钢筋笼起吊用扁担强度验算计算书
地连墙钢筋笼吊装验算书
附件:地下连续墙钢筋笼吊装及机械选用验算书苏州市轨道交通3号线工程土建施工项目(首批)川-TS-05标段地下连续墙深 度为32m ,其中最重钢筋笼长度为32.456m,重量约为23.77T ,墙厚800mn ,钢筋 笼厚度为680mm本次验算按32.456m 最重钢筋笼进行计算,起吊机索具、吊钩、铁扁担按 1.5T 计算,工字钢重7.38吨(2根)即钢筋笼重量 G=23.77+1.5+7.38=32.65吨(含2根 H 型钢及索具、吊钩、铁扁担重)。
1、吊具配备计算(1)吊装扁担吊装扁担初选采用钢板焊接制作,其形状为矩形,在钢丝绳位置设置防止移动的固定装置,扁担的形状与各部位尺寸详见下图采用A28钢筋,查表知A28钢筋的设计抗拉应力为:210N/mm A28钢筋抗拉力 验算:钢筋笼最大重量: g330KN 四根吊筋,即每根承受:f=330/4=82.5KN ; 单根 A28 钢筋容许拉力为:f 容=0.785x28x28x210/1000=129.242KN,f 容 =129.242KN > f=82.5KN ,故可满足吊装要求。
2、吊车配置型号钢筋笼主吊配置吊车:200T 履带吊车,吊车型号为:三一重工 SCC200C 型;按照上图扁担受力的情况进 行计算,焊接扁担的钢板可选择 6mm 厚的钢板,高度为350mm 宽 度150mm 扁担的长度定为吊装钢 筋笼最大宽度的80%即6.0m x 0.8 = 4.8m,取 L = 4.5m ,起重机 的钢丝绳连接的吊点距扁担两端 为全长的20%即0.9m ,即可满 足最大重量钢筋笼的吊装要求。
(2)吊筋3C L2711jA /nf a n ” so1 ! 1F l吊重扁担梁受力简图C/3G/JG/3钢筋笼副吊配置吊车:100T履带吊车,吊车型号为:三一重工SCC100C型。
吊车配置计算参数表表中数据参照三一重工SCC100(型、三一重工SCC200C型吊装参数:三一重工SCC200C型吊装参数表三一重工SCC100C型吊装参数表3、吊车配置计算按最重钢筋笼重量计算:即WT=32.65T(含索具、铁扁担、吊钩及H型钢重)配置200T 履带吊作为主吊,100T履带吊作为副吊,双机抬吊钢筋笼如:吊车抬吊方法示意图。
地下连续墙工程钢筋笼吊装验算方法和计算公式PPT
验算方法以及计算公式
设计图纸
最重钢筋笼重量:34.5吨,长34.15米
端头 6 米首开
钢筋笼宽
幅宽 m 6
6 笼长 m: 34.15 墙厚 m 0.8 笼厚 m: 0.662
m:
间距 单根长 比重
编号 钢筋名称 级别 型号
根数
重量(kg) 大样 பைடு நூலகம்注
(mm) 度:m (kg)
1.7 4 6.318 42.963
19 防绕流铁皮固定筋 Ⅱ 16
15 4 1.580 94.771
20 防绕流铁皮 0.0006*0.5 33.7 4 7850 317.454
21 保护块
0.32*0.005*0.1 36 7850 45.216
22 工字钢 (0.7+0.634)*0.01*33.7 2 7850 7058.060
7、主吊扁担上方卸扣采用弓形55吨(市场上在55吨和85吨之间没有其他型号),共2个。下 方采用弓形35吨(市场上在35吨和55吨之间没有其他型号),共2个。
8、副吊扁担上方卸扣采用弓形55吨,共2个。下方采用弓形35吨,共2个。
9、主吊起重钢丝绳下方采用弓形17吨,共4个,翻转预留钢丝绳下方采用弓形17吨,共2个。 副吊起重钢丝绳下方采用弓形17吨,共6个。
1 内侧主筋 Ⅱ 25 150 34.15 41 3.856 5399.328
2 内侧加筋 Ⅱ 25 150 17 40 3.856 2622.250
3 外侧主筋 Ⅱ 25 150 34.15 41 3.856 5399.328
4 外侧加筋 Ⅱ 25 150 19 40 3.856 2930.750
5 水平筋 Ⅱ 18 200 6 242 1.999 2902.664
地下连续墙钢筋笼吊装计算书
