序
采用分治策略,选取一个基准元素,将比基准元素小的元 素移到其左边,比基准元素大的元素移到其右边,然后对 左右两边的子序列递归进行此操作。
动态规划是一种通过将原问题分解为若干个子 问题,并从子问题的最优解推导出原问题的最 优解的算法设计方法。
动态规划的关键在于状态转移方程的建立和状态 空间的优化,以减少不必要的重复计算。
回溯算法
01
回溯算法是一种通过穷举所有可能情况来求解问题的算法设计方法。
02
常见的回溯算法包括排列组合、八皇后问题和图的着色问题等。
空间换时间 分治策略 贪心算法 动态规划
通过增加存储空间来减少计算时间,例如使用哈希表解决查找 问题。
将问题分解为若干个子问题,递归地解决子问题,最终合并子 问题的解以得到原问题的解。
在每一步选择中都采取当前状态下最好或最优(即最有利)的 选择,从而希望导致结果是最好或最优的。
通过将问题分解为相互重叠的子问题,并保存子问题的解,避 免重复计算,提高算法效率。
算法设计与分析第04章 贪心算法PPT课件
9
4.1 活动安排问题
若被检查的活动i的开始时间Si小于最近选择的活动j 的结束时间fi,则不选择活动i,否则选择活动i加入集 合A中。
贪心算法并不总能求得问题的整体最优解。但对 于活动安排问题,贪心算法greedySelector却总能求 得的整体最优解,即它最终所确定的相容活动集合A的 规模最大。这个结论可以用数学归纳法证明。
•}
6
4.1 活动安排问题
由于输入的活动以其完成时间的非减序排列,所 以算法greedySelector每次总是选择具有最早完成 时间的相容活动加入集合A中。直观上,按这种方法 选择相容活动为未安排活动留下尽可能多的时间。也 就是说,该算法的贪心选择的意义是使剩余的可安排 时间段极大化,以便安排尽可能多的相容活动。
算法greedySelector的效率极高。当输入的活 动已按结束时间的非减序排列,算法只需O(n)的时间 安排n个活动,使最多的活动能相容地使用公共资源。 如果所给出的活动未按非减序排列,可以用O(nlogn) 的时间重排。
7
4.1 活动安排问题
例:设待安排的11个活动的开始时间和结束时间按结 束时间的非减序排列如下:
13
4.2 贪心算法的基本要素
3.贪心算法与动态规划算法的差异
贪心算法和动态规划算法都要求问题具有最优子结构 性质,这是2类算法的一个共同点。但是,对于具有最 优子结构的问题应该选用贪心算法还是动态规划算法 求解?是否能用动态规划算法求解的问题也能用贪心算 法求解?下面研究2个经典的组合优化问题,并以此说 明贪心算法与动态规划算法的主要差别。
11
4.2 贪心算法的基本要素
1.贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以通 过一系列局部最优的选择,即贪心选择来达到。这是 贪心算法可行的第一个基本要素,也是贪心算法与动 态规划算法的主要区别。
4.1 活动安排问题
若被检查的活动i的开始时间Si小于最近选择的活动j 的结束时间fi,则不选择活动i,否则选择活动i加入集 合A中。
贪心算法并不总能求得问题的整体最优解。但对 于活动安排问题,贪心算法greedySelector却总能求 得的整体最优解,即它最终所确定的相容活动集合A的 规模最大。这个结论可以用数学归纳法证明。
•}
6
4.1 活动安排问题
由于输入的活动以其完成时间的非减序排列,所 以算法greedySelector每次总是选择具有最早完成 时间的相容活动加入集合A中。直观上,按这种方法 选择相容活动为未安排活动留下尽可能多的时间。也 就是说,该算法的贪心选择的意义是使剩余的可安排 时间段极大化,以便安排尽可能多的相容活动。
算法greedySelector的效率极高。当输入的活 动已按结束时间的非减序排列,算法只需O(n)的时间 安排n个活动,使最多的活动能相容地使用公共资源。 如果所给出的活动未按非减序排列,可以用O(nlogn) 的时间重排。
7
4.1 活动安排问题
例:设待安排的11个活动的开始时间和结束时间按结 束时间的非减序排列如下:
13
4.2 贪心算法的基本要素
3.贪心算法与动态规划算法的差异
贪心算法和动态规划算法都要求问题具有最优子结构 性质,这是2类算法的一个共同点。但是,对于具有最 优子结构的问题应该选用贪心算法还是动态规划算法 求解?是否能用动态规划算法求解的问题也能用贪心算 法求解?下面研究2个经典的组合优化问题,并以此说 明贪心算法与动态规划算法的主要差别。
