简单事件概率教材分析
初中简单事件概率教案
![初中简单事件概率教案](https://img.taocdn.com/s3/m/fa78f078905f804d2b160b4e767f5acfa0c7835a.png)
初中简单事件概率教案教学目标:1. 理解概率的定义,掌握必然事件、不可能事件、随机事件的概念。
2. 学会使用频率估计概率,了解大量实验中频率与概率的关系。
3. 能够运用概率公式计算简单事件的概率。
教学重点:1. 概率的定义及各类事件的概念。
2. 频率与概率的关系。
3. 概率公式的运用。
教学难点:1. 理解并掌握必然事件、不可能事件、随机事件的概念。
2. 运用频率估计概率。
3. 运用概率公式计算简单事件的概率。
教学过程:一、导入(5分钟)1. 引入话题:讨论日常生活中的一些随机现象,如抛硬币、抽奖等。
2. 提问:这些现象中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?二、新课讲解(15分钟)1. 讲解必然事件、不可能事件、随机事件的概念。
2. 讲解概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。
3. 讲解频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率)总是接近于一个常数,这个常数就是事件发生的概率。
三、实例演示与练习(15分钟)1. 通过抛硬币、抽奖等实例,让学生观察并记录实验结果,引导学生运用频率估计概率。
2. 让学生分组讨论,总结频率与概率的关系。
3. 运用概率公式计算一些简单事件的概率,如抛硬币两次正面朝上的概率等。
四、课堂小结(5分钟)1. 回顾本节课所学内容,巩固必然事件、不可能事件、随机事件的概念。
2. 强调频率与概率的关系,以及如何运用频率估计概率。
3. 提醒学生掌握概率公式的运用。
五、课后作业(课后自主完成)1. 完成教材课后练习题。
2. 运用概率公式计算生活中的一些简单事件概率。
教学反思:本节课通过讨论日常生活中的随机现象,引导学生理解必然事件、不可能事件、随机事件的概念。
通过实例演示和练习,让学生掌握频率与概率的关系,以及如何运用频率估计概率。
浙教版九年级数学(全一册)课件 第2章 简单事件的概率 简单事件的概率2
![浙教版九年级数学(全一册)课件 第2章 简单事件的概率 简单事件的概率2](https://img.taocdn.com/s3/m/f95dd87559fafab069dc5022aaea998fcc22400f.png)
5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
新课讲 由列表得,同时掷两枚骰子,可能出现的结果有36 解 种,它们出现的可能性相等.
(结果1)有满6种足,两则枚P骰(子A)的36=6点 数16 相同. (记为事件A)的
新课讲
观察与思考
第一
第二次 所有可能出现解的结
次
果 (正、
正) (正、
开
反)
始
(反、
正)
(反、
发现:所有可能结果一
反)
样.
归纳:随机事件“同时”与“先后”的关系:“两
个相同的随机事件同时发生”与 “一个随机事件先
后两次发生”的结果是一样的.
2 用列表法求概率
新课讲 解
问题1 利用直接列举法可以比较快地求出简单事件发 生的概率,对于列举复杂事件的发生情况还有什么更好 的方法呢?
列举法
关键
常用 方法
课堂总 在于正确列举出试验结果的各结种可能性.
直接列举 画 树法状 图
法 列表法
(下节课学习)
前提条件
确保试验中每 种结果出现的 可能性大小相
基本步骤
① 列表; ② 确定m、n
值 代入概率公式 计算.
适用对象
两个试验 因素或分 两步进行 的试验.
新课导 入
问题 老师向空中抛掷两枚同样的一元硬币,如果落 地后一正一反,老师赢;如果落地后两面一样,你们 赢.你们觉得这个游戏公平吗?
1 用直接列举法求概率
新课讲 解
例 同时抛掷两枚质地均匀的硬币,求下列事件的概率: 题(1)两枚硬币全部正面向上;
25、概率初步教材分析报告
![25、概率初步教材分析报告](https://img.taocdn.com/s3/m/8cd8a7e7f78a6529657d5315.png)
《概率初步》教材分析一、本章地位本章属于“统计与概率〞领域,对于该领域的内容,本套教科书共安排了三章,这三章采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.一方面,概率与统计相对独立,另一方面概率又以统计为依托.本章概率知识的学习要以前俩章的统计局部的知识为根底.本章的主要内容是随机事件的的定义,概率的定义,计算简单事件概率的方法,主要是列举法〔包括列表法和画树状图法〕,利用频率估计概率,中心内容是体会随机观念和概率思想.二、课程学习目标1、课标要求〔1〕理解什么是必然发生事件、不可能发生事件和随机事件.〔2〕在具体情境中了解概率的意义,体会概率是描述不确定事件发生可能性大小的数学概率,理解概率取值X围的意义.〔3〕能够运用列举法〔包括列表、画树状图〕计算简单事件发生的概率.〔4〕能够通过试验,获得事件发生的频率,知道大量重复试验时频率可作为事件发生概率的估计值,理解频率与概率的区别与联系.〔5〕通过实例进一步丰富对概率的认识,并能解决一些实际问题.2、2011年中考说明对概率的要求事件、事件的概率,列举法〔包括列表、画树状图〕计算简单事件的概率.实验与事件发生的频率,大量重复实验时事件发生概率的估计值.运用概率知识解决实际问题.【考试要求】①在具体情境中了解概率的意义,运用列举法〔包括列表、画树状图〕计算简单事件发生的概率.②通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值.③能运用概率知识解决一些实际问题.三、知识结构框图四、课时安排〔共15课时〕25.1随机事件与概率约4课时25.2用列举法求概率约4课时25.3利用频率估计概率约3课时25.4课题学习约2课时数学活动小结约2课时五、学法教学建议1、注重概念的教学、随机观念的渗透概率对学生来说是一个与以前所学数学内容不太一样的东西,一些表述、思想、方法学生都不适应,如果一开始形成了错误的概念或“直觉〞“统计概率〞的概念:〔1〕很多事件的发生具有“偶然性〞〔给出“随机事件〞概念.P125【问题1、2】〕→〔2〕不同随机事件发生的可能性的大小有可能不一样〔P127【问题3】〕→〔3〕一样条件下,一个事件发生的概率是一个常数,是由事件固有的属性决定的。
