万有引力及天体运动经典习题汇总
万有引力习题及答案
【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。
B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。
C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。
D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。
例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。
教科版高中物理必修第二册第三章万有引力定律1天体运动练习含答案
1.天体运动基础巩固1.(多选)下列说法正确的是()A.地心说认为:地球是宇宙的中心,太阳、月亮以及其他星球都绕地球运动B.哥白尼的日心说认为:宇宙的中心是太阳,所有行星都绕太阳做匀速圆周运动C.太阳是静止不动的,地球由西向东自转,使得太阳看起来自东向西运动D.地心说是错误的,日心说是正确的答案:AB解析:由物理学史可知,地心说认为地球是宇宙的中心,日心说认为太阳是宇宙的中心,日心说和地心说都有一定的局限性,可见A、B正确,C、D错误。
2.(多选)关于开普勒第三定律r 3T2=k ,下列说法正确的是()A.k值对所有的天体都相同B.该公式适用于围绕太阳运行的所有行星C.该公式也适用于围绕地球运行的所有卫星D.以上说法都不对答案:BC解析:开普勒第三定律r 3T2=k中的k只与中心天体有关,对于不同的中心天体,k不同,A 错。
此公式虽由行星运动规律总结所得,但它也适用于其他天体的运动,包括卫星绕地球的运动,B、C对,D错。
3.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳位于()A.F2B.AC.F1D.B答案:A解析:根据开普勒第二定律:太阳和行星的连线在相等的时间内扫过相同的面积,因为行星在A点的速率比在B点的速率大,所以太阳和行星的连线必然是行星与F2的连线,故太阳位于F2。
4.已知两颗行星的质量m1=2m2,公转周期T1=2T2,则它们绕太阳运转轨道的半长轴之比为()A.a1a2=12B.a1a2=21C.a1a2=√43 D.a1a2=√43答案:C解析:由a 3T2=k知,a13a23=T12T22,则a1a2=√43,与行星质量无关。
5.太阳系有八大行星,八大行星离地球的远近不同,绕太阳运转的周期也不相同。
下列图像能反映周期与轨道半径关系的是()答案:D解析:由开普勒第三定律知R 3T2=k,所以R3=kT2,D正确。
6.行星A、B的质量分别为m1和m2,绕太阳运行的轨道半长轴分别为r1和r2,则A、B的公转周期之比为()A.√r1r2B.r13r23C.√r13r23D.无法确定答案:C解析:由开普勒第三定律r 3T2=k,得r13T12=r23T22,所以T12T22=r13r23,T1T2=√r13r23,C正确。
(文末附答案)人教版2022年高中物理万有引力与航天经典大题例题
(每日一练)(文末附答案)人教版2022年高中物理万有引力与航天经典大题例题单选题1、关于地球的同步卫星,下列说法正确的是()A.地球同步卫星可以是极地卫星B.我国发射的同步通讯卫星可以定点在北京上空C.它的周期、高度、速度大小都是一定的D.它的线速度大于近地卫星线速度2、宇宙飞船正在离地面高H2R地的轨道上做匀速圆周运动,R地为地球的半径,飞船内一弹簧秤下悬挂一质量为m的重物,g为地球表面处重力加速度,则下列说法正确的是()A.物体受力平衡B.弹簧秤的示数为零C.弹簧秤的示数为19mg D.物体受到的重力为14mg3、如图所示,在地球的外侧有一小行星带。
假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动,则这些小行星绕太阳运行的周期()A.大于1年B.小于1年C.可能等于1年D.无法判断4、目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小。
若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是A .卫星的动能逐渐减少B .由于地球引力做正功,引力势能一定增加C .由于气体阻力做负功,地球引力做正功,机械能保持不变D .卫星克服气体阻力做的功小于引力势能的减少量5、宇宙飞船正在离地面高H 2R 地的轨道上做匀速圆周运动,R 地为地球的半径,飞船内一弹簧秤下悬挂一质量为m 的重物,g 为地球表面处重力加速度,则下列说法正确的是( )A .物体受力平衡B .弹簧秤的示数为零C .弹簧秤的示数为19mgD .物体受到的重力为14mg6、目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小。
若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( )A .卫星的动能逐渐减少B .由于地球引力做正功,引力势能一定增加C .由于气体阻力做负功,地球引力做正功,机械能保持不变D .卫星克服气体阻力做的功小于引力势能的减少量7、下列有关天体运动的说法正确的是( )A .绕太阳运行的行星,轨道半长轴越长,公转的周期就越小B .在月球绕地球运动中,r 3T 2=k 中的T 表示月球自转的周期C .对于任意一个行星,它与太阳的连线在相等的时间内扫过的面积相等D .若地球绕太阳运动的轨道半长轴为a 1,周期为T 1,月球绕地球运动轨道的半长轴为a 2,周期为T 2,则根据开普勒第三定律有:a 13T 12=a 23T 228、下列说法正确的是( )A .千克、米/秒、牛顿是导出单位B .以额定功率运行的汽车,车速越快,牵引力越大C .汽车在水平公路上转弯时,车速越快,越容易滑出路面D .地球球心与人造地球卫星的轨道必定在同一平面内9、航天员翟志刚、王亚平、叶光富计划将于2022年4月中旬乘坐神舟十三号载人飞船返回地球,这是我国航天员首次完成空间站在轨6个月的任务计划,在返回的时刻,神舟十三号飞船将首次采用快速返回方案。
天体运动试题及答案
天体运动试题及答案1. 请简述开普勒第一定律的内容。
答案:开普勒第一定律,也称为椭圆定律,指出所有行星围绕太阳运动的轨道都是椭圆形状,太阳位于椭圆的一个焦点上。
2. 根据开普勒第三定律,行星公转周期与其轨道半长轴的关系是怎样的?答案:开普勒第三定律,也称为调和定律,表明所有行星绕太阳公转周期的平方与它们轨道半长轴的立方成正比。
3. 描述牛顿万有引力定律的主要内容。
答案:牛顿万有引力定律指出,宇宙中任何两个物体之间都存在引力,其大小与两物体的质量的乘积成正比,与它们之间的距离的平方成反比。
4. 请解释什么是地球的公转和自转。
答案:地球的公转是指地球围绕太阳的运动,周期大约为一年。
地球的自转是指地球围绕自己的轴线旋转,周期大约为一天。
