全等三角形拓展教学内容

合集下载

全等三角形教学建议

全等三角形教学建议

全等三角形教学建议在全等三角形的教学中,我们可以采用一些有效的教学建议来提高学生的理解和应用能力。

本文将从几个方面探讨如何在教学过程中传递全等三角形的相关概念和性质,并提供一些具体的教学策略。

一、引入全等三角形的概念为了引发学生对全等三角形的兴趣,我们可以通过一个生动的实例来说明全等三角形的概念。

例如,可以选择一对相似的实物并将它们放在教室中展示给学生,然后询问学生它们是否相等。

通过这样的引导,我们可以让学生逐渐理解全等三角形的概念,并引发他们对全等三角形的思考。

二、重点讲解全等三角形的性质在教学中,全等三角形的性质是核心内容,我们需要以简单明了的方式向学生解释这些性质。

例如,我们可以用图形和文字相结合的方式,逐步展示全等三角形的定义、判定条件和性质。

通过这样的教学方式,学生可以更好地理解全等三角形的相关概念,并学会运用这些性质解决问题。

三、示范解题和实际应用为了巩固学生对全等三角形的理解,教师可以通过示范解题来引导学生运用全等三角形的性质解决实际问题。

例如,给学生提供一些有关全等三角形的实际场景问题,然后逐步引导他们分析问题、寻找解决方法,并运用全等三角形的性质来解答。

通过这样的教学方式,学生可以将所学的知识应用于实际生活中,提高解决问题的能力。

四、小组合作学习在教学中,我们可以鼓励学生进行小组合作学习,通过互动和合作来提高学生对全等三角形的理解和应用能力。

例如,可以将学生分成小组,在教师的指导下,让他们一起讨论和解决与全等三角形相关的问题。

通过小组合作学习,学生可以相互交流和分享自己的思考,不仅加深了对知识的理解,还培养了他们的合作意识和团队精神。

五、举一反三,拓展思维为了培养学生的综合应用能力,我们可以在教学中引导学生进行举一反三的思考。

例如,可以给学生提供一些扩展题目,让他们从不同的角度思考全等三角形的性质和应用。

通过这样的教学方式,能够激发学生的思维,提高他们的灵活应用能力,并培养他们解决问题的思维方式。

浙教版七年级数学下册14全等三角形教案

浙教版七年级数学下册14全等三角形教案

浙教版七年级数学下册14全等三角形教案一、教学内容本节课的教学内容选自浙教版七年级数学下册第14章“全等三角形”。

本章主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法以及全等三角形在几何中的应用。

本节课将重点讲解全等三角形的概念和性质,并通过实例让学生掌握全等三角形的判定方法。

二、教学目标1. 理解全等三角形的概念,掌握全等三角形的性质;2. 学会使用SSS、SAS、ASA、AAS四种判定方法判断两个三角形是否全等;3. 能够运用全等三角形的性质解决实际问题。

三、教学难点与重点重点:全等三角形的概念和性质,全等三角形的判定方法。

难点:全等三角形的判定方法的运用和实际问题的解决。

四、教具与学具准备教具:黑板、粉笔、三角板、多媒体设备。

学具:笔记本、尺子、圆规、三角板、剪刀。

五、教学过程1. 实践情景引入:教师展示一个剪过的三角形,让学生观察并思考:如何通过剪切和拼接,将这个三角形变成另一个三角形?2. 概念讲解:3. 判定方法讲解:教师引导学生思考:如何判断两个三角形是否全等?学生通过观察和讨论,可以得出SSS(三边相等)、SAS(两边和夹角相等)、ASA (两角和一边相等)、AAS(两角和一边对应相等)四种判定方法。

教师对每种判定方法进行讲解,并通过实例进行演示。

4. 随堂练习:教师给出几个判定全等三角形的实例,让学生独立判断并说明理由。

教师选取部分学生的答案进行点评和讲解。

5. 例题讲解:教师给出一个应用全等三角形的例题,引导学生运用全等三角形的性质和判定方法进行解答。

教师引导学生思考:如何运用全等三角形的性质和判定方法?如何找到合适的判定方法?如何说明理由?6. 作业布置:教师布置几个关于全等三角形的练习题,让学生课后独立完成。

六、板书设计板书设计如下:全等三角形概念:两个三角形完全相同性质:1. 对应边相等2. 对应角相等3. 对应边和对应角都相等判定方法:1. SSS(三边相等)2. SAS(两边和夹角相等)3. ASA(两角和一边相等)4. AAS(两角和一边对应相等)七、作业设计1. 判断题:(1)两个三角形如果三边相等,那么它们一定全等。