2.2简单事件的概率(2)教案
![2.2简单事件的概率(2)教案](https://img.taocdn.com/s3/m/45ad7bcda5e9856a57126079.png)
2.2简单事件概率(2)教案讲授新课三、典例精讲例3 一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.求下列事件发生的概率:(1)事件A:摸出1个红球,1个白球.(2)事件B:摸出2个红球.解:为方便起见,我们将3个红球编号为红1,红2,红3.根据题意,第一次和第二次摸球的过程中,摸到4个球中任意一个球的可能性都是相同的,两次摸球的所有可能的结果可列表表示:由表2-3知,n=4×4=16(1)事件A包含其中的结果数m=6(如表2-3中绿色部分)∴P(A)=(2)事件B包含其中的结果数m=9(如表2-3中绿色部分)。
∴想一想:怎样用树状图表示题中事件发生的不同结果?用树状图表示:每一次试验中有几种可能结果,每种可能结果又有几种可能情况,同“树状图”进行列举比较合适.把非等可能事件转化为等可能事件是注意运用把条件不同的化为相同,面积不等的化为相等.共有16种等可能的结果(1)事件A包含其中的结果数m=6,∴P(A)=(2)事件B包含其中的结果数m=9,∴例4 学校组织春游,安排给九年级3辆车,小明与小慧都可以从这3辆车中任选一辆搭乘.问小明与小慧同车的概率有多大?解:记这三辆车分别为甲、乙、丙,小明与小慧乘车的所有可能的结果如下表:∴所有可能的结果总数为n=9,小明与小慧同车的结果总数为m=3,∴P=3/9=1/3答:小明与小慧同车的概率是1/3。
例5、如右图,转盘的白色扇形和红色扇形的圆心角分别为120°和240°,让转盘自由转动2次,求指针一次落在白色区域,另一次落在红色区域的概率.分析:很明显,由于两个扇形的圆心角不相等,转盘自由转动1次,指针落在白色区域、红色区域的可能性是不相同的.如果我们把红色的扇形划分成两个圆心角都是120°的扇形,那么转盘自由转动1次,指针落在各个扇形区域内的可能性都应当相同,这样就可以用列举法来求出指针一次落在白色区域,另一次落在红色区域的概率.解:把红色扇形划分成两个圆心角都是1200的扇形,分别记为红1,红2.让转盘自由转动2次,所有可能的结果如图所示,且各种结果发生的可能性相同.∴所有可能的结果总数为n=9 ,指针一次落在白色区域,另一次落在红色区域的结果总数为m=4 .∴P=课堂检测四、巩固训练1.如图所示是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.12B.13C.14D.15【解析】把第一个转盘含有2的扇形分成两等份,再用列表法或树状图法求解.答案A2.一个转盘如图,黄色扇形的圆心角为90°,绿色扇形的圆心角为270°.让转盘自由转动2次,2次指针都落在绿色区域的概率是多少?解:因为转动2次转盘,指针落在不同区域的情况共有16种,而2次指针都落在绿色区域的情况有9种,所以2次指针都落在绿色区域的概率是p=3.有A、B、C三种款式的帽子,E、F、G三种款式的围巾,小芳任意选一顶帽子和一条围巾,恰好选中她所喜欢的A款帽子和F款围巾的概率是多少?解:因为帽子和围巾的搭配方式共有九种,所以小芳选中她所喜欢的A 款帽子和F 款围巾的概率是1/9. 4.用图所示的转盘进行“配紫色”游戏.小颖制作了如图所示的树状图,并据此求出游戏者获胜的概率为12;小亮则先把左边转盘的红色区域等分成2份,分别记作“红1”、“红2”,然后制作了下表,据此求出游戏者获胜的概率也是12.红蓝红1 (红1,红) (红1,蓝)红2 (红2,红) (红2,蓝)蓝 (蓝,红) (蓝,蓝)你认为谁做得对?说说你的理由.解:小亮做得对,列表或用树状图应注意各种情况的可能性务必相同,对于左边转盘红色、蓝色区域出现的可能性不相同:红色的概率为23,蓝色的概率为13.故要把左边转盘的红色区域等分成两等份.。
浙教版数学九年级上册《2.2 简单事件的概率》教学设计
![浙教版数学九年级上册《2.2 简单事件的概率》教学设计](https://img.taocdn.com/s3/m/28480ebfe109581b6bd97f19227916888486b934.png)
浙教版数学九年级上册《2.2 简单事件的概率》教学设计一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》是学生在学习了概率基础知识后,进一步探究简单事件概率的内容。
本节课通过具体的例子,让学生理解并掌握简单事件的概率计算方法,为后续学习更复杂事件的概率打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对概率的概念和意义已经有了一定的了解。
但在实际计算过程中,可能会对如何正确运用概率公式产生困惑。
因此,在教学过程中,需要关注学生对概率公式的理解和运用情况。
三. 教学目标1.理解简单事件的概率定义及其计算方法。
2.能够运用概率公式计算简单事件的概率。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.重点:简单事件的概率定义及其计算方法。
2.难点:如何正确运用概率公式计算简单事件的概率。
五. 教学方法1.情境教学法:通过生活中的实际例子,引发学生对简单事件概率的思考,提高学生的学习兴趣。
2.互动教学法:引导学生参与课堂讨论,培养学生的逻辑思维能力和团队合作精神。
3.案例教学法:分析具体案例,让学生理解并掌握简单事件概率的计算方法。