11
4.2 贪心算法的基本要素
1.贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以通 过一系列局部最优的选择,即贪心选择来达到。这是 贪心算法可行的第一个基本要素,也是贪心算法与动 态规划算法的主要区别。
算法设计与分析ppt课件
2
ACM国际大学生程序设计竞赛
ACM国际大学生程序设计竞赛(英文 全称:ACM International Collegiate Programming Contest(ACM-ICPC或 ICPC)是由美国计算机协会(ACM)主办 的,一项旨在展示大学生创新能力、团队 精神和在压力下编写程序、分析和解决问 题能力的年度竞赛。经过30多年的发展, ACM国际大学生程序设计竞赛已经发展成 为最具影响力的大学生计算机竞赛。赛事 目前由IBM公司赞助。
第3章 动态规划 3.1 矩阵连乘问题 3.2 动态规划算法的基本要素 3.3 最长公共子序列 3.4 最大子段和 3.5 凸多边形最优三角剖分 3.6 多边形游戏 3.7 图像压缩 3.8 电路布线 3.9 流水作业调度 3.10 0-1背包问题 3.11 最优二叉搜索树 3.12 动态规划加速原理
7
1.1 算法与程序
算法:是满足下述性质的指令序列。
输 入:有零个或多个外部量作为算法的输入。 输 出:算法产生至少一个量作为输出。 确定性:组成算法的每条指令清晰、无歧义。 有限性:算法中每条指令的执行次数有限,执行
每条指令的时间也有限。
程序:是算法用某种程序设计语言的具体实现。
4
教材与参考书
教 材:
◦ 算法设计与分析(第三版) 王晓东,2007年 5月,电子工业出版社。
参考书:
◦ 徐士良编,C常用算法程序集,华大学出版 社,1998年
◦ 霍红卫编,算法设计与分析 西安电子科技 大学出版社,2005年
◦ 卢开澄编,计算机算法导引,清华大学出 版社,2003年
5
部分目录
算法分析是计算机领域的“古老”而“前沿” 的课题。
10
ACM国际大学生程序设计竞赛
ACM国际大学生程序设计竞赛(英文 全称:ACM International Collegiate Programming Contest(ACM-ICPC或 ICPC)是由美国计算机协会(ACM)主办 的,一项旨在展示大学生创新能力、团队 精神和在压力下编写程序、分析和解决问 题能力的年度竞赛。经过30多年的发展, ACM国际大学生程序设计竞赛已经发展成 为最具影响力的大学生计算机竞赛。赛事 目前由IBM公司赞助。
第3章 动态规划 3.1 矩阵连乘问题 3.2 动态规划算法的基本要素 3.3 最长公共子序列 3.4 最大子段和 3.5 凸多边形最优三角剖分 3.6 多边形游戏 3.7 图像压缩 3.8 电路布线 3.9 流水作业调度 3.10 0-1背包问题 3.11 最优二叉搜索树 3.12 动态规划加速原理
7
1.1 算法与程序
算法:是满足下述性质的指令序列。
输 入:有零个或多个外部量作为算法的输入。 输 出:算法产生至少一个量作为输出。 确定性:组成算法的每条指令清晰、无歧义。 有限性:算法中每条指令的执行次数有限,执行
每条指令的时间也有限。
程序:是算法用某种程序设计语言的具体实现。
4
教材与参考书
教 材:
◦ 算法设计与分析(第三版) 王晓东,2007年 5月,电子工业出版社。
参考书:
◦ 徐士良编,C常用算法程序集,华大学出版 社,1998年
◦ 霍红卫编,算法设计与分析 西安电子科技 大学出版社,2005年
◦ 卢开澄编,计算机算法导引,清华大学出 版社,2003年
5
部分目录
算法分析是计算机领域的“古老”而“前沿” 的课题。
10
算法分析与设计 PPT
P且有限,将P中所有元素相乘,X表示积
Y=X+1。 对Y分析:d为Y的一个最小的且大于1的约数。
[欧几里德]证明
Y>1,且不要求d一定不等于Y,d一定存在。
d定为素数,否则存在一个约数z,使得z可整除Y。
又 z<d
d为Y的一个最小的约数
=>
矛盾
dP,且X是P中所有元素的积 => d是X的约数
即d可以同时整除X和Y=X+1。
输入 规则 输出
确定性 清晰、无歧义 有限性 指令执行次数、时间 特点:
执行时,不能包含任何主观的决定; 不能有类似直觉/创造力等因素。
例子:
人们日常生活中做菜的过程,可否用算法 描述?