全等三角形》优秀教学设计

全等三角形》优秀教学设计

全等三角形》优秀教学设计本章的教学策略主要是探究式教学和合作研究。

通过引导学生自主探索,让学生从实践中掌握三角形全等的条件和判定方法,培养学生的推理能力和表达能力。

同时,采用合作研究的方式,让学生在小组内相互协作,共同解决问题,提高学生的合作意识和团队精神。

四、教学过程设计:1.导入新知识:通过引导学生观察、比较、归纳等方式,引出三角形全等的概念和判定条件。

2.探究三角形全等的条件:通过实例分析和操作演示,让学生自主发现三角形全等的条件,并掌握“边边边”判定方法。

3.练与巩固:通过练题和小组合作探究,巩固学生对三角形全等的理解和应用能力。

4.拓展与应用:通过引导学生运用三角形全等的知识,解决实际问题,拓展学生的思维和应用能力。

五、教学评价方法:本章的教学评价主要采用自我评价和小组评价相结合的方式。

学生在研究过程中,应不断反思自己的研究情况,及时纠正错误,形成自我评价的意识。

同时,小组评价也是重要的评价方式,通过小组内部的互相评价,让学生认识到合作研究的重要性,提高学生的合作意识和团队精神。

三角形全等的判定是几何学中重要的内容之一。

在教学中,我们可以通过分析“性质与判定”的关系,猜测将性质中的条件选取部分能否更简捷方便地判断两个三角形全等。

通过作图、剪图、放图、比较图、画图等活动,我们可以得到三角形全等的判定条件,即三个基本事实的归纳。

然后,我们可以运用基本事实证明相等的线段或相等的角的应用。

在教学中,我们要引导学生真正通过动手操作、相互比较、逐渐发现结论,概括结论,让学生在经历知识发生发展的过程中,发现内容的本质特征,书写严谨的证明格式,用精准的数学语言概括其特征,得到三角形全等的判定方法。

在课前准备阶段,我们可以通过提问学生平行线的性质与判定有什么关系,以及满足什么条件的两个三角形全等,来引导学生思考和准备新知识的研究。

同时,我们还可以通过情境创设,如庆祝国庆节制作三角形彩旗,来激发学生的兴趣和注意力,为新课的探究做最好的准备。

初中数学教案:三角形全等的判定教案

初中数学教案:三角形全等的判定教案

初中数学教案:三角形全等的判定教案一、教学目标:1. 让学生理解三角形全等的概念,掌握三角形全等的判定条件。

2. 培养学生运用全等三角形的性质解决实际问题的能力。

3. 培养学生的观察能力、动手能力和逻辑思维能力。

二、教学内容:1. 三角形全等的定义:如果两个三角形的所有对应边和对应角都相等,这两个三角形叫做全等三角形。

2. 三角形全等的判定条件:SSS(边-边-边)、SAS(边-角-边)、ASA (角-边-角)、AAS(角-角-边)。

三、教学重点与难点:1. 教学重点:三角形全等的判定条件及其应用。

2. 教学难点:三角形全等判定条件的理解和运用。

四、教学方法:1. 采用直观演示法,让学生通过观察和动手操作,加深对三角形全等概念的理解。

2. 采用案例分析法,让学生通过分析实际案例,掌握三角形全等的判定条件。

3. 采用小组合作学习法,培养学生的团队合作精神和沟通能力。

五、教学步骤:1. 导入新课:通过复习已学的几何知识,引导学生进入三角形全等的新课学习。

2. 讲解三角形全等的定义和判定条件:详细讲解三角形全等的概念,以及SSS、SAS、ASA、AAS四种判定条件。

3. 案例分析:给出几个实际案例,让学生运用判定条件判断三角形是否全等。

4. 动手操作:让学生自行取材,进行三角形全等的实际操作,加深对全等三角形性质的理解。

5. 课堂练习:布置一些有关三角形全等的练习题,巩固所学知识。

6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用三角形全等的知识解决实际问题。

7. 作业布置:布置一些有关三角形全等的家庭作业,巩固所学知识。

8. 课后反思:对课堂教学进行反思,总结教学过程中的优点和不足,为下一步教学做好准备。

六、教学评价:1. 通过课堂提问、练习和作业,评价学生对三角形全等概念和判定条件的掌握程度。

2. 观察学生在动手操作和小组合作学习中的表现,评价其观察能力、动手能力和团队协作能力。

3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和思维能力进行评价。

全等三角形数学教案

全等三角形数学教案

全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。

2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。

3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。

二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。

2. 教学难点:准确判断两个三角形是否全等。

三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。

然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。

(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。

2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。

(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。

以此来帮助他们理解和掌握全等三角形的定义和性质。

(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。

(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。

四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。

同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。

第12章全等三角形-一边一角构造全等(教案)

