日本风荷载规范英文版正文
IEC及GB规范在安哥拉220 kV输电线路导线风荷载计算中的对比分析
IEC及GB规范在安哥拉220 kV输电线路导线风荷载计算中的对比分析甘凯元【摘要】Taking a 220 kV power transmission line in Republic of Angola as example, the Code for designing of 110~750kV overhead transmission line(GB50545-2010)of China was compared with the Design criteria of over⁃head transmission lines(IEC 60826-2003). Their difference in wire wind load calculation was analyzed. The re⁃sults of calculation demonstrate that their principles of defining basic wind velocity are identical;but different reoc⁃currence periods were adopted for different voltage levels in accordance with GB code. For the wire wind loadcalcu⁃lation of 2C-SZ41-24 type tower, the standard wind pressure and horizontal wire wind load of IEC norm are about 1.81and 1.3 times as much as that of GB code respectively.%以安哥拉220 kV输电线路为例,将国内《110~750 kV架空输电线路设计规范》(GB 50545-2010)与国际电工委员会《Design criteria of overhead transmission lines》(IEC 60826-2003)做对比,分析两者在导线风荷载计算中的差异性。
浅议中美规范风荷载计算对比
浅议中美规范风荷载计算对比吴纯华【摘要】结构工程设计中,风荷载是必须考虑的重要荷载因素.各国的荷载规范在计算风荷载时都有不同的规定.一些涉外工程项目中,美国规范具有最广泛的应用,因此对美国规范在风荷载计算上与我国规范进行探讨比对,具有一定的实用价值.【期刊名称】《低温建筑技术》【年(卷),期】2015(037)006【总页数】4页(P95-98)【关键词】中美规范基本风速基本风压体形系数;风荷载标准值【作者】吴纯华【作者单位】上海核工程研究设计院,上海200233【正文语种】中文【中图分类】TU312.1在风荷载计算中,我国目前主要应用的规范是GB50009-2012《建筑结构荷载规范》简称国标),美国规范则是Minimum Design Loads for Building and Other Structure(ASCE/SEI 7,简称美标)。
目前,美标(ASCE/SEI 7)主要有2010和2005两种版本,在风荷载设计上的差异主要体现在设计重现期的不同,2005版基本重现期为50年,2010版则根据风灾害类别不同,将重现期分别调整到到300年、700年、1700年,并用分项系数减小进行风荷载值的调整换算。
两个版本在风荷载设计上的其它内容及计算出的最终风荷载效应基本没有变动。
考虑到我国2012版新规范中,风荷载重现期基准依旧是50年,且美国规范没有新版替代旧版的要求,为更便于说明对比,本文中所阐述的ASCE/SEI 7采用的依旧是2005(简称美标)老版本。
中美规范关于场地类别规定基本相同,国标中A/B/C/D类分别对应美标中的D/C/B/A类。
为便于比对,中美规范均以空旷场地为基准(即美标的C类场地,国标的B类场地)。
关于两国基本风速定义如下:国标基本风速V10min:空旷平坦(场地类别B类)地面10m高度处所得50年一遇的10min年均最大风速。
美标基本风速 V3s为 C 类场地(空旷地区)10m高度处所得的50年一遇的 3s 阵风风速。
中国和阿尔及利亚风荷载计算方法对比
中国和阿尔及利亚风荷载计算方法对比臧传田;郭小农;刘林林;曾强;黄玮嘉【摘要】风荷载是建筑结构的主要荷载之一,在某些建筑结构中甚至起主导作用.随着我国建筑施工单位的业务不断国际化,以阿尔及利亚为代表的非洲建筑市场得到了越来越多的关注;我国建筑企业在阿尔及利亚的业务不断增长,因此有必要学习和掌握阿尔及利亚规范.简要介绍了阿尔及利亚规范中关于风荷载的计算方法和计算原理,并与中国规范进行对比,总结了两国规范在风荷载的计算方法和参数取值上的异同.【期刊名称】《结构工程师》【年(卷),期】2015(031)006【总页数】7页(P115-121)【关键词】风荷载;阿尔及利亚;体型系数;风振系数【作者】臧传田;郭小农;刘林林;曾强;黄玮嘉【作者单位】中国建筑股份有限公司阿尔及利亚分公司,北京100026;同济大学建筑工程系,上海200092;同济大学建筑工程系,上海200092;中国建筑股份有限公司阿尔及利亚分公司,北京100026;同济大学建筑工程系,上海200092【正文语种】中文Comparative Study on the Wind Load Calculation MethodBetween the Cod e of Algeria and ChinaAbstractThe wind load is one of the most important loads for the civil engineering works, and it even plays a dominant role in some structures. With the inter nationalization of business of Chinese construction companies, the Africa c onstruction market, represented by Algeria has got increasing attention. As the business of Chinese construction entities in Algeria is growing, therefo re, it is necessary to learn and master the Algeria standard. This paper intro duced the calculation principle and method of wind load in Algeria standar d briefly, compared that with Chinese codes, and summarized the similariti es and dissimilarities of them.Keywords wind load, Algeria, pressure coefficient, wind-induced vibration coefficient风荷载是建筑结构的主要荷载之一,在某些建筑结构中甚至起主导作用。
日本桥梁抗风设计基准规范
日本桥梁抗风设计基准规范一、前言随着交通事业突飞猛进的发展,自80年代末以来的短短的十多年间,我国建成了20余座以斜拉桥、悬索桥为主要桥型的主跨400m以上的大跨度桥梁。
斜拉桥、悬索桥对风作用反应敏感,风的作用尤其是动力作用往往成为这两种桥梁设计和施工的控制因素。
我国目前的《公路桥涵设计通用规范》(JTJ021-89)虽有静风荷载方面的条款,但不适用于大跨度的桥梁,桥梁的动力抗风设计和施工过程中的抗风验算更是空白,因此,中交公路规划设计院和同济大学项海帆院士为首的有关研究人员,在国内从事桥梁抗风研究的单位和专家的积极支持下,总结我国十几年来桥梁抗风理论研究和风洞试验的成果,并参考、吸收了其他国家桥梁抗风设计规范和标准中的一些成果,历时3年,于 1996年4月编制完成我国第一部用于大跨度桥梁抗风设计的指导性文件《公路桥梁抗风设计指南》(以下简称《指南》)。
《指南》公布4年多来,在指导大跨度桥梁的抗风设计中,发挥了巨大的作用,但由于风的作用和桥梁对风反应的极其复杂性,《指南》的深度和广度尚不能完全解决桥梁所涉及的抗风设计和验算的问题,再加上应将近年来由于桥梁抗风研究的进一步深入和实际工程积累的日渐丰富的经验中所获得的新见解纳入,以便更方便、有效、规范地进行桥梁抗风设计。
交通部于1997年立项编制中华人民共和国交通部行业标准《公路桥梁抗风设计规范》(以下简称《规范》)。
《规范》的编写工作虽已近结束,但《规范》的颁布实施尚待一些时间,《规范》虽比《指南》大大前进了一步,但我国大跨度桥梁的建设高潮方兴未艾,在更恶劣的风环境条件下建设更大跨度的桥梁已在前期准备工作之中,而且《规范》也还不能完全解决桥梁抗风设计的所有问题,涵盖不了所有不同跨度、不同构造形式,不同地区、不同地形条件下的桥梁抗风问题。
我国的近邻日本经常遭受强台风的袭击,20世纪60年代以来,又修建了以本州四国连络桥为代表的许多跨海大跨度桥梁,桥梁抗风设计基准日臻完善。
多国风荷载规范
0.36 0.62
zg (m)
263.76 317.5 382.39
(4-1) (4-2)
1. 平均风速
2. 湍流强度
3. 湍动能
5 欧洲规范(Eurocode 1: Actions on structures-Part 1-4: General actionsWind actions)
5.1 地貌分类
City, tall buildings (4 to 9-story) City, heavy concentration of tall buildings (higher than 10-story)
3.2 风特性公式
平地平均风速 平地湍流强度 积分长度尺度
Uz
U0
Er
U
0
U 0
1.7 z zG , zb z 1.7 zb zG , z zb
zG
I rz
0.1 z
0.1 zb
zG 0.05 , zb zG 0.05 , z
z zb
zG
Lz
100 z 300.5 ,30m
100, z 30m
z
zG
(3-1) (3-2) (3-3)
U0 ——10m 高度处的基本风速,为 100 年重现期的 10min 统计平均风速。
积分尺度与地形、地貌无关(Turbulence scale is defined independently of the terrain categories of the construction site)
6.1 地貌分类
Terrain category Exposed open terrain with few or no obstructions and water surfaces at 1
输电线路导地线阵风响应计算与比较
输电线路导地线阵风响应计算与比较章东鸿;王振华【摘要】风荷载是输电线路设计的主要控制荷载,规范中导地线风荷载计算采用了风荷载调整系数,但规范并未给出物理含义.以风工程理论为基础,推导了导地线风振系数计算公式,并选取参数进行了风振系数计算,将计算结果与中国规范、ASCE 74、BS EN 50341和IEC 60826的风振系数进行比较,结果表明:推导公式的风振系数与国外规范规定数值比较接近,中国线路规范导地线风荷载计算未考虑脉动风影响,导致其计算结果偏不安全.%Wind load is the main controlling load in the design of transmission line.The wind load adjustment coefficient is adopted for computing wire load in China's code.However,the physical meaning of the coefficient is not clear in the code.Based on the wind engineering theory,a formula is deduced for calculating the gust response coefficient of wire,and parameters are chosen to calculate thepared with the coefficients designated in such codes as China's code,ASCE 74,BS EN 50341 and IEC 60826,the calculated coeffficient with the deduced formula is close to the designated value of ASCE 74,BS EN 50341 and IEC 60826.While the effects of fluctuating wind is not considered in China's code,the wire wind load calculated according to China's code is lower than the real load.【期刊名称】《中国电力》【年(卷),期】2016(049)007【总页数】5页(P27-31)【关键词】输电线路;导地线风荷载;阵风响应;风振系数;空间相关性;背景响应【作者】章东鸿;王振华【作者单位】中国能源建设集团广东省电力设计研究院有限公司,广东广州510663;中国能源建设集团广东省电力设计研究院有限公司,广东广州 510663【正文语种】中文【中图分类】TM75输电杆塔作为风敏感结构,风荷载是主要控制设计荷载,输电杆塔的总风荷载中导地线风荷载占比一般大于杆塔塔身,因此导地线风荷载的准确计算对于合理可靠地设计输电杆塔具有十分重要的意义。
