深基坑工程地下水控制
深基坑开挖中的地下水控制技术
式中:
' Kj
K 抗管涌安全系数,K 1.5 ~ 2.0。
一、地下水控制技术方法的种类与适用条件
2. 隔水帷幕
设水头梯度为 i ,地下水的重度为 w ,
则:
j=i * w
h' L
*
w
式中:L 渗流路径计算长度。根据上海规范渗流计算长度
为垂直向渗流路径的1.5倍,加上隔水帷幕的宽度。
喷射井点法适用于渗透系数为0.1~20m/d的粘性土、 粉土、砂土地层,适用于抽降上层滞水或水量不大的 潜水,其降水深度可达20m。
一、地下水控制技术方法的种类与适用条件
3. 井点降水
3.3管井 管井降水系统由井管和抽水设备组成,井管由井壁管
和过滤器两部分组成,目前常用的是无砂混凝土管。 抽水设备根据不同的降水深度及出水量要求,选用合 适扬程和流量的离心式水泵、深井潜水泵或深井泵。 管井降水适用于渗透系数为1.0~200m/d的粉土、砂 土、碎石土地层,尤其适用于水量较大的潜水或承压 水含水层,其降水深度超过5m,在实际工程中应用最 广。
t
Δt
一、地下水控制技术方法的种类与适用条件
5.引渗 当存在多层含水层,且下部含水层的水位低于上层水
位时,可以通过井孔或砂井等将上层水引渗到下层含 水层中,如混合水位满足降水要求,则可自然降低地 下水位,如混合水位不满足降水要求,可通过抽降下 层地下水实现降低地下水位的目的。也可以采用抽渗 结合的方法,达到更好的效果。 引渗井可在基坑内外布置,井间距宜根据试验确定, 一般可采用2.0~10.0m。采用引渗井时应注意浅层地 下水对下部地下水的污染问题。
<0.001 砂质粉土 0.1~0.5 中砂 5.0~20.0
粉质粘土 0.001~0.05 粉砂 0.5~1.0 粗砂 20,0~50.0
地下水控制施工技术.docx
6-2-8地下水控制基坑工程中的降低地卜.水亦称地卜水控制,即在基坑工程旗工过程中,地F 水要满足支护结构和挖土施工的要求,并IL不因地下水位的变化,对基坑周闹的环境和设施带来危害。
6-2-8-1地下水控制方法选择在软上地区基坑开挖深度超过3m, 一般就要用井点降水。
开挖深度浅时, 亦可边开花边用排水沟和集水井进行集水明排。
地下水控制方法有多种,其适用条件大致如表6-123所示,选择时根据士必情况、降水深度、周围环境、支护结构种类等综合考虑后优选。
当因降水而危及基坑及周边环境安全时,宜采用被水或回灌方法。
地下水控制方法适用条件表6-I23当基城底为隔水展且乂底作用有承压水时,应进行坑底突涌验算,必要时可采取水平封底隔渗或钻孔减压措施,保证坑底土层稳定。
否则一旦发生突涌,将给施工带来极大麻烦。
6-2-8-2基坑涌水■计算根据水井理论,水井分为潜水(无压)完整井、潜水(无压)非完整井' 承压完整井和承压非完整井。
这几种井的涌水量计兑公式不同。
1.均质含水层潜水完整井基坑涌水晶计算根据基坑是否邻近水源,分别计算如下:(I)基坑远离地面水源时(图6∙168a)Q = 1366 — 2 吐1S(6-124)∣g(l + -)r o式中Q ---- 基坑涌水51 :K——土填的渗透系数;H一一潜水含水层厚度:S一基坑水位降深:R•一降水影响半径;宜通过试验或根据当地经验确定,当基坑安全等级为二、三级时,对潜水含水层按下式计算:R= 25√1T∕<6-125)对承压含水层按卜式计算:R = IOSJi (6-126)k一一土的渗透系数;n,一一基坑等效半径:当基坑为网形时,基坑等效半存取圆半径。
当基坑非圆形时,对矩形基坑的等效半径按下式计算:H)=O.29 (a+b)(6-127)式中a、b一一分别为基坑的长、短边。
对不规则形状的基坑,其等效半径按下式计算:式中A一一基坑面积。
(2)基坑近河岸(图6.168b)Q = L366.(2"[;S)S(b<05/i)(6-129),2b⅛-%(3)基坑位于两地表水体之间或位于补给区与排泄区之间时(图6-I68CO = 1 366( (2〃-S)S(6-130) Q. f2(ft,+⅛,) π(b l-b.)lg[——!-- -cos ------ !———图6770均质含水层承压水完整井涌水量计算简图<a>基坑远高地面水源:(b)基坑近河岸;(c)基坑位于两地表水体之间4.均质含水层承压水非完整井基坑涌水是计算(困6-171)Q = 2-73i-------- R~^κΓΓi ------------- M~lg(l ÷ ) + --- lg(l + 0.2—)(6-139)图6771均质含水层承压水非完整井涌水♦计算筒图5.均质含水层承压-潜水非完整井基坑涌水盘计算人也也”(6-140)Q =L366图6772均质含水层承压-潜水非完整井基坑涌水量计算简图6-2-8-3集水明排法在地卜.水位较高地区开挖基坑,会遇到地卜冰问题。
深基坑支护施工中的地下水控制技巧