珠机场城际轨道交通工程拱北至横琴段地下连续墙钢筋笼吊装验算书编制:审核:批准:中交四航局珠机城际轨道交通拱北至横琴段三工区项目经理部2014年3月目录一、计算依据 (1)二、吊装参数 (1)2.1、钢筋笼吊点设置 (1)2.1.1、钢筋笼纵向吊点 (1)2.1.2、钢筋笼横向吊点 (1)2.2、履带吊选型 (2)2.3、扁担梁结构形式 (3)2.4、钢丝绳 (3)2.5、钢筋笼吊装细部结构 (4)2.5.1、吊攀 (4)2.5.2、A型吊点 (4)2.5.3、B型横担 (4)2.5、卸扣 (5)2.6、钢筋笼搁置扁担 (5)三、荷载 (6)四、吊装验算 (6)4.1、履带吊验算 (6)4.1.1、双机起吊两台履带吊受力分配验算 (6)4.1.2、履带吊主吊主臂长度验算 (10)4.2、起吊扁担梁验算 (11)4.2.1、扁担截面强度验算: (11)4.2.2、吊钩孔局部承压验算: (12)4.2.3、扁担梁抗剪强度验算 (12)4.2.4、横担梁的稳定性核算 (13)4.3、钢丝绳强度验算 (13)4.4、吊攀验算 (14)4.5、吊点验算 (15)4.5.1、吊点受拉验算 (15)4.5.2、吊点处焊缝抗剪强度计算 (15)4.6、横担验算 (15)4.7、卸扣验算 (16)4.8、钢筋笼搁置扁担 (16)4.8.1、搁置扁担截面强度验算 (17)4.8.2、搁置扁担抗剪强度验算 (17)4.9、地基承载力计算 (18)五、结论 (18)一、计算依据1、《珠海市区至珠海机场城际轨道交通工程拱北至横琴段金融岛站围护结构施工图》;2、《起重吊装常用数据手册》;3、《铁路桥梁钢结构设计规范》(TB 10002.2-2005 J461-2005);4、《钢结构设计规范》(GB50017-2003);5、《工程建设安装起重施工规范》HG20201-2000;6、《建筑施工手册》(第四版);7、《路桥施工手册》。
扁担验算
主、副吊扁担验算根据施工队伍进场后实际采用扁担与方案尺寸不相符,根据实际所用扁担尺寸重新进行验算,计算过程如下:主副铁扁担均采用40mm厚钢板加工,扁担长度5.0米,高0.66米,设置两组吊孔.具体尺寸大样如下图:扁担加工尺寸及示意图1 钢扁担尺寸以及材料参数钢扁担采用Q345钢钢板加工制作而成。
GB/T 700-2006标准规定Q345钢抗拉强度为190~620MPa,屈服强度为345Mpa。
扁担横截面面积=3×66=198cm2钢材强度设计值表2 吊孔C孔壁局部承载验算.(1)主吊卡环孔壁局部受压承载力σcd=KQ/(2*b*d) ≤[σcd]式中σcd—吊装孔壁、局部压应力;b—卡环孔宽,等于卡环直径(取85);d—孔壁钢板总厚度;[σcd]—钢材局部承压强度容许应力,取0.9fc;K—动力系数取1.5。
钢丝绳在钢筋笼竖直状态时受力最大,此时扁担上部两边各道钢丝绳承受最大重量:P=41.5*9.8/2*sin60°=176.1KNσcd=KQ/(b*d)=1.5*176100/(2*70*70)=26.95N/mm2≤[σcd]=0.66*300=198N/mm2(根据钢结构设计原理钢材端面承压强度设计值fc=400 N/mm2),满足要求。
(1)中部截面强度验算钢板横吊梁一般按受弯构件计算。
其计算步骤和方法一般是根据经验初步选定截面尺寸,再进行强度验算。
根据建筑施工手册公式截面弯矩按M=1/4*K*Q*lQ—构件重力;K—动力系数,取K=1.5;L—两挂卡环孔间距离。
横吊梁为受弯构件,按下式进行强度验算:σ1= M/W1≤fσ2= M/W2≤f式中W1 、W2分别为上下两部分的截面抵抗矩;W1=I/y1 、W2=I/y2 。
式中y1 、y2 分别为截面的重心轴到上下边缘的距离。
M1=1/4*K*Q*l=1/4*1.5*41.5*9.8*2.8=427.04KN·mW1=I/y1=1/12*40*660^3/330=2.9*10^6 mm3M2=1/4*K*Q*l=1/4*1.5*41.5*9.8*2.7=411.8KN·mW2=I/y2=1/12*40*660^3/330=2.9*10^6 mm3σ1= M/W1=427.04*10^6/2.9*10^6=147.3≤f=265 N/mm2σ2= M/W2=411.8 *10^6/2.9*10^6=142≤f=265 N/mm2,抗弯强度满足要求。
钢筋笼起吊用扁担强度验算计算书
钢筋笼起吊用扁担强度验算计算书1、钢扁担尺寸以及材料参数图1 钢扁担尺寸示意图钢扁担采用45号钢板加工制作而成。
GB/T699-1999标准规定45号钢抗拉强度为600MPa,屈服强度为355MPa,抗剪强度为410MPa。
挤压强度为拉伸强度的2~2.5倍;钢扁担的尺寸见图1(图中标注单位均为mm)所示,钢扁担厚度为70mm,孔径均为90mm。
2、建立钢扁担分析模型图2 钢扁担分析模型钢扁担分析模型如图2所示。
3、钢扁担抗力计算(1)扁担横向最小横截面如下图3所示图3 最小截面示意图62(70400057090)100.2485()s A m -=⨯-⨯⨯⨯=则竖向承受最大拉伸荷载为63600100.2485149.110()F A KN σ==⨯⨯=⨯换算质量为:6/10149.1101014900()G F t ==⨯÷=小结:由竖向拉伸抗力计算可知,此种型号扁担竖向可承受14900t 。