德国风荷载规范
前言 本标准为新的标准系列 DIN 1055“作用在承重结构上的影响”中的一部分,该系列标准的其他部分分别如 下: ——第 1 部分:建筑材料、建筑构件和支撑材料的单位容积重量密度和单位面积荷重 ——第 2 部分:地面特征参数(目前暂为草案) ——第 3 部分:高层建筑物的固有负荷以及有效负荷 ——第 4 部分:风力负荷 ——第 5 部分:冰雪负荷(目前暂为草案) ——第 6 部分:作用在圆形料仓和液体容器上影响 ——第 7 部分:温度影响 ——第 8 部分:建筑施工过程中的影响 ——第 9 部分:非常规性影响 ——第 10 部分:由起重机和机械设备所引起的影响力 ——第 100:承重结构设计的依据、安全方案和测量规定 本标准由建筑事业标准工作委员会负责在 DIN V ENV1991-2-4 的基础上制定。 制定标准系列 DIN1055 新版本的目的是,对明显已过时的规定进行更新,使其与行业中普遍承认的先进技 术水平相适应。此外,该标准的制定还可作为先导,以推动相应的欧洲标准草案系列 ENV1991 的实践运用。 德国主管建筑业的专业机构认为,没有必要将欧洲标准草案系列 ENV1991 直接采纳运用,因为还有若干 CEN 成员国对此标准系列持有异议,认为在将其引为欧洲标准前还需要进行修改和补充。 本标准与 DIN ENV1991-2-4:1998-12 在内容上不一致的部分,来源于德国对后者所持有的异议,因此包含 了修改与补充部分;根据主管建筑业的工作委员会的意见,这些修改与补充内容满足了德国测量实践要求, 并反应出了行业内普遍承认的技术水平。
ICS 91.010.30
对承重结构的影响 第 4 部分:风力负载 英文:内容同上 法文:内容同上
德国标准 DIN 1055-4
Hale Waihona Puke 2005 年 3 月DIN
【精品文档】ASNZS 11702结构设计作用 第二部分风荷载的作用
AS/NZS 1170.2:2002附上第1项的修改澳大利/新西兰标准结构设计作用第二部分:风荷载的作用AS/NZS 1170.2:2002COPYRIGHTBD-006技术协会联合修订了澳大利亚/新西兰联合标准,总体设计要求和结构荷载。
他被2002年3月29日澳大利亚标准委员会和2002年3月28日新西兰标准委员会的代表批准。
在2002年6月4日出版。
下面是BD-006协会的叙述:澳大利亚工程顾问的协会澳大利亚建筑标准团体澳大利亚钢结构协会新西兰建筑研究协会澳大利亚水泥和混凝土协会澳大利亚联邦科学与工业研究组织,建筑,结构和工程技术暴风实验站-James Cook 大学澳大利亚供电协会房屋工业协会澳大利亚工程师协会新西兰专业工程师协会澳大利亚建筑商新西兰重点工程研究协会澳大利亚钢加强件协会Newcastle 大学奥克兰大学(新西兰)新西兰Canterbury 大学墨i 匀大学Tyndall 和Hanham保持标准的更新升级标准是一本活的文件,它反应了在科学、技术和系统方面的发展。
保持它们的正确性,所有的标准分阶段性的重新复查,新的版本出版。
在这些版本之间,改正的部分被使用。
标准也被回收的。
在购买标准前,对于使用者来说,使用包含一些已经出版的修正的部分的正确的标准,这是很重要的。
澳大利亚/新西兰联合标准的详细信息在澳大利亚标准网址.au 或新西兰标准网址 和在网上目录中查找相关标准。
二中选一的,两个组织出版了详细的标准的目录。
对于更常用的修订的、修正的和回收的清单和说明,澳大利亚标准和新西兰标准提供了一些更新的选项。
关于这部分的信息,使用者应该与个别的国际标准组织联系。
我们也欢迎在我们的标准中提出可以提高的建议,特别鼓励对一些错误和不明确的地方立即通知我们的读者。
请写出你的内容给澳大利亚国际标准或新西兰国际标准的首席执行,在信封后面表明地址。
AS/NZS 1170.2:20023AS/NZS 1170.2:2002澳大利/新西兰标准结构设计作用第二部分:风荷载的作用附上第1项的修改第一节概要 (7)1.1范围 (7)1.2应用 (8)1.3参考档案 (8)1.4风荷载的测定 (8)1.5单位 (8)1.6定义 (8)1.7符号 (8)第2节风荷载的计算 (9)2.1概要 (9)2.2位置风速 (9)2.3设计风速 (9)2.4设计风压和分布式的力 (11)2.4.1设计风压 (11)2.4.2风的分布式力设计 (11)2.5风荷载 (11)2.5.1概要 (11)2.5.2考虑的方向 (12)2.5.3表面或结构部件的力 (12)2.5.3.1起源于风压的力 (12)2.5.3.2起源于摩擦力的力 (12)2.5.3.3力起源于力的系数 (12)2.5.4完成结构的力和力矩 (12)2.5.5部件的敏感疲劳性能 (13)2.5.6结构风敏感的适用性 (13)第3节区域风速 (13)3.1概要 (13)3.2区域风速(Vr) (13)3.3风向系数 (14)3.3.1区域A和W (14)3.3.2区域B,C和D (14)3.4区域C和D(Fc,Fd)因数 (14)第4节地点位向系数 (16)4.1概要 (16)4.2海拔/高度系数(Mz,cat) (17)4.2.1海拔种类定义 (17)4.2.2确定海拔高度系数(Mz,cat) (17)4.2.3地形种类改变 (18)4.3保护的系数(Ms) (20)4.3.1概要 (20)4.3.2建筑的供应保护 (20)4.3.3保护的参数(s) (21)4.4地质系数Mt (21)4.4.1概要 (21)4.4.2斜坡形状系数(M (21)4.4.3背风的系数( (23)第5节空气动力学形态因数 (23)5.1概要 (23)AS/NZS 1170.2:20025 5.2 空气动力学形态因数评估 (25)5.3围绕矩形建筑物的内压力 (25)5.3.1 概要 (25)5.3.3支配开启 (26)5.4围绕矩形建筑物的外部压力(Cp.e) (27)5.4.2屋面和边墙的面积缩减因数(Ka) (30)5.4.3结合因数(Kc) (30)5.4.4扣板局部的压力因数(Kt) (31)5.4.5屋面和边墙的扣板渗透性缩减(变形)因数(Kp) (33)5.5围绕建筑的摩擦拉力 (34)第6节动态响应因数 (34)6.1动态响应因数评估 (34)6.2大的建筑物和塔楼的沿风响应 (35)6.2.1概要 (35)6.2.2 动态响应因数(Cdyn) (35)6.3侧风响应 (37)6.3.1概要 (37)6.3.2 大的围绕建筑和矩形交叉剖面塔的侧风响应 (38)6.3.2.1 等同的静态风力 (38)6.3.2.3 侧风基本翻倒力矩 (38)6.3.3圆形的交叉剖面烟囱,masts和poles的侧风响应 (41)6.3.3.1侧风尖端偏斜 (41)6.4 沿风和侧风响应的结合 (42)附录 (42)附录A 定义(标准) (42)Sruton numbe (44)附录B 符号(标准) (45)附录C 围绕建筑附加的压力系数(标准化的) (50)附录D 独立墙临时围墙和雨棚(标准化的) (56)附录E 对于暴露的结构构件、框和分格塔架的空气动力体形系数(标准化) (65)外形比率的修正系数(K (66)附录F FLAGS标记和圆形的形态(标准化的) (76)F2 标志 (77)F3 圆形的形态 (77)附录G 结构易受风影响的加速度(提供信息的) (78)G1适用性加速度 (78)AS/NZS 1170.2:2002前言BD-006技术协会联合修订了澳大利亚/新西兰联合标准,总体设计要求和结构荷载,取代1990年AS1170。
国内外基本风速标准的比较研究
国内外基本风速标准的比较研究刘德平,赵永胜,陈全勇,张文杰【摘要】摘要:随着国外电力勘测设计市场的不断拓展,对国外勘测设计规范的理解和掌握就显得越来越重要。
本文结合目前国外市场的开拓情况,对美国、欧洲等国的风荷载规范的基本风速标准进行了对比研究。
通过分析各国风荷载规范中对基本风速定义方面的差异,结果表明各国在设计风速的差异主要体现在基本风速的时距和重现期两方面,本文还给出了风速转换中的常用关系和有关国家的标准名称,便于在实际工作中引用。
【期刊名称】电力勘测设计【年(卷),期】2013(000)002【总页数】4【关键词】国内外;基本风速;差异;转换。
1 问题的提出随着国外电力勘测设计市场的不断拓展,对国外勘测设计规范的理解和掌握就显得越来越重要。
在电力勘测设计方面,水文气象专业需要对风速资料进行搜集、整理和分析。
由于国外风荷载规范的差异较大,这就需要研究各国在基本风速方面的相关规定,找出其与中国规范的差异,并转换为中国规范相应的设计风速,使得结构专业可以根据国内的结构设计软件进行相关风荷载分析计算。
2 中外风荷载标准中基本风速2.1 中国荷载规范中的基本风速中国规范中基本风速v0的定义是:一般空旷平坦地面B类粗糙度,离地10m 高10min平均时距,按50年重现期确定的年平均最大风速。
当风以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。
一般采用某一时段(如10min)的平均风速而不是瞬时风速,作为确定风压和衡量风灾的依据。
风速与风压的关系如下:中国标准《建筑结构荷载规范》(GB50009-2001)规定:当风速按年最大值取样,采用极值I型,推求50年一遇10m高10min平均最大风速时,得到的设计风速。
2.2 国外荷载规范中的基本风速目前国外主流的风荷载规范是美国标准和欧洲标准,其他国家大多以这两种规范为基础,做相应的调整。
结合目前国外市场的开拓情况,本次研究先后搜集到了美国、欧洲、英国、印度、越南、马来西亚、印度尼西亚、菲律宾、委内瑞拉等国与风荷载规范相关的文献。
日本风荷载规范英文版正文
– 6-2
– Recommendations for Loads on Buildings
in A6.11. (10) The increase of wind-induced vibration caused by neighboring buildings shall be considered from A6.12. (11) The response acceleration for checking the habitability of a building against wind-induced vibration shall be evaluated from A6.10. For this evaluation, the 1-year-reccurence wind speed can be obtained from A6.13. (12) When the wind load shielding effects by surrounding topographies or buildings are considered, the future changes shall be confirmed, and the shielding effect shall be investigated by appropriate wind tunnel study or other suitable verification methods.