深基坑支护施工中的地下水控制技巧地下水是指在地下岩石层、土壤中存在的水资源。
在深基坑支护施工中,地下水控制技巧至关重要。
本文将从多个方面介绍深基坑支护施工中的地下水控制技巧。
一、前期地下水勘查在深基坑支护施工前,进行充分的地下水勘查非常重要。
通过对勘察区域的了解,可以获取地下水的水位、水质和流量等信息,为施工过程中的地下水控制提供准确的依据。
二、合理选择降低地下水位的方法在施工过程中,如果地下水位过高,会给基坑开挖和支护带来较大的困难。
因此,降低地下水位是地下水控制的一种重要手段。
可以采用井点抽水、隔离帷幕、降水井和泵站等方法来实现地下水位的控制。
三、采用适当的降水井布设方案降水井的布设对于地下水控制至关重要。
合理的降水井布设方案可以提高抽水效果,并减少地下水对周边土壤的不利影响。
根据实际情况,选择适当的井距、井深和井点数量,并合理设置井点抽水管道。
四、注意控制井点抽水的量和速度在进行井点抽水时,需要控制抽水量和抽水速度。
如果抽水量太大或抽水速度过快,可能会导致基坑周边土壤的沉降和破坏。
因此,在实际施工中,需要根据地质条件和工程需要,合理控制抽水量和抽水速度,以确保施工的顺利进行。
五、加强地下水质的监测和处理地下水质的监测和处理是地下水控制的重要环节。
定期对抽出的地下水进行水质监测,及时发现并处理地下水中的污染物,保证施工过程中的环境安全。
六、合理选择支护结构在深基坑支护施工中,选择合适的支护结构也对地下水控制有重要影响。
根据地质条件、基坑尺寸和工程要求,选择适当的支护结构,以提高地下水控制的效果。
七、注意排水系统的设计和施工在进行深基坑支护施工时,排水系统的设计和施工也是地下水控制的重要环节。
合理设计和布置排水系统,确保水流畅通,并防止地下水进入基坑,保证施工的安全性。
八、加强土体监测和预警在进行深基坑支护施工期间,需要加强对土体的监测和预警。
通过对土体的变形和水位的监测,及时发现并处理可能出现的问题,确保施工的顺利进行。
深基坑工程难点应对措施
深基坑工程难点应对措施首先,深基坑工程在土质工程方面的难点主要包括土层的地下水含量高、土质薄弱、土壤状况不稳定等。
在施工过程中,这些问题可能导致土体坍塌、土壤流失等不稳定现象。
因此,对于这些问题,可以采取以下措施:1.控制地下水位:在施工前,可以通过降低地下水位来控制土层的地下水含量。
例如,可以采用井干压裂、井干减排等技术手段。
2.加固土壤:对于土壤薄弱的情况,可以采取土体加固的措施。
例如,可以使用地锚、灌浆等技术来加固土体,增加土壤的稳定性。
3.预留围护结构:对于土壤状况不稳定的情况,可以设计和施工围护结构,如支撑结构、防护墙等,来保障基坑的稳定性。
其次,深基坑工程在地下设施保护方面的难点主要包括地下管线和地下设备的保护。
在施工过程中,如果不注意对地下管线和地下设备进行保护,可能会导致破坏、泄漏等问题。
因此,对于这些问题,可以采取以下措施:1.设立警示标志:在施工现场,应通过设置明显的警示标志来提醒施工人员和周围的行人和车辆注意地下管线和设备的存在。
2.制定施工方案:在施工前,应制定详细的施工方案,明确施工过程中对地下管线和设备的保护措施,如严禁使用机械挖掘、加强施工监督等。
3.加强管线检测:在施工现场周围进行地下管线探测,确保施工过程中不会损坏地下管线。
最后,深基坑工程在安全管理方面的难点主要包括工人的安全、施工现场的安全等。
深基坑工程的施工过程比较复杂,施工现场往往存在高风险因素,如果不加强安全管理,可能导致施工人员的伤亡和事故发生。
因此,对于这些问题,可以采取以下措施:1.实施安全培训:在施工前,对施工人员进行安全培训,使其熟悉工作环境和操作规程,并提醒施工人员注意安全。
2.设立安全警示标志:在施工现场,应设置明显的安全警示标志,提醒施工人员和周围的行人和车辆注意施工现场的安全。
3.加强施工监督:在施工过程中,加强对施工现场的监督,确保施工人员遵守安全规定,杜绝违章操作和事故发生。
对于深基坑工程的难点,我们可以通过加强设计和施工管理,采取相应的措施来应对和解决。
地下水控制的四种方法
地下水控制的四种方法
地下水是地球上重要的水资源之一,但当地下水超过合理的水位时,可能会引发许多问题,如土壤沉降、建筑物受损、地下水污染等。
因此,地下水的控制非常重要。
以下是地下水控制的四种常用方法:
1. 泵水抽引
泵水抽引是最常见的地下水控制方法之一。
通过使用水泵,将地下水抽引到地表,从而降低地下水位。
这种方法常用于建筑工地或深基坑降水处理中。
2. 排水沟建设
排水沟建设是另一种有效的地下水控制方法。
通过挖掘排水沟,将地下水引导至远离建筑物或作业区域的区域,以减少地下水对周围环境的影响。
排水沟的设计需要考虑降水量、土壤类型和地形等因素。
3. 地下屏障
地下屏障是一种地下工程结构,可以有效地控制地下水流动。
