初中数学最短路径问题总结

合集下载

第21讲 最短路径问题

第21讲  最短路径问题

第21讲 最短路径问题一、方法剖析与提炼引例:如图,A 、B 是笔直公路l 同侧的两个村庄,且两个村庄到直路的距离分别是300m 和500m ,两村庄之间的距离为d(已知d 2=400000m 2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小,则最小距离为___________m 。

【解答】1000。

【解析】如图,作点B 关于公路l 的对称点B′,连接AB′交公路于点C ,CA+CB最短距离就是AB′的长度。

根据勾股定理可以求得AB′=1000m 。

【解法】同侧的两点,通过轴对称变换成异侧,利用两点之间线段最短确定最小距离。

【解释】通过生活中的实际例子,让学生感受最短路径来源于生活,并引出求最短路径常用的方法,利用轴对称变换找对称点及两点之间线段最短(即饮马问题)。

学习时可作如下归纳:(1)在初中范围内和边的不等量有关的知识有哪些,引出两点之间线段最短,三角形两边之和大于第三边;(2)在此图中哪种变换方式比较适合将马路同侧的两条线段变换到异侧,并且保持线段长度不变,旨在复习轴对称、平移、旋转等变换特点;(3)在移动变换中,有没有可能将两条线段置于共线的情形,即最短路径。

例1:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上一动点,求DN+MN 的最小值。

【解答】连结BD 交AC 于点O ,根据正方形的对称性可知,B 点即为D 的对称点。

连结BM 交AC 于点N ,则BM 的值为DN+MN 的最小值。

所以BM=10。

【解析】如图,点B 即为点D 关于AC 的对称点,连接BM ,BM 的长度即为DN+MN的最小距离。

在Rt△BCM 中,根据勾股定理可求得BM=10。

【解法】此题 DN ,MN 这两条线段中,M ,D 两点固定,只有N 一个点是移动的,故只需确定点N ,使得距离之和最短即可。

【解释】此例从最基本的图形出发,让学生易于接受,敢于探索。

学生依据正方形自身拥有的轴对称性找到对称点,将同侧两条线段利用翻折变成异侧的两条线段,利用两点之间线段最短找到最短路径。

(完整版)初中数学[最短路径问题]典型题型及解题技巧

(完整版)初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。

这对于我们解决此类问题有事半功倍的作用.理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图".教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”.考的较多的还是“饮马问题”。

知识点:“两点之间线段最短",“垂线段最短”,“点关于线对称",“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题",出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

解:连接AB,线段AB与直线L的交点P ,就是所求。

(根据:两点之间线段最短。

)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道"的对称点A′,然后连接A′B,交“街道"于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小。

解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A。

B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B沿垂直与河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。