6.1.2 Estimation principle (1) Wind loads for the design of buildings are individually specified for horizontal wind load for structural frames, roof wind load for structural frames and wind load for components/cladding. The horizontal wind loads for the design of structural frames shall be individually determined in the along-wind, across-wind and torsional directions. (2) For wind load for structural frames, combination of each horizontal wind load and combination of horizontal wind load and roof wind load shall be considered according to A6.8. For components of cladding and structural frame or particular joints of cladding and structural frames, combination of horizontal wind load on structural frames and local wind load on cladding shall be considered. (3) The wind loads shall generally be determined from the design wind speed defined for each wind direction given in A6.1.2. (4) The reference height is generally the mean roof height of the building. The wind loads are calculated from the velocity pressure at this reference height. However, wind loads on lattice type structures shall be calculated from the velocity pressure at each height, as shown in A6.6. (5) The horizontal wind load on structural frames and the roof wind load on structural frames are given by the product of the velocity pressure given in A6.1, the wind force coefficient given in A6.2, the gust effect factor given in A6.3 and the projected area or subject area as shown in 6.2 and 6.3. (6) The wind load on components/cladding is given by the product of the velocity pressure given in A6.1, the peak wind force coefficient given in A6.2 and the subject area. (7) For relatively flexible buildings with large aspect ratios, the horizontal wind loads on structural frames in the across-wind and torsional directions given in A6.4 and A6.5 shall be considered. The criteria for this are described in 6.1.3(1). (8) For flexible buildings with very large aspect ratios, the structural safety against vortex-induced
中欧风荷载 地震作用 荷载效应组合的对比研究及欧洲规范版SATWE软件开发
结果与讨论
此外,我们还发现欧洲规范版SATWE软件在计算荷载组合时具有较高的精度和 效率。该软件采用有限元方法和程序自动生成技术,可快速准确地计算出结构在 不同荷载组合下的响应。同时,软件还提供了丰富的数据分析和可视化功能,方 便工程师进行数据处理和结构安全评估。
结论
结论
本次演示通过对欧洲风荷载、地震作用和荷载效应组合的对比研究,总结出 以下结论:
1、欧洲和中国规范在风荷载、地震作用和荷载效应组合方面的规定存在一定 差异,这些差异将对结构物的安全性能产生影响。因此,在实际工程中需注意规 范差异,选择合适的规范进行结构设计。
结论
2、欧洲规范版SATWE软件在计算荷载组合时具有较高的精度和效率,可快速 准确地计算出结构在不同荷载组合下的响应。同时,该软件还提供了丰富的数据 分析和可视化功能,方便工程师进行数据处理和结构安全评估。
结论
3、在实际工程中,建议采用欧洲规范版SATWE软件进行结构分析和设计。同 时,应加强欧洲和中国规范在风荷载、地震作用和荷载效应组合方面的对比研究, 以便更好地指建筑结构安全性能的重要因素之一。不同国家 和地区的风荷载规范存在一定的差异,因此,对顺风向等效风荷载及响应主要国 家建筑风荷载规范进行比较分析,对于提高建筑物的抗风性能和保证其安全具有 重要意义。
文献综述
因此,针对欧洲风荷载、地震作用和荷载效应组合进行深入对比研究十分必 要。
研究方法
研究方法
本研究采用理论分析和数值模拟相结合的方法。首先,收集欧洲和中国规范 中关于风荷载、地震作用和荷载效应组合的相关规定和计算方法进行对比分析。 其次,建立地震作用和风荷载的数值模型,并利用欧洲规范版SATWE软件进行计 算和分析。最后,对计算结果进行对比和讨论,总结出欧洲和中国规范在风荷载、 地震作用和荷载效应组合方面的差异和优劣。
中美日三国规范高层结构风荷载标准值对比
万方数据万方数据万方数据万方数据万方数据万方数据万方数据万方数据中美日三国规范高层结构风荷载标准值对比作者:张军锋, 葛耀君, 柯世堂, 赵林, ZHANG Jun-feng, GE Yao-jun, KE Shi-tang, ZHAO Lin作者单位:同济大学土木工程防灾国家重点实验室,上海,200092刊名:湖南大学学报(自然科学版)英文刊名:Journal of Hunan University(Natural Sciences)年,卷(期):2011,38(10)被引用次数:2次参考文献(16条)1.张相庭结构风工程 20062.张相庭国内外风荷载规范的评估和展望[期刊论文]-同济大学学报(自然科学版) 2002(05)3.金新阳亚太地区各国风荷载规范的现状和发展趋势 20034.ZHOU Y;KIJEWSKI T;KAREEM A Along-wind load effects on tall buildings:comparative study of major intemational codes and standards 2002(06)5.HOLMES J D Developments in codification of wind loads in the Asia pacific 20096.周印高层建筑静力等效风荷载和响应的理论与实验研究[学位论文] 19987.黄韬颖中美澳三国风荷载规范的比较 19988.GB 50009-2001.建筑结构荷载规范 20069.ANSI ASCE7-2005.Minimum design loads for buildings and other structures 200510.Recommendations for loads on building(2004) 200411.JTG/T D60-01-2004.公路桥梁抗风设计规范 200412.DURST C S Wind speeds over short periods of time 196013.SIMIU E;SCANLAN R H Wind effects on structures 199614.KAREEM A;ZHOU Y Gust loading factor-past,present and future[外文期刊] 2003(12/15)15.ZHOU Y;KAREEM A Gust loadling factor:new molel[外文期刊] 2001(02)16.JGJ3-2002.高层建筑混凝土结构技术规程 2002引证文献(3条)1.陈鑫.李爱群.王泳.张志强国内外规范自立式高耸结构等效风荷载及响应比较[期刊论文]-建筑结构学报 2014(4)2.邓洪洲.段成荫新荷载规范修订对输电塔风荷载计算的影响研究[期刊论文]-振动与冲击 2013(20)3.童乐为.金健.周锋中欧温室规范中风荷载取值的对比[期刊论文]-农业工程学报 2013(21)引用本文格式:张军锋.葛耀君.柯世堂.赵林.ZHANG Jun-feng.GE Yao-jun.KE Shi-tang.ZHAO Lin中美日三国规范高层结构风荷载标准值对比[期刊论文]-湖南大学学报(自然科学版) 2011(10)。
双曲冷却塔结构规范风荷载标准值对比
MIDAS-Gen2014中各国及地区风荷载和地震反应谱规范
一. 风荷载Korean (Arch, 2000) : 韩国,建筑物荷载基准及解说Korean (Arch, 1992) : 韩国,有关建筑物的结构基准的规定IBC 2000(ASCE7-98) : 美国,I nternational B uilding C ode 2000 UBC (1997) : 美国,UBC 97标准ANSI (1982) : 美国,ANSI标准NBC(1995) : 加拿大,N ational B uilding C ode of Canada Eurocode-1 (2005) : 欧洲,Basis of Design and Actions on Eurocode-1 (1992) : 欧洲,Basis of Design and Actions on StructuresBS6399 (1997) : 英国,British Standard 6399 Loading for buildings C hina (GS50009-2001) : 中国,建筑抗震设计规范Japan (Arch, 2000) : 日本,建筑物荷载指针同解说Japan (1987) : 日本,建筑物荷载指针同解说IS875 (1987) : 印度国家标准Taiwan (2002): 中国台湾技术规则二.地震波Korean (Arch. 2000) : 韩国,建筑物荷载基准及解说Korean (Arch. 1992) : 韩国,有关建筑物的结构基准的规定Korean (Bridge) : 韩国,公路桥规范IBC2000(ASCE7-98) : 美国,I nternational B uilding C ode 2000UBC (1997) : 美国,UBC 97标准UBC (1994) : 美国,UBC 94标准ATC 3-06 (1982) : 美国,ATC 3-06 ProvisionNBC(1995) : 加拿大,N ational B uilding C ode of CanadaEurocode-8(2004):欧洲,结构的抗震设计标准E urocode-8 (1996) : 欧洲,结构的抗震设计标准Eurocode-8 (1996) Elastic : 欧洲,结构的抗震设计标准Japan (Arch. 1994) : 日本,建筑物荷载指针同解说Japan (Arch, 2000) : 日本,建筑物荷载指针同解说IS1893 (2002) : 印度,Indian Standards 2002China (GS50011-2001) : 中国,建筑抗震设计规范China shanghai(DGJ08-9-2003)中国,上海市抗震设计规程China (JTJ004-89) : 中国,公路工程抗震设计规范China (GBJ111-87) : 中国,铁路工程抗震设计规范Taiwan (2002): 中国台湾建筑物耐震设计规范。
码头设计中船舶风荷载中英规范标准研究
码头设计中船舶风荷载中英规范标准研究叶银苗【摘要】基于国内外码头工程设计所采用的规范标准的不同,船舶受力计算的方法也不同,主要分析了基本公式、国内规范、英国规范和OCIMF关于船舶风荷载的计算方法,并进行实例计算和结果分析,旨在为码头工程设计人员提供参考.【期刊名称】《水运工程》【年(卷),期】2014(000)007【总页数】5页(P46-50)【关键词】船舶;风荷载;风向角;横向分力;纵向分力【作者】叶银苗【作者单位】中船第九设计研究院工程有限公司,上海200063【正文语种】中文【中图分类】U652.7+4船舶在码头系泊时,所受荷载是随着风、水流、波浪的大小和角度变化而变化的,船舶的尺寸、形状和装载状态也是引起所受荷载变化的因素。
在码头的设计过程中,船舶荷载是一项比较关键的因素,而船舶所受到的风荷载又是船舶系缆力中占比较大的部分,所以准确计算船舶风荷载对于码头设计的合理性非常重要。
在船舶风荷载的计算中,所参照的规范标准不同,其计算结果也有较大差异,有必要将国内外不同规范标准对于船舶风荷载的计算方法作系统的比较分析,掌握导致差异的原因。
本文主要针对国内规范、英国规范和OCIMF关于船舶风荷载计算进行分析比较。
1.1 基本公式物体受到的压力可表述为压强与受压面积的乘积,同样,物体受到的风荷载可以用下式计算:式中:PW为风压力(kN);AW为物体受风面积(m2);p为风压(kNm2)。