5. 简述潮汐现象是如何产生的。
答案:潮汐现象是由于地球、月球和太阳的引力作用,导致地球上的海水周期性地涨落。
6. 为什么我们通常看不到月球的背面?答案:月球的自转周期与公转周期相同,这种现象称为潮汐锁定,因此我们总是看到月球的同一面。
7. 描述地球在太阳系中的位置。
答案:地球是太阳系中的第三颗行星,位于金星和火星之间。
8. 请解释什么是日食和月食。
答案:日食是指月球位于地球和太阳之间,遮挡住太阳的现象;月食是指地球位于太阳和月球之间,地球的阴影遮挡住月球的现象。
9. 简述恒星和行星的区别。
答案:恒星是能够通过核聚变产生能量的天体,而行星是围绕恒星运行的较小天体,不能产生能量。
10. 请解释什么是黑洞。
答案:黑洞是一种天体,其质量极大,引力极强,以至于连光都无法逃逸,因此无法直接观测到。
高中物理万有引力天体运动同步练习题(含答案)
9.BD
【详解】A.根据题意得:双星系统具有相同的角速度,A错误
B.根据万有引力提供向心力得: ,需要向心力大小相等,B正确
C.根据 ,且: ,联立解得: ,C错误
D.线速度角速度关系: ,所以 ,D正确
10.BC
【详解】A.根据万有引力提供向心力,有
得地球的质量为
可得已知地球卫星质量和它离地面的高度,不能得到卫星的轨道半径,也不知道卫星的周期,所以无法求出地球质量。故A错误;
A.其发射速度一定大于11.2km/s
B.在轨道上运动的线速度一定小于7.9km/s
C.它运行周期大于24h
D.它可以经过北京正上空,所以我国能利用它进行电视转播
二、多选题
8.对于开普勒第三定律的公式 ,下列说法正确的是( )
A.公式只适用于轨道是椭圆的运动
B.式中的k值,对于所有行星都相等
C.式中的k值,只与中心天体有关,与绕中心天体旋转的行星无关
A.m1、m2做圆周运动的角速度之比为3:2
B.m1、m2做圆周运动的向心力之比为1:1
C.m1、m2做圆周运动的半径之比为3:2
D.m1、m2做圆周运动的线速度之比为2:3
10.在下列条件中,引力常量已知,能求出地球质量的是( )
A.已知卫星质量和它离地的高度
B.已知卫星轨道半径和运动周期
C.已知近地卫星的周期和它的向心加速度
D.该公式也适用于围绕地球运行的所有卫星
9.经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1:m2=3:2.则可知
(完整版)万有引力定律经典例题
盘中心尺体査页成ftl 垃鰭藕吋’万科可力班*1那『史Jf骨=呼「黄金代樓*,其%表乐天弹表面的匪力加連讎2.中心天体质量和密度的估算⑴已知天体表面的重力加速度g 和天体半径R(2)已知卫星绕天体做圆周运动的周期 T 和轨道半径rMm 4 n4 n r 3① G ~^2 =吓r? M =苛 M 3 n 3 ② 尸4 3=乔R 33n Ri •火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知 ( )A •太阳位于木星运行轨道的中心B •火星和木星绕太阳运行速度的大小始终相等C •火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上, A错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的 比值是一个常数,C 正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面 积相等,不同行星在相同的时间内扫过的面积不相等,D 错误.答案:C2. (2016郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器•探测器升空1 .天体运动的分析方法G MR m= mg?天体质量:天体密度:“ gR 2M=旨3g 尸 4T GR③卫星在天体表面附近飞行时,r= R ,贝 y p=GT nN0.2题组训嫌提升能力天弹苕动的向心力来壽于天之间的万有引力 4^r-f后,先在近地轨道上以线速度 v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度 v '在火星表面附近环绕飞行•若认为地球和火星都是质量分布均匀 的球体,已知火星与地球的半径之比为 1 : 2,密度之比为5 : 7,设火星与地球表面重力加速度分别为g '和g ,下列结论正确的是()项正确,D 项错.答案:C3•嫦娥三号”探月卫星于 2013年12月2日1点30分在西昌卫星发射中心发射,将实 现“落月”的新阶段•若已知引力常量G ,月球绕地球做圆周运动的半径「1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径 匕、周期T 2,不计其他天体的影响,则根据题目条件可以( )A •求出“嫦娥三号”探月卫星的质量B .求出地球与月球之间的万有引力C .求出地球的密度 门3 r 23D.^=T 22不知道地球半径 r ,无法求出地球密度, C 错误;对4式得 g = 3G npR ,所以g ' : g = 5 : 14, A 、B 项错;探测器在大体表面飞行时,万有引力解析:在天体表面附近,重力与万有引力近似相等,由 GMRRm = mg , M = P 3 n R 3,解两G M R m - = mR , M = P 4 泯3,解两式得 v = 2^y G 3np,所以 v ' : v=\f28, C充当向心力,由 解析:绕地球转动的月球受力为 誉=M ' r 1 T 2 = ,已知 嫦娥三号”的周期和半径,可求出月球质量M ',但是所有的卫星A • g: g=4: 1B • g ': g = 10 : 7在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月 卫星质量无法求出, A 错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动 的半径r i ,根据F =可求出地球和月球之间的引力,B 正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动 的中心天体一个是地球一个是月球,D 错误.答案:B Ir 反忠捉升j ---------------------------------------------------------------------------------------------------估算天体质量和密度时应注意的问题(1) 利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天 体的质量,并非环绕天体的质量.(2) 区别天体半径 R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r - R ;计算4天体密度时,V=:T R 3中的R 只能是中心天体的半径. L3______ 丿考点二人造卫星的运行 授课提示:对应学生用书第57页1. 