4.实践教学法:让学生通过动手操作,巩固所学内容,提高解决实际问题的能力。
六. 教学准备1.教学PPT:制作涵盖本节课重点内容的PPT,以便于课堂展示和讲解。
2.案例材料:准备一些生活中的案例,用于引导学生思考和分析。
3.练习题:准备一些有关简单事件概率的练习题,用于巩固所学内容。
七. 教学过程1.导入(5分钟)利用PPT展示一些与概率相关的图片,如抛硬币、抽奖等,引导学生思考:这些现象中是否存在某种规律?从而引出本节课的主题——简单事件的概率。
2.呈现(10分钟)通过PPT讲解简单事件的概率定义及其计算方法,让学生理解并掌握如何计算简单事件的概率。
3.操练(10分钟)让学生分组讨论,分析案例材料中的具体问题,运用概率公式计算简单事件的概率。
简单事件的概率教案
![简单事件的概率教案](https://img.taocdn.com/s3/m/413edd5afe00bed5b9f3f90f76c66137ef064f74.png)
简单事件的概率教案教案标题:简单事件的概率教案教案目标:1. 了解概率的基本概念和术语;2. 理解简单事件的概率计算方法;3. 能够应用概率计算简单事件的概率;4. 培养学生的逻辑思维和问题解决能力。
教材与工具:1. 教材:包含概率相关知识的教科书或课本;2. 工具:投影仪、白板、彩色粉笔、学生练习册。
教学步骤:引入概率概念(10分钟):1. 使用投影仪或白板展示概率的定义和基本概念,如样本空间、事件等。
2. 通过实际生活中的例子,引导学生理解概率的意义和应用。
讲解简单事件的概率计算方法(15分钟):1. 解释简单事件的定义,即只包含一个基本事件的事件。
2. 引导学生理解简单事件的概率计算公式:事件的概率 = 有利结果数目 / 总结果数目。
3. 通过具体的例子,讲解如何确定有利结果数目和总结果数目。
示范计算简单事件的概率(15分钟):1. 选择一个简单事件的例子,例如抛硬币的结果是正面。
2. 指导学生确定有利结果数目和总结果数目。
3. 展示如何使用概率计算公式计算该事件的概率。
4. 鼓励学生跟随计算,并解答他们的问题。
练习与巩固(15分钟):1. 分发学生练习册,并指导他们完成相关练习。
2. 监督学生的练习过程,及时解答他们的问题。
3. 鼓励学生在解答问题时使用概率计算公式。
拓展与应用(15分钟):1. 提供更多简单事件的例子,让学生尝试计算概率。
2. 引导学生思考如何应用概率计算解决实际问题,例如抽奖、扔骰子等。
3. 鼓励学生分享自己的解决思路和答案。
总结与反思(10分钟):1. 回顾概率的基本概念和简单事件的概率计算方法。
2. 总结学生在练习和应用中的表现和收获。
3. 鼓励学生提出问题和困惑,并及时解答。
教学延伸:1. 鼓励学生自主寻找更多关于概率的例子,并计算其概率。
2. 引导学生进行小组讨论,解决更复杂的概率问题。
3. 提供更多拓展阅读材料,让学生深入了解概率的应用领域。
教学评估:1. 观察学生在课堂上的参与和表现。
人教版数学九年级上册《概率》教案1
![人教版数学九年级上册《概率》教案1](https://img.taocdn.com/s3/m/c6c8138d7e192279168884868762caaedc33ba79.png)
人教版数学九年级上册《概率》教案1一. 教材分析《概率》是人教版数学九年级上册的一章内容,主要介绍了概率的基本概念、事件的相互独立性、概率的计算方法等。
本章内容是学生对概率的初步认识,为后续更深入的学习打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了相关数学知识,如函数、统计等,但对概率的概念和计算方法可能较为陌生。
因此,在教学过程中,需要引导学生理解概率的概念,并通过实例让学生掌握概率的计算方法。
三. 教学目标1.了解概率的基本概念,理解事件的相互独立性。
2.学会使用概率公式计算简单事件的概率。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.概率的概念和事件的相互独立性。
2.概率公式的运用和计算。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究概率的计算方法。
2.通过实例分析,让学生理解概率的概念和事件的相互独立性。
3.运用小组讨论的方式,培养学生的团队合作能力。
六. 教学准备1.教学PPT或黑板。
2.与概率相关的实例和习题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考概率的概念。
提问:抛硬币实验中,正面朝上的概率是多少?为什么?2.呈现(10分钟)介绍概率的基本概念,如必然事件、不可能事件、随机事件等。
通过PPT或黑板,展示概率的定义和符号表示。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,如掷骰子、抽签等,计算其概率。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对各组的计算结果,进行讲解和分析,巩固概率的计算方法。
提问:如何判断两个事件是否相互独立?5.拓展(10分钟)介绍事件的相互独立性,并通过实例让学生理解。
提问:如何计算两个相互独立事件同时发生的概率?6.小结(5分钟)对本节课的内容进行总结,强调概率的概念和事件的相互独立性。
7.家庭作业(5分钟)布置相关习题,让学生巩固所学知识。
8.板书(5分钟)总结本节课的主要内容和重点知识点。
浙教版数学九年级上册《2.2简单事件的概率》说课稿
![浙教版数学九年级上册《2.2简单事件的概率》说课稿](https://img.taocdn.com/s3/m/dabe2e0f3d1ec5da50e2524de518964bce84d25c.png)
浙教版数学九年级上册《2.2 简单事件的概率》说课稿一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》这一节,是在学生已经掌握了概率的定义和一些基本概念的基础上进行讲解的。