但在实际应用中,物体受到的风荷载与其本身的体形和高度有很大关系,所以需要引入体形系数和高度系数[1]来修正式(1):式中:μs为风荷载体形系数;μ为风压高度变化系数。
风压可按下式确定[2]:式中:ρW为空气密度,20 ℃时为1.29 kgm3;vW为风速(ms);g为重力加速度,9.81 ms2。
所以,得到以下计算风荷载的基本公式:这里需要特别说明一下,基本公式的演化表明了风荷载计算公式的含义,但在实际应用中,物体受到的风荷载受诸多因素的影响,与基本公式的计算结果会有较大误差,所以需要结合试验和实际经验对基本公式加以修正,《港口工程荷载规范》关于船舶风荷载的计算方法就是对基本公式进行修正的结果。
中美规范中风荷载计算的不同与对比
中美规范中风荷载计算的不同与对比晏琴【摘要】当空气流动时,风对工程结构件所产生的压力或吸力,被称为风荷载.风荷载的大小,与基本风压、地形、地面粗糙度、距离地面高度及建筑物体型等诸多因素有关.各国规范中,对风荷载的要求也大不相同.通过比较,对国内外3种常用规范的内容进行了对比和总结,为相关设计方案提供参考.【期刊名称】《电站辅机》【年(卷),期】2017(038)002【总页数】3页(P4-6)【关键词】机组;风荷载;风速;计算;标准;对比;设计;参考【作者】晏琴【作者单位】上海电气斯必克工程技术有限公司,上海200090【正文语种】中文【中图分类】TK264.9因为海外工程项目越来越多地进入国内设计公司,所以,在结构设计时,不仅要熟练掌握国内的设计规范,还要灵活应用外国的设计规范。
在工程结构设计中,确定荷载的取值和组合方式,是设计前的首要任务。
风荷载是建筑结构上的主要荷载之一,对于风荷载的计算,在各国的设计规范中,均有详细的解说和计算方式。
在国际上,认可度较高的荷载计算规范,分别为Minimum Design Loads for Buildings and Other Structures(ASCE7-10)和Uniform Building Code(UBC97)。
我国的计算规范为GB5009-2012(建筑结构荷载规范)。
对于GB5009-2012与ASCE7-10和UBC97在风荷载取值上的差异及相互转换关系,国内学者已做了很多研究,但需注意的是,应避免发生2种或者3种规范混用的情况。
如按UBC97规范中的公式,计算得出了风荷载,那么就必须按照UBC97规范中相应的荷载组合进行结构分析,而不能再按其它规范进行荷载组合。
现通过实例,按3种规范中的要求,分别进行风荷载的分析和计算,可直观地发现各规范中的区别与计算上的差异。
某工程结构的顶部高度为30 m,结构类型为双向开敞、中心支撑钢结构,该工程项目位于美国,地形平坦,高为10 m、暴露类别为C、时距为3 s的风速值,为36 m/s。
日本JEC标准输电塔风荷载计算介绍
日本JEC标准输电塔风荷载计算介绍肖志军;王振华【摘要】针对中国和日本两国对输变电铁塔设计中风荷栽计算存在较大差异的问题,分别介绍两国铁塔分荷栽计算公式及计算公式中的主要参数——基本分压、分压高度系数、体型系数、风振系数、依据构造规模的折减系数、依据构造物种类的系数、屏蔽系数.最后得出两国风荷栽计算最大的区别是设计风速的取值不同:日本JEC标准采用3s瞬时风速,中国标准采用10min的平均风速,但是随着铁塔高度的增加,区别不大.【期刊名称】《广东电力》【年(卷),期】2012(025)006【总页数】4页(P59-61,68)【关键词】JEC标准;中国标准;输电铁塔;风荷载【作者】肖志军;王振华【作者单位】广东省电力设计研究院,广东广州510663;广东省电力设计研究院,广东广州510663【正文语种】中文【中图分类】TM753风荷载是输电铁塔的控制荷载[1-6],了解风荷载的计算方法很关键。
中国和日本地理位置相近,但两国输电铁塔的风荷载计算存在着较大的差异,日本采用3 s瞬时风速进行设计,中国采用10 min平均风速进行设计,两国风速重现期均为50a,基准高度为10 m。
为了研究两国输电塔风荷载计算的差异,介绍了文献[7]、文献[8]和文献[9]的输电塔风荷载计算方法,详细比较了风荷载计算公式中的每个计算参数,论述两国标准在输电铁塔风荷载计算上的差异。
1.1 中国标准规范根据中国标准规范,风荷载式中:Ws为风向与杆塔塔面相垂直时杆塔风荷载标准值;W0为基本风压;μz为风压高度系数;μb为构件的体形系数;βr为杆塔风荷载调整系数;Ap为构件承受风压投影面积计算。
1.2 日本JEC标准根据日本JEC标准,风荷载式中:P为风荷载;C为构件的体形系数;q0为按地区划分的基准风压;α为高度变化系数;β为依据构造规模的折减系数(铁塔为1.0,其他杆塔为0.9);K1为依据构造物种类的系数;K2为屏蔽系数;A为受风面积。
中美规范风荷载设计规定对比研究
1引言近年来,上海电气电站工程公司作为总承包方承接了多项海外燃煤、燃油、燃气火力发电项目。
很多项目要求采用美国规范作为设计标准,部分项目可以采用中国规范设计,但业主提供的风荷载参数等输入条件是基于美国规范提出的。
在项目的设计过程中,经常遇到由于中国规范和美国规范规定差异导致的风荷载参数取值不同给工程结构设计带来的困扰[1]。
为了适应海外工程的设计需要,了解中国规范与美国规范关于风荷载设计规定的差异是十分必要的。
本文基于中国规范GB50009—2012《建筑结构荷载规范》[2]和美国规范ASCE/SEI 7-10Minimum Design Loads for Buildings and Other Structures[3],对基本风速、基本风压和风速压力、风荷载标准值和风荷载设计压力、地面粗糙度类别和暴露类别、风荷载体型系数和风压系数、最小风压等风荷载设计规定做了对比研究。
2基本风速中国和美国风荷载设计规范在确定基本风速时,选取的均是年最大风速,并且选取的年最大风速概率分布类型是一致的,均为极值I型分布曲线[4]。
中国规范GB50009—2012条款8.1.2指出,基本风速是高度10m处、地面粗糙度类别B类的10min阵风风速,重现期为50年。
美国规范ASCE/SEI 7-10的26.3节术语和符号解释中给出基本风速是高度10m 处、暴露类别C类的3s阵风风速。
ASCE/SEI7-10条款26.5.1指出,基本风速的重现期按不同的结构安全等级采用300年、700年、1700年不同的重现期。
离地面越近,风能量受地表障碍物的影响产生的损耗就越大,因而风速就越小;反之离地越高,则风能量损耗就越少,风速也就越大。
因此,必须规定一个标准高度以便于计算和比较[5]。
中美规范对标准高度的规定是一致的,均为10m。
基本风速在这两个规范之间相互转换时,可不必考虑标准高度的影响。
地表越粗糙风能量损耗就越大,因而风速就越小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CHAPTER 6 WIND LOADS6.1 General6.1.1 Scope of application(1) This chapter describes wind loads for the design of buildings that respond elastically in strongwinds.(2) Two different wind loads are described. The first is for the design of structural frames, and thesecond is for the design of components/cladding of buildings.6.1.2 Estimation principle(1) Wind loads for the design of buildings are individually specified for horizontal wind load forstructural frames, roof wind load for structural frames and wind load for components/cladding. The horizontal wind loads for the design of structural frames shall be individually determined in the along-wind, across-wind and torsional directions.(2) For wind load for structural frames, combination of each horizontal wind load and combination ofhorizontal wind load and roof wind load shall be considered according to A6.8. For components of cladding and structural frame or particular joints of cladding and structural frames, combination of horizontal wind load on structural frames and local wind load on cladding shall be considered. (3) The wind loads shall generally be determined from the design wind speed defined for each winddirection given in A6.1.2.(4) The reference height is generally the mean roof height of the building. The wind loads arecalculated from the velocity pressure at this reference height. However, wind loads on lattice type structures shall be calculated from the velocity pressure at each height, as shown in A6.6.(5) The horizontal wind load on structural frames and the roof wind load on structural frames are givenby the product of the velocity pressure given in A6.1, the wind force coefficient given in A6.2, the gust effect factor given in A6.3 and the projected area or subject area as shown in 6.2 and 6.3. (6) The wind load on components/cladding is given by the product of the velocity pressure given inA6.1, the peak wind force coefficient given in A6.2 and the subject area.(7) For relatively flexible buildings with large aspect ratios, the horizontal wind loads on structuralframes in the across-wind and torsional directions given in A6.4 and A6.5 shall be considered. The criteria for this are described in 6.1.3(1).(8) For flexible buildings with very large aspect ratios, the structural safety against vortex-inducedvibration and aeroelastic instability shall be checked. The criteria for this are described in 6.1.3(2).The wind loads on structural frames and members of round sectional shape caused by vortex induced vibration shall be determined by A6.7.(9) For small buildings and structures with large stiffness, a simplified procedure can be used, as givenin A6.11.(10) The increase of wind-induced vibration caused by neighboring buildings shall be considered fromA6.12.(11) The response acceleration for checking the habitability of a building against wind-inducedvibration shall be evaluated from A6.10. For this evaluation, the 1-year-reccurence wind speed canbe obtained from A6.13.