(2)竖向最小横截面如下图4所示图4 竖向最小横截面示意图621(706009070)100.0357()A m -=⨯-⨯⨯=则竖向截面承受最大剪力为:661410100.035714.63710()Q A N τ==⨯⨯=⨯换算为质量为:6/1014.63710/101463.7()G Q t ==⨯=(3)钢扁担孔周承载计算图5 孔周最小截面计算示意图计算面积为:上部: 62270120100.084()A m -=⨯⨯=下部: 62370100100.007()A m -=⨯⨯=则单孔承受最大剪力为:上部: 6612410100.0084 3.44410()Q A N τ==⨯⨯=⨯下部: 6623410100.007 2.8710()Q A N τ==⨯⨯=⨯换算为质量为:上部: 611/10 3.44410/10344.4()G Q t ==⨯=下部: 622/10 2.8710/10287()G Q t ==⨯=综上,从最大拉伸考虑,钢扁担可承受最大起吊质量为14900t ;从扁担最小截面承受最大剪力来考虑,钢扁担可起吊重量为1463.7t ;而从单孔周边最大承载来考虑,钢扁担可起吊最大重量为344.42688.8⨯=t 和2873861⨯=t (横向三点吊)或2872574⨯=t (横向两点吊)。
吊笼钢筋验算书
吊笼焊缝强度计算施工过程中通常采用吊笼吊运扣件、钢筋马镫、垫块等材料,为保证吊运安全,要求吊笼四角的吊环焊接强度必须满足大于钢筋的抗拉强度设计值.焊接的强度大小与焊缝的长度直接相关.下面就对钢筋的焊接长度进行计算:一根钢筋的抗力按照下面的公式进行计算:24d R f S y π= (公式1) 式中 R S —-钢筋的抗力(N )d ——钢筋的直径(mm )f y ——钢筋的抗拉设计值(2/N mm )钢筋接头焊缝抗力按下式计算(公式2)式中 R f ——钢筋接头焊缝的抗力(N )h -—焊缝厚度(mm ),约按0.3 d 取用l --钢筋搭接焊缝长度(mm )f t -—焊缝抗剪强度设计值(2/N mm ),采用E43型焊条,(对HPB235级钢筋)时取160 N/2mm为保证焊缝具有足够的抗力,应使R f > R S ,即 20.34d dlf f t y π>(公式3) 即 2.62df yl f t> (公式4) 当用于HPB235级钢筋时,2210/f N mm y =,则 2.62210 3.5160l d d ⨯>≈ (公式5) R hlf f t=以上为理论上的粗略计算,实际上,由于操作因素(如操作不熟练、选用参数不当等)以及钢筋受力条件的差异,钢筋焊接长度还应根据具体情况乘以安全系数2.0~2.5,或按规范的规定取用,见下表.施工现场采用的吊笼的笼体采用HRB400级钢筋,直径20mm ,焊接连接成长1000mm 、宽800mm 、高1000mm 的矩形体,采用HPB235级钢筋,直径16mm ,弯成环状,环的两支焊接在吊笼的四角。
吊笼四壁及底部选用模板封挡,防止物料掉落。
根据上述计算,选用HPB235级、直径16的钢筋做吊环,焊缝长度满足8d 时, 20.38160/ =98304N R hlf mm mm N mm f t ==⨯16⨯⨯16⨯因此,焊缝的抗力承受重量远大于吊笼能够装载的物料重量。
吊装用自制铁扁担受力计算
吊装用自制铁扁担受力计算书审批:鞍钢建设企业建筑制品分企业技术质量部吊装用自制铁扁担受力计算一、内力计算:依据工具工作的性质和状况,剖析梁在使用过程中的最不利受力形式为:梁自重: m= 450kgN=q= N/L= m这类状况下, P 点所收弯矩、剪力最大,定为刚性节点,在自重和外力 F1 作用下的弯矩图为:qL12 /2F1L11、自重2、外力 F1M2=qL12/2 =××=M=F1L1 (F1=F2)F1、 F2 即为最不利荷载下所能蒙受的最大重量二、截面计算y120槽50×5角钢x300120I x=2× 1/12 ×× 303+2××〔〕2=2250+6808=9058cm2W x1= I x/h=9058/15=W x2= I x/h=6808/15=斜杆数目足够多,可将力平均传达与散布,工具梁可视为一根整体箱型截面构件。
三、强度计算M1= r x W x1f =××= KN· mM2= r x W x2f =××= KN· m减去自重产生的弯矩:Mmax= KN· mMmin=· mF1max=L=×=G=2F1max=F1min=L=×=G=2F1min=四、整体稳固性h/b о=300/125= ≤6l 1/b о=11560/125= ≤ 95× 235/fy不需要做稳固计算五、刚度计算V= M·l 2/10E · Ix =× 106×115602/10 ×206× 103× 9058× 104= >V = l/400 =蒙受弯矩为扁担蒙受弯矩的:÷=最不利状态下所能蒙受的重量为×=。