初中最短路径问题7种类型

初中最短路径问题7种类型

初中最短路径问题7种类型初中最短路径问题7种类型最短路径问题是离散数学中一个重要的研究领域,其应用广泛,包括交通路线规划、网络优化等。

对于初中学生来说,了解和掌握最短路径问题,有助于培养他们的逻辑思维和解决问题的能力。

下面将介绍初中最短路径问题的七种类型。

1. 单源最短路径问题单源最短路径问题是指在一个给定的加权有向图中,从一个确定的源点出发,求到其他所有顶点的最短路径。

这个问题可以通过使用迪杰斯特拉算法或贝尔曼-福特算法来求解。

通过学习和理解这些算法,学生可以逐步掌握寻找最短路径的基本方法。

2. 多源最短路径问题多源最短路径问题是指在一个给定的加权有向图中,求任意两个顶点之间的最短路径。

这个问题可以通过使用佛洛依德算法来解决。

学生可以通过了解和实践佛洛依德算法,掌握多源最短路径问题的求解方法。

3. 无权图最短路径问题无权图最短路径问题是指在一个无向无权图中,求从一个顶点到其他所有顶点的最短路径。

这个问题可以通过使用广度优先搜索算法来解决。

学生可以通过学习广度优先搜索算法,了解和掌握无权图最短路径问题的解决方法。

4. 具有负权边的最短路径问题具有负权边的最短路径问题是指在一个给定的加权有向图中,存在负权边,求从一个顶点到其他所有顶点的最短路径。

这个问题可以通过使用贝尔曼-福特算法来解决。

学生可以通过了解和实践贝尔曼-福特算法,理解和应用具有负权边的最短路径问题。

5. 具有负权环的最短路径问题具有负权环的最短路径问题是指在一个给定的加权有向图中,存在负权环,求从一个顶点到其他所有顶点的最短路径。

这个问题可以通过使用贝尔曼-福特算法的改进版来解决。

学生可以通过学习和理解贝尔曼-福特算法的改进版,解决具有负权环的最短路径问题。

6. 具有边权和顶点权的最短路径问题具有边权和顶点权的最短路径问题是指在一个给定的加权有向图中,除了边权之外,还考虑了顶点的权重,求从一个顶点到其他所有顶点的最短路径。

这个问题可以通过使用约翰逊算法来解决。

初中八年级数学最短路径问题

初中八年级数学最短路径问题

八年级数学最短路径问题一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A 到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。

三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小.练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。

练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?提高训练一、题中出现一个动点。

1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值.例:如图,在正方形ABCD中,点E为AB上一定点,且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。

二、题中出现两个动点。

当题中出现两个定点和两个动点时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。

例:如图,在直角坐标系中有四个点, A(-8,3),B(-4,5)C(0,n),D(m,0),当四边形ABCD周长最短时,求C、D的坐标。

练习1如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.三、题中出现三个动点时。

最短路径问题初中数学模型

  最短路径问题初中数学模型
第10题图
课后精练
【提示】过B作BF⊥OA于F,过D作DE⊥OA于E,过C 作CM⊥OA于M;证明△OBF∽△ODE,△ACM∽△ADE, 再根据相似三角形线段的比例关系,求解即可.
【答案】8
答案图
课后精练 11.在Rt△ABC中,∠ACB=90°,AC=8,BC= 6,点D是以点A为圆心4为半径的圆上一点,连接BD, 点M为BD中点,线段CM长度的最大值为______.
OC 交圆 O 于点 F,如图.
由题可得∠AED=∠AEB=90°,
∴点 E 在以 AB 中点 O 为圆心的圆上(在△ABC 内部).
由题意,得 AC=AB=4,半径 OE=OA=2,
∴由勾股定理,得 OC=2 5.
答案图
根据三角形三边的关系,得
CE≥OC-OE=2 5-2(取等号时非三角形),
∴当点 C,E,O 三点共线时,CE 最小,最小值为 2 5-2.
15
11 由相似三角形线段的比例关系表示出
A.4
B. 4
C.3
D. 4
HF,DH,再由S△CEF=S梯形HFCD+S△CDE-
S△EHF列关系式即可.
课后精练 5.如图,E是边长为4 cm的正方形ABCD的边AB上 一点,且AE=1 cm,P为对角线BD上的任意一点,则 AP+EP的最小值是___5___cm.
课堂精讲
例 2 如图,△ABC 中,∠BAC=60°,∠ABC=45°, AB=2 2,D 是线段 BC 上的一个动点,以 AD 为直径画⊙O 分别交 AB,AC 于点 E,F,连接 EF,则 EF 的最小值是________.
课堂精讲
【分析】由垂线段的性质可知,当 AD 为△ABC 的边 BC 上的高时,直径 AD 最短.如图,连接 OE,OF,过点 O 作 OH⊥EF,垂足为 H,