第12章全等三角形-一边一角构造全等(教案)
-对应角的概念,即两个全等三角形中,角度相等的角是哪些。
-如何通过测量边长和角度来确定两个三角形是否满足SSS和SAS条件。
-应用全等三角形的性质解决实际问题:重点在于学生能够将全等三角形的性质应用于解决具体的几何问题,例如计算未知边长或角度。
2.教学难点
-理解全等三角形的判定过程:难点在于学生需要理解全等判定不是简单的图形比较,而是一个逻辑推理过程。以下是具体的难点细节:
-难以将全等三角形的性质灵活运用于不同的解题场景。
-在解决综合问题时,难以决定使用哪种全等判定方法。
在教学过程中,需要通过具体的例题、图形演示和实际操作,帮助学生明确重点,突破难点。教师应设计不同难度的练习题,从基础的概念巩固到综合应用题,逐步引导学生深入理解全等三角形的判定和应用。同时,应鼓励学生主动参与,通过小组讨论、上台演示等方式,提高他们对核心知识的掌握程度。
3.重点难点解析:在讲授过程中,我会特别强调SSS和SAS这两个全等判定的重点。对于难点部分,比如对应边和对应角的识别,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用模型或纸片来构造全等三角形,从而演示全等的基本原理。
-难以区分SSS和SAS条件,特别是在实际应用中。
-难以理解全等判定中的“对应”概念,容易混淆哪些边和角是需要比较的。
-难以从给定的信息中识别出可用于全等判定的要素。
-在实际问题中识别和应用全等三角形:难点在于学生需要将理论知识和实际问题联系起来,以下为具体的难点:
-难以从复杂的实际问题中抽象出全等三角形的模型。

第十二章全等三角形12.1全等三角形教案

第十二章全等三角形12.1全等三角形教案
其次,在讲解全等三角形的判定方法时,我尝试用了一些具体图形和实例来说明,但可能还不够充分。我打算在下一节课增加一些更具挑战性的题目,让学生们亲自动手操作,以加深对判定方法的理解。
在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:

全等三角形优秀教案

全等三角形优秀教案

全等三角形优秀教案一、教学目标1、知识与技能目标理解全等三角形的概念,能识别全等三角形中的对应边、对应角。

掌握全等三角形的性质,能够运用全等三角形的性质解决简单的几何问题。

掌握全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),能运用这些判定方法证明两个三角形全等。

2、过程与方法目标通过观察、比较、操作等活动,培养学生的观察能力、动手操作能力和逻辑思维能力。

经历探索全等三角形性质和判定方法的过程,体会研究几何问题的一般方法和转化的数学思想。

3、情感态度与价值观目标通过探究活动,培养学生的合作精神和创新意识。

让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的信心。

二、教学重难点1、教学重点全等三角形的性质和判定方法。

运用全等三角形的性质和判定方法解决几何问题。

2、教学难点全等三角形判定方法的灵活运用。

证明两个三角形全等的思路和方法。

三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、导入新课展示一些形状、大小相同的图形,如两个完全相同的三角形,让学生观察并思考这些图形的特点。

提问学生:“你们能发现这些图形有什么共同之处吗?”引导学生得出全等图形的概念。

2、讲解新课全等三角形的概念给出全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

强调“完全重合”的含义,即两个三角形的对应边和对应角都相等。

通过实例,让学生找出全等三角形的对应边和对应角。

全等三角形的性质让学生通过观察和操作,发现全等三角形的对应边相等、对应角相等。

引导学生用数学语言表述全等三角形的性质。

全等三角形的判定方法讲解“边边边”(SSS)判定方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

通过演示和实际操作,让学生理解并掌握 SSS 判定方法。

类似地,依次讲解“边角边”(SAS)、“角边角”(ASA)、“角角边”(AAS)和“斜边、直角边”(HL)判定方法。

例题讲解出示一些简单的例题,如已知两个三角形的对应边或对应角的条件,让学生判断这两个三角形是否全等,并说明理由。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