✓ 如:“咸了”、“放点盐”、“再煮一会”。 ✓ 可否用计算机完成?
算法必须规定明确的量与时间; 不能含糊字眼。
参考书目
Aho, Hopcroft, Ullman. The Design and Analysis of Computer Algorithms. (1974版影印版,铁 道出版社)
Aho, Hopcroft, Ullman. 数据结构与算法(1983 年影印本,清华出版社)
Thomas H. Cormen 等4人. 算法导论(MIT第2 版), 高教出版社影印本
2) n1,m 2n ,对 2n12n1大小的地板显然成
立,现四分地板得到4个相同大小的地板。
也变成存在特殊 方格地板地板
特殊方格地板
[证毕]
归纳法证明举例-马的颜色
例子:[伪定理] 所有马都只有一种颜色。
证明:任何一个马的集合都只有一种颜色
=>所有马只有一种颜色。
设H为任何一个马的集合,对H中马数量n归纳:
Y=X+1。 对Y分析:d为Y的一个最小的且大于1的约数。
[欧几里德]证明
Y>1,且不要求d一定不等于Y,d一定存在。
d定为素数,否则存在一个约数z,使得z可整除Y。
又 z<d
d为Y的一个最小的约数
=>
矛盾
dP,且X是P中所有元素的积 => d是X的约数
即d可以同时整除X和Y=X+1。
输入 规则 输出
确定性 清晰、无歧义 有限性 指令执行次数、时间 特点:
执行时,不能包含任何主观的决定; 不能有类似直觉/创造力等因素。
例子:
人们日常生活中做菜的过程,可否用算法 描述?
✓ 如:“咸了”、“放点盐”、“再煮一会”。 ✓ 可否用计算机完成?