本节课的主要内容是让学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
教材通过大量的实例,使学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于概率的基本概念和定义已经有所了解。
但是,学生在学习过程中,对于事件的分类和概率的计算方法可能还存在一定的困难。
因此,在教学过程中,我将会注重引导学生理解事件之间的关系,掌握概率的计算方法,并能够将概率知识应用到实际问题中。
三. 说教学目标1.知识与技能:使学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过大量的实例,让学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生积极思考、合作交流的学习态度,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
2.教学难点:事件的分类和概率的计算方法。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过观察、思考、交流、实践等方式,掌握概率知识。
同时,利用多媒体教学手段,展示实例和计算过程,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过一个简单的实例,引出本节课的主题,激发学生的学习兴趣。
2.基本概念:讲解事件的分类和概率的定义,让学生理解并掌握基本概念。
3.实例分析:分析多个实例,让学生体会事件的随机性,引导学生掌握概率的计算方法。
4.方法讲解:讲解如何将概率知识应用到实际问题中,让学生学会运用概率知识解决问题。
2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计
![2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计](https://img.taocdn.com/s3/m/c82c9d5f78563c1ec5da50e2524de518964bd3bd.png)
2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计一. 教材分析《简单事件的概率》是浙教版数学九年级上册第二章第二节的内容。
本节内容是在学生已经学习了概率的定义和一些基本概念的基础上进行的。
通过本节内容的学习,学生能够理解并掌握简单事件的概率的计算方法,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的基本概念已经有了一定的了解。
但是,对于如何计算简单事件的概率,学生可能还存在着一定的困难。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解和掌握计算方法。
三. 教学目标1.知识与技能:使学生理解并掌握简单事件的概率的计算方法。
2.过程与方法:通过具体的例子,引导学生运用概率的知识解决问题。
3.情感态度价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.重点:简单事件的概率的计算方法。
2.难点:如何引导学生理解和掌握简单事件的概率的计算方法。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生理解和掌握简单事件的概率的计算方法。
同时,运用小组合作学习法,让学生在合作中思考,在思考中学习。
六. 教学准备1.教师准备:准备好相关的例子,制作好课件。
2.学生准备:预习相关的内容,准备好笔记本。
七. 教学过程1.导入(5分钟)教师通过一个简单的问题引导学生进入本节内容的学习,例如:“抛一枚硬币,正面朝上的概率是多少?”2.呈现(15分钟)教师通过课件呈现本节的内容,引导学生理解和掌握简单事件的概率的计算方法。
3.操练(15分钟)教师给出具体的例子,让学生运用概率的知识解决问题,例如:“抛两枚硬币,两枚都是正面朝上的概率是多少?”4.巩固(10分钟)教师通过一些练习题,让学生巩固所学的内容,例如:“抛三枚硬币,至少有两枚正面朝上的概率是多少?”5.拓展(10分钟)教师引导学生思考一些拓展问题,例如:“在抛硬币的过程中,出现正面的概率是否会随着抛硬币的次数的增加而改变?”6.小结(5分钟)教师对本节的内容进行小结,帮助学生梳理思路。
2.2简单事件的概率(1)教案
![2.2简单事件的概率(1)教案](https://img.taocdn.com/s3/m/4d78ad2d58f5f61fb6366679.png)
2.2简单事件概率(1)教案概率:在数学上,我们把事件发生的可能性的大小也称为事件发生的概率,概率用英文probability的第一个字母p来表示.在数学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用P表示。
事件A发生的概率也记为P(A),事件B发生的概率记为P(B),依此类推。
如果事件发生的各种结果的可能性相同且互相排斥,且所有可能结果总数为n,事件A包含其中的结果总数为m(m≤n),那么事件A发生的概率为:P(A)=(1)必然事件发生的概率为1,记作P(必然事件)=1;(2)不可能事件发生的概率为0,记作P(不可能事件)=0;(3)若A为不确定事件,则0<P(A)<1讲授新课三、典例精讲例1 一项答题竞猜活动,有6个式样,大小都相同的箱子中有且只有一个箱子藏有礼物。
参与选手将回答5个问题,每答对一道题,主持人就从6个箱子中去掉一个空箱子。
而选手一旦答错,即取消后面的答题资格,从剩下的箱子中选取一个箱子。
求在分析某个事件发生的概率时,关键要弄清两点:(1)此事件的活动过程通过例题的解答,让学生真正掌握概率公式的应用,同时培养学生变相思考问题的能力。