全等三角形教案6篇

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

全等三角形教案(5篇)

全等三角形教案(5篇)

全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。

3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。

(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。

至于D,由于AD 和BC是对应边,因此AD=BC。

C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

全等三角形教研活动记录

全等三角形教研活动记录

一、活动背景随着新课标的实施,全等三角形作为初中几何教学中的重要内容,对于培养学生的空间观念、逻辑思维能力和证明能力具有重要意义。

为了提高全等三角形的教学质量,促进教师之间的交流与合作,我校数学教研组于2021年10月15日开展了以“全等三角形”为主题的教研活动。

本次活动旨在通过集体备课、课堂观摩、教学反思等形式,探讨全等三角形的教学策略,提升教师的教学水平。

二、活动内容1. 集体备课活动伊始,教研组长组织全体数学教师进行集体备课。

首先,针对全等三角形的定义、性质、判定定理等内容,教师们进行了深入探讨,明确了教学目标。

接着,针对教学重难点,教师们提出了自己的教学设想和教学策略。

最后,教研组长对集体备课进行了总结,提出了改进意见。

2. 课堂观摩在集体备课的基础上,教研组安排了两位教师分别进行全等三角形的教学展示。

以下是课堂观摩的详细记录:(1)第一节课授课教师:张老师教学内容:全等三角形的性质教学过程:1. 创设情境,导入新课2. 通过小组合作探究,引导学生发现全等三角形的性质3. 结合实例,讲解全等三角形的判定定理4. 巩固练习,提升学生运用知识解决问题的能力教学反思:张老师在课堂上注重启发学生思考,通过小组合作探究的方式,让学生在轻松愉快的氛围中掌握全等三角形的性质。

但在讲解判定定理时,部分学生反应较慢,需要教师进一步引导学生。

(2)第二节课授课教师:李老师教学内容:全等三角形的判定定理教学过程:1. 复习上节课内容,巩固学生对全等三角形性质的理解2. 通过多媒体展示,直观展示全等三角形的判定定理3. 结合实例,讲解判定定理的应用4. 设置问题情境,让学生运用判定定理解决问题教学反思:李老师在课堂上运用多媒体技术,将抽象的数学知识形象化,使学生在直观的画面中理解全等三角形的判定定理。

但在讲解过程中,部分学生注意力不集中,需要教师加强对学生的课堂管理。

3. 教学研讨课堂观摩结束后,全体教师进行了教学研讨。

全等三角形教案【7篇】

全等三角形教案【7篇】

全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。

那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。

数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点正确寻找全等三角形的对应元素。

教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义象这样的图片,形状和大小都相同。

你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。

[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

初中三角形全等公开课教案

初中三角形全等公开课教案

初中三角形全等公开课教案教学目标:1. 知识与技能:理解并掌握三角形全等的概念及性质。

2. 过程与方法:经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。

3. 情感、态度价值观:感受生活中的数学,体会数学的魅力,从而激发学习数学的兴趣,获得成功的情感体验。

教学重难点:1. 教学重点:三角形全等的概念与性质。

2. 教学难点:三角形全等的性质。

教学过程:一、导入新课1. 图片导入:展示一些生活中的全等图形,如全等的三角形、正方形等。

2. 提问:这些图形有什么特点?它们能够完全重合,形状和大小完全相同。

3. 引导学生思考:为什么我们会说这些图形是全等的呢?二、讲解新知1. 操作观察,得出概念a. 给学生分发纸板,请他们将各自的三角尺按在纸板上,画下图形,并裁下。

b. 提问:照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?c. 预设:形状大小完全一样,能完全重合。