人造卫星的a 、3、v 、T 与r 的关系1. 地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.N0.1梳理主干填准记牢GMm2.近地时GMm mg = -R2-ma > a = G r > a ’ 22 m w 2r m^2»GM = gR 2.⑵周期一定:与地球自转周期相同,即 T = 24 h = 86 400 s.(3) 角速度一定:与地球自转的角速度相同. (4) 高度一定:根据 = m 4T r 得r= 4,23x 104km ,卫星离地面高度 h =r - R ~ 6R(为恒量).(5) 绕行方向一定:与地球自转的方向一致. 2. 极地卫星和近地卫星(1) 极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2) 近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可 近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3) 两种卫星的轨道平面一定通过地球的球心.题组训嫌提升能力 运州I1.(2015高考福建卷)如图,若两颗人造卫星 a 和b 均绕地球做匀速圆周运动, a 、b 到地心O 的距离分别为「1、「2,线速度大小分别为 V 1、V 2,则()项正确,B 、C 、D 项错误.答案:A2. 2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭, 将我国首颗新一代北斗导航卫星发射升空,于 31号凌晨3点34分顺利进入预定轨道.这 次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括 5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步 轨道卫星•中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离 地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的( )B .线速度小 D .向心加速度大N0.2解析:根据万有引力定律可得A .周期大 C .角速度小V 1 A.— V 2G 呼 r 2V 1 V 2,所以A解析:卫星离地面的高度越低,则运动半径越小•根据万有引力提供圆周运动向心力 24 2 ; 4 2 3得 G M$ = m* = m w 2r = m-T ^^ = ma ,则周期 T ="'‘石Mr ,知半径 r 越小,周期越小,故 A知半径r 越小,角速度越大,故 C 错误;向心加速度 a =学寻,知半径r 越小,向心加速度 越大,故D 正确.答案:D3•“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所•假设“空间 站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面 高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有( )A •“空间站”运行时的加速度小于同步卫星运行的加速度B •“空间站”运行时的速度等于同步卫星运行速度的 ,10倍C .站在地球赤道上的人观察到“空间站”向东运动D •在“空间站”工作的宇航员因不受重力而可在舱中悬浮速度,故A 错误;根据 G^Mm = m*得v =. GM ,离地球表面的高度不是其运动半径,所以线速度之比不是.10 : 1,故B 错误;轨道半径越大,角速度越小,同步卫星和地球自转 的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观 察到空间站向东运动,故 C 正确;在“空间站”工作的宇航员处于完全失重状态,重力充 当向心力和空间站一起做圆周运动,故D 错误.答案:C—r 辰忠提升j -------------------------------------------------人造卫星问题的解题技巧,知半径r 越小,线速度越大,故 B 错误;角速度 3=解析:根据G Mm Gm “yr = ma 得 a =~rr ,知 空间站”运行的加速度大于同步卫星运行的加 错误;线速度 v =GMGM戸,(1) 利用万有引力提供向心力的不同表达式 2 2GMm v24 n r—== mr 3= m=^ = ma n r r T(2) 解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿 第二定律.①卫星的a n 、V 、3、T 是相互联系的,其中一个量发生变化,其他各量也随之发生 变化.⑶要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球 绕地球公转一周为一月(27.3天)等.考点三卫星的发射和变轨问题 授课提示:对应学生用书第57页梳理主干填准记牢叩己|1. 第一宇宙速度(环绕速度)v i = 79 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度, 还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2. 第二宇宙速度(脱离速度)V 2 = 11.2 km/s ,使卫星挣脱地球引力束缚的最小发射速度. 3. 第三宇宙速度(逃逸速度)V 3= 16! km/s ,使卫星挣脱太阳引力束缚的最小发射速度.-------------------------------------------1. 第一宇宙速度的两种计算方法 ^Mm. m vf 得 v 叫 /GM (1) 由 GR 2 = % 得 v = R.2(2) 由 mg = mR 得 v = . g R . 2. 卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时 (开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.