4.在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个.已知从中任意摸出1个球是白球的概率为12.(1)求口袋中有多少个红球;(2)求从口袋中一次摸出2个球,是一红一白的概率.要求画出树状图.解:(1)设口袋中有x 个红球, 根据题意得2x +2+1=12,解得x =1,即口袋中有1个红球.(2)记两个白球分别为白1和白2,树状图如图所示:摸到一红一白的概率为P =412=13. 5.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色,此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?解: 第一个转盘第二个转盘 红 黄 蓝红(红,红) (黄,红) (蓝,红)白 (红,白) (黄,白) (蓝,白)蓝 (红,蓝) (黄,蓝) (蓝,蓝)∴配成紫色的概率为P =29,配不成紫色的概率为P =79,∴小刚平均每次得分:29×1=29率,小明平均每次得分:79×1=79.∵29≠79, ∴游戏对双方不公平. 修改规则略.课堂小结1.等可能事件概率的计算公式如果事件发生的各种结果的可能性相同且互相排斥,且所有可能结果总数为n ,事件A 包含其中的结果总数为m(m ≤n),那么事件A 发生的概率为:P(A)=2.用列表法或树状图法求概率列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,经常采用列表法.树状图法:当一次试验要涉及三个或更多的因素时,可采用树状图法.。
浙教版数学九年级上册《2.2简单事件的概率》说课稿3
![浙教版数学九年级上册《2.2简单事件的概率》说课稿3](https://img.taocdn.com/s3/m/e48861a2760bf78a6529647d27284b73f3423654.png)
浙教版数学九年级上册《2.2 简单事件的概率》说课稿3一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》是学生在学习了概率的基本概念之后,进一步深入研究概率论的一个章节。
本节内容主要让学生掌握简单事件的概率计算方法,通过实例分析,让学生理解并掌握必然事件、不可能事件、随机事件的概念,以及如何求解事件的概率。
教材通过丰富的实例,让学生在实际问题中感受概率知识的重要性,培养学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的概率基础,对概率的基本概念有了初步的了解。
但是,学生在求解事件概率时,仍然容易混淆必然事件、不可能事件、随机事件的概念,同时在计算概率时,也容易忽视一些细节问题。
因此,在教学过程中,教师需要引导学生清晰地区分各种事件类型,并教会学生如何正确地进行概率计算。
三. 说教学目标1.知识与技能:让学生掌握必然事件、不可能事件、随机事件的概念,学会计算简单事件的概率。
2.过程与方法:通过实例分析,让学生理解并掌握概率的计算方法,培养学生的数学思维能力。
3.情感态度与价值观:让学生感受概率知识在实际生活中的应用,提高学生学习数学的兴趣。
四. 说教学重难点1.重点:必然事件、不可能事件、随机事件的概念及概率计算方法。
2.难点:如何正确地区分各种事件类型,并熟练地进行概率计算。
五. 说教学方法与手段1.采用问题驱动的教学方法,通过实例分析,引导学生主动探究概率计算方法。
2.利用多媒体教学手段,展示实例问题,提高学生的学习兴趣。
3.采用小组合作学习的方式,让学生在讨论中巩固知识,提高学生的团队合作能力。
六. 说教学过程1.导入新课:通过一个简单的实例,引出必然事件、不可能事件、随机事件的概念,激发学生的学习兴趣。
2.知识讲解:讲解必然事件、不可能事件、随机事件的定义,以及如何进行概率计算。
3.实例分析:分析几个典型的实例,让学生掌握概率计算的方法。
4.课堂练习:让学生独立完成一些练习题,巩固所学知识。
简单事件的概率(1)教学设计
![简单事件的概率(1)教学设计](https://img.taocdn.com/s3/m/de56dbbca98271fe900ef934.png)
简单事件的概率(1)教学设计【学习导言】1.了解事件A 发生的概率为()nm A P =; 2.掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率。
3.通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力。
课前学习:尝试体验(对话课本,记下问题,尝试练习)【对话课本】阅读教材P30~P32【记下问题】【尝试练习】1.有方块7,方块8,红桃8,梅花10,红桃11,红桃12六张扑克牌,从中任意抽一张。
求:(1)抽到方块8的概率;(2)抽到方块的概率;(3)抽到方块或红桃的概率。
2. 任意抛掷一枚均匀的骰子,朝上一面的点数是素数的概率是多少?课内学习:合作体验(检评预习,审视问题,独立练习,纠错反审)【检评预习】同桌交换学案,检查评价批语:【审视问题】审视问题,思考新知识。
【尝试例题】例 1 如图,有甲、乙两个相同的转盘。
让两个转盘分别自由转动一次,当转盘停止转动,求(1)转盘转动后所有可能的结果;(2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率;(3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率;例2 一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球。
从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球。
(1)写出两次摸球的所有可能的结果;(2)摸出一个红球,一个白球的概率;(3)摸出2个红球的概率;【独立练习】A 组1.任意抛掷两枚均匀硬币,硬币落地后,(1)写出抛掷后所有可能的结果(用树状图表示)。