d. 多媒体上展示用同一张底片冲洗出来的两张尺寸大小一样的照片,请学生观察,放在一起是否也能完全重合。

e. 教师总结全等形和全等三角形的概念。

2. 平移、翻折、旋转,对应关系a. 小组活动:对一个三角形作出平移、翻折、旋转三种变换,然后动手操作进行探究,看看对于变换前后的两个三角形是否全等。

b. 学生汇报探究结果,教师引导学生总结三角形全等的性质。

三、巩固练习1. 让学生独立完成一些关于三角形全等的练习题,巩固所学知识。

2. 教师选取一些学生的作业进行点评,解答学生的疑问。

四、课堂小结1. 让学生回顾本节课所学的内容,总结三角形全等的概念和性质。

2. 强调三角形全等在实际生活中的应用价值。

五、课后作业1. 请学生总结三角形全等的性质,并写在日记中。

2. 设计一些关于三角形全等的习题,提高学生的解题能力。

教学反思:本节课通过图片导入、操作观察、小组活动等方式,让学生直观地理解了三角形全等的概念和性质。

三角形全等的判定“边角边”判定定理教案

三角形全等的判定“边角边”判定定理教案

三角形全等的判定——“边角边”判定定理教案一、教学目标:1. 让学生理解并掌握三角形全等的概念。

2. 让学生了解并掌握“边角边”判定定理及其证明过程。

3. 培养学生运用“边角边”判定定理解决实际问题的能力。

二、教学内容:1. 三角形全等的定义。

2. “边角边”判定定理的表述。

3. “边角边”判定定理的证明过程。

4. 运用“边角边”判定定理解决实际问题。

三、教学重点与难点:1. 教学重点:“边角边”判定定理的表述及证明过程。

2. 教学难点:运用“边角边”判定定理解决实际问题。

四、教学方法:1. 采用讲授法,讲解三角形全等的定义及“边角边”判定定理。

2. 采用演示法,展示“边角边”判定定理的证明过程。

3. 采用练习法,让学生通过实际问题巩固“边角边”判定定理的应用。

五、教学过程:1. 导入:复习三角形全等的定义,引导学生思考如何判定两个三角形全等。

2. 新课讲解:讲解“边角边”判定定理的表述及证明过程。

3. 案例分析:分析几个实际问题,引导学生运用“边角边”判定定理解决问题。

4. 课堂练习:布置几道练习题,让学生独立完成,巩固“边角边”判定定理的应用。

5. 总结与拓展:总结本节课的主要内容,布置课后作业,鼓励学生深入研究三角形全等的判定方法。

六、课后作业:1. 复习三角形全等的定义及“边角边”判定定理。

2. 完成课后练习题,运用“边角边”判定定理解决实际问题。

3. 探索其他三角形全等的判定方法,了解其证明过程。

六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角形全等概念和“边角边”判定定理的理解和掌握程度。

2. 观察学生在解决问题时的思路和方法,评估其运用“边角边”判定定理的能力。

3. 鼓励学生参与课堂讨论,评价其团队合作和沟通能力。

七、教学反思:1. 在教学过程中,关注学生的反应,根据实际情况调整教学内容和教学方法。

2. 针对学生的难点,进行重点讲解和辅导,帮助学生克服困难。

3. 定期检查学生的学习进度,及时发现和解决问题。

全等三角形教案六篇

全等三角形教案六篇

全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。

同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。

二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。

因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。

《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。

为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。

2.方法与过程:争论、引导教学法。

3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。

三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。

第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。

全等三角形的定义:两个能够重合的三角形称为全等三角形。

全等三角形的性质:全等三角形的对应边、对应角相等。

活动目的:回忆前面学习过的学问,为探究新学问作预备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求证:CD=AB/2.
例5、如图,OA=OE,OB=OD,直线AB=DE相交于C.求证:OC为∠AOE的平分线.
例6、如图,在△ABC中,∠A=60度,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.
4,三角形的三条角平分线交于一点,这一点叫做三角形的内心,三角形的内心到三角形三边的距离相等。
教学内容
例1、如图所示,已知BD,CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.
求证:(1)AP=AQ;(2)AP⊥AQ.
例2、如图所示,AE是△ABC中∠A外角的平分线,E为AE上不同于A的一点,则下列关系成立的是( )
(A)AB+AC<BE+EB+AC=BE+EC
(D)不能确定
例3、在△ABC中,∠BAC=90度,AB=AC,BE平分∠ABC,与AC交于D,CE⊥BE,求证:CE=BD/2.
例4、证明:在直角三角形中,斜边上的中线等于斜边的一半。
已知:在△ABC中,∠ACB=90度,CD是中线。
复旦名师家教
精品课程辅导讲义
讲义编号2012春季07SX09
辅导科目:数学年级:七年级
课题
第七讲:全等三角形拓展(上)
授课时间:4月14日
备课时间:4月10日
知识方法
1,三角形判定:SSS、SAS、AAS、ASA、HL;
2,三角形性质:对应边、对应角相等;
3,角平分线上的点,到角两边的距离相等;到角两边距离相等的点,在角的平分线上;
相关文档
最新文档