常见的地下屏障包括钢板墙、土壤固化墙和混凝土壁等。
地下屏障的设置可以防止地下水流向特定区域,起到控制地下水的作用。
4. 人工增渗
人工增渗是一种通过注入水或其他液体来提高地下水位的方法。
这种方法常用于干旱地区或地下水资源枯竭的地方。
通过人工增渗,可以恢复地下水位,保持地下水的供应。
综上所述,泵水抽引、排水沟建设、地下屏障和人工增渗是常用的地下水控制方法。
根据具体情况选择合适的方法,可以有效地控制地下水位,保护周围环境和建筑物的安全。
深基坑工程中的水土保持策略
深基坑工程中的水土保持策略深基坑工程是指在建筑施工中挖掘较深的土方工程,用于地下空间的开挖和基础的建造。
然而,由于深基坑工程对地下水位和土体稳定性的影响较大,需要采取一系列的水土保持策略来保障施工过程的安全和环境的保护。
一、地下水位控制地下水位是深基坑工程中最重要的要素之一。
合理的地下水位控制能够减少坑内地下水的渗流压力,降低土体的渗透性,从而保持基坑的稳定性。
在实际工程中,可以通过以下几种方式来控制地下水位:1. 提升井管:通过安装井管并使用水泵将地下水抽出,降低井内地下水位。
2. 管线开挖:在工程周边开挖管线,将地下水引导到远离基坑的地方。
3. 钻孔排水:使用钻孔排水系统将地下水抽出,以保持坑内地下水位低于设计标高。
二、土体加固和防护深基坑工程的土体稳定性是施工过程中需要特别关注的。
为了保持基坑的稳定,需要采取以下措施:1. 土体加固:使用钢支撑(如支撑挡土墙)或混凝土衬砌来稳固基坑周边土体,增加土壤的抗剪强度。
2. 老化剂加固:使用化学稳定剂或浸渍剂来提高土壤的抗剪强度,增加土体的稳定性。
3. 防渗措施:在土体外表面施加防渗层或防水层,以防止地下水渗透到土体内部。
三、排水系统设计深基坑工程中的排水系统设计是确保工程施工和土体稳定性的重要环节。
适当的排水系统设计可以降低坑内土壤的含水率,减少土体的液化和渗透性。
下面是一些常见的排水系统设计策略:1. 表面排水:在基坑四周设置排水沟或排水管道,将雨水和地下水引导出坑外。
2. 垂直排水井:在基坑周边开挖深度较深的垂直井槽,并安装排水管道以排除坑内积水。
3. 水平排水管网:在基坑底部设置横向排水管网,将坑内水分排到周边地区。
四、环境保护措施深基坑工程施工过程中需要重视环境保护,减少对周边环境的影响。
以下是一些常见的环境保护措施:1. 建立围护结构:在基坑周边设置围护结构,减少土壤流失和水质污染。
2. 施工废弃物管理:合理处理施工废弃物,减少对周边环境的污染。
深基坑工程7-地下水控制
土壤冲刷
地下水流与土壤的相互作用, 有可能引发土壤冲刷问题。
地下水监测
1
施工期监测
在施工过程中实时监测地下水位和
基坑稳定期监测
2
水质。
监测地下水位对基坑稳定性产生的
影响,及时调整控制措施。
3
基坑回填后监测
观察地下水位的变化,确保地下水 恢复至原有水平。
深基坑工程案例分析
上海某大型基坑
我们将介绍一个成功的深基 坑工程案例,探讨其地下水 控制方案以及取得的效果。
制定应急预案,随时应对潜在的地下水问题。
地下水控制的未来趋势
新技术应用
利用先进的技术和工具, 如无人机和遥感技术,改 进地下水控制方法。
可持续发展
注重减少对环境的不良影 响,提倡可持续的地下水 控制方案。
数字化管理
借助信息技术和数据分析, 实现地下水控制过程的优 化和效率提升。
北京某建筑工地
我们将分享一些常见的地下 水控制问题,并探讨如何解 决和预防。
世界各地的最佳实践
了解来自世界各地的最佳地 下水控制实践和未来的发展 趋势。
地下水控制的安全性
1 现场保护
采取必要的安全措施,确保工人和周围环境的安全。
2 施工监控
定期检查设备和排水系统的运行情况,确保其正常工作。
3 应急准备
1 安全性
2 土壤稳定性
地下水控制对于保证 工地的安全非常重要, 减少地质灾害的风险。
合适的地下水控制方 法可以防止土壤液化 和冲刷,提高基坑的 稳定性。
3 施工效率
有效的地下水控制可 以提高施工效率,减 少不必要的洞堵和排 水时间。
地下水控制方法
减压排水
通过降低周围土壤的水 位以控制地下水。
深基坑开挖中的地下水位控制方法
深基坑开挖中的地下水位控制方法深基坑开挖是建筑工程中常见的一项关键工序,它在城市的高层建筑、地铁、桥梁等工程中占据着重要的地位。
在深基坑开挖过程中,地下水位的控制是一个十分关键的问题,它直接影响着工程的进展和质量。
本文将探讨深基坑开挖中的地下水位控制方法。
在深基坑开挖过程中,地下水位的控制是必不可少的。
首先,我们需要了解地下水位的情况,通过地质勘探、地下水位的监测以及水文地质调查,得出地下水位的基本情况,确定其波动范围和变化趋势。
根据地下水位的情况,我们可以采取以下一些地下水位控制方法。
首先,地下水位降低法是一种常用的方法。
通过降低地下水位,可以减少周围土体的水分含量,从而提高土体的强度和稳定性。