地下连续墙钢筋笼吊装计算书
珠机场城际轨道交通工程拱北至横琴段地下连续墙钢筋笼吊装验算书编制:审核:批准:中交四航局珠机城际轨道交通拱北至横琴段三工区项目经理部2014年3月目录一、计算依据 (1)二、吊装参数 (1)2.1、钢筋笼吊点设置 (1)2.1.1、钢筋笼纵向吊点 (1)2.1.2、钢筋笼横向吊点 (1)2.2、履带吊选型 (2)2.3、扁担梁结构形式 (3)2.4、钢丝绳 (3)2.5、钢筋笼吊装细部结构 (4)2.5.1、吊攀 (4)2.5.2、A型吊点 (4)2.5.3、B型横担 (4)2.5、卸扣 (5)2.6、钢筋笼搁置扁担 (5)三、荷载 (6)四、吊装验算 (6)4.1、履带吊验算 (6)4.1.1、双机起吊两台履带吊受力分配验算 (6)4.1.2、履带吊主吊主臂长度验算 (10)4.2、起吊扁担梁验算 (11)4.2.1、扁担截面强度验算: (11)4.2.2、吊钩孔局部承压验算: (12)4.2.3、扁担梁抗剪强度验算 (12)4.2.4、横担梁的稳定性核算 (13)4.3、钢丝绳强度验算 (13)4.4、吊攀验算 (14)4.5、吊点验算 (15)4.5.1、吊点受拉验算 (15)4.5.2、吊点处焊缝抗剪强度计算 (15)4.6、横担验算 (15)4.7、卸扣验算 (16)4.8、钢筋笼搁置扁担 (16)4.8.1、搁置扁担截面强度验算 (17)4.8.2、搁置扁担抗剪强度验算 (17)4.9、地基承载力计算 (18)五、结论 (18)一、计算依据1、《珠海市区至珠海机场城际轨道交通工程拱北至横琴段金融岛站围护结构施工图》;2、《起重吊装常用数据手册》;3、《铁路桥梁钢结构设计规范》(TB 10002.2-2005 J461-2005);4、《钢结构设计规范》(GB50017-2003);5、《工程建设安装起重施工规范》HG20201-2000;6、《建筑施工手册》(第四版);7、《路桥施工手册》。
钢筋笼吊装验算方法
钢筋笼吊装验算方法1.1钢筋笼纵向吊点验算根据弯矩平衡原理,正负弯矩相等是所受弯矩变形影响最小的原理,上部钢筋笼吊点位置计算如下:A⅛A<f↑1K∖1∙± .√ft∣s V~ 12, 上2B vι<mi11111U^d'M<UJJ11111J>⅛M<UJ1111iuF图1钢筋笼双机平吊时弯矩图÷M--M其中+M=(1∕2)qK;-M=(1∕8)q122-(1∕2)q112;q为分布荷载,M为弯矩。
故U=2√211,又211+312=49.4米;得1尸4.1米,12=I16米。
因此选取B、C、D、E四点,钢筋笼起吊时弯矩最小,但实际过程中B、C、D中心为主吊位置,AB距离影响吊装钢筋笼。
根据实际吊装经验以及本工程钢筋笼钢筋分布以及预埋件等特点,对各吊点位置进行调整:笼顶下:0.75m+15.5m÷11.65m÷8.5m+8.5m÷4.5m(D钢筋笼横向吊点设置:按钢筋笼宽度1,吊点按0.2071>0.5861、0.2071位置为宜。
(2)钢筋笼纵向吊点设置:钢筋笼纵向吊点设置五点。
(单幅钢筋笼重:59.5T,另加铁扁担2.5T,总重约为62T,笼长49.4m)1)重心计算:M总=1258486.065Kg.m(计算过程略)、G总二59.5T,重心距笼顶i=M总/G总=21.15m2)吊点位置为:笼顶下0.75m+15.5m+1165m+8.5m+8.5m+4.5m吊点布置图见下图:1*根据起吊时钢筋笼平衡得:2TΓ+2T2,=59.51 ①T1,×0.75+T1,X16.25+T2'X27.9+T2'X44.9=62X21.25②由以上①、②式得:T1,=16.ItT2,=13.65t则T1=I6.1∕sin500=2101t T2=13.65∕sin450=19.30t平抬钢筋笼时主吊起吊重量为2TJ=32.2t平抬钢筋笼时副吊起吊重量为2T2,二27.3t主吊机在钢筋笼回直过程中随着角度的增大受力也越大,故考虑主机的最大受力为Q=59.5t计算钢筋笼重量最大在自重荷载作用下的最大挠度值。
钻孔桩钢筋笼吊筋吊环及孔口横担计算书
钢筋笼吊筋吊环及孔口横担计算书1.计算依据《桥梁钻孔桩施工设计图纸》;《客货共线铁路桥涵施工技术指南》(TZ 203-2008);《建筑施工计算手册》(第三版,江正荣);2.计算说明钢筋笼吊筋吊环及横担的设置按桩长60米以下设置横担1根,吊筋吊环2处;按桩长70米以上设置横担2根,吊筋吊环4处;吊筋吊环采用HPB300钢筋制作,孔口横担采用外径57mm,壁厚5mm,长度2.1m的钢管。