初中最短路径问题总结

初中最短路径问题总结

初中最短路径问题总结初中最短路径问题是指在一个带权重的图中,寻找两个顶点之间的最短路径。

这个问题在实际生活中有着广泛的应用,比如在交通运输领域中寻找最短路径可以帮助我们规划最优的行车路线,提高交通效率。

在通信网络中,最短路径算法也可以帮助我们找到数据传输的最佳路径,提高网络的传输速度。

因此,了解和掌握最短路径算法对于初中生来说是非常重要的。

首先,我们来介绍最短路径算法中的两种经典算法,Dijkstra算法和Floyd算法。

Dijkstra算法是一种用于解决带权重图中单源最短路径问题的算法。

它的基本思想是从起始顶点开始,逐步扩展到所有顶点,每次选择当前距离起始顶点最近的顶点进行扩展,直到扩展到目标顶点为止。

Dijkstra算法的时间复杂度为O(V^2),其中V为顶点数。

Floyd算法是一种用于解决带权重图中多源最短路径问题的算法。

它的基本思想是利用动态规划的思想,逐步更新顶点之间的最短路径长度,直到得到所有顶点之间的最短路径。

Floyd算法的时间复杂度为O(V^3)。

在实际应用中,我们需要根据具体的问题场景来选择合适的最短路径算法。

如果是单源最短路径问题,可以选择Dijkstra算法;如果是多源最短路径问题,可以选择Floyd算法。

除了Dijkstra算法和Floyd算法,还有一些其他的最短路径算法,比如Bellman-Ford算法、SPFA算法等。

这些算法在不同的场景下都有着各自的优势和局限性,需要根据具体的问题来选择合适的算法。

在解决最短路径问题时,我们需要注意一些常见的问题,比如负权边、负权环等。

负权边指的是图中存在权重为负数的边,而负权环指的是图中存在环路,使得环路上的边权重之和为负数。

这些情况会对最短路径算法造成影响,需要特殊处理。

总的来说,初中最短路径问题是一个重要且实用的数学问题,对于初中生来说,掌握最短路径算法有助于培养他们的逻辑思维能力和解决实际问题的能力。

通过学习最短路径算法,可以帮助他们更好地理解数学知识在实际生活中的应用,培养他们的创新意识和实践能力。

八年级数学最短路径问题知识点

八年级数学最短路径问题知识点

八年级数学最短路径问题知识点教学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最瀛路径.算法具体的形式包括:E确定起点的最短路径问题■即已知起始结点,求最短路径的问题.②确定终点的最短路径问题•与确定包点的问题相反,该问题是已知终结结点,求最短路径的问题,③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最理路径.【问题原型】“将军饮马北"造桥选址)〃费马点【涉及知识「俩点之间线段最短”「,垂线段最短1 “三角形三边关系,"轴对称,“平移二【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等,【解题思路】我对称点实现“折”转"直北近两年出现三折线”转“直”等变式问题考查.【例题及解析】例1 如图1,在直角梯形ABCD 中,ZABC=90°, AD〃BC, AD=4, AB=5, BC=6, 点P是AB上一个动点,当PC+PD的和最小时,PB的长为()(A)l (B)2 (C)2.5 (D)3分析此题首先要确定P点的位看可以延长CB (或DA)的一倍,即CB=BM,再连接MD交AB于点P(大家可以思考一下P点的正确性与合理性一可运用两点之间,线段最短这一性质).我们可以通过AMPBS/WPA,从而求出PB的长,故选D.例2如图2, AABC礼AB=AC=13, BC=10, AD是BC边上的中线,F为AD上的动点,E 为AC边上的动点,则CE+EF的最小值为分析显然,本题需要确定两个动点E和F,那么,怎样确定这两个点呢?我们可以过点B 作BE1AC交AD于点F,从而确定了E和F点(大家可以用从直线外一点与直线上所有点的连线中,垂线段最短来加以说明).此时,CF + EF = BE.用与囱=;殖・比^;班”。