②a n 、 V 、 3、 T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定.2Mm v o 2 n o ⑵变轨分析:卫星在圆轨道上稳定时,G-^r = m? = m w 2r = m 〒2r.2①当卫星的速度突然增大时,vm*,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大•当卫星进入新的轨道稳定运行时,由GM 可知其运行速度比原轨道时减小,但重力势能、机械能均增加;②当卫星的速度突然减小时,> 疋,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小•当卫星进入新的轨道稳定运行时,由GM可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015高考广东卷)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到 2v 时,可摆脱星球引力束缚脱离该星球•已知地球、火星两星球的质量比约为10 : 1,半径比约为2:1•下列说法正确的有( )A •探测器的质量越大,脱离星球所需要的发射速度越大B •探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D •探测器脱离星球的过程中,势能逐渐增大 解析:由GMRm = mvR 得,v = ;GRM , 2v = ',,2GM ,可知探测器脱离星球所需要的发射速度与探测器的质量无关, A 项错误;由F = GMm 及地球、火星的质量、半径之比可 做负功,引力势能增大, D 项正确.答案:BD 2.(多选)2013年12月2日我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P 点从圆形轨道I 进入椭圆轨道n, Q 为轨道H 上的近月点•下列关于“嫦娥三号”的运动,正确的说法是 ( )N0.2報组训竦提升能力远川知,探测器在地球表面受到的引力比在火星表面的大, 探测器脱离两星球所需的发射速度不同,C 项错误;探测器在脱离两星球的过程中,引力B 项正确;由2GM” 盲可知,A •发射速度一定大于 7.9 km/sB •在轨道n 上从 P 到Q 的过程中速率不断增大C •在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度D •在轨道n 上经过 P 的加速度小于在轨道I 上经过 P 的加速度 解析:“嫦娥三号”探测器的发射速度一定大于 7.9 km/s , A 正确•在轨道n 上从P到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道I 上运动到轨道n 上要减速,故在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度,选项 C 正确.在轨道n 上经过P 的加速度等于在轨道I 上经过P 的加速度,D 错.答案:ABC3.(2016成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星 A 、B 、C ,在某一时刻恰好在同一条直线上•它们的轨道半径之比为 说法中正确的是()B .三颗卫星具有机械能的大小关系为 E A V E B V E CC • B 卫星加速后可与 A 卫星相遇D • A 卫星运动27周后,C 卫星也恰回到原地点 解析: 根据万有引力提供向心力G M ^p = ma ,得 a = G r ,故 a A : a B : a c=2 :」2 :」2r r r A r B r c1 1 1=* :歹:32= 36 : 9 : 4,故A 错误;卫星发射的越高,需要克服地球引力做功越多,故机 械能越大,故 E A V E B V E C ,故B 正确;B 卫星加速后做离心运动,轨道半径要变大,不可C 的周期应为A 的周期的27倍,故D 错误.答案:B1 :2 : 3,质量相等,则下列能与A 卫星相遇,故 C 错误;根据万有引力提供向心力 _Mm 4 n= m*27周后, C 卫星也恰回到原地点,则A •三颗卫星的加速度之比为r ,得 T = 2 所以T C即T C = ■.27T A 若 A 卫星运动反忠捉升」航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v=、代皿判断.(2) 航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页N0.1梳理主干牢固记忆1•模型构建片巾“ —GY绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2. 模型条件(1) 两颗星彼此相距较近.(2) 两颗星靠相互之间的万有引力做匀速圆周运动.⑶两颗星绕同一圆心做圆周运动.3. 模型特点(1) “向心力等大反向”一一两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1 = F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2) “周期、角速度相同”一一两颗行星做匀速圆周运动的周期、角速度相等.(3) “半径反比” 一一圆心在两颗行星的连线上,且「1 + r2= L,两颗行星做匀速圆周运动的半径与行星的质量成反比.题组训练提升能力运用|1 •双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一 点做周期相同的匀速圆周运动•研究发现,双星系统演化过程中,两星的总质量、距离和 周期均可能发生变化•若某双星系统中两星做圆周运动的周期为 T ,经过一段时间演化后,两星总质量变为原来的 k 倍,两星之间的距离变为原来的 n 倍,则此时圆周运动的周期为( )解析:设两颗双星的质量分别为m i 、m 2,做圆周运动的半径分别为 r i 、「2,根据万有 m i m 24 nm i m 24 n引力提供向心力可得G ----------- = m i r i 2 , G ---------------- = m 2「2 2,联立两式解得 m i + m 2 =r i + r 22 1 r i + r 22 1变为原来的n 倍时,两星圆周运动的周期为T ' B 正确,A 、C 、D 错误.答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常 可忽略其他星体对它们的引力作用•设四星系统中每个星体的质量均为 四颗星稳定分布在边长为 a 的正方形的四个顶点上•已知引力常量为 G.关于四星系统,下列说法正确的是()A •四颗星围绕正方形对角线的交点做匀速圆周运动B •四颗星的轨道半径均为aC ・四颗星表面的重力加速度均为 罟解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点, 围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为 B 错误;在星体表面,根据万有引力等于重力,可得 G m m _= m ' g ,解得g =罟,故C故D 正确.4 n r i + r 24 n r i + r 2 GT 2,即T 2=,因此,当两星总质量变为原来的 k 倍,两星之间的距离G m i + m 2m ,半径均为 R , 正确;由万有引力定律和向心力公式得D •答案:ACD3•如图所示,双星系统中的星球 A 、B 都可视为质点.A 、B 绕两者连线上的 0点做匀 速圆周运动,A 、B 之间距离不变,引力常量为 G ,观测到A 的速率为v 、运行周期为T ,A 、B 的质量分别为m i 、m 2.