吊环吊筋示意图3.材料性能3.1钢筋强度标准值与设计值3.2钢管的截面特性3.3钢管强度设计值和弹性模量4.钢筋笼吊筋吊环计算4.1工况一选本桥梁工程桩径1.25m 、桩长70m ,钢筋笼重量为7.188t ,采用HPB300 Ø16mm 钢筋制作吊环4个,横担2根采用孔口横担采用外径76mm ;内径68mm ;壁厚5mm 的钢管。
4.1.1吊环的应力按下式计算:[]σσ≤=nAG9807 式中σ—吊环拉应力n —吊环的截面个数,一个吊环时为2;二个吊环时为4;四个吊环时为6;A —一个吊环的钢筋截面面积; G —构件的重量(t );9807—t (吨)换算成N (牛顿);[]σ—吊环的允许拉应力,一般不大于60N/mm2(已考虑超载系数、吸附系数、动力系数、钢筋弯折引起的应力集中系数、钢筋角度影响系数、钢筋代换等)。
[]2/602/45.582016188.79807mm N mm N =<=⨯⨯=σσ 满足要求4.1.2一个吊环可起吊的重量按下式计算:[]261.9807.912420d d G ==πσ式中0G —一个吊环起吊的重量(kg ) d —吊环直径(mm ) []σ—吊环的允许拉应力 kg G 24601661.920=⨯=t t 188.784.91000/42460>=⨯ 满足要求 4.1.3吊筋抗拉强度计算:抗拉强度强度设计值2/2707.2721.1/300mm N fy ===2223/270/58.8784108.9188.7mm N fy mm N =<=⨯⨯π 满足要求 4.1.4钢筋笼横担强度计算:取最不利工况,即钢筋笼全部安装完毕,悬挂于槽钢上的工况,因为钢管为2根,有4个受力点,所以单点集中荷载为1/4总荷载。
桥梁桩基钢筋笼吊装计算书
桥梁桩基钢筋笼吊装计算书设计:复核:审核:二0一八年九月1工程简介11.1 工程概况11.2 吊装方式12设计相关参数选定1计算目的1计算范围1参考资料1主要控制参数2设计技术参数及相关荷载大小选定2.6 荷载类型2.6 工况分析2.6 工况及荷载组合2.6 计算方法23计算过程2吊筋计算2吊环验算3焊缝验算3孔口横担验算3钢丝绳验算4汽车吊抗倾覆验算5 4计算结果汇总75结论7桥梁桩基钢筋笼吊装计算书1工程简介工程概况本项目共有五座桥梁, 1号大桥位于场地北侧, 全长1085m上部结构为连续箱梁, 下部为花瓶式矩形桥墩;2号桥位于西出入口, 3号桥、4号桥和5号桥位于东出入口。
桥梁上部结构均为多跨连续梁, 基础为钻孔桩基础, 单根桩基钢筋笼重量为5.17〜12.16t。
吊装方式钢筋笼吊装拟采用25t汽车吊进行吊装作业, 选用HPB30瞅钢筋制作吊环, 吊环采用单面焊, 顶部用4个吊环通过横担固定钢筋笼。
孔口采用型钢支架或方木作横担支垫, 横担采用I10工字钢, 单根长度2.0m。
2设计相关参数选定计算目的验算吊筋、焊缝、横担工字钢的强度, 对钢丝绳进行安全计算, 验算汽车吊的稳定性。
计算范围本计算书适用于(项目名称)桥梁桩基钢筋笼吊装施工。
参考资料(1)林岳车辆段与综合基地现有设计图纸;(2)《建筑施工计算手册》;(3)《起重机设计规范》(GB/T3811-2008);(4)《混凝土结构设计规范(2015年版)》(GB50010-2010);(5)《建筑施工起重吊装工程安全技术规范》(JGJ276-2012);(6)《钢结构设计标准》(GB50017-2017);(7)《一般起重用D形和弓形锻造卸扣》(GB/T25854-2010)主要控制参数(1)吊筋选用HPB300公称直径16mm勺圆钢, 截面积201.1mrfi,按照《混凝土结构设计规范(2015年版)》表4.2.3-1进行取值, 抗拉强度设计值fy=270MPa (2)横担采用I10工钢, 截面特性:截面积1430mmiW=4.9X104mrhI=2.45X106mm,E=2.06X105MPa重量11.2kg/m,抗拉、抗压和抗弯强度设计值f=215MPa抗剪强度设计值fv=125MPa(3)钢丝绳采用6X37+1型, 直径47.5mm公称抗拉强度1400MPa破断拉力总和Fg=2115.0kN,选用起重量不小于6.3t的卸扣;(4)采用25t汽车吊, 自重约30t,支腿全开时宽度为6m设计技术参数及相关荷载大小选定荷载类型荷载主要为钢筋笼自重G工况分析当桩基钢筋笼安装完成后, 其重量达到最大值, 为最不利荷载工况, 在该工况下进行验算。
制梁场钢筋笼吊具计算书
赣州制梁场钢筋笼吊具计算书计算人:复核人:审批人:第1页共8页钢筋笼吊具计算书一、说明根据赣州制梁场钢筋笼吊装需要,设计该图纸。
根据图纸采用SAP2000进行实体建模,根据实际边界约束及载荷条件对吊具结构进行整体分析计算。
二、结构分析计算1 、载荷计算吊具自重:170kN起吊钢筋笼重量:本梁场钢筋采用整体绑扎,按照最不利条件考虑,钢筋最重650kN。