,构造■方程,求出BE =号,即CE + EF的最小值为号.例3如图3,已知平面直角坐标系中,A (2, -3), B(4, -1).(1)若点P(x, 0)是x 轴上的一个动点,当APAB 的周长最短时,求x 的值; (2)若C D 是x 轴上的两个动点,且D(a, 0), CD=3,当四边形ABCD 的周长最短时,求a 的值;(3)设M, N 分别为x 轴、y 轴上的动点,问:是否存在这样的点M(m, 0)和N(0, n),使得四边形ABMN 的周长最短?若存在,求出叫n 的值.若不存在,请说明理由.⑴如图3,找出A (或B)关于x 轴的对称点A1,连结AiB 交x 轴 于点P.设直线AB 的解析式为y=kix+bi.将AQ 3)、B (4, -1)代入,得产 +" =3,1% + 4 = . I,解之叶…16, = 7.故 y =-2彳+7,⑵如图4,过A 点作x 轴的平行线,并截取A%=3.画点A1关于x 轴的对称点生,连结A?B 交x 轴于点C,再在x 轴上截取CD=3,可得周长最短的四边形ABCD (大家也可以利 用两点之间,线段最短,来证明最短周长的正确性).由题意,可知4(5,3).设4B 的直线悬 析式为)=&七+ b 2. 将代人,得 产 + % = 3, i 倏 +% =-1,故y = 4*-17, 当,=0时/ = y -3 = 44 4如图5,我们可以先分别找出A 、B 关于y 轴和x 轴的对称点Ai 和&,再连结ABi,分别交x 轴和y 轴干点M 与N,此时,四边形ABMN 的周长是最短的(同样, 可以用两点之间,线段最短来加以证明).设AB 的直线解析式为y=k3x+b.将4(-2, 一)”©「)代入,得产 + 4 : 1,分析与解 解之得h =4,6) = -17(3)I - 24, + 65 ; . 3, u .1 解之得A 56「.亨故厂参-{■.当x =0 时,=-Y,■ 当)• =0时,Z =京.所以…的值分别为右等例4如图6,四边形ABCD是正方形,M是对角线BD上的任意一点.⑴当点M在何处时,AM+CM的值最小?⑵当点M在何处时,AM+BM+CM的值最小?并说明理由.图6 困7分析(1)(如图6,显然,连结AC与BD的交点即为M点(可利用两点之间,线段最短来证明).(2)如图7,以AB为边在正方形外画等边三角形ABE,连结EC交BD于点M.此时,MA+MB+MC=EC(其中,ABMN 为等边三焦形,且YEBNgACBM,所以MA+MB=EM). 若在BD上(除M点之外)任取一点M,,过点Mi作MiNi〃MN交BN 或延长线于点Ni, 连结ENi.可利用两点之间线段最短,证明MiA+M】B+MiOEC,从而得出MA+.MB+ MC最短.。

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。

这对于我们解决此类问题有事半功倍的作用。

理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。

教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。

考的较多的还是“饮马问题”。

知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

解:连接AB,线段AB与直线L的交点P ,就是所求。

(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E ,2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。

初中数学最短路径问题典型题型及解题技巧

初中数学最短路径问题典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。

这对于我们解决此类问题有事半功倍的作用。

理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。

教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。

考的较多的还是“饮马问题”。

知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

解:连接AB,线段AB及直线L的交点P ,就是所求。

(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要及河垂直)解:1.将点B 沿垂直及河岸的方向平移一个河宽到E ,2.连接AE 交河对岸及点M,则点M 为建桥的位置,MN 为所建的桥。

初中数学八年级上册最短路径基本问题整理汇总(共12个-考试必考)

初中数学八年级上册最短路径基本问题整理汇总(共12个-考试必考)

八年级数学上册最短路径基本问题汇总
经典例子解析
例一、在解决最短路径问题时, 我们通常利用_____、_____等变换把已知问题转化为容易解决的问题,从而作出最短路径的选择。

例二、已知,如图,在直线l的同侧有两点A、 B
例三图例四图
(1)在图1的直线上找一点P使PA+PB最短;(2)在图2的直线上找一点P,使PA-PB最长
例三、如上图所示,P为∠AOB内一点,P1,P2分别是P关于OA,OB 的对称点,P1P2交OA于M,交OB于N,若P1P2=8 cm,则△PMN的周长是( )
A.7 cm
B.5 cm
C.8 cm
D.10 cm
例四、如图,在等腰Rt△ABC中,D是BC边的中点,E是AB边上一动点,要使EC+ED最小,请找点E的位置例五、如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?
参考答案
例一:轴对称平移
例二:(1)作点B关于直线l的对称点C,连接AC交直线l于点P,连接BP;点P即为所求(2)连接AB并延长,交直线l于点P
例三:C
例四:作点C关于AB的对称点C′,连接C′D与AB的交点为E点
例五:①过点A作AP⊥a,并在AP上向下截取AA′,使AA′=河的宽度;②连接A′B交b于点D;③过点D 作DE∥AA′交a于点C;④连接AC.则CD即为桥的位置。