⑴求B 的周期和速率.⑵A 受B 的引力F A 可等效为位于0点处质量为 m '的星体对它的引力,试求m '.(用 m i 、m 2 表示)解析:(1)设A 、B 的轨道半径分别为r i 、r 2,它们做圆周运动的周期 T 、角速度3都相同,根据牛顿第二定律有F A = m i 32r i , F B = m 2w 2r 2,即三=需故B 的周期和速率分别为:十 十 十m i r i m i vT B =T A =T,VB=3r= 3韦2 =石2m i + m 2⑵A 、B 之间的距离r = r i +「2= 匚厂r i ,根据万有引力定律有Gm i m 2 Gm i m 'F A=,m 23 2.m i + m 23答案:⑴T mv ⑵右辰忠捉升」解答双星问题应注意 “两等”“两不等”(1)双星问题的“两等” ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力 大小总是相等的.⑵双星问题的“两不等” ①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半 径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.所以m '[随堂反馈]授课提示:对应学生用书第59页1. (2015高考重庆卷)宇航员王亚平在“天宫 1号”飞船内进行了我国首次太空授课, 演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为 h ,地球质量为M ,半径为R ,引力常量为 G ,则飞船所在处的重力加速度大小为( )GMm , /口GM解析:由 2= mg '得g ' =2, B 项正确.R +h 2 R +h 2答案:B2. (2015高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距 离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度解析:地球的公转半径比火星的公转半径小,由知能TftHINO YAN|Ll>ANB.GM R + hC.GMm R + hD. GM T 2 GMm 2 n _尹=m — 2r ,可知地球的周期比火星的周期小,故 A 项错误;由響=m可知地球公转的线速度大,故B 项错误;由G%m = ma ,可知地球公转的加速度大,项错误;由G^^m = m w 2r ,可知地球公转的角速度大,故D 项正确.答案:D3 .已知地球质量为 M ,半径为 为G.有关同步卫星,下列表述正确的是R , 自转周期为 T ,地球同步卫星质量为 m ,引力常量A .卫星距离地面的高度为GM②由m i 32r i = m 232r 2知,由于 m i 与m 2一般不相等,故 r i 与「2 —般也不相等.B •卫星的运行速度等于第一宇宙速度C .卫星运行时受到的向心力大小为G M R2rD .卫星运行的向心加速度小于地球表面的重力加速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B 错误;同步卫星运行时的向心力大小为F 向=GMm C 错误;由G M?m = mg 得地球表面的重力加速度 g = G^,而R +h 2RR同步卫星所在处的向心加速度g ' =-GM -, D 正确.R + h 2答案:D4. (2015成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西 昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道 和椭圆轨道上运动时,只受到月球的万有引力.则( )A .若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的 密度B .嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月椭圆轨道上P 点的速度大于 Q 点的速度D .嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力 G Mm = m^r ,可以解出月球的质量 M = ^7"2,由于 r I GI 不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A 错误;嫦娥三号在环月段圆轨道上 P 点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨 道,故B 错误;嫦娥三号从环月椭圆轨道上P 点向Q 点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P 点的速度小于 Q 点的速度,故 C 错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦解析:GMm2 n 2 ,口 2= m(R + h) ~T 2得 R + h 2 13GMT 2h= j ZT - R ,A 项错误;近地卫星的运行速度娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故答案:D 5.—物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A 、B 、C 三点,已知 AB 段与BC 段的距离均为0.06 m ,通过AB 段与BC 段的时间分为0.2 s 与0.1 s ,求:(1)该星球表面重力加速度值;⑵若该星球的半径为 180 km ,则环绕该行星的卫星做圆周运动的最小周期为多少? 解析:(1)根据运动学公式,由题意可得 1x = V 1t 1 + 2gt代入数值可求得g = 2 m/s 2.Mm 2 n _⑵对质量为 m 的卫星有 = m — 2r可知当R = r 时卫星做圆周运动的最小周期为代入数据解得 T 最小=600 n . 答案:(1)2 m/s 2(2)600 n s[课时作业]授课提示:对应学生用书第243页一、单项选择题1. (2016成都市石室中学一诊)下列说法正确的是( )A •洗衣机脱水桶脱水时利用了离心运动B •牛顿、千克、秒为力学单位制中的基本单位C .牛顿提出了万有引力定律,并通过实验测出了万有引力常量D •理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动•故 A正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B 错误;牛顿D 正确.2x = V 1 t 1 + t 2 + 2g t 1+ t 2星球表面有Mm=m ' g提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故 C 错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D 错误.