算法必须规定明确的量与时间; 不能含糊字眼。
参考书目
Aho, Hopcroft, Ullman. The Design and Analysis of Computer Algorithms. (1974版影印版,铁 道出版社)
Aho, Hopcroft, Ullman. 数据结构与算法(1983 年影印本,清华出版社)
Thomas H. Cormen 等4人. 算法导论(MIT第2 版), 高教出版社影印本
2) n1,m 2n ,对 2n12n1大小的地板显然成
立,现四分地板得到4个相同大小的地板。
也变成存在特殊 方格地板地板
特殊方格地板
[证毕]
归纳法证明举例-马的颜色
例子:[伪定理] 所有马都只有一种颜色。
证明:任何一个马的集合都只有一种颜色
=>所有马只有一种颜色。
设H为任何一个马的集合,对H中马数量n归纳:
计算机算法设计与分析总复习公开课获奖课件百校联赛一等奖课件
边界条件
1
n0
F
(n)
1
n 1
F (n 1) F (n 2) n 1
递归方程
第n个Fibonacci数可递归地计算如下: int fibonacci(int n)
{ if (n <= 1) return 1; return fibonacci(n-1)+fibonacci(n-2);
}
分治算法总体思想
环被执行了O(logn) 次。
if (x < a[m]) r = m-1;
循环体内运算需要O(1)
else l = m+1; } return -1; }
时间,所以整个算法在最 坏情况下旳计算时间复杂 性为O(logn) 。
合并排序
基本思想:将待排序元素提成大小大致相同旳2个子集合,分 别对2个子集合进行排序,最终将排好序旳子集合合并成为所 要p求{ub旳lic排s复t好a杂t序ic度旳vo分集id析合Tm(。en)rgeS2Tor(nt(/CO2o()1m) Opa(nra) bnnlea11[], int left, int right)
多项式时间算法:可用多项式(函数)对其计 算时间限界旳算法。
常见旳多项式限界函数有:
Ο(1) < Ο(logn) < Ο(n) < Ο(nlogn) < Ο(n2) < Ο(n3)
指数时间算法:计算时间用指数函数限界旳算 法。
常见旳指数时间限界函数:
Ο(2n) < Ο(n!) < Ο(nn)
阐明:当n取值较大时,指数时间算法和多项式
线性时间选择问题
问题描述:给定线性集中n个元素和一种整数
k,要求找出这n个元素中第k小旳元素,即假如 将这n个元素依其线性序排列时,排在第k个位 置旳元素即为我们要找旳元素。 当k=1时,即找最小元素;当k=n时,即找最大 元素;当k=(n+1)/2时,称为找中位数。
1
n0
F
(n)
1
n 1
F (n 1) F (n 2) n 1
递归方程
第n个Fibonacci数可递归地计算如下: int fibonacci(int n)
{ if (n <= 1) return 1; return fibonacci(n-1)+fibonacci(n-2);
}
分治算法总体思想
环被执行了O(logn) 次。
if (x < a[m]) r = m-1;
循环体内运算需要O(1)
else l = m+1; } return -1; }
时间,所以整个算法在最 坏情况下旳计算时间复杂 性为O(logn) 。
合并排序
基本思想:将待排序元素提成大小大致相同旳2个子集合,分 别对2个子集合进行排序,最终将排好序旳子集合合并成为所 要p求{ub旳lic排s复t好a杂t序ic度旳vo分集id析合Tm(。en)rgeS2Tor(nt(/CO2o()1m) Opa(nra) bnnlea11[], int left, int right)
多项式时间算法:可用多项式(函数)对其计 算时间限界旳算法。
常见旳多项式限界函数有:
Ο(1) < Ο(logn) < Ο(n) < Ο(nlogn) < Ο(n2) < Ο(n3)
指数时间算法:计算时间用指数函数限界旳算 法。
常见旳指数时间限界函数:
Ο(2n) < Ο(n!) < Ο(nn)
阐明:当n取值较大时,指数时间算法和多项式
线性时间选择问题
问题描述:给定线性集中n个元素和一种整数