【初中数学】最短路径模型及例题解析

【初中数学】最短路径模型及例题解析

【初中数学】最短路径模型及例题解析一、最短路径模型简介在日常生活中,我们常常会遇到寻找从一个地点到另一个地点的最短路径问题。

例如,从家到学校、从甲地到乙地等。

在数学领域,最短路径问题属于图论的研究范畴,是图论中的一个基本问题。

最短路径模型就是用来解决这类问题的一种数学方法。

最短路径模型主要包括以下几个要素:1. 图:由顶点(地点)和边(路径)组成的集合。

2. 距离:表示两个顶点之间的距离或权重。

3. 路径:从一个顶点到另一个顶点经过的边的序列。

4. 最短路径:在所有路径中,长度最小的路径。

二、最短路径模型的求解方法1. 枚举法:枚举所有可能的路径,然后从中选择长度最小的路径。

这种方法适用于顶点数量较少的简单图。

2. Dijkstra算法:适用于带权重的有向图,通过逐步求解,找到从源点到其他所有顶点的最短路径。

3. Floyd算法:适用于求解任意两个顶点之间的最短路径,通过动态规划的方法,求解所有顶点对之间的最短路径。

三、例题解析【例题1】某城市有6个主要交通枢纽,分别用A、B、C、D、E、F表示。

下面是这6个交通枢纽之间的距离表(单位:千米):```A B C D E FA 0 5 7 8 9 10B 5 0 6 7 8 9C 7 6 0 4 5 6D 8 7 4 0 3 4E 9 8 5 3 0 2F 10 9 6 4 2 0```求从A到F的最短路径。

【解析】这是一个典型的最短路径问题,我们可以使用Dijkstra算法求解。

1. 初始化:将所有顶点的距离设置为无穷大,源点A的距离设置为0。

2. 选取距离最小的顶点,标记为已访问。

此时,A为已访问顶点。

3. 更新相邻顶点的距离:从A出发,更新B、C、D、E、F的距离。

此时,B、C、D、E、F的距离分别为5、7、8、9、10。

4. 重复步骤2和3,直到所有顶点都被访问。

最后得到的最短路径为A→B→E→F,长度为14千米。

【例题2】某城市有5个公园,分别用P1、P2、P3、P4、P5表示。

初中数学中最短路线问题的解题策略归纳

初中数学中最短路线问题的解题策略归纳

初中数学中最短路线问题的解题策略归纳【摘要】本文主要围绕初中数学中最短路线问题展开讨论,首先介绍了图论基础知识,包括图的定义和常见术语。

接着详细解析了Dijkstra算法和Floyd算法的原理和应用,通过具体的案例分析展示了这两种算法在最短路线问题中的作用和效果。

文章还讨论了贪心算法在最短路线问题中的应用,探讨了其优势和局限性。

结合前文内容对初中数学中最短路线问题的解题策略进行了总结,提出了解决这类问题的一般性方法和思路。

通过本文的阐述,读者可以全面了解和掌握初中数学中最短路线问题的解题技巧,为提高数学学习和解题能力提供了有益的参考和帮助。

【关键词】关键词:初中数学,最短路线问题,图论,Dijkstra算法,Floyd 算法,贪心算法,应用举例,解题策略总结1. 引言1.1 初中数学中最短路线问题的解题策略归纳初中数学中最短路线问题是一个常见的实际问题,涉及到图论的基础知识和算法。