答案:A2•欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯 581c ”.该行星的质量是地球的5倍,直径是地球的 1.5倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为 E k1,在地球表面附近绕地球沿圆轨道运行的相冋质量的 人造卫星的动能为 E k2,则学为(E k2)A . 0.13B . 0.3C . 3.33D . 7.5解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供 Mm v 2故有 G~r = m~,r r1所以卫星的动能为 E k = 2mv 2 = GMm =2rGM 地m故在地球表面运行的卫星的动能E k2 =2R 地答案:C 3.(2015高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状 态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示•当旋 转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表 面时相同大小的支持力•为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大在“格利斯”行星表面运行的卫星的动能GM 行m E k1 =E k1所以有E 2GM 行m2R 行GM 地m 2R 地M 行R 地 5 1• = — XM 地 R 行 11.51033.33.B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D •宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球越大,需要的角速度越小, A 项错误,B 项正确.答案:B4. 一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速 1度大小减小为原来的2则变轨前后卫星的()A .轨道半径之比为 1 : 2B .向心加速度大小之比为 4 : 1C .角速度大小之比为 2 : 1D .周期之比为1 : 8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,严=2?豊=4,A 项错;6节平=ma? a =号単,所以鲁=16, B 项错;由开普勒第三T 4QT" = & D项正确;因为 T =」,角速度与周期成反比,故 号=8, C 项 12 8 GG 2错.答案:D5•美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适 合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离 地球约600光年,体积是地球的 2.4倍.已知万有引力常量和地球表面的重力加速度.根 据以上信息,下列推理中正确的是( )A •若能观测到该行星的轨道半径,可求出该行星所受的万有引力B .若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C .根据地球的公转周期与轨道半径,可求出该行星的轨道半径D •若已知该行星的密度和半径,可求出该行星的轨道半径 解析:根据万有引力公式 F =,由于不知道中心天体的质量,无法算出向心力,故A 错误;根据万有引力提供向心力公式 G^Mm = mg ,有g = G%,若该行星的密度与地球表面时的支持力,则mg = mr GJ ,C 、D 项错误;半径V 1 V 2G 132因此角速度与质量无=m^? v =。
万有引力及天体运动经典习题汇总
第五章 万有引力定律基础知识一.开普勒运动定律(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F =G 221r m m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G 221rm m , g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r +)2·g 在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有F =F 向+m 2g ,所以m 2g=F 一F 向=G 221rm m -m 2R ω自2 因地球目转角速度很小G 221r m m » m 2R ω自2,所以m 2g= G 221rm m 假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G 221rm m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=13Gm R ,比现在地球自转角速度要大得多.四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm GR 得g=2M G R ,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =* 五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.G 2r mM =m 224T πr ,由此可得:M=2324GT r π;ρ=V M =334R M π=3223R GT r π(R 为行星的半径) 由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度六.卫星的绕行角速度、周期与高度的关系(1)由()()22mMv G m r h r h =++,得v =h ↑,v ↓ (2)由G ()2h r mM +=m ω2(r+h ),得ω=()3h r GM +,∴当h ↑,ω↓ (3)由G ()2h r mM +()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑ 七.三种宇宙速度:① 第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。
万有引力和天体运动