降低地下水位的方法主要有抽水和井点排水。
抽水是将地下水通过井点抽取至地面的过程。
根据地下水位和开挖深度的关系,可以确定抽水井的位置和数量。
同时,需要根据地质条件和抽水量,选择适当的抽水设备和方法,确保抽水过程的顺利进行。
井点排水是通过在开挖区域周边设置排水井点,将地下水引导至井点,通过井点进行排水。
井点排水具有连续性和稳定性好的特点,适用于开挖深度较大、土体固结差的场合。
在设置井点时,需要考虑井点的布置密度和井点间的距离,确保地下水能够有效地引导至井点。
除了地下水位降低法,还可以采取地下水位封堵法。
这种方法主要适用于地下水位较高、降低地下水位不容易的情况。
地下水位封堵法通过在开挖区域的外围设置水封隔离帷幕或者封堵墙,阻止地下水进入开挖区域。
水封隔离帷幕可以采用钢板桩、混凝土墙体或者水泥浆封堵,具有较好的隔离效果。
此外,还可以采取地下水位控制井后盖板法。
在井点处设置盖板,通过调节盖板的高度,控制地下水的排泄速率。
地下水位控制井后盖板法适用于开挖过程中地下水位的波动较大、排水量不稳定的情况。
通过调节盖板,可以满足开挖的需要,保证施工的安全性和稳定性。
在深基坑开挖中,地下水位控制是一项重要的工作,对于保障工程的施工安全和质量起到至关重要的作用。
基坑地下水的控制方法有哪些
基坑地下水的控制方法有哪些地下水的控制方法主要有降水、截水和回灌等几种形式,这几种形式可以单独添加,也可以组合使用。
(1)降水降水的方法有集水明排和井点降水两类。
集水明排属重力降水,它是在开挖沉陷基坑时沿坑底周围开挖排水沟,距离并每隔一定距离设置集是水井,使基坑内挖土时鼻涕的水经排水沟流向集水井,然后用水泵将水排出坑外。
这种方法的不足之处是,地下水沿海地带坡面或坡脚或坑底坑底渗出,以使坑底软化或泥泞;当基坑开挖深度较大时,如果土的颗粒较细,在地下水动水压力调节作用的作用下,还可能引起流砂、管涌、外壁隆起和边坡失稳。
因此,集水明排这种地下水控制方法虽然设备简单、施工方便,但在深基坑工程中单独使用有一定的条件。
图7所示为分层明沟堤防,属于集水明排的一种形式,主要适用于基坑深度较大、地下水位较高、且上部有透水性强的土层的建筑物基坑排水。
它在基坑边坡上设置2~3层明沟及相应的集水井,分层堵截并排除上部土层中的地下水,以避免上层地下水冲刷基坑下部边坡,造成塌方。
井点降水是应用最广泛的降水方法,是高地下水位基坑工程施工的重要措施之一。
井点降水主要是将带有滤管的沉设工具降水到基坑四周的土中,利用各种抽水工具,在不冷心结构土的结构的情况下,将地下水抽出,使地下水位降低到壁坑底以下,保证基坑开挖能在较干燥沉陷的施工环境中进行。
井点降水的积极作用是;1)通过降低地下水位消除基坑及坑底的渗水,改善施工作业条件;2)增加边坡稳定性,防止坡面和基底锐减的土粒流失,以避免流砂现象;3)降低承压水位,防止坑底隆起与破坏;4)改善基坑的砂土特性,加速土的固结。
井点降水法主要有轻型井点法、喷射井点法、电渗井点法、管井井点和深井井点法等。
我们将在后面的问题中再详细讨论它们的施工工艺。
(2)截水在城市中心区建筑密集的地区开挖深基坑,降水时还要考虑对周围环境的影响。
当因降水造成降水的沉降固结下沉,会危及地上建筑物和地下管线的安全与使用时,宜采用截水的方法来控制地下水。
深基坑工程7-地下水控制
3 范围
地下水控制包括对地 下水位、水压力、水 量等多项数据进行监 测和分析,以及采取 相应措施控制水的进 入和排出。
地下水控制的重要性
1 工程安全
地下水控制是确保深基坑工程施工安全的重要措施,可以减少液化风险,保护结构的稳 定性。
2 工期控制
有效的地下水控制可以减少施工工期延误,将施工风险降到最低。
3 质量保证
合理的地下水控制可以保持土体的稳定性,避免结构沉降和开裂,确保工程质量。
常用的地下水控制方法
降低地下水 位
采用排水井和水泵 设备等措施,将地 下水位降至可控范 围。
地下水封堵
采用隔离层、防渗 墙等措施,阻止地 下水进入基坑。
引流
通过设置排水系统, 引导地下水流向指 定的排放点。
增加土体抗 渗性
采用混凝土墙、土 工膜等材料,提高 土体的抗渗性能。
严格的监测体系
地下水控制需要建立一个严格的监测体系,以确保对地下水位、水压力等数据进行准确监测,及 时发现和解决问题。
水位监测的方法
1 孔隙水压力计
通过孔隙水压力计监测地下水位变化,判断水位上升或下降。
2 测井方法
利用测井仪器测量井内水位的方法进行监测,常用于既有井。
化趋势和特点。
3
制定控制方案
基于数据分析结果,制定地下水控 制的具体方案。
3 水位计
安装水位计监测地下水位变化,可以实时显示水位情况。
土壤、岩石渗透性测试
通过土壤、岩石渗透性测试,可以确定地下水的渗透性,为地下水控制的方案设计提供依据。
针对地下水量、水位、水压力等多项 数据分析