(2)一正一反的概率是多少?2.任意把骰子连续抛掷两次,(1)写出抛掷后的所有可能的结果;(2)朝上一面的点数一次为3,一次为4的概率(3)朝上一面的点数相同的概率(4)朝上一面的点数都为偶数的概率(5)两次朝上一面的点数的和为5的概率B 组3.一枚硬币掷于地上,出现正面的概率是21;一枚硬币掷于地上两次,都是正面的概率可以理解为2121⨯;一枚硬币掷于地上三次,三次都是正面的概率可以理解为212121⨯⨯。
《概率》教学设计
![《概率》教学设计](https://img.taocdn.com/s3/m/d5cc0adb59f5f61fb7360b4c2e3f5727a5e92412.png)
《概率》教学设计《概率》教学设计一、教材分析:1、本章的主要内容是随机事件的定义,概率的定义,计算简单事件概率的方法,主要是列举法(包括列表法和画树形图法),利用频率估计概率。
中心内容是体会随机观念和概率思想。
课题学习“键盘上字母的排列规律”。
2、本章知识结构框图:二、学情分析:学生对统计以及简单的频数、频率的计算在七年级、八年级都已学过,学生有一定的概率基础。
对抽签、抽奖学生都很感兴趣,因为这些与他们的生活息息相关。
教学设计时选取抽签、抽奖、掷正方形骰子、摸球抓阄、猜拳、投硬币等与学生贴近的素材引起了他们极大地学习热情。
对于画树形图,分支较多时学生审题有一定困难,对于列表法摸球放回与不放回容易混淆。
三、教学目标:1、知识目标(1)理解什么是必然发生的事件、不可能发生的事件,什么是随机事件;通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
(2)通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
(3)在具体情境中了解概率的意义,体会概率是描述不确定现象的规律的数学模型,理解概率的取值范围的意义,发展随机观念。
能够运用列举法(包括列表、画树形图)计算事件发生的概率。
(4)能够通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值,理解频率与概率的区别与联系。
2、能力目标:(1)动手能力:动手试验,在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯。
(2)归纳能力:通过试验,归纳事件发生的频率,得出列举法(包括列表、画树形图)的方法。
(3)计算能力:计算简单事件发生的概率。
3、情感目标:(1)体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
(2)在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;需经过大量重复的试验,让学生从中体验到科学的探究态度。
课题:2.1简单事件的概率 (1)
![课题:2.1简单事件的概率 (1)](https://img.taocdn.com/s3/m/53d5b439f8c75fbfc67db2a4.png)
课题:2.1简单事件的概率 (1)教学目标:1、通过生活中的实例,进一步了解概率的意义;2、理解等可能事件的概念,并准确判断某些随机事件是否等可能;3、体会简单事件的概率公式的正确性;4、会利用概率公式求事件的概率。
教学重点:等可能事件和利用概率公式求事件的概率。
教学难点:判断一些事件可能性是否相等。
教学过程: 一、引言 出示投影:(1)1998年,在美国密歇根州的一个农场里出生了一头白色奶牛。
据统计平均出生1千万头牛才会有一头是白色的。
你认为出生一头白色奶牛的概率是多少? (2)设置一只密码箱的密码,若要使不知道秘密的人拨对密码的概率小于9991,则密码的位数至少需要多少位?这些问题都需要我们进一步学习概率的知识来解决。
本章我们将进一步学习简单事件的概率的计算、概率的估计和概率的实际应用。
二、简单事件的概率1、引例:盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出一棋子,是黑棋子的可能性是多少?小结:在数学中,我们把事件发生的可能性的大小,称为事件发生的概率 如果事件发生的各种可能结果的可能性相同,结果总数为n ,事件A 发生的可能的结果总数为m ,那么事件A 发生的概率是nmA P)(。
2、练习:如图 三色转盘,每个扇形的圆心角度数相等,让转盘自由转动一次, “指针落在黄色区域”的概率是多少? 3、知识应用:例1、如图,有甲、乙两个相同的转盘。
让两个转盘分别自由转动一次,当转盘停止转动,求 (1)转盘转动后所有可能的结果;(2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率;3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率;解:将两个转盘分别自由转动一次,所有可能的结果可表示为如图,且各种结果的可能性相同。
所以所有可能的结果总数为n=3×3=9(1)能配成紫色的总数为2种,所以P=92。
(2)能配成绿色或紫色的总数是4种,所以P=94。
2.2 简单事件的概率 教案(第1课时)
![2.2 简单事件的概率 教案(第1课时)](https://img.taocdn.com/s3/m/96f8d4d2e45c3b3566ec8b2a.png)
教学反思
[满足条件的结果在数字2所在行和2所在的列上]
接着,引导学生进行题后小结:
当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:
①列表 ;
②通过表格计数,确定公式P(A)= 中m和n的值;
③利用公式P(A)= 计算事件的概率.
课堂小结:引导学生从知识、方法、情感三方面来谈一谈这节课的收获.要求每个学生在组内交流,派小组代表发言.
(1)满足两个骰子的点数相同(记为事件A)的结果有6个,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)= = .