第五章 万有引力和天体运动一、选择题1、(2007江苏淮安模拟)美国的―大鸟‖侦察卫星可以发现地面上边长仅为0.36m 的方形物体,它距离地面高度仅有16km ,理论和实践都表明:卫星离地面越近,它的分辨率就越高,那么分辨率越高的卫星 ( )A .它的运行速度一定越小B .它的运行角速度一定越小C .它的环绕周期一定越小D .它的向心加速度一定越小2、(07扬大附中模拟)人造卫星绕地球做圆周运动,因受大气阻力作用,它近似做半径逐渐变化的圆周运动则A.它的动能逐渐减小 B.它的轨道半径逐渐减小C.它的运行周期逐渐变大 D.它的向心加速度逐渐减小3.(07山东省潍坊市统考)同步卫星到地心的距离为r ,加速度为a 1,速率为v 1;地球半径为R ,赤道上物体随地球 自转的向心加速度为a 2,速率为v 2,则( ) A .r R a a =21B .2221r R a a =C .2221r R v v =D .R r v v =214、(07资中)关于人造地球卫星,下述说法正确的是A 、人造地球卫星只能绕地心做圆周运动,而不一定绕地轴做匀速圆周运动B 、在地球周围做匀速圆周运动的人造地球卫星,其线速度大小必然大于7.9km/sC 、在地球周围做匀速圆周运动的人造地球卫星,其线速度大小不能小于7.9km/sD 、在地球周围做匀速圆周运动的人造地球卫星,如其空间存在稀薄的空气,受空气阻力,动能减小5.(07杭州)在地球(看作质量分布均匀的球体)上空有许多同步卫星,下面说法中正确的是( )A .它们的质量可能不同B .它们的速率可能不同C .它们的向心加速度大小可能不同D .它们离地心的距离可能不同6.0 7江苏模拟.已知某行星的质量为M ,半径为R ,其表面处的重力加速度为a ,引力常量为G .则该行星上的第一宇宙速度一定为A. R GMB. 7.9km/s C. 11.2km/s D. 4GMa7、07蚌埠.地球上站立着两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星相对自己静止不动,则这两位观察者的位置及两颗卫星到地球中心的距离是 A.一个人在南极,一个人在北极,两卫星到地球中心的距离一定相等B.一个人在南极,一个人在北极,两卫星到地球中心的距离可以不等C.两个人都在赤道上,两卫星到地球中心的距离可以不等D.两个人都在赤道上,两卫星到地球中心的距离一定相等8.07福州.某卫星在赤道上空飞行,轨道平面与赤道平面重合,轨道半径为r ,飞行方向与地球的自转方向相同.设地球的自转角速度为0ω,地球半径为R ,地球表面重力加速度为g ,在t =0该卫星通过赤道上某建筑物的正上方,则到它下次通过该建筑物正上方所需的时间为( )A .)/(2032ωπ-r gR B .)1(2023ωπ+gR r C .232gR r π D .)/(2032ωπ+r gR9.07常州.随着―神舟6号‖的发射成功,可以预见,随着航天员在轨道舱内停留时间的增加,体育锻炼成了一个必不可少的环节,下列器材适宜航天员在轨道舱中进行锻炼的是( )A 、哑铃B 、弹簧拉力器C 、单杠D 、跑步机10.07华阳.在圆轨道上运动的质量为m 的人造地球卫星,它到地面的距离等于地球半径R ,地面上的重力加速度为g ,则( )A .卫星运动的速度为Rg 2 B .卫星运动的周期为g R 24πC .卫星运动的加速度为g 21D .卫星运动的动能为mRg 4111、07济南.如图1所示,A 、B 、C 三颗人造地球卫星绕地球做匀速圆周运动,已知m A =m B <m C ,则三颗卫星A 、线速度大小关系:v A <vB =v CB 、加速度大小关系:a A >a B =a CC 、向心力大小关系:F A =F B <F CD 、周期关系:T A >T B =T C12、07济南. ―神舟五号‖顺利发射升空后,在离地面340km 的圆轨道上运行了108圈.运行中需要多次进行 ―轨道维持‖.所谓―轨道维持‖就是通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行.如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下飞船的动能.重力势能和机械能变化情况将会是A 、动能,重力势能和机械能都逐渐减小B 、重力势能逐渐减小,动能逐渐增大,机械能不变C 、重力势能逐渐增大,动能逐渐减小,机械能不变D 、重力势能逐渐减小,动能逐渐增大,机械能逐渐减小13、07浙江东阳.我国发射的风云一号气象卫星是极地卫星,卫星飞过两极上空,其轨道平面与赤道平面垂直,周期为12h ;我国发射的风云二号气象卫星是地球同步卫星,周期为24h 。
《万有引力与天体运动》习题及答案
地球abc 万有引力航天一、“中心天体-圆轨道”模型【应用知识】由万有引力提供环绕天体做圆周运动的向心力,据牛顿第二定律列出圆周运动的动力学方程。
1、对中心天体可求质量和密度2、对环绕天体可求线速度、角速度、周期、向心加速度、向心力、轨道所在处的重力加速度3、可求第一宇宙速度例1.如图所示,a 、b 、c 是环绕地球在圆形轨道上运行的3颗人造卫星,它们质量关系是m a =m b <m c ,则: A .b 、c 的线速度大小相等,且大于a 的线速度 B .b 、c 的周期相等,且小于a 的周期C .b 、c 的向心加速度大小于相等,且大于a 的向心加速度D .b 所需向心力最小例2、我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。
设该卫星的轨道是圆形的,且贴近月球表面。
已知月球的质量约为地球质量的181 ,月球的半径约为地球半径的14,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为( D )A .0.4km/sB .1.8km/sC .11km/sD .36km/s二、“同步卫星”模型同步卫星具有四个一定1、 定轨道平面2、 定运行周期:T =24h3、 定运动高度:km R GMT h 4322106.34⨯=-=π4、 定运行速率:s km /0.3=υ例3.某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12h 内有多长时间该观察者看不见此卫星?已知地球半径为R ,地球表面处的重力加速度为g ,地球的自转周期为T ,不考虑大气对光的折射。
例4.地球赤道上有一物体随地球的自转而做圆周运动,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3.地球表面重力加速度为g ,第一宇宙速度为v ,假设三者质量相等.则( )A.F 1=F 2>F 3B.a 1=a 2=g >a 3 3122)4arcsin(gT R T t ππ=C.v 1=v 2=v >v 3D.ω1=ω3<ω2三、“天体相遇”模型 两天体相遇,实际上是指两天体相距最近,条件是)3,2,1(221 ==-n n t t πωω 两天体相距最远,条件是)3,2,1()12(21 =-=-n n t t πωω例5.A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h ,已知地球半径为R ,地球自转角速度ω0,地球表面的重力加速度为g ,O 为地球中心。
万有引力定律12种典型题