对于这类问题,我们需要掌握一些关键的解题策略。

我们需要了解图论基础知识。

图是由节点和边组成的一种数据结构,节点代表位置或者城市,边代表路径或者道路。

在解决最短路线问题时,我们需要根据图中节点和边的关系来确定最短路径。

我们可以使用Dijkstra算法来解决最短路线问题。

该算法利用贪心的策略,不断更新节点的最短距离,直到找到最短路径。

我们需要注意处理权值为负数的情况,以免造成误差。

我们还可以采用Floyd算法来解决最短路线问题。

该算法利用动态规划的思想,逐步更新节点之间的最短路径长度,直到得到最终结果。

我们需要注意算法的时间复杂度,以确保能够在合理的时间内解决问题。

我们可以通过实际的应用举例来加深对最短路线问题的理解。

我们可以考虑在城市规划或者物流配送中的应用场景,通过实际案例来练习解题技巧。

初中数学中最短路线问题的解题策略包括图论基础知识、Dijkstra 算法、Floyd算法、应用举例以及贪心算法的应用。

掌握这些策略,能够帮助我们更好地解决实际问题,提高解题效率和准确性。

初中数学最短路径问题

初中数学最短路径问题

初中数学最短路径问题在初中数学中,最短路径问题是经常出现的一类问题,它涉及到轴对称、坐标轴、一次函数、三角函数以及两点之间的距离公式等多个方面。

下面将分别对这些问题进行介绍和解析。

1.轴对称与最短路径轴对称是最基本的一种对称形式,是指在平面内,将一个图形沿一条直线折叠,使得直线两旁的部分能够完全重合。

在最短路径问题中,轴对称可以用来寻找两点之间的最短路径。

例如,在一条直线上有两个点A和B,要求找到A到B的最短路径,可以通过作A关于直线对称的点A',然后连接A'和B,得到的线段A'B就是最短路径。

2.坐标轴上的最短路径在坐标轴上,最短路径问题通常涉及到两点之间的距离。

在x轴和y轴上分别有点A(x1,0)和B(0,y1),那么A到B的最短路径就是在x轴和y轴上分别截取两个点C(x2,0)和D(0,y2),使得AC=BD,那么线段AB就是最短路径。

3.一次函数与最短路径在一次函数中,最短路径问题通常涉及到函数的单调性和最值。

例如,在一条直线上有点A(x1,y1),有点B(x2,y2),要求找到A到B的最短路径,可以通过作A关于直线对称的点A',然后连接A'和B,得到的线段A'B就是最短路径。

在这个过程中,可以运用一次函数的单调性和最值来计算最短路径的长度。

4.三角函数与最短路径在三角函数中,最短路径问题通常涉及到角度和长度之间的关系。

例如,在一张三角形ABC中,有点A(x1,y1),有点C(x2,y2),要求找到A到C的最短路径,可以通过作AB边上的一点D,使得AD=CD,那么线段AD就是最短路径。