[满足条件的结果在表格的对角线上]
(2)满足两个骰子的点数的和是9(记为事件B)的结果有4个,即(3,6),(4,5),(5,4),(6,3),所以P(B)= = .[满足条件的结果在(3,6)和(6,3)所在的斜线上](3)至少有一个骰子的点数为2(记为事件C)的结果有11个,所以P(C)= .
(2,6)
3
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
(4,2)
(4,3)
(4,4)
(4,5)
(4,6)
5
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
(5,6)
6
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
由上表可以看出,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等.由所列表格可以发现:
这个例题难度较大,事件可能出现的结果有36种.若首先就拿这个例题给学生讲解,大多数学生理解起来会比较困难.所以在这里,我将新课的引入方式改为了一个有实际背景的转盘游戏.
《简单事件的概率》2.2(1)简单事件的概率
![《简单事件的概率》2.2(1)简单事件的概率](https://img.taocdn.com/s3/m/166fa668cc22bcd127ff0c69.png)
10.某号码锁有6个拨盘,每个拨盘上有从 0到9共十个数字.当6个拨盘上的数字组成某 一个六位数字号码(开锁号码)时,锁才能打开. 如果不知道开锁号码,试开一次就把锁打开的 概率是多少?
整理课件
11.如图,有一只蚂蚁在△ABC木板上随意走
动,已知点E是线段AB的中点,点D是线段AC
的三等分点,则蚂蚁停留在黑色区域(△ABC)
方砖上,(每一块方砖除颜色外完
全相同)
(1)它最终停留在黑砖上的概率? (2)它最终停留在白砖上的概率?
P(停留在黑砖 )上 1 P(停留在白砖 )上 3
4
4
整理课件
4. 从标有1到15序号的15个台球中,任意摸出一个, 请计算下列事件发生的概率:
在一A个:不台透球明上的的盒数中是装5有的两倍个数白;球,n个黄球, 除颜色不同外均相同。若从中随机摸出一个球,
等可能性事件的概率公式:
P(A)
事件A发生的可能结果总数 所有事件可能发生果 的总 结数
要善于应用数学知识解决生活中的实际问题 整理课件
1.如图,转盘被等分成若干个扇形,转动转盘,计算转 盘停止后,指针指向红色区域的概率。
P(红色区)域 3 2.假如小猫在如图所示的地板上8自 由地走来走去,并随意停留在某块
整理课件
30°
甲
180°
乙
任意抛掷一枚 均匀的骰子,朝上一 面的点数为3的概率 是多少?朝上一面的 点数为6呢?朝上一面 的点数为3的倍数呢?
概率
整理课件
一个布袋里装有8个红球和2个黑球它们除 颜色外都相同,求下列事件发生的概率: (1)从中摸出一个球,是白球;
P(摸出白)球 0
(2)从中摸出一个球,不是白球;
北师大版数学九年级上册《树状图或表格求简单事件的概率》教学设计
![北师大版数学九年级上册《树状图或表格求简单事件的概率》教学设计](https://img.taocdn.com/s3/m/7066c12b5bcfa1c7aa00b52acfc789eb172d9e2c.png)
北师大版数学九年级上册《树状图或表格求简单事件的概率》教学设计一. 教材分析《树状图或表格求简单事件的概率》是北师大版数学九年级上册的一节内容。
本节课的主要内容是让学生掌握利用树状图或表格求简单事件的概率的方法。
通过学习本节课,学生能够理解概率的基本概念,学会使用树状图或表格来求解事件的概率,为后续学习更复杂的概率问题打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的数学概念和运算规则有一定的了解。
但是,学生在学习概率这一概念时,可能会感到较为抽象和难以理解。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率模型,并通过树状图或表格的形式来进行分析和计算。
三. 教学目标1.知识与技能:让学生掌握利用树状图或表格求简单事件的概率的方法,并能够运用到实际问题中。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:让学生体验到数学与生活的紧密联系,激发学生对数学学习的兴趣。
四. 教学重难点1.重点:让学生掌握利用树状图或表格求简单事件的概率的方法。
2.难点:如何引导学生从实际问题中抽象出概率模型,并运用树状图或表格来进行分析和计算。
五. 教学方法1.情境教学法:通过生活实例的引入,激发学生的学习兴趣,引导学生从实际问题中抽象出概率模型。
2.启发式教学法:在教学过程中,教师引导学生进行自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.直观教学法:通过树状图或表格的展示,使学生更加直观地理解和掌握概率的计算方法。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示树状图或表格的例子。
2.教学素材:准备一些实际问题,作为学生练习的题目。
3.学生活动材料:准备一些纸张,供学生绘制树状图或表格。
七. 教学过程1.导入(5分钟)教师通过生活实例的引入,引导学生思考事件的概率问题。
例如,抛硬币实验,让学生思考抛两次硬币,正面向上的概率是多少。
初三数学总复习教案:简单随机事件的概率
![初三数学总复习教案:简单随机事件的概率](https://img.taocdn.com/s3/m/65cf5bf6e109581b6bd97f19227916888486b9f4.png)
初三数学总复习教案:简单随机事件的概率
初三数学总复习教案:简单随机事件的概率
教学目的:
1 了解基本事件、等可能性事件的概念;
2.理解等可能性事件的概率的定义,并能求简单的等可能性事件的概率,初步掌握等可能性事件的概率计算公式
教学重点:等可能性事件的概率计算公式
教学难点:等可能性事件的概率计算公式
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1 事件的定义:
随机事件:在一定条件下可能发生也可能不发生的事件;
必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件
说明:三种事件都是在一定条件下发生的,当条件改变时,事件的.性质也可以发生变化
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作 .