1
数据收集
收集与地下水量、水位、水压力等
数据分析
2
土木工程师-专业知识(岩土)-基坑工程与地下工程-7.3地下水控制
土木工程师-专业知识(岩土)-基坑工程与地下工程-7.3地下水控制[单选题]1.某中心城区地铁车站深基坑工程,开挖深度为地表下20m,其场地地层结构为:地表下0~18m为一般黏性土,18(江南博哥)m~30m为砂性土,30m~45m为强~中等风化的砂岩。
场地地下水主要是上部第四纪地层中的上层滞水和承压水,承压水头埋藏深度为地表下2m,挡土结构拟采用嵌岩地下连续墙。
关于本基坑的地下水控制,可供选择的方法有以下几种:a.地下连续墙槽段接头处外侧布置一排多头深层搅拌桩;b.基坑内设置降水井;c.坑内布置高压旋喷桩封底。
从技术安全性和经济适宜性分析。
下列方案最合适的是()。
[2013年真题]A.a+bB.b+cC.a+cD.a、b、c均不需要正确答案:A参考解析:根据《建筑基坑支护技术规程》(JGJ 120—2012)第7.1.1条规定,地下水控制应根据工程地质和水文地质条件、基坑周边环境要求及支护结构形式选用截水、降水、集水明排或其组合方法。
根据具体工程的特点,基坑工程可采用单一地下水控制方法,也可采用多种地下水控制方法相结合的形式。
连续墙已经嵌岩,a的方法已经止住外部水进来,只需要把坑内水位降低即可,分段布置地下连续墙,在两段连续墙之间使用深搅桩或者高压旋喷桩来进行止水,在经济上比较节约,亦可达到工程效果,所以a+b满足要求。
[单选题]2.在地下水丰富的地层中开挖深基坑,技术上需要同时采用降水井和回灌井,请问其中回灌井的主要作用是下列哪一个选项?()[2012年真题]A.回收地下水资源B.加大抽水量以增加水头降低幅度C.减少基坑降水引起地层变形对基坑周边环境产生的不利影响D.减少作用在支护结构上的主动土压力正确答案:C参考解析:根据《建筑基坑支护技术规程》(JGJ 120—2012)第7.3.25条规定,当基坑降水引起的地层变形对基坑周边环境产生不利影响时,宜采用回灌方法减少地层变形量。
回灌方法宜采用管井回灌,回灌应符合下列要求:①回灌井应布置在降水井外侧,回灌井与降水井的距离不宜小于6m;回灌井的间距应根据回灌水量的要求和降水井的间距确定;②回灌井宜进入稳定水面不小于1m,回灌井过滤器应置于渗透性强的土层中,且宜在透水层全长设置过滤器;③回灌水量应根据水位观测孔中的水位变化进行控制和调节,回灌后的地下水位不应高于降水前的水位。
《深基坑地下水控制及渗流规律的应用研究》范文
《深基坑地下水控制及渗流规律的应用研究》篇一一、引言随着城市化进程的加速,高层建筑、地铁、隧道等大型基础设施的建设日益增多,深基坑工程也愈发常见。
然而,深基坑工程中地下水控制问题一直是工程建设的难点和重点。
地下水的控制对于保证基坑的稳定性和施工安全具有重要意义。
因此,本文旨在研究深基坑地下水控制及渗流规律的应用,以期为相关工程提供理论依据和技术支持。
二、深基坑地下水控制的重要性深基坑工程中,地下水控制是至关重要的。
首先,地下水控制可以保证基坑的稳定性,防止因土体受水侵蚀而发生坍塌;其次,可以减少渗水对工程的危害,降低安全事故发生的可能性;最后,合理控制地下水还能降低环境影响,如防止地下水位上升导致周围建筑物的破坏。
因此,深入研究地下水控制及渗流规律对深基坑工程具有重要意义。
三、地下水控制技术与方法针对深基坑地下水控制,目前常用的技术与方法包括降水法、回灌法、堵漏法等。
其中,降水法是应用最广泛的方法之一。
该方法通过井点降水、集水井等手段降低地下水位,从而减少基坑内的渗水。
回灌法则是将经过处理的废水回灌到地下,以降低地下水位和减轻基坑内渗水。
堵漏法则主要是通过注浆、注水膨胀材料等手段封闭漏水通道,达到控制地下水的目的。
四、渗流规律及其应用渗流规律是研究地下水在土体中的运动规律,对于深基坑工程具有重要意义。
在深基坑工程中,渗流规律的应用主要体现在以下几个方面:1. 预测基坑变形:通过分析渗流规律,可以预测基坑的变形情况,为工程设计提供依据。
2. 优化降水方案:根据渗流规律,可以制定更合理的降水方案,如选择合适的井点位置和数量,降低基坑内渗水。
3. 防止突水事故:了解渗流规律可以及时发现和处理潜在的突水事故风险,保证工程安全。
五、研究现状及发展趋势目前,国内外学者在深基坑地下水控制及渗流规律方面进行了大量研究。
研究方法包括理论分析、数值模拟、现场试验等。
随着科技的发展,越来越多的新技术和新方法被应用于该领域。
深基坑开挖施工方案基坑开挖的地下水处理方案
深基坑开挖施工方案基坑开挖的地下水处理方案深基坑开挖施工是建设工程中的一项关键工序,其执行过程中需要充分考虑地下水的处理方案,以确保施工的安全和顺利进行。
本文将针对深基坑开挖的地下水处理方案进行探讨,并提供合理的建议。