(12) When the wind load shielding effects by surrounding topographies or buildings are considered,the future changes shall be confirmed, and the shielding effect shall be investigated by appropriatewind tunnel study or other suitable verification methods.6.1.3 Buildings for which particular wind load or wind induced vibration is taken into account(1) Buildings for which horizontal wind loads on structural frames in across-wind and torsionaldirections are taken into accountFor the buildings that satisfy the following criteria, wind load in the across-wind direction as defined in A6.4 and wind load in the torsional direction as defined in A6.5 shall be checked.3≥BDH (6.1) whereH (m): reference height as defined in 6.1.2(4)B (m): building breadthD (m): building depth(2) V ortex resonance and aeroelastic instabilityFor buildings that satisfy the following criteria, vortex-induced vibration and aeroelastic instabilityshall be checked by the appropriate wind tunnel tests and so on. For buildings with circular section,the wind load is prescribed in A6.7. 1) For buildings with rectangular section4≥BD H and ⎟⎟⎠⎞⎜⎜⎝⎛≥≥*Tcr T H *Lcr L H 83.0 83.0U BD f U or U BD f U (6.2) where H U (m/s): design wind speed as defined in A6.1.2. (wind directionality factor 1D =K )*Lcr U : non-dimensional critical wind speed for aeroelastic instability in across-wind directioncalculated from Table 6.1*Tcr U : non-dimensional critical wind speed for aeroelastic instability in torsional directioncalculated from Table 6.2T L ,f f (Hz): natural frequency for first mode in across-wind and torsional directions 2) For buildings with circular cross-section7m ≥D H and 2.4mL H ≥D f U (6.3)wherem D (m): building diameter at height 3/2HTable 6.1 Non-dimensional critical wind speed for aeroelastic instability in across-wind direction *Lcr UFlat terrain categoriesSide ratio B D /Scruton number L δNote) Critical speed *Lcr UI, II ≤B D /0.8L δ≤0.7 16L δ L δ>0.7 11 0.8<≤B D / 1.5all 1.2L δ+7.3 1.5<≤B D / 2.5L δ≤0.2 2.3 0.2<L δ≤0.8 12 L δ>0.8 15L δ B D />2.5 L δ≤0.4 3.7 L δ>0.4 not necessary to evaluate III, IV , V ≤B D /0.8 all 4.5L δ+6.70.8<≤B D / 1.2all 0.7L δ+8.8 B D />1.2 all 11Note) L δ is the mass damping parameter defined as )3/(L L BDH M ρζδ=, where L ζ is thedamping ratio for the first mode in the across-wind direction, M (kg) is the total building mass, ρ(1.22kg/m 3) is the air density.Table 6.2 Non-dimensional critical wind speed for aeroelastic instability in torsional direction *Tcr USide ratio B D / Scruton number T δNote) Critical speed *Tcr UB D /≤1.5T δ≤0.05 2 0.05<T δ≤0.1 11 T δ>0.1 not necessary to evaluate 1.5<B D /≤2.5T δ≤0.05 2 0.05<T δ≤0.15 4+8T δ T δ>0.15 8.6+7.4T δ 2.5<B D /≤5 T δ≤0.05 2T δ>0.05 5+10.5T δNote) T δ is the mass damping parameter defined as )36/()(2222T T H D B D B M ρζδ+=, whereT ζ is the damping ratio for the first mode in the torsional direction.6.2 Horizontal Wind Loads on Structural Frames6.2.1 Scope of applicationThis section defines the procedures for estimating horizontal wind loads on structural frames in thealong-wind direction.6.2.2 Procedure for estimating wind loadsAlong-wind loads on structural frames are calculated from Eq.(6.4).A G C q W D D H D = (6.4) whereD W (N): along-wind load at height ZH q (N/m 2): velocity pressure as defined in A6.1.1D C : wind force coefficient as defined in A6.2D G : gust effect factor as defined in A6.3.1A (m 2): projected area at height Z6.3 Roof Wind Load on Structural Frames6.3.1 Scope of applicationThis section defines the procedures for estimating roof wind loads on structural frames of buildings.6.3.2 Procedure for estimating wind loadsRoof wind loads on structural frames are calculated from Eq.(6.5)R R R H R A G C q W = (6.5) whereR W (N): wind loadH q (N/m 2): design velocity pressure as defined in A6.1.1R C : wind force coefficient as defined in A6.2R G : gust effect factor for roof wind load as defined in A6.3.2R A (m 2): subject area6.4 Wind Loads on Components/Cladding6.4.1 Scope of applicationThis section defines the procedures for estimating wind loads on components/cladding of buildings.6.4.2 Procedure for estimating wind loadsWind loads on components/cladding of buildings are calculated from Eq.(6.6).CC H C ˆA C q W = (6.6) whereC W (N): wind loadH q (N/m 2): design velocity pressure as defined in A6.1.1CˆC : peak wind force coefficient as defined in A6.2 C A (m 2): subject area of components/claddingA6.1 Wind Speed and Velocity PressureA6.1.1 Velocity pressureThe design velocity pressure, H q (N/m 2), is calculated from:2H H 21U q ρ= (A6.1) whereρ(kg/m 3): air density, assumed to be 1.22H U (m/s): design wind speed, which depends on wind direction and is defined in A6.1.2A6.1.2 Design wind speedDesign wind speed, H U (m/s), is calculated for each wind direction from:rW H D 0H k E K U U = (A6.2)where 0U : basic wind speed (m/s) depending on the geographic location of the construction site,defined in A6.1.3D K : wind directionality factor defined in A6.1.4.H E : wind speed profile factor at reference height H defined in A6.1.5.rW k : return period conversion factor defined in A6.1.7.The 1-year-recurrence wind speed is defined in A6.13 for evaluation of habitability.A6.1.3 Basic wind speedBasic wind speed 0U (m/s) corresponds to the 100-year-recurrence 10-minute mean wind speed over a flat, open terrain at an elevation of 10m. The wind speed is defined in Fig.A6.1 for various locations in Japan.Figure A6.1 Basic wind speed 0U (m/s) Izu Islands, not shown in the map 46Ogasawara Islands, Satsunann Islands,Okinawa Islands, Daitou Islands, Sakishima Islands, not shown in the map50A6.1.4 Wind directionality factorWind directionality factor D K reflects the directional characteristics of the extreme wind, which are influenced by the geographical location and topographic feature of the construction site. It shall be determined as follows, with reference to the wind directionality factors for the 8 cardinal directions shown in Table A6.1.(1) Where the aerodynamic shape factors for each wind direction are known from an appropriate wind tunnel experiment, the wind directionality factor D K , which is used to evaluate the wind loads on structural frames and components/cladding for a particular wind direction, shall take the same value as that for the cardinal direction whose 45 degree sector includes that wind direction.