在这个过程中,可以运用三角函数的性质和定理来计算最短路径的长度。

5.两点之间距离公式在解决最短路径问题时,常常需要使用两点之间距离公式。

这个公式可以用来计算两点之间的直线距离,也可以用来计算两点之间的曲线距离。

例如,在一张三角形ABC中,有点A(x1,y1),有点C(x2,y2),要求找到A到C的最短路径,可以先运用两点之间距离公式计算出AC的距离,然后根据三角函数的性质和定理来计算出最短路径的长度。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学最短路径问题总结一、十二个基本问题概述
问题一:在直线l 上求一点P,使得PA + PB 值最小 .
作法:连接AB,与直线l 的交点即为P 点 .
原理:两点之间线段最短 . PA + PB 最小值为AB .
问题二:(“将军饮马问题”)在直线l 上求一点P,使得PA + PB 值最小 .
作法:作点B 关于直线l 的对称点B',连接AB' 与l 的交点即为点P.
原理:两点之间线段最短.PA + PB 最小值为AB' .
问题三:在直线l1、l2 上分别求点M、N,使得△PMN 的周长最小.
作法:分别作点P 关于两条直线的对称点P' 和P'',连接P'P'',与两条直线的交点即为点M,N.
原理:两点之间线段最短.PM + MN + PN 的最小值为线段P'P'' 的长.
问题四:在直线l1、l2 上分别求点M、N,使四边形PQMN 的周长最小.
作法:分别作点Q 、P 关于直线l1、l2 的对称点Q' 和P' 连接Q'P',与两直线交点即为点M,N.
原理:两点之间线段最短.四边形PQMN 周长的最小值为线段Q'P' + PQ 的长.
问题五:(“造桥选址问题”)直线m∥n,在m、n 上分别求点M、N,使MN⊥m,
且AM + MN + BN 的值最小.
作法:将点A 向下平移MN 的长度单位得A',连接A'B,交n 于点N,过N 作NM⊥m 于M .
原理:两点之间线段最短 . AM + MN + BN 的最小值为A'B + MN .
问题六:在直线l 上求两点M , N (M 在左),使MN = a , 并使AM + MN + NB 的值最小 .
作法:将点A 向右平移a 个长度单位得A',作A' 关于直线l 的对称点A'',连接A''B 交直线l 于点N,
将N 点向左平移a 个单位得M .
原理:两点之间线段最短 . AM + MN + NB 的最小值为A''B + MN .
问题七:在l1 上求点A,在l2 上求点B,使PA + AB 值最小 .
作法:作点P 关于l1 的对称点P',作P'B⊥l2 于点B,交l1 于点A .
原理:点到直线,垂线段的距离最短 . PA + AB 的最小值为线段P'B 的长 .
问题八:A 为l1上一定点,B 为l2 上一定点,在l2 上求点M,在l1上求点N,使AM + MN + NB 的值最小 .
作法:作点A 关于l2 的对称点A' , 点B 关于l1 的对称点B',连接A'B' 交l2 于点M,交l1 于点N.
原理:两点之间线段最短.AM + MN + NB 的最小值为线段A'B' 的长.
问题九:在直线l 上求一点P,使| PA - PB | 的值最小.
作法:连接AB,作AB 的中垂线与直线l 的交点即为P 点.
原理:垂直平分上的点到线段两端点的距离相等.| PA - PB | = 0 .
问题十:在直线l 上求一点P,使| PA - PB | 的值最大.
作法:作直线AB,与直线l 的交点即为P 点.
原理:三角形任意两边之差小于第三边.| PA - PB | ≤AB ,| PA - PB | 的最大值= AB . 问题十一:在直线l 上求一点P,使| PA - PB | 的值最大.
作法:作点B 关于直线l 的对称点B' 作直线AB',与直线l 的交点即为P 点.
原理:三角形任意两边之差小于第三边.| PA - PB | ≤AB' ,| PA - PB | 的最大值= AB' . 问题十二:(“费马点”)△ABC 中每一内角都小于120°,在△ABC 内求一点P,
使得PA + PB + PC 的值最小 .
作法:所求点为“费马点”,即满足∠APB = ∠BPC = ∠APC = 120° .
以AB 、AC 为边向外作等边△ABD、△ACE,连接CD、BE 相交于点P,点P 即为所求 .
原理:两点之间线段最短 . PA + PB + PC 的最小值= CD .
二、“费马点”——到三点距离之和最小的点
费马点的构造方法:
①所给三点的连线构成三角形(△ABC),并且这个三角形的每个内角都小于120°;
②如下图所示:A , B , C 是给定的三点,
以AC 为边向外作正三角形得到点D , 以BC 为边向外作正三角形得到点E ,
连接BD 和AE 交于点O,我们断言点O 就是“费马点” .
费马点的证明方法:
先证△AEC ≌△DBC .
△AEC 绕点C 顺时针旋转60°,可得到△DBC,从而△AEC ≌△DBC .
于是∠OBC = ∠OEC,所以O、B、E、C 四点共圆 .
拓展知识:四点共圆判定方法
若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆 .
所以∠BOE = ∠BCE = 60°,∠COE = ∠CBE = 60°,
于是∠BOC = ∠BOE + ∠COE = 120°,同理可证∠AOC = ∠AOB = 120°,所以∠BOC = ∠AOC = ∠AOB = 120° .
将O 点看作是AE 上的点,随着△AEC 一起绕点C 顺时针旋转60°得到点O2 , 所以∠OCO2 = 60°,OC = O2C , OA = O2D ,
所以△OCO2 是等边三角形,于是有OO2 = OC .
所以BD = OA + OB + OC .。

相关文档
最新文档