3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;
4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为 ,必然事件和不可能事件看作随机事件的两个极端情形【初三数学总复习教案:简单随机事件的概率】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4 )设计题主要让学生再一次体验实验方法 和步骤。准备充分,分工明确,记录完整才 能达到预期效果。
2.3节 (1)讲解例1时着重说明它是一个等可能事件
的概率问题。
(2)例2因为学生比较生疏,生命表中的数字 大且多,一般不易接受。首先让学生读表, 理解表中的含义,再慢慢引导到解题上来。
(3)由于生命 表中的容量较大,也可看作大 量的重复试验,因此所求的概率可以用频率 来代替,这也是本题解法的依据。
(1)用概率公式计算概率,必须符合一个前提条件, 即事件发生的可能性相同。不能简单认为有几种情 况,不加思考认为它们一定等可能。等可能事件的 概率算法是概率计算的重要基础。
(2)用列举法分析事件发生的所有可能情况的结果 数,一般有列表和画树状图两种方法。
(3)尽管随机事件在每次实验中发生与否具有不确
2.2节 (1)编排合作学习的目的是让学生通过自己动
手探索随机事件中隐含的确定性。
(2)转盘实验要求完成几百次,靠个人的力量 和课堂时间是难于完成的。靠集体的力量或提 高效率的办法。
(3)用频率来估计概率在现实生产、生活中有 广泛应用。用实验的方法得到的估计值不一定 完全一致,教材的目的是要求对方法的理解和 认可。
(1)因为概率在日常生活和生产实际中有广泛 的应用,学生是感兴趣的,一般学习积极性 较高;
(2)教科书所有内容涉及不能用到排列组合 古典概率,所以教材安排的是最基本内容。 符合学生这个年龄段的认知水平,学生是能 接受 ;
(3)教师在某些资料的不恰当引导下,容易拨 高要求,加重学生负担。因此,把握好教学 要求是备好课的关键。
九(下) 第二章
简单事件的概率
德清县教育局 王利明
七年级上册 《数据与图表》 七年级下册 《事件的可能性》 八年级上册 《样本与数据分析初步》 八年级下册 《频数及其分布》 九年级下册 《简单事件的概率》
应避免单纯的统计量的计算,对 有关术语不要求进行严格表述。了 解随机现象也有助于形成科学的世 界观和方法论。
(4)随机整数:可随机产生0—99之间的整数。 按键顺序为:2ndF → RANDOM → 3 → ENT
用Excel更方便求出随机数。 = ROUND(35 * RAND( ) + 0.5 ,) 中间数字是35可产生从1—35之间一个随机数。
2.1节 (1)本节分两教时,第一教时主要是较严格给
定性,但只要保持实验条件不变,那么这一事件出 现的频率就会随着实验次数的增大而趋于稳定。这 个稳定值就可以作为该事件发生概率的估计值。
用等可能事件的概率公式解决一些现实 问题,用频率来估计事件发生的概率在生活、 生产中有着广泛的应用。它有助于我们在错 综复杂的情况下,分析事件的本质属性,帮 助我们作出合理的判断。因此这是本章学习 的重点。
等可能事件的概率的计算往往需要学 生有较强的分析和综合能力;对在保持 实验条件不变的情况下,随着实验次数 的增加,某事件出现的频率趋于稳定, 学生较难理解,是本章教学的难点。
课时安排 2.1节 简单事件的概率 2.2节 估计概率 2.3节 概率的简单应用
复习评价 机动 1课时 合计7课时
2课时 1课时 1课时 2课时
(3)统计与概率之间的内在联系,频率作为概 率的估计值就是体现两者联系的一个方面。
(1)课本P31列表:要注意首先是双向,这也 是矩阵的初步,第一次在列,第二次在行。
(2)本章没有C组题,也没有探究活动。
(3)课本P42第3题:注意培养学生分情况讨 论的思想,注意分析题目中的条件。
(1)可以随机产生一个从0—0.999的数字。 按键顺序为:2ndF → RANDOM → 0 → ENT (2)随机摸仿骰子:产生1—6的数字。 按键顺序为:2ndF → RAN数。 按键顺序为:2ndF → RANDOM → 2 → ENT
( 1 )如果事件在一次试验中各种结果出现的可 能大小是相等的,那么我们就说它是等可能 事件。一般地,如果一次试验中所有事件可 能发生的结果总数是n,其中事件A可能发生 的结果总数是m 种,那么事件A的概率P(A)
=n/m。
(2)概率内容比较抽象.试验的不确定性、 概率结果的唯一性,常常使学生感到困惑。
谢谢!
Dqwanglm@
出概率的定义及矩阵式表格列出所有等可能 的结果。
(2)第二教时巩固列表方法,再在圆心角度 数不相同的情况下,通过划分转化达到求解 的方法。
(3)P36第5题:可设门A的钥匙为A1、A2,门B 的钥匙来B1、B2,不管是怎么放,再列表总能 得出从每个抽屉里任取一把钥匙,打开两道门
的概率是1 / 2。