k,要求找出这n个元素中第k小旳元素,即假如 将这n个元素依其线性序排列时,排在第k个位 置旳元素即为我们要找旳元素。 当k=1时,即找最小元素;当k=n时,即找最大 元素;当k=(n+1)/2时,称为找中位数。
算法设计与分析课件--NP完全性理论-NP完全问题及近似算法
算法设计与分析
1
第八章 NP完全性理论
目录
8.1 异解问题和难解问题
8.2 P类问题和NP类问题
8.3
NP完全问题
8.4 NP完全问题的近似算法
2
8.3 NP完全问题
问题变换:
➢ NP类问题在最坏情况下的时间复杂性一般都是快速增长的指数函 数。希望能够在NP类问题内部找到一种方法,比较两个问题的计 算复杂性。
❖该近似算法的相对误差定义为=
cc* c*
。若对问题的输
入规模n,有一函数ε(n)使得 c c* ≤ε(n),则称ε(n)
c*
为该近似算法的相对误差界。
13
8.4 NP完全问题的近似算法
NPC问题的近似算法示例 - TSP:
➢ 给定一个完全无向图G=(V,E),其每一条边(u,v)∈E有一非 负整数费用c(u,v)。要找出G的最小费用哈密顿回路。如果 TSP满足三角不等式性质,即对于任意3个顶点u,v,w∈V有 :c(u,w)≤c(u,v)+c(v,w),则称该TSP为欧几里得TSP,否 则称为一般TSP。
12
8.4 NP完全问题的近似算法
NPC问题的近似算法的性能:
❖若一个最优化问题的最优值为c*,求解该问题的一个近 似算法求得近似最优解相应的目标函数值为c,则将该近 似近≤似算ρ比法(是n的)问。近题ρ似输(比n入)定为规义1模时为n,的求=一m得a个x的c函c*近, c数c*似 ρ。解(在为n)通最,常优即情解m况a。x 下cc* ,,cc*该
➢ 传递性:设P1、P2和P3是3个判定问题。若P1∝τ(n)P2,且P2∝τ(n)P3 ,则P1∝τ(n)P3。
4
8.3 NP完全问题
多项式时间变换示例:
1
第八章 NP完全性理论
目录
8.1 异解问题和难解问题
8.2 P类问题和NP类问题
8.3
NP完全问题
8.4 NP完全问题的近似算法
2
8.3 NP完全问题
问题变换:
➢ NP类问题在最坏情况下的时间复杂性一般都是快速增长的指数函 数。希望能够在NP类问题内部找到一种方法,比较两个问题的计 算复杂性。
❖该近似算法的相对误差定义为=
cc* c*
。若对问题的输
入规模n,有一函数ε(n)使得 c c* ≤ε(n),则称ε(n)
c*
为该近似算法的相对误差界。
13
8.4 NP完全问题的近似算法
NPC问题的近似算法示例 - TSP:
➢ 给定一个完全无向图G=(V,E),其每一条边(u,v)∈E有一非 负整数费用c(u,v)。要找出G的最小费用哈密顿回路。如果 TSP满足三角不等式性质,即对于任意3个顶点u,v,w∈V有 :c(u,w)≤c(u,v)+c(v,w),则称该TSP为欧几里得TSP,否 则称为一般TSP。
12
8.4 NP完全问题的近似算法
NPC问题的近似算法的性能:
❖若一个最优化问题的最优值为c*,求解该问题的一个近 似算法求得近似最优解相应的目标函数值为c,则将该近 似近≤似算ρ比法(是n的)问。近题ρ似输(比n入)定为规义1模时为n,的求=一m得a个x的c函c*近, c数c*似 ρ。解(在为n)通最,常优即情解m况a。x 下cc* ,,cc*该
➢ 传递性:设P1、P2和P3是3个判定问题。若P1∝τ(n)P2,且P2∝τ(n)P3 ,则P1∝τ(n)P3。
4
8.3 NP完全问题
多项式时间变换示例:
并行算法的设计与分析课件
2.3 分治策略
n设计思想
• 将原问题划分成若干个相同的子问题分而治之,若子问题仍然
较大,则可以反复递归应用分治策略处理这些子问题,直至子 问题易求解。
n求解步骤
• 将输入划分成若干个规模相等的子问题; • 同时(并行地)递归求解这些子问题; • 并行地归并子问题的解成为原问题的解。
n示例
• SIMD-SM模型上的FFT递归算法
Parallel Algorithms 3 / Ch2
2.1 平衡树方法
n算法2.1 SIMD-SM上求最大值算法
Begin for k=m-1 to 0 do for j=2k to 2k+1-1 par-do A[j]=max{A[2j], A[2j+1]} end for end for
end