(2) Where the aerodynamic shape factors in A6.2 are used1) When assessing wind loads on structural framesa) Where the aerodynamic shape factors are dependent on wind direction, four wind directions should be considered that coincide with the principal coordinate axis of the structure. If the wind direction is within a 22.5 degree sector centered at one of the 8 cardinal directions, the wind directionality factor D K for this direction shall be adopted. If the wind direction is outside of the 22.5 degree sector, the larger of the 2 nearest cardinal directions shall be adopted.b) Where the aerodynamic shape factors are independent of wind direction, the wind directionality factor D K shall take the same value as that for the cardinal direction whose 45 degree sector includes that wind direction.2) When assessing wind loads on components/cladding1D =KTable A6.1 Wind directionality factor D KWakkanai Kitamiesashi Haboro Omu Rumoi Asahikawa Abashiri Otaru Sapporo Iwamizawa NE 0.95 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 E 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 SE 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 11 S 1 0.85 1 0.85 0.85 1 0.85 0.85 1 1 SW 1 1 1 1 0.95 1 0.85 1 0.85 0.85W 0.85 1 1 1 0.95 1 0.95 1 0.95 1NW 0.85 0.85 0.95 0.85 1 0.85 11 1 0.95 N 0.95 0.85 0.85 0.85 1 0.85 0.9 0.85 0.85 0.9Obihiro Kushiro Nemuro Suttsu Muroran Tomakomai Urakawa Esashi Hakodate KutchanNE 0.85 0.85 0.9 0.85 0.85 0.85 0.85 0.85 0.95 0.85 E 0.85 0.9 0.9 0.85 0.85 0.85 0.85 0.85 0.95 0.95 SE 0.85 0.9 0.85 1 0.85 0.85 0.85 0.85 0.85 0.95 S 0.85 0.85 0.85 1 0.85 0.85 0.85 1 1 0.95 SW 0.85 0.85 0.85 0.85 0.85 0.85 0.85 1 1 0.95 W 1 1 0.95 1 1 0.85 1 1 0.95 1 NW 1 0.9 1 1 1 0.9 1 1 0.9 1 N 0.85 0.85 0.95 0.9 0.85 1 0.85 0.85 0.85 0.85KTable A6.1(continued) Wind directionality factor DHachinoheWakamatsu Fukaura Aomori MutsuAkita MombetsuHiroo OfunatoShinjoNE 0.9 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85E 0.9 0.85 0.85 0.85 0.9 0.85 0.85 0.85 0.85 0.85 SE 0.85 0.85 0.85 0.85 0.9 0.85 0.85 0.85 0.85 0.85S 0.85 0.85 0.85 0.85 0.85 1 0.85 0.85 0.85 0.95 SW 1 1 0.85 0.85 0.85 1 1 0.95 1 0.95 W 1 1 0.85 1 1 0.95 1 1 1 1 NW 1 0.85 1 1 1 0.95 0.9 0.85 0.95 1 N 0.9 0.85 0.9 0.85 0.85 0.9 0.85 0.85 0.85 0.85 MoriokaYamagata SendaiIshinomaki Fukushima Shirakawa Onahama Wajima Miyako SakataNE 0.85 0.85 0.85 0.85 0.85 1 0.85 0.85 1 0.9E 0.85 0.85 0.85 0.85 0.85 0.95 0.85 0.85 0.85 0.85 SE 0.85 0.9 0.85 0.85 0.85 0.9 0.85 0.85 0.9 0.85 S 0.85 0.9 0.85 0.9 0.85 0.85 0.85 0.85 0.85 0.9 SW 0.95 0.95 0.9 1 0.85 0.85 0.85 0.85 0.85 1W 1 1 1 1 1 1 1 1 0.95 1 NW 1 0.95 1 0.95 1 1 1 1 1 0.95 N 0.95 0.95 0.85 0.85 0.85 1 0.85 0.95 1 0.95 Aikawa Niigata Kanazawa Fushiki Toyama Nagano Takada Utsunomiya Fukui TakayamaNE 0.85 0.85 0.85 0.9 0.85 0.85 0.85 0.9 0.85 0.85E 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 SE 0.85 0.85 0.85 0.85 0.9 0.85 0.85 0.85 1 0.9S 0.85 0.85 0.9 0.85 1 0.85 0.85 0.85 1 10.85 1 1 1 0.9 1 0.85 0.85 0.850.85 SWW 0.85 1 0.9 0.95 0.9 1 1 0.85 0.85 0.85 NW 1 1 0.85 0.85 0.85 0.9 0.95 0.85 1 0.85N 1 0.9 0.85 0.9 0.85 0.85 0.85 1 1 0.85Kumagai Mito Tsuruga Gifu Nagoya Iida Kofu ChichibuMatsumotoSuwaNE 0.85 0.85 0.85 1 0.85 0.85 0.85 0.95 0.85 0.85E 0.85 1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85SE 1 1 0.85 0.85 0.85 1 1 0.85 0.85 0.85S 1 0.95 0.85 0.85 0.85 0.95 1 0.85 0.85 0.85SW 0.9 0.85 0.85 0.85 0.85 0.85 0.85 1 0.85 0.85W 0.85 1 0.95 0.9 0.85 0.85 0.85 1 0.85 0.9 NW 0.85 1 1 1 1 0.9 0.85 1 1 1N 0.85 0.85 0.95 1 0.85 0.85 0.85 0.95 1 0.85TokyoOwase Ueno Tsu IrakoChoshiHamamatsu Omaezaki Shizuoka MishimaNE 0.9 0.85 0.85 0.9 0.95 1 0.85 1 0.85 0.85E 0.85 1 1 0.95 0.95 1 0.85 0.85 0.85 0.95 SE 0.85 0.9 1 0.95 0.85 0.85 0.85 0.85 0.85 0.85S 0.85 0.85 0.85 0.9 0.85 0.95 0.95 0.85 0.85 0.85 SW 0.85 0.9 0.85 0.85 0.85 0.95 1 0.85 0.85 0.95W 0.85 0.85 0.95 1 1 1 1 0.85 0.85 1NW 0.95 0.85 0.9 1 1 0.95 0.85 0.85 1 0.95N 1 0.85 0.85 0.85 0.85 0.85 0.85 1 1 0.85KTable A6.1(continued) Wind directionality factor DTateyama Katsuura Oshima Miyakojima Hachijojima Chiba YokkaichiYokohamaIrozaki AjiroNE 0.85 0.95 0.85 0.85 0.85 1 0.85 0.85 0.85 0.85 E 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 1 SE 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 1S 0.85 0.85 0.85 0.85 1 0.85 0.85 1 0.95 0.85 SW 0.9 1 0.85 0.85 1 0.95 0.85 1 0.95 1 W 1 1 0.85 0.85 0.85 0.9 0.95 0.9 0.85 1 NW 0.85 0.85 1 1 1 0.85 1 0.9 1 0.85 N 0.85 0.95 1 1 0.9 1 1 0.9 1 0.85HamadaToyooka Maizuru HagiTsuyamaYonago TottoriSaigoMatsue SakaiNE 0.9 0.9 0.95 0.85 0.85 0.85 0.85 0.85 0.85 0.85E 0.85 0.85 0.95 0.85 0.85 0.85 0.85 0.85 0.85 0.95SE 0.85 0.85 0.85 0.85 0.85 0.85 1 0.9 0.85 0.95S 0.85 0.85 0.85 0.85 1 0.85 1 0.9 0.85 0.85SW 0.85 0.9 0.95 0.95 0.85 0.85 0.85 0.85 0.9 0.850.85 0.9 1 0.95W 0.85 1 1 1 0.850.85NW 0.85 0.95 0.85 1 0.9 1 1 1 0.85 0.950.85 1 0.9 1 1 1 1 1N 1 0.95Fukuyama Okayama Himeji Kobe OsakaHiroshima KureKyotoHikone ShimonosekiNE 1 0.85 0.85 0.85 1 0.95 0.85 0.85 1 0.9E 0.95 0.85 0.85 0.85 0.85 0.85 0.85 0.85 1 0.85 SE 0.85 0.85 0.85 0.95 0.85 0.85 0.85 1 0.85 0.85S 0.85 0.85 0.85 1 0.9 0.85 0.85 1 0.85 1 SW 0.85 0.85 0.85 1 0.9 0.85 1 0.85 0.85 1W 0.85 0.95 0.85 0.85 0.9 0.85 0.85 0.9 0.85 1 NW 0.95 1 1 0.85 1 0.85 0.85 0.9 1 1N 0.95 0.85 0.95 0.85 1 1 0.85 0.85 1 1Sumoto Wakayama Shionomisaki Nara Yamaguchi Izuhara Hirado Fukuoka Iizuka Sasebo NE 0.85 0.85 0.95 1 0.85 0.85 0.9 0.85 0.85 1E 0.85 0.85 0.95 1 0.9 0.85 0.85 0.85 0.85 0.85 SE 0.9 1 0.85 0.85 1 0.85 0.85 1 0.85 0.85 S 1 1 0.9 0.85 0.85 0.95 0.85 1 0.9 0.85 SW 0.85 0.95 0.95 0.85 0.85 1 0.85 0.85 0.9 0.85 W 0.85 1 1 0.85 0.85 0.9 0.85 1 0.85 0.9 NW 0.85 1 1 0.85 0.85 0.95 0.95 1 1 0.9 N 0.85 0.85 0.85 0.85 0.85 1 1 1 1 1Nagasaki Kumamoto Nobeoka Akune Kagoshima Miyakonojo MiyazakiSaga Hita OitaNE 0.85 0.85 0.85 0.9 0.85 0.85 0.85 0.85 0.85 0.9E 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.85 SE 0.85 0.85 1 0.85 0.85 0.95 0.85 0.95 1 1S 1 1 0.85 0.9 1 1 1 0.95 1 0.85 SW 0.85 1 0.85 1 1 0.85 0.9 1 0.9 0.85 W 0.85 0.95 0.9 1 0.95 0.85 0.85 0.85 0.85 0.85 NW 0.95 0.85 0.9 0.95 1 0.9 0.85 0.85 0.85 0.85N 0.95 0.85 0.85 0.9 1 0.9 0.85 0.85 0.85 0.9Table A6.1(continued) Wind directionality factor