起吊钢筋笼时,吊具上共布置198个吊点,考虑钢筋笼在整体多点吊运时,各吊点受力会有所差异,故考虑不平衡系数为1.2,则:P=650×1.2198=3.94KN吊具自重由程序自动加载。
(吊具的设计荷载系数为1.2 。
)2 、计算模型根据设计图纸采用的结构形式及各杆件截面属性进行建模,见图1所示。
吊具结构的载荷布置、构件截面见图2-3所示。
图2 吊具荷载布置图图3 吊具构件截面图材料种类TYPE CROSS-SECTION(截面大小)AREA GYRA.RADIUS (扭转半径)No.(数量)LENGTH WEIGHT(平均重量)-----------------------(cm2)----(cm)--------------------(m)--------(ton)-1 D48x3.5 5.241 1.945 632 1356.932 4.5392 D60x3.5 6.772 3.418 290 395.347 2.1193 D75.5x3.5 7.917 2.549 155 277.294 1.7234 D88.5x4 10.619 2.991 70 131.612 1.0975 D114x4 13.823 3.892 37 70.703 0.7676 D140x4 17.090 4.810 48 89.164 1.196 3 、主要构件截面计算结果1) 主横管最大剪力Q_max=2.083KN最大弯矩M max=1.775KN∙m以下为主梁截面验算结果:=1.86MPa<[σ]=205MPa 截面强度:σmax=1.77595.9max80.07竖向挠度:f nax=15mm<l400=32000400=80mm2)中间纵管最大剪力Q max=0.521KN最大弯矩M max=0.0619KN∙m图6 纵梁最大剪力、弯矩、扰度以下为纵截面验算结果:截面强度:σmax=0.061921.1=2.93MPa<[σ]=205MPamax26.11竖向挠度:f nax=2.745mm<l400=32000400=80mm3)斜杆(D60x3.5)仅对控制杆件进行分析,以下为斜杆验算结果。
钢筋笼吊装受力验算
钢筋笼吊装受力验算1吊装区域稳定性验算(地基承载力验算)(1)吊车行走道路:钢筋笼吊装设备行走在200mm厚、10m宽的钢筋混凝土道路上,道路单层双向C12@300配筋,混凝土强度为C20,行走道路与导墙翼板连接。
(2)400t吊车自重约为350t,地基承载力按最大起重量79t时计算(另外再考虑2t重的吊索、吊具重量),若起吊81t重物地基承载力满足要求,则其余均满足。
①履带吊的两条履带板均匀受力,反力最大值可按下列公式计算。
RMAX=a×(P+Q)其中P吊车自重,Q为起重量,a为动载系数,按a=1.1计算,得RMAX=1.1×(350+81)×10N/Kg =4741kN吊车承力面积(两条履带板与地面接触面长为10.72米、宽1.2米)S=10.72×1.2*2=2728m2。
吊车起吊对场地的均布荷载为:P=RMAX/S =4741kN/2728m2=184.27KPa所以,单位面积的地基承载需求为184.27KPa。
②考虑履带吊行走时两条履带板受力不均情况;按照1.5P系数(P为履带板均匀受力时的地面承载)有:PMAX=1.5P=1.5*184.27=276.41Kpa(3)吊车行走重车道区域采用钢筋混凝土硬化,吊车行走重车道区域200mm厚C20钢筋混凝土承载抗压能力为20MPa,钢筋混凝土下方是经过重复碾压的建筑垃圾能够满足路面承载要求。
满足吊车起吊对场地的地基承载力要求,因此该吊装区域是安全的,即路面的承载力满足吊装要求。
同时施工现场吊车行走重车道区域采用黄线进行标识。
2钢筋笼吊点布置2.1“一”字型钢筋笼根据整体吊装钢筋笼笼长44.43m钢筋笼最重为79t钢筋笼进行计算。
详见吊点布置。
(1)平幅横向吊点ABCDEL1L2L1L2L2图4-9平幅横向吊点示意图+M=-M +M=(1/2)qL 1²;-M=(1/8)qL 2²-(1/2)qL 1² q 为均布荷载,M 为弯矩。
钢筋笼吊装验算书
翰林站钢筋笼吊装防坠落措施翰林站位于深圳市福田区翰林学校北侧、梅观路南侧停车场内,站位靠梅观路南侧布置。
车站沿梅观路东西向布置,为地下2层车站,采用11米岛式站台。
车站总长216米。
车站西接梅林关站,东接银湖站,两端分别为矿山法施工(东端)和TBM 法施工(西端)。
标准段结构高13.24m,结构外皮净宽20.2m。
翰林车站围护结构采用钻孔咬合桩,桩径1m,相邻两桩咬合150mm,桩长为8.5m~23.2m,共有717根桩。
其中最重钢筋笼长度为23m,重量约为3.9T,钢筋笼直径为860mm,主筋采用23φ32HRB400级钢筋,箍筋采用φ12HPB300级钢筋,加强箍采用φ20HRB400级钢筋。