时间分析 t(n)=m×O(1)=O(logn) p(n)=n/2 c(n)=O(nlogn) 非成本最优
2023/10/19
Y.Xu Copyright
USTC
Parallel Algorithms 4 / Ch2
2.1 平衡树方法
前缀和
n 问题定义
n个元素{x1,x2,…,xn},前缀和是n个部分和: Si=x1*x2*…*xi, 1≤i≤n 这里*可以是+或×
for j=1 to n/2h par-do B[h,j]=B[h-1,2j-1]*B[h-1,2j]
end for end for
时间分析:
(3)for h=logn to 0 do //反向遍历
for j=1 to n/2h par-do (i) if j=even then //该结点为其父结点的右儿子 C[h,j]=C[h+1,j/2]
精品课件-算法设计与分析PPT课件
19
Bland提出避免循环的一个简单易行的方法。Bland提出在单纯形算法迭代中,按照下面的2个简单规则就可以避免循环。规则1:设 ,取xe为入基变量。规则2:设 取xk为离基变量。算法leave(col)已经按照规则2选取离基变量。选取入基变量的算法enter(objrow) 中只要加一个break语句即可。
4
这个问题的解为 (x1,x2,x3,x4) = (0,3.5,4.5,1);最优值为16。
5
8.1.2 线性规划基本定理
约束条件(8.2)-(8.5)中n个约束以等号满足的可行解称为线性规划问题的基本可行解。若n>m,则基本可行解中至少有n-m个分量为0,也就是说,基本可行解中最多有m个分量非零。线性规划基本定理:如果线性规划问题有最优解,则必有一基本可行最优解。上述定理的重要意义在于,它把一个最优化问题转化为一个组合问题,即在(8.2) -(8.5)式的m+n个约束条件中,确定最优解应满足其中哪n个约束条件的问题。由此可知,只要对各种不同的组合进行测试,并比较每种情况下的目标函数值,直到找到最优解。Dantzig于1948年提出了线性规划问题的单纯形算法。单纯形算法的特点是:1)只对约束条件的若干组合进行测试,测试的每一步都使目标函数的值增加;2)一般经过不大于m或n次迭代就可求得最优解。
16
为了进一步构造标准型约束,还需要引入m个人工变量,记为zi。至此,原问题已经变换为等价的约束标准型线性规划问题。对极小化线性规划问题,只要将目标函数乘以-1即可化为等价的极大化线性规划问题。
17
8.1.5 一般线性规划问题的2阶段单纯形算法
引入人工变量后的线性规划问题与原问题并不等价,除非所有zi都是0 。为了解决这个问题,在求解时必须分2个阶段进行。第一阶段用一个辅助目标函数 替代原来的目标函数。这个线性规划问题称为原线性规划问题所相应的辅助线性规划问题。对辅助线性规划问题用单纯形算法求解。如果原线性规划问题有可行解,则辅助线性规划问题就有最优解,且其最优值为0,即所有zi都为0。在辅助线性规划问题最后的单纯形表中,所有zi均为非基本变量。划掉所有zi相应的列,剩下的就是只含xi和yi的约束标准型线性规划问题了。单纯形算法第一阶段的任务就是构造一个初始基本可行解。单纯形算法第二阶段的目标是求解由第一阶段导出的问题。此时要用原来的目标函数进行求解。如果在辅助线性规划问题最后的单纯形表中, zi不全为0,则原线性规划问题没有可行解,从而原线性规划问题无解。
Bland提出避免循环的一个简单易行的方法。Bland提出在单纯形算法迭代中,按照下面的2个简单规则就可以避免循环。规则1:设 ,取xe为入基变量。规则2:设 取xk为离基变量。算法leave(col)已经按照规则2选取离基变量。选取入基变量的算法enter(objrow) 中只要加一个break语句即可。
4
这个问题的解为 (x1,x2,x3,x4) = (0,3.5,4.5,1);最优值为16。
5
8.1.2 线性规划基本定理
约束条件(8.2)-(8.5)中n个约束以等号满足的可行解称为线性规划问题的基本可行解。若n>m,则基本可行解中至少有n-m个分量为0,也就是说,基本可行解中最多有m个分量非零。线性规划基本定理:如果线性规划问题有最优解,则必有一基本可行最优解。上述定理的重要意义在于,它把一个最优化问题转化为一个组合问题,即在(8.2) -(8.5)式的m+n个约束条件中,确定最优解应满足其中哪n个约束条件的问题。由此可知,只要对各种不同的组合进行测试,并比较每种情况下的目标函数值,直到找到最优解。Dantzig于1948年提出了线性规划问题的单纯形算法。单纯形算法的特点是:1)只对约束条件的若干组合进行测试,测试的每一步都使目标函数的值增加;2)一般经过不大于m或n次迭代就可求得最优解。