一、地下水处理的必要性在深基坑开挖过程中,地下水是一个不可忽视的因素。
未经处理的地下水可能对施工环境和工程品质产生不良影响,并危及工人的安全。
因此,制定合理的地下水处理方案至关重要。
二、地下水处理方案的步骤1. 地下水勘察与分析在开始施工前,应对工程区域进行地下水勘察和分析。
通过探测地下水位、流动方向和流速等参数,以评估地下水的情况和对施工的潜在影响。
同时,还需考虑周边环境的地下水状况,以制定相应的处理方案。
2. 地下水位控制为了保持施工现场的干燥,必须进行地下水位的控制。
一种常用的方法是通过设置抽水井来降低地下水位。
根据地下水位的高低和施工进度,确定合适的抽水井数量和位置,确保地下水位维持在安全范围内。
3. 地下水的处理与排放将抽取上来的地下水送至处理设备进行过滤和净化,以达到排放标准。
常见的地下水处理设备包括沉淀池、过滤器和分离器等。
通过这些设备的协作作用,可以有效去除悬浮固体、油脂、重金属等有害物质,确保地下水在排放前达到环境标准。
4. 实施监测与调整地下水处理方案的实施需要进行持续的监测与调整。
通过监测地下水位、排放水质等指标,及时调整处理设备的运行状态和抽水井的位置,以适应施工环境的变化。
只有持续的监控和调整工作,才能确保地下水处理方案的有效性。
三、地下水处理方案的注意事项在制定地下水处理方案时,需要注意以下几个方面:1. 合规性:地下水处理方案必须符合当地的环境保护法规和标准,确保处理后的地下水达到排放要求,并不会对周边环境造成污染。
2. 高效性:地下水处理方案应高效可靠,能够在短时间内处理大量的地下水。
处理设备的选择和运行参数的调整应能最大程度地提高处理效率。
3. 经济性:地下水处理方案的实施需要一定的投入成本,因此需要综合考虑成本与效益之间的平衡。
探究深基坑地下水控制与预防措施
探究深基坑地下水控制与预防措施深基坑工程中,地下水的危害较大,应在施工中采取必要的措施加以处理。
降水是深基坑地下水处理最直接有效的方法之一,在很多工程中得到了成功的应用。
因此,地下水的控制也成了地下工程中一项非常重要的技术,为保证工程质量及安全,需对基坑工程降水技术进行深人研究,从而总结出一套行之有效的技术理论,用以反馈设计及指导施工。
本文探讨了深基坑地下水控制与预防措施。
标签:深基坑;地下水;控制;措施深基坑工程地下水控制是一个复杂的、与多方面因素相关的工作,是一项系统工程,勘察、设计、施工、监测和管理是几个紧密联系的环节。
在施工中应根据经验和实际情况,并依据监测数据合理采用控制地下水不利影响的措施。
同时要注意降水对周边建筑物、道路及地下管线造成的影响,并做好汛期地下水处理的方案,制定应急措施,确保基坑工程的安全。
一、地下水对深基坑工程的影响1、潜水位上升引起的基坑工程危害(1)含水层颗粒细小,其渗透性弱,尤其是上覆粗粒松散地层时,地表水容易下渗。
(2)当包气带薄时,毛细带接近地表,土饱和差小。
(3)地下水流梯度小或者平缓时,排泄不畅。
(4)当含水层沿水流方向岩性突然变细、渗透性减弱或遇到隔水层时,潜水排泄困难。
(5)河流、湖塘、水库、渠道等地表水体渗入补给等。
潜水位上升在第四系全新统冲积、海积松散粉细砂层中,可导致粉细砂土层产生流砂、砂土液化等;而在风化残积土及强风化岩区,可产生岩土软化、崩解以及滑移、崩塌等。
2、地下水位过大下降引起的基坑工程危害地下水位局部过大下降引起的原因,主要是人为因素改变了水文地质条件造成的,如集中过量的抽取地下水,使地下水的开采量大于补给量,导致地下水位过大而持续下降,降落漏斗亦相应的不断扩大。
另外,工程活动如降水工程、施工排水等也能造成局部地下水位过大下降。
地下水位局部过大下降引起的主要基坑工程问题是地面塌陷、地面沉降等。
3、地下水动水压力作用引起的基坑工程危害地下水在天然状态下动水压力作用比较微弱,但是在人为工程活动中由于改变了地下水天然动力平衡条件,在一定的动水压力作用下,往往会引起一些严重的基坑工程危害,如流砂、管涌、突涌等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深基坑工程地下水控制(纲要)一、概述二、地下水类型及含水层的地层组合特点常用的地下水分类方法上层滞水、潜水、承压水——综合分类表三、与地下水控制相关的理论前言:地下水的基坑以三种不良作用——涌水、固结沉降、渗流破坏(一)土力学中的相关概念关于“固结沉降”关于渗流破坏(管涌、流砂、突涌)(二)水文地质学中的几个基本概念渗流基本定律——达西定律水力梯度(水力坡度)抽水井裘布依半径——影响半径基坑涌水量估算与抽水井涌水量计算四、各类含水层的宏观分布规律(冲积平原及河流阶地、滨海平原及三角洲、黄土高原及北方河流阶地,岩溶水)五、深基坑地下水控制要点1、隔渗帷幕2、井点降水3、隔渗帷幕和井点降水联合使用4、明排5、按地下水类型采取地下水控制措施(上层滞水、潜水、承压水控制)六、深基坑地下水控制与环境影响七、基本经验与体会一、概述在影响基坑稳定性的诸多因素中,地下水的作用占有突出位置。