本次验算按23m最重钢筋笼进行计算,起吊机索具、吊钩、铁扁担按0.3T计算,即钢筋笼重量G=3.9+0.3=4.2吨(含索具、吊钩、铁扁担重)。
1、钢筋笼吊装流程(1)使用卡扣进行吊点固定(2)钢筋笼六点起吊(大钩缓慢上升,小钩缓慢下降)(3)钢筋笼竖直吊起,并拆除小钩卡扣。
(4)钢筋笼两点吊装下放2、钢筋笼吊装验算根据钢筋笼吊装流程,进行相关受力分析,钢筋笼在竖直吊起后吊点受力最大,此时主要依靠钢筋笼顶部加强箍与主筋之间焊点承受钢筋笼重量。
现对加强箍与主筋焊点进行验算:已知:钢筋笼直径为860mm,主筋采用23φ32HRB400级钢筋,加强箍采用φ20HRB400级钢筋,加强箍每2m一道,第一道加强箍距钢筋笼顶部1m处设置,加强箍与主筋采用双面点焊连接固定,焊条采用E50型。
钢筋笼吊装至孔口且钢筋笼处于竖直状态时,吊装吊点在钢筋笼第一道加强箍之上,此时加强箍圈与主筋之间的焊点承受整体钢筋笼重量,焊缝主要受平行于主筋方向的剪切应力作用。
钢筋笼主筋与加强箍焊接示意图计算:单个焊点上受平行于主筋方向的力:KN KN N 7.11023/9.323/G =⨯==, E50型焊条手工焊角焊缝的强度设计值为:mm N f w t /200=根据角焊缝强度计算公式:wt w e f l h N ≤∑=)/(f τ其中焊缝有效高度 :mm h h f e 6.5mm 87.07.0=⨯== 其中较小焊脚尺寸取:mm h f 8=其中单个焊点有效焊缝总长度mm h L l f w 42810222=⨯-⨯=-⨯=∑实mmN f mm N mm N l h N w t w e /200/76/46.510007.1)/(f =≤=⨯⨯=∑=τ所以当φ32的主筋与φ20的加强筋电焊连接时,焊点采用双面焊且焊缝的有效高度e h 大于5.6mm,焊缝有效长度w l ∑大于4mm 时,焊缝满足要求。
钢丝绳-扁担-验算
广电路站钢筋笼纵向吊点设置:钢筋笼纵向吊点设置五排吊点,如下图所示。
吊点设置及计算简图根据起吊时钢筋笼平衡得(假设钢筋笼子重心在中间22.4米位置):3T1'+2T2'=63 t ①T1'×0.85 +T1'×10.85+T1′×20.85+ T2'×30.85+ T2'×40.85 =63×22.4 ②由以上①、②式得:T1'=15.13t T2'=8.81t则T1=15.13/sin450=21.4t T2=8.81/sin600=10.17t平抬钢筋笼时主吊起吊重量为3T1'= 45.39 t平抬钢筋笼时副吊起吊重量为2T2'= 17.62 t主吊机在钢筋笼回直过程中随着角度的增大受力也越大,故考虑主机的最大受力为Q =63 t。
钢丝绳强度验算钢丝绳采用6×37+1,公称强度为1550MPa,安全系数K取6。
由《起重吊装常用数据手册》钢丝绳数据表(见下表)查得钢丝绳数据表如下:验算用吊索吊具配置及各部位编号图:1、主吊机扁担上部(吊钩与铁扁担之间)钢丝绳验算:43 mm主吊机钢丝绳在钢筋笼竖立起来时受力最大。
吊重:Q1 =Q+G吊=60.21t +3t = 63.21 T主吊扁担上部钢丝绳S3直径:43 mm,[T]=23.23 t钢丝绳走双根:T= Q1/4sin600=18.25t < [T] =23.23 t 满足要求2、主吊扁担下部(铁扁担与钢筋笼之间)及连接钢丝绳钢丝绳验算:39mm通过钢筋笼在起吊过程中的受力分析,主吊扁担下钢丝绳在钢筋笼竖起时受力最大:Q=63.21 T主吊扁担下部及连接钢丝绳S4直径:43mm,[T]=18.81 t;钢丝绳T=Q/6/sin45=63.21/6sin45=14.90T <[T]=18.81 t 满足要求。
3、副吊扁担上部(吊钩与铁扁担之间)钢丝绳验算:32.5mm= 2T2'= 17.62 t副吊最大作用力Q1副吊扁担上部钢丝绳S1直径:32.5mm,[T]=13.06t/4sin600=5.08 t < [T] =13.06 t 满足要求钢丝绳走双根:T= Q14、副吊扁担下部(铁扁担与钢筋笼之间)钢丝绳验算:28mm通过钢筋笼在起吊过程中的受力分析,知:= 2T2'= 17.62 t钢筋笼平吊时副吊受力最大:Q1辅吊扁担下钢丝绳S2直径:28mm,[T]=9.8t钢丝绳 T=Q/4sin60=5.08t < [T]=9.8t长虹路站钢筋笼纵向吊点设置:钢筋笼纵向吊点设置四排吊点,如下图所示。
钻孔桩钢筋笼吊筋吊环及孔口横担计算书
钻孔桩钢筋笼吊筋吊环及孔口横担计算书钢筋笼吊筋吊环及孔口横担计算书本计算书的依据包括《桥梁钻孔桩施工设计图纸》,《客货共线铁路桥涵施工技术指南》(TZ 203-2008)以及《建筑施工计算手册》(第三版,XXX)。