16
为了进一步构造标准型约束,还需要引入m个人工变量,记为zi。至此,原问题已经变换为等价的约束标准型线性规划问题。对极小化线性规划问题,只要将目标函数乘以-1即可化为等价的极大化线性规划问题。
17
8.1.5 一般线性规划问题的2阶段单纯形算法
引入人工变量后的线性规划问题与原问题并不等价,除非所有zi都是0 。为了解决这个问题,在求解时必须分2个阶段进行。第一阶段用一个辅助目标函数 替代原来的目标函数。这个线性规划问题称为原线性规划问题所相应的辅助线性规划问题。对辅助线性规划问题用单纯形算法求解。如果原线性规划问题有可行解,则辅助线性规划问题就有最优解,且其最优值为0,即所有zi都为0。在辅助线性规划问题最后的单纯形表中,所有zi均为非基本变量。划掉所有zi相应的列,剩下的就是只含xi和yi的约束标准型线性规划问题了。单纯形算法第一阶段的任务就是构造一个初始基本可行解。单纯形算法第二阶段的目标是求解由第一阶段导出的问题。此时要用原来的目标函数进行求解。如果在辅助线性规划问题最后的单纯形表中, zi不全为0,则原线性规划问题没有可行解,从而原线性规划问题无解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学计划
1 导引和基本数据结构 2 分治法 4学时 3 贪心方法 4学时 4 动态规划 4学时 5 基本检索与周游方法 6 回溯法 4学时 7 分枝界限法 4学时 2学时
4学时
第 1章
绪论
算法理论的两大论题:
1. 算法设计
2. 算法分析
1.1 算法
1. 为什么要学习算法
2. 算法及其重要特性
3. 算法的描述方法
⑸ 可行性(Effectiveness) :算法描述的操作可以通过已 经实现的基本操作执行有限次来实现。
好算法的特征
(1) 正确 算法必须满足问题的要求,即对合 法的输入能产生求解问题的正确结果;对不合 法的输入能作出相适应的反映并进行处理。 (2) 可读 能交流,它有助于人们对算法的 理解、调试和修改。 (3) 运行时间短。 (4) 占用内存尽量少。
4. 算法设计的一般过程
5. 重要的问题类型
1. 为什么要学习算法
理由1:算法——程序的灵魂
问题的求解过程:
分析问题→设计算法→编写程序→整理结果
程序设计研究的四个层次:
算法→方法学→语言→工具
理由2:提高分析问题的能力
算法的形式化→思维的逻辑性、条理性
2. 算法及其重要特性
算法(Algorithm):对特定问题求解
算法设计的原则
1.正确性——合理的数据输入下,在有限的运行 时间内得出正确的结果。 2. 可读性——供人们阅读的方便程度。 3.健壮性——对不合理的数据输入的反应和处理 能力。 4.简单性——采用数据结构和方法的简单程度。 5. 时间复杂度(计算复杂度)——算法运行时间的 相对量度。 6. 空间复杂度——算法运行中临时占用空间大小 的量度。
什么是算法(续)
•一个算法是对于任何的输入元素x,都在有穷步骤内 终止的一个计算方法。 •在算法的形式化定义中,对任何一个元素x∈I,x均 满足性质 x0=x,xk+1=F(xk),(k≥0)
该性质表示任何一个输入元素x均为一个计算序列, 即x0,x1,x2,…,xk;该序列在第k步结束计算。
算法的五大特性:
步骤的一种描述,是指令的有限序列。
பைடு நூலகம்
什么是算法
早在公元前 300 年左右出现的著名的欧几里德算法, 就描述了求解两个整数的最大公因子的解题步骤。 要求解的问题描述为:“给定两个正整数m和n,求 它们的最大公因子,即能同时整除 m 和 n 的最大整 数”。欧几里德当时给出的算法如下: ⑴ 以n除m,并令所得余数为r(必有r<n); ⑵ 若r=0,输出结果n,算法结束;否则继续步骤 ⑶; ⑶ 令m=n和n=r,返回步骤⑴继续进行。
学时
总学时32=理论学时26+实验学时6
在这一学期里,希望我们能共同努力, 学好这门功课!