D KMakurazaki Aburatsu Yakushima Tanegashima Ushibuka Fukue Matsuyama Tadotsu Takamatsu Uwajima NE 0.85 0.95 0.85 0.85 0.85 0.85 0.9 0.85 0.9 0.95 E 1 0.9 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.95 SE 1 0.9 0.95 0.95 0.85 0.9 1 0.85 0.85 1 S 1 1 11 0.85 0.95 1 0.85 0.85 1 SW 1 1 1 0.9 0.9 0.95 0.95 1 0.95 0.85W 0.95 0.85 0.85 0.91 0.95 0.95 1 1 0.85 NW 0.95 0.85 0.85 0.85 0.85 1 0.9 0.85 0.9 0.85 N 0.95 0.95 0.85 0.85 0.85 1 0.9 0.85 0.9 0.85Kouchi Tokushima Sukumo Shimizu MurotomisakiNaze Miyakojima Kumejima Naha Nago NE 0.85 0.85 0.85 0.85 1 0.85 0.95 0.85 0.85 0.85E 1 0.85 0.95 0.95 1 0.85 0.85 0.85 0.85 0.85 SE 1 1 0.95 0.9 0.9 0.9 0.85 0.95 0.95 0.9 S 0.85 1 0.9 0.95 0.85 0.85 0.951 1 1 SW 0.85 0.85 1 0.95 0.95 0.85 0.851 1 1 W 0.85 0.85 1 11 0.85 0.95 0.85 1 0.85 NW 0.85 0.85 1 0.85 0.91 1 1 1 0.9 N 0.85 0.85 0.85 0.85 0.851 1 1 1 0.85Okinoerabu MinamidaitojimaNE 0.850.9 E 0.850.85 SE 10.95 S 10.95 SW 0.850.85 W 0.850.85 NW 0.91 N 0.95 1A6.1.5 Wind speed profile factor(1) Wind speed profile factorWind speed profile factor E is calculated from:g r E E E = (A6.3) wherer E : exposure factor for flat terrain categories, defined in (2)g E : topography factor defined in (3)(2) Exposure factor based on flat terrain categoriesThe exposure factor for flat terrain categories is defined in 2), according to the flat terrain categories defined in 1).1) The flat terrain categories of the construction site are defined in Table 6.2. However, if the terrain category changes from smooth to rough in the region of the smaller of 40H (H : reference height) and 3km upwind of the construction site, the terrain category of the construction site is assumed the same as that of the upwind smooth terrain.Table A6.2 Flat terrain categoriesCategory Condition at construction site and upwind region Smooth I Open, no significant obstruction, sea, lake ↑II Open, few obstructions, grassland, agricultural field III Suburban, wooded terrain, few tall buildings (4 to 9-story) ↓IV City, tall buildings (4 to 9-story)Rough VCity, heavy concentration of tall buildings (higher than 10-story)2) The exposure factor based on the flat terrain categories is defined in Eq.(A6.4), according to the terrain categories defined in 1).⎪⎪⎩⎪⎪⎨⎧≤⎟⎟⎠⎞⎜⎜⎝⎛≤<⎟⎟⎠⎞⎜⎜⎝⎛=b G b Gb G r 7.1 7.1Z Z Z Z Z Z Z Z Z E αα(A6.4) whereZ (m): height above groundα,,G b Z Z : parameters determining the exposure factor r E , defined in Table A6.3Table A6.3 Parameters determining r ECategory I II III IV V b Z (m) 5 5 10 20 30 G Z (m)250 350 450 550 650 α0.1 0.15 0.2 0.27 0.35(3) Topography factorTopography factor, which reflects the change of the mean wind speed that occurs as wind passes at right angles over escarpments or ridge-shaped topography, as shown in Figs.A6.2 and A6.3, is defined in Eq.(A6.5). However, when the inclination s θ calculated from Eq.(A6.6) is less than 7.5 degrees, or s s /H X is beyond the range shown in Tables A6.4 and A6.5, it is not necessary to consider the topography factor, i.e., 1g =E .1)(exp 1)()1(3s 23s 21g +⎭⎬⎫⎩⎨⎧−−⎭⎬⎫⎩⎨⎧+−−=C H Z C C H ZC C E and 1g ≥E (A6.5) ss 1s 2tan L H−=θ (A6.6)where321,,C C C : parameters determining the topography factor, are given in Tables A6.4 and A 6.5,and depend on the topography shape, inclination s θ and distance s X (m) from thetop of the topographic feature to the construction site. When the inclination s θ is greater than 60 degrees, the topography factor is assumed to be the same as that at 60 degrees.Z (m): height above ground. It is assumed the same value as b Z when it is smaller than b Z .s H (m): height of the topographys L (m): horizontal distance from the top of topographic feature to the point where the height ishalf the topography height as shown in Figs. A6.2 and A6.3Figure A6.2 EscarpmentsFigure A6.3 Ridge-shaped topographyTable A6.4 Parameters determining g E (escarpments)θs X s /H s−4 −2 −1 −0.50 0.5 1 2 4 8 7.5°C 11.15 1.3 1.5 1.5 1.6 1.45 1.3 1.3 1.2 1.15C 2 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.6 0.5 0.4 C 3 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 15°C 1 0.4 1 1.2 1.55 2.1 1.65 1.5 1.3 1.2 1.15C 2 0.9 0 0.650.85 1 0.8 0.7 0.55 0.45 0.35C 3 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 30°C 1 0.7 −0.5 1.05 1.1 1.3 1.3 1.25 1.2 1.15 1.1 C 2 0.65 1.2 1.65 1.5 1.45 1.3 0.9 0.9 0.85 0.6 C 3 −2 −2 1 0.8 0.3 0.3 0.5 0.7 1.2 1.4 45°C 1 0.8 0 −3.5 1.1 1.2 1.35 1.3 1.2 1.15 1.1 C 2 0.5 1 1.6 2 1.1 1.3 1.3 1.3 0.9 0.55C 3 −2 −2 −2 0.8 0.3 0.2 0.75 1.05 1.4 2 60°C 1 0.6 0.1 −1.8−2.4 1.2 1.4 1.35 1.25 1.15 1.1 C 2 0.65 0.9 1.3 2.6 2 1.8 1.7 1.5 0.85 0.45C 3−2 −2 −2 −1 0.5 0.5 0.8 1.2 1.9 3.1Table A6.5 Parameters determining g E (ridge-shaped topography)θs X s /H s−4 −2 −1 −0.50 0.5 1 2 4 8 7.5°C 1 1.1 1.2 1.35 1.35 1.4 1.3 1.3 1.2 1.1 1 C 2 1 1 1 1 1.5 1.2 1.1 2 1.6 0 C 3 0 0 0 0 0.2 0.2 0.2 0.5 0.9 0 15°C 1 1 1.05 1.2 1.25 1.3 1.4 1.3 1.25 0.35 0.65C 2 0 0 1 1 1 1.5 1.5 2 3 2 C 3 0 0 0 0 0 0.5 0.6 1.1 0.2 0.3 30°C 1 0.75 0.55 0.85 1 1.2 1.3 1.25 1.2 1.1 1.02C 2 1.5 2 2 0 1 2 2 1.6 1.7 1.7 C 3 0 0 0 0 0 1.1 1.3 2.1 2.2 2.8 45°C 1 0.75 0.55 0.2 0.75 1.15 1.2 1.15 1.12 1.1 1.02C 2 1.5 2 2 3 1 2.5 2.5 2 1.6 1.3 C 3 0 0 0 0 0 1.2 1.9 2.2 2.5 3.2 60°C 1 0.75 0.55 0.2 0.2 1.15 1.12 1.15 1.12 1.1 1.02C 2 1.5 1.5 1.8 3 1 2.2 2.5 2 1.6 1.3 C 30 0 0 0 0 1.8 2 2.3 2.6 3.4Note) For a particular inclination s θ and a horizontal location s s /H X , the topography factor iscalculated by interpolating linearly from the values at the nearest inclinations and horizontal locations.A6.1.6 Turbulence intensity and turbulence scaleTurbulence intensity and turbulence scale in A6.2, A6.3 are defined as follows. (1) Turbulence intensity1) Turbulence intensity Z I is defined according to the conditions of the construction site as: gI rZ Z E I I = (A6.7)whererZ I : turbulence intensity at height Z on the flat terrain categories, defined in 2)gI E : topography factor defined in 3)2) Turbulence intensity on flat terrain categoriesTurbulence intensity rZ I on flat terrain categories is defined in Eq.(A6.8) according to the terrain categories.