历数各地曾发生的基坑工程事故,多数都和地下水的作用有关。
因此,妥善解决基坑工程的地下水控制问题就成为基坑工程勘察、设计、施工、监测的重大课题。
地下水对基坑工程的危害,除了水土压力中水压力对支护结构的作用之外,更重要的是基坑涌水、渗流破坏(流砂、管涌、坑底突涌)引起地面沉陷和抽(排)水引起地层不均匀固结沉降。
基坑工程地下水控制的目的,就是要根据场地的工程地质、水文地质及岩土工程特点,采取可靠措施防止因地下水的不良作用引起基坑失稳及其对周边环境的影响。
基坑工程地下水控制的方法分为降(排)水和隔渗(帷幕)两大类,这两种方法各自又包括多种形式。
根据地质条件、周边环境、开挖深度和支护形式等因素的组合,可分别采用不同方法或几种方法的合理组合,以达到有效控制地下水的目的。
充分掌握场地的水文地质特征,预测基坑施工中可能发生的地下水危害类型,如基坑涌水、渗流破坏(流砂、管涌、坑底突涌)或排水固结不均匀沉降,是选择正确、合理方法,实现有效控制地下水的前提和基础。
对基坑工程而言,水文地质特征主要是指场地存在的地下水类型(上层滞水、潜水、承压水)和含水层、隔水层的分布规律及主要水文地质参数(地下水位或承压水头深度、含水层渗透系数和影响半径等)。
水文地质参数是需要通过专门的水文地质勘探、测试、试验来取得的。
比如,不同含水层的地下水位或水头必须用分层止水、分层观测得到,而不能用混合水位代替。
渗透系数和影响半径则必须进行现场抽水试验来确定。
这些专门水文地质工作的方法和技术要求,在相关的规程、规范和手册中均有详尽的论述,本文不作详细列述。
大多数城市基坑工程处在第四纪土层中。
由于我国地域广阔,第四纪沉积的地质条件复杂多变,但是,第四纪地层中的分布规律及其相应的水文地质、工程地质特点,是有宏观规律可循的。
任一地区的第四纪地层的水文地质、工程地质特点,集中受控于地区所属的地貌单元、地层时代和地层组合这三个要素。
也就是说,地貌单元不同则地层时代和地层组合不同,因而地层中地下水的类型和相关的水文地质特点也不相同,因此也就决定了基坑工程地下水控制的重点和方法。
总之,地质条件、开挖深度和周边环境是深基坑设计和施工的三大控制要素,地质条件是第一要素,而地下水的作用又是地质条件中的最重要因素。
因此,可以说深基坑工程地下水控制是大多数基坑的核心课题。
所谓的“岩土工程”实际是“岩、土、水”工程,也是从这个意义上讲的。
本文将从地下水埋藏的宏观规律入手,阐述基坑工程的地下水控制要点。
少数基坑工程涉及到基岩中的地下水控制问题,其中突出的是石灰岩中岩溶水的控制,本文也将作简要介绍。
二、地下水类型及含水层的地层组合特点2.1地下水的基本类型常用的地下水分类方法有两种,一种是按含水层的埋藏条件和水力特征分为上层滞水、潜水和承压水;一种是按含水介质特性分为孔隙水、裂隙水和岩溶水,或以某两种水的组合分为孔隙裂隙水(黄土中水)、裂隙孔隙水(半胶结砂砾岩)和岩溶裂隙与溶洞、管道水。
通常是考虑上面所述的两种因素进行综合分类(见表2-1)。
地下水按其埋藏条件的水力特性划分的基本类型及其定义如下:上层滞水——是指地层的包气带中局部的、不成为连续含水层的土层中的地下水,多为孔隙水、无压力水头。
如人工填土、淤泥透镜体和多年冻土融冻层中的地下水。
它与周围、上下的其他含水层无水力联系。
潜水——是指地表以下至第一个隔水底板之上的含水层中的地下水,有孔隙水,也有裂隙水或浅部岩溶带中地下水,无压力水头。
承压水——是指上下两个隔水层之间的含水层中的地下水,亦称层间水。
有孔隙水,也有裂隙水(裂隙孔隙水)或岩溶发育带中地下水。
因顶板倾斜、含水层厚度变化,特别是补给区水位高于本区隔水层顶板时,该含水层形成压力水头并高于顶板,故称承压水。
当承压水头高出地面且当顶板被揭穿时,承压水即溢出地面,称为自流水(井、泉)。
各类地下水类型见下图1。
图1.三种类型地下水地下水的综合分类及相应的基坑工程地下水控制原则见表1-1。
注:此表参照一些类似的分类表改编而成,为使基坑工程地下水控制更有针对性地使用此表,特另加附注。
三、与地下水控制相关的理论深基坑工程地下水控制设计与施工主要涉及两个学科的理论,即水文地质学和土力学。
简言之,深基坑工程要控制地下水位、涌水量和环境影响,就需要取得基本的水文地质参数和进行相关的水文地质计算。
为此就应具备一定的水文地质学的理论知识;深基坑工程要把地下水的不良作用和环境影响降低到最小程度就需要具备一定的土力学相关理论知识。
基坑工程中地下水的不良作用——三大不良作用其一,强透水含水层的大量涌水;其二,地下水位下降、含水层疏干、地层固结沉降,导致周围地面沉降甚至区域性地面沉降;其三,在含水层处于饱和状态下开挖或防渗漏帷幕失效,产生渗流破坏——发生流砂、管涌和基底突涌。