教学目的
• 本课程是一门专业选修课,计算机科学是一种创 造性思维活动,其教育必须面向设计。计算机算 法设计与分析正是一门面向设计且处于计算机科 学核心地位的课程。该课程系统地介绍了计算机 算法的设计方法与分析技巧,对从事计算机软件 和计算机应用的研究者来说是非常重要和必不可 少的。通过本课程的学习: 1.系统的学习和研究计算机领域常见而有代表性的 算法; 2.理解并掌握算法设计的主要方法; 3.培养对算法复杂性进行分析的能力。 • 为独立地设计算法和对算法进行分析奠定坚实的 知识基础。
克努斯-莫里斯-普拉特算法
• Knuth-Morris-Pratt 字符串查找算法(常简称 为 “KMP算法”)是在一个“主文本字符串” S 内查找一个“词” W 的出现,通过观察发现, 在不匹配发生的时候这个词自身包含足够的信 息来确定下一个匹配将在哪里开始,以此避免 对以前匹配过的字符重新检查。 • 这个算法是由高德纳(Donald Ervin Knuth)和 沃恩· 普拉特在1977年合作发明的,同年詹姆 斯· H· 莫里斯也独立地设计出该算法,但是最 终由三人联合发表。
克努斯
1938年出生,25岁毕业于加州理工 学院数学系,博士毕业后留校任教, 28岁任副教授。30岁时,加盟斯坦 福大学计算机系,任教授。从31岁 起,开始出版他的历史性经典巨著: The Art of Computer Programming
他计划共写7卷,然而出版三卷之后, 已震惊世界,使他获得计算机科学 界的最高荣誉图灵奖,此时,他年 仅36岁。
什么是算法(续)
由此,我们可以得出这样的结论,算法就是求解问题 的方法和步骤。这里的方法和步骤是一组严格定义了 运算顺序的规则;每一个规则都是有效的,且是明确 的;按此顺序将在有限次数下终止。 有关算法(Algorithm)一词的定义不少,但其内涵 基本上是一致的。最为著名的定义是计算机科学家 D.E.Knuth 在其巨著《计算机程序的艺术》( Art of Computer Program)第一卷中所做的有关描述。其非 形式化的定义是: 一个算法,就是一个有穷规则的集合,其中之规则 定义了一个解决某一特定类型问题的运算序列。
⑴ 输入(Input) :一个算法有零个或多个输入。
⑵ 输出(Output) :一个算法有一个或多个输出。
⑶ 有穷性(Finiteness) :一个算法必须总是在执行有穷 步之后结束,且每一步都在有穷时间内完成。
⑷ 确定性(Definiteness) :算法中的每一条指令必须有 确切的含义,对于相同的输入只能得到相同的输出。
武汉理工大学计算机学院
算法设计与分析
何九周
教材与参考书
• 教材: 《算法设计与分析》王红梅 编 清华大学出版社 • 参考书: 《算法设计与分析》王晓东编 清华大学出版社 《算法设计与分析习题解答》王晓东编 清华大学 出版社 • Algorithm Design Techniques and Analysis M.H. Alsuwaiyel(Saudi Arabia) 电子工业出版社
什么是算法(续)
算法的形式化定义如下所述: 算法是一个四元组,即(Q,I,Ω,F)。 其中:
– Q是一个包含子集I和Ω的集合,它表示计算的状态; – I表示计算的输入集合; – Ω表示计算的输出集合; – F表示计算的规则,它是由Q至它自身的函数,且具有自 反性,即对任何一个元素q∈ Q,有F(q)=q。