⎪⎪⎩⎪⎪⎨⎧≤⎟⎟⎠⎞⎜⎜⎝⎛≤<⎟⎟⎠⎞⎜⎜⎝⎛=−−−−b 05.0G b Gb 05.0G rZ1.0 1.0Z Z Z Z Z Z Z Z Z I αα (A6.8) whereZ (m): height above groundα,,G b Z Z : parameters determining the exposure factor, defined in Table A6.33) Topography factor for turbulence intensityTopography factor for turbulence intensity for the condition, in which the wind passes at rightangles to the escarpments or ridge-shaped topography, as shown in Figs.A6.2 and A6.3, is defined as:g I gI E EE = (A6.9)where1)(exp 1)()1(3s 23s 21I +⎭⎬⎫⎩⎨⎧−−⎭⎬⎫⎩⎨⎧+−−=C H ZC C H Z C C E and 1I ≥E (A6.10)whereI E : topography factor for the standard deviation of fluctuating wind speed. When theinclination s θ calculated from Eq.(A6.6) is less than 7.5, or the distance from the top of the topographic feature s X (m) is beyond the range of s s /H X in Tables A6.6 and A6.7, it is not necessary to consider the topography factor, i.e., 1I =E . g E : topography factor for mean wind speed, defined in Eq.(A6.5)321,,C C C : parameters determining the topography factor I E , are given in Tables A6.6 andA6.7, and depend on the topography shape, inclination s θ andthe distance s X (m) from the top of the topographic feature to the construction site. When the inclination s θ isgreater than 60 degrees, the topography factor is assumed to be the same as that at 60 degrees.Z (m): height above ground. It is assumed to be the greater of b Z and c Z when it is smallerthan b Z in Table A6.3, or c Z in Tables A6.6 and A6.7sH(m): height of topographysL(m): horizontal distance from the top of the topographic feature to the point where the height is half the topography heightTable A6.6 Parameters determining I E (Escarpments)θsX s /H s−4 −2 −1 −0.50 0.5 1 2 4 87.5° Z c/H s0 0 0 0 0 0 0 0 0 0 C1 1 1 1 1 1 1 1 1 1 1 C2 0 0 0 0 0 0 0 0 0 0 C3 0 0 0 0 0 0 0 0 0 015° Z c/H s0 0 0 0 0 0 0 0 0 0 C1 1 1.05 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 C2 0 0 0.2 0.2 0.3 0.4 0.50.5 0.3 0.3 C3 0 0 0 0 0 0 0 0 0 030° Z c/H s0 0 0 0 0 0 0 0 0 0 C1 1.05 1.05 1.1 1.15 1.2 1.3 2.5 1.8 1.4 1.25 C2 0 0 0 0.7 2 2.5 10 8 4 1.5 C3 0 0.5 1 1 0.5 0 0 0.1 0.2 0.645° Z c/H s0 0 0 0 0 0 0 0.3 0.3 0.2 C1 1.05 1.1 1.15 1.3 1.8 1.5 3 3 1.8 1.5 C2 0 0 0 1.4 1.7 1.6 6 5 3.5 2 C3 0 0 0.5 0 −1 −0.80 0 0.3 0.560° Z c/H s0 0 0 0 0 0 0 0.5 0.7 0.9 C1 1.1 1.15 1.2 1.3 6 8 4 3.5 2.2 1.7 C2 0 0 0 0.7 2.5 5 8 5 3 1.5 C3 0 0 0.3 0.5 −1.3−0.40.20.2 0.4 0.5Table A6.7 Parameters determining I E (Ridge-shaped topography)θsX s /H s−4 −2 −1 −0.50 0.5 1 2 4 8 7.5°Z c /H s 0 0 0 0 0 0 0 0 0 0 C 1 1 1 1 1 1 1 1 1 1 1 C 2 0 0 0 0 0 0 0 0 0 0 C 3 0 0 0 0 0 0 0 0 0 0 15°Z c /H s 0 0 0 0 0 0 0 0.6 0 0 C 1 1 1 1 1 1 3.4 4.2 4 2.8 2 C 2 0 0 0 0 0 19 11 4.6 2 1.6 C 3 0 0 0 0 0 0.1 0.2 0.3 0.6 0.7 30°Z c /H s 0 0 0 0 0 0.6 0.8 1.5 1.6 2.2 C 1 1 1 1 1 1 1.6 1.9 2.2 3.2 2.7 C 2 0 0 0 0 0 5 4 2 1.7 1.3 C 3 0 0 0 0 0 0.4 0.6 1 0.7 0.5 45°Z c /H s 0 0 0 0 0 0.8 1.5 1.7 1.9 2.5 C 1 1 1 1 1 1 1.4 1.7 2.1 2.8 2.8 C 2 0 0 0 0 0 2.6 2.2 1.7 1.4 1.3 C 3 0 0 0 0 0 0.8 1.1 1.2 0.9 0.5 60°Z c /H s 0 0 0 0 0 1.35 1.6 1.8 2 2.6 C 1 1 1 1 1 1 1.6 1.8 2.1 2.9 2.9 C 2 0 0 0 0 0 2 1.6 1.3 1.3 1.2 C 30 0 0 0 0 1 1.2 1.2 0.8 0.6Note) For a particular inclination s θ and a horizontal location s s /H X , the topography factor forfluctuating wind speed is calculated by interpolating linearly from the values at the nearest inclinations and horizontal locations.(2) Turbulence scaleTurbulence scale is defined independently of the terrain categories of the construction site as:⎪⎩⎪⎨⎧≤≤<⎟⎠⎞⎜⎝⎛=m 30 10030m 30100G 5.0Z Z Z Z Z L (A6.11) whereZ (m): height above groundG Z : parameter determining the exposure factor, defined in Table A6.3A6.1.7 Return period conversion factorReturn period conversion factor rW k is calculated from Eq.(A6.12). ()9.39.2ln 163.0U U rW +−−=λλr k (A6.12)where500U U U =λ whereU(m/s): 500-year-recurrence 10-minute mean wind speed at 10m above ground over a flat 500and open terrain, defined in Fig.A6.4U(m/s): basic wind speed, defined in A6.1.3r(year): design return periodFigure A6.4 500-year-recurrence 10-minute mean wind speed at 10m above ground over a flat andopen terrain 500U (m/s)Izu Islands, not shown in the map 52Ogasawara Islands, Satsunann Islands,Okinawa Islands, Daitou Islands, Sakishima Islands, not shown in the map58A6.2 Wind force coefficients and wind pressure coefficientsWind force coefficients and wind pressure coefficients fall into two categories corresponding to the design of the structural frames and components/claddings. The coefficients shall be estimated from wind tunnel experiments or from the following procedure using the wind pressure coefficients (external and internal pressure coefficients) and wind force coefficients provided in this clause.A6.2.1 Procedure for estimating wind force coefficients(1) Wind force coefficients for design of structural frames1) Wind force coefficients D C for estimating horizontal wind loads on structural framesWind force coefficients are given in A6.2.4(1) and A6.2.4(4) or calculated from Eq.(A6.13) using the external pressure coefficients provided in A6.2.2.pe2pe1D C C C −= (A6.13)wherepe1C : external pressure coefficient on windward face pe2C : external pressure coefficient on leeward face2) Wind force coefficients R C for estimating roof wind loads on structural framesWind force coefficients are given in A6.2.5(2) or calculated from Eq.(A6.14) using the externalpressure coefficients provided in A6.2.2 and the internal pressure coefficients provided in A6.2.3.pi pe R C C C −= (A6.14) wherepe C : external pressure coefficient on roof pi C : internal pressure coefficient3) Wind force coefficients D C for estimating horizontal wind loads on lattice structuresWind force coefficients are given in A6.2.4(3) or calculated from the wind force coefficients for individual members provided in A6.2.4(5).(2) Peak wind force coefficients CˆCfor design of components/cladding Peak wind force coefficients C ˆC are given in A6.2.7 or calculated from Eq.(A6.15) using the peak external pressure coefficients provided in A6.2.5 and the factor for the effect of fluctuating internalpressures provided in A6.2.6.pi *peCˆˆC C C−= (A6.15) wherepeˆC : peak external pressure coefficient pi *C : factor for effect of fluctuating internal pressures。