大量“流土”,将产生灾难性后果。
深基坑地下水控制什么?就是控制这三样东西。
为此,最低限度也要具备以下一些土力学和水文地质学的相关知识。
(一)土力学中的相关概念1、关于“固结沉降”土体排水过程中固结沉降的原理,来源于太沙基(Karl Terzaghi)1923年提出的有效应力原理和渗流固结理论,这是土力学中最重要的原理,是土力学成为一门独立学科的重要标志。
在这里不具体列举各种计算公式,但需指出以下基本概念: ①所谓固结理论是指“饱和土体渗流固结”,而渗流是根据达西定律(V=k ·i ),也就是说,没有渗流就没有固结。
②在应用固结理论分析地基沉降时,地基土是在建筑荷载作用下、地基土产生附加应力,即“被动”排水固结;而降水时是土中重力(自由)水自动渗出,造成负孔压进而增加有效应力,产生土层固结沉降。
这两种固结沉降的条件和过程是不相同的,必须具体情况具体分析。
③饱和土中水产生渗流运动的条件:一种是在附加应力作用下土的孔隙被挤压、孔隙水渗流排出;另一种是在自重作用下,孔隙中的自由(重力)水自动渗流排出。
由于后者是“自动渗流”,这就需要土层具有一定的透水性。
一般情况下,土的渗透系数K 值小于10-6cm/s 就是不透水层。
这类土层中的孔隙水在自重作用下不会发生渗流排出。
④目前大家引用“分层总和法”进行降水引起地面沉降量预测计算时,并不完全符合“在建筑物荷载作用下,地基土在附加应力作用下固结沉降的作用条件”而是“自重作用”条件下孔隙水自动渗流排出的自动固结沉降。
这就要求在使用计算公式时作具体分析。
试将湖北省《基坑工程技术规程》中的计算公式做具体分析:式中:SW ∆——水位下降引起的地面沉降(cm );M s ——经验系数;Ms=M 1·M 2。
对于一般粘性土可取0.3—0.5;粉质粘土、粉土、粉砂互层M 1可取0.5—0.7;淤泥、淤泥质土M 1可取0.7—0.9。
当降水维持时间3个月之内时可取0.5—0.7;当降水维持时间超过3个月时M 2可取0.7—0.9。
∑=∆•=∆ni sihiwis E M 1SW σσwi——水位下降引起的各计算分层有效应力增量(KPa)△hi——受降水影响分层(自降水前的水位至含水层底板之间)的分层厚度(cm);n——计算分层数;Esi——各分层的压缩模量(KPa)。
要强调指出的是,当存在两层以上含水层时,如上层为潜水或上层滞水,下层为承压水,两层之间有隔水层而只降下层承压水时(如图1),就应作具体分①上、下两层水之间有隔水层(K值≤10-6cm/s)时,上层滞水含水层(杂填土、淤泥)一般不应算作压缩层,只有在上下两层水之前的隔水层有缺口时才可算作压缩层;②主要的压缩层是承压含水层(粉质粘土、粉土、粉砂互层和粉细砂、粗砂、砾石层)③承压水头的位置只反映承压水压力高度,并不一定对应承压含水层,因而水位下降时不一定引起水位下降过程中所“经过”的所有土层产生有效应力增量;④承压含水层顶板为不透水粘性土层(K值≤10-6cm/s)时,该层不能自动排水固结,故不能算作压缩层;⑤ 承压含水层顶板直接为淤泥时,该淤泥层可作为压缩层;⑥承压含水层顶板直接为淤泥质粉质粘土,且降水位已降至其下的承压含水层中时,该顶板层可视为部分压缩层;当降水位(头)仍在顶板以上时,顶板层可不视为压缩层,因此时只反映承压含水层本身孔隙水压力变化,它和顶板层的孔隙水无水力联系。
倘若能如此细致分析、计算,对降水引起的沉降预测势将更接近实际。
否则将会得到预估沉降远大于实际沉降的结果。
2、关于“渗透破坏”在经典土力学中,渗透破坏亦称渗透变形。
为理解渗透变形,首先要明确两个概念——渗透力j 和临界水力坡降(梯度)i cr 。
(1) 渗透力——由于水头差的存在,土中水产生渗流,同时产生向上的渗透力,即每单位土体内所受的渗透作用力,用j 表示。
其值:j=r w ·i渗透力的大小和水力坡降i 成正比,其方向与渗透方向一致。
(2) 临界水力坡降土中水的渗透水力坡降逐渐增大时,渗透力也随之增大。
当水力坡降(水头差)增大到某一数值即临界水力坡降时,即向上的渗透力克服了向下的重力时,土体就会浮起或受到破坏,俗称流土。
临界水力坡降用i cr 表示。
其值:式中:i cr ——临界水力坡降 r ’——土的浮容重; r w ——水的容重由于 故式中:G s 、e 分别为土的颗粒比重和土的空隙比。
可见临界水力坡降是针对每wr r r i 'c =er G r ws +-=1)1('eG i s cr +-=11一种土而言的。
土工建筑物及地基由于渗流作用而出现的变形或破坏称为渗透变形或渗透破坏,如土层剥落、地面隆起、细颗粒被水带出以及出现集中渗流通道等。
单一土层的渗透变形主要是流土和管涌两种基本形式:①流土(流砂)——在向上的渗透水流作用下,表层土局部范围内的土体或颗粒同时发生悬浮、移动的现象称为流土。