钢筋笼吊筋吊环及横担的设置根据桩长进行,60米以下设置横担1根,吊筋吊环2处;70米以上设置横担2根,吊筋吊环4处。
吊筋吊环采用HPB300钢筋制作,孔口横担采用外径57mm,壁厚5mm,长度2.1m的钢管。
材料性能方面,钢筋的强度标准值和设计值需要满足相应的标准,钢管的截面特性包括截面积、重量、惯性矩和最小抵抗矩,钢管的强度设计值和弹性模量也需要考虑。
针对工况一,选用桩径1.25m、桩长70m的桥梁工程,钢筋笼重量为7.188t,采用HPB300Ø16mm钢筋制作吊环4个,横担2根采用孔口横担,直径为76mm,内径为68mm,壁厚为5mm的钢管。
吊环的应力需要按照相应的公式进行计算,其中考虑了吊环的截面个数、构件重量以及允许拉应力等因素。
一个吊环可起吊的重量也需要根据公式进行计算,其中考虑了吊环直径和允许拉应力等因素。
4.1.3 吊筋抗拉强度计算:根据公式,抗拉强度设计值fy 为300/1.1=272.7≈270N/mm2.通过计算得出,7.188×9.8×103/24π8=87.58N/mm2<fy=270N/mm2,符合要求。
4.1.4 钢筋笼横担强度计算:选择最不利的工况,即钢筋笼全部安装完毕,悬挂于槽钢上。
由于钢管有两根,有四个受力点,所以单点集中荷载为总荷载的1/4.计算得出,单点集中荷载为17.61KN,钢管自重为0.07KN。
在自重荷载下弯矩为M1=qb2/8=0.07×1.722/8=0.026KN·m,在集中荷载F作用下弯矩为M2=Fab2/8=17.61×0.33×1.722/8=2.149KN·m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢筋笼起吊用扁担强度验算计算书
1、钢扁担尺寸以及材料参数
图1 钢扁担尺寸示意图
钢扁担采用45号钢板加工制作而成。
GB/T699-1999标准规定45号钢抗拉强度为600MPa,屈服强度为355MPa,抗剪强度为410MPa。
挤压强度为拉伸强度的2~2.5倍;
钢扁担的尺寸见图1(图中标注单位均为mm)所示,钢扁担厚度为70mm,孔径均为90mm。
2、建立钢扁担分析模型
图2 钢扁担分析模型
钢扁担分析模型如图2所示。
3、钢扁担抗力计算
(1)扁担横向最小横截面如下图3所示
图3 最小截面示意图
62(70400057090)100.2485()s A m -=⨯-⨯⨯⨯=
则竖向承受最大拉伸荷载为
63600100.2485149.110()F A KN σ==⨯⨯=⨯
换算质量为:
6/10149.1101014900()G F t ==⨯÷=
小结:由竖向拉伸抗力计算可知,此种型号扁担竖向可承受14900t 。
(2)竖向最小横截面如下图4所示
图4 竖向最小横截面示意图
621(706009070)100.0357()A m -=⨯-⨯⨯=
则竖向截面承受最大剪力为:
661410100.035714.63710()Q A N τ==⨯⨯=⨯
换算为质量为:
6/1014.63710/101463.7()G Q t ==⨯=
(3)钢扁担孔周承载计算
图5 孔周最小截面计算示意图
计算面积为:
上部: 62270120100.084()A m -=⨯⨯=
下部: 62370100100.007()A m -=⨯⨯=
则单孔承受最大剪力为:
上部: 6612410100.0084 3.44410()Q A N τ==⨯⨯=⨯
下部: 6623410100.007 2.8710()Q A N τ==⨯⨯=⨯
换算为质量为:
上部: 611/10 3.44410/10344.4()G Q t ==⨯=
下部: 622/10 2.8710/10287()G Q t ==⨯=
综上,从最大拉伸考虑,钢扁担可承受最大起吊质量为14900t ;从扁担最小截面承受最大剪力来考虑,钢扁担可起吊重量为1463.7t ;而从单孔周边最大承载来考虑,钢扁担可起吊最大重量为344.42688.8⨯=t 和2873861⨯=t (横向三点吊)或2872574⨯=t (横向两点吊)。
故比较以上可知,此种型号钢扁担可起吊最大重量为688.8t (横向三点吊)或574t (横向两点吊),取安全系数为5,则此种型号扁担起吊重量应688.8/5137.76≤=t 或574/5114.8≤=t 。
4、钢扁担受力分析
工况一:受力分析(外侧横向三点吊)图示
F1F1
F2F2F2
图6 外侧横向三点吊受力示意图
工况二:受力分析(外侧横向二点吊)图示
F1F1
F2F2
图7外侧横向二点吊受力示意图
工况三:受力分析(内侧横向三点吊)图示
F1
F2F2F2
图8 内侧横向三点吊受力示意图
工况四:受力分析(内侧横向三点吊)图示
F1
F2F2
图9 内侧横向二点吊受力示意图
=。