万有引力定律12种典型题【案例1】下列哪一组数据能够估算出地球的质量()A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。
月球也是地球的一颗卫星。
设地球的质量为M,卫星的质量为m,卫星的运行周期为T,轨道半径为r根据万有引力定律:【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。
总之,牛顿万有引力定律是解决天体运动问题的关键。
【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。
“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h。
问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T2∝r3知:“风云二号”卫星的轨道半径较大⑴所有运动学量量都是r的函数。
我们应该建立函数的思想。
⑵运动学量v、a、ω、f随着r的增加而减小,只有T随着r的增加而增加。
⑶任何卫星的环绕速度不大于s,运动周期不小于85min。
⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。
【案例3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上D、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。
万有引力练习题(含答案)
万有引力练习题一.选择题(本题共8小题,每小题6分,共48分,在每小题给出的四个选项中,有的小题只有一个选项正确;有的小题有多个选项正确。
全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。
把正确答案填到答案纸上) 1.关于万有引力的说法,正确的是( )。
A.万有引力只是宇宙中各天体之间的作用力B.万有引力是宇宙中具有质量的物体间普遍存在的相互作用力C.地球上的物体以及地球附近的物体除受到地球对它们的万有引力外还受到重力作用D.太阳对地球的万有引力大于地球对太阳的万有引力 2. 关于万有引力定律,下列说法中正确的是( )A.万有引力定律是牛顿在总结前人研究成果的基础上发现的B.万有引力定律适宜于质点间的相互作用 …C.公式中的G 是一个比例常数,是有单位的,单位是N·m 2/kg 2D.任何两个质量分布均匀的球体之间的相互作用可以用该公式来计算,r 是两球球心之间的距离3.假设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,那么该常数的大小( )A.只与行星的质量有关B.只与恒星的质量有关C.与行星及恒星的质量都有关D.与恒星的质量及行星的速率有关4.设地球是半径为R 的均匀球体,质量为M ,若把质量为m 的物体放在地球的中心,则物体受到的地球的万有引力大小为( )。
A.零B.无穷大 2Mm RD.无法确定5.对于万有引力定律的表达式221rm Gm F,下列说法中正确的是( ).(A)公式中G 为引力常量,它是由实验测得的,而不是人为规定的 (B)当r 趋于零时,万有引力趋于无限大 *(C)两物体受到的引力总是大小相等的,而与m 1、m 2是否相等无关 (D)两物体受到的引力总是大小相等、方向相反,是一对平衡力6.地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为( )A. 1︰27B. 1︰9C. 1︰3D. 9︰17.火星的质量和半径分别约为地球的 110和 12,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )A .0.2 gB .0.4 gC .2.5 gD .5 g8.一名宇航员来到一个星球上,如果星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受到的万有引力大小是他在地球上所受万有引力的( )。
高中物理--万有引力与天体运动--最全讲义及习题及答案详解汇总
①地球的质量:
②地球的密度(设地球半径 R 已 ⑷若已知地球半径 R 和地球表面 ①地球的质量:
知): 的重力加速度 g
②地球的密度(设地球半径 R 已
知):
3、卫星变轨和卫星的能量问题
⑴人造卫星在圆轨道变换时,总是
主动或由于其他原因使速度
发生变化,导致万有引力与向心力相等的关系被破坏,继而发生近心运动或者离心运动,发生变轨。在变轨过程中,由于动能和势能的相
。(写出方程)
(2)天体质量,密度的估算
测出环绕天体作匀速圆周运动的半径 r,周期为 T,由
(写出方程)得出被环绕天体的质量为
(写
出表达式),密度为
(写出表达式),R 为被环绕天体的半径。
当环绕天体在被环绕天体的表面运行时,r=R,则密度为
(写出表达式)。
(3)环绕天体的绕行线速度,角速度、周期与半径的关系。
⑵在地面附近万有引力近似等于物体的重力
1、人造卫星的 v、ω、T、a 与轨道半径 r 的关系
r 越大,v 越小。 r 越大,ω越小。
r 越大,T 越大。
r 越大,a 向越小。
补充:V T W a 与 r 的正比关系
1 F∝ r 2
1 ;a∝ r 2 ; v∝
1 ; ∝
r
1
;T∝
r3
r3 。
规律:越高越慢
Mm v2
GM
轨道上正常转:
G r2
=m
R
v
r
【讨论】(v 或 EK)与 r 关系,r 最小时为地球半径时,v 第一宇宙=7.9km/s (最大的运行速度、最小的发射速度); T 最小=84.8min=1.4h
①沿圆轨道运动的卫星的几个结论: v= GM , GM ,T= 2 r 3
万有引力经典题型总汇 超全
万有引力练习一、单项选择题1.人造卫星绕地球做匀速圆周运动,其轨道半径为R ,线速度为V ,周期为T 。
若要使卫星的周期变为2T ,可以采取的办法是:( )A 、R 不变,使线速度变为V/2;B 、V 不变,使轨道半径变为2R ;C 、使轨道半径变为R 34;D 、使卫星的高度增加R 。
2.关于“亚洲一号”地球同步卫星,下说法正确的是( )A .已知该卫星的质量为1.24t ,若它的质量增加到2.48t ,则其同步轨道半径将变为原来的21。
B .它的运行速度一定小于7.9km/s 。
C .它可以经过北京的正上空,所以我国可以利用他进行电视转播。
D .它距离地面的高度约为地球半径的5.6倍,所以它的向心加速度约为其下方地面上的物体重力加速度的26.51。
3.下列说法正确的有( )A .人造地球卫星运行的速率可能等于8km/s 。
B .一航天飞机绕地球做匀速圆周运动,在飞机内一机械手将物体相对航天飞机无初速地释放于机外,则此物体将做自由落体运动。
C .由于人造地球卫星长期受微小阻力的作用,因此其运行的速度会逐渐变大。
D .我国2003年10月“神州”5号飞船在落向内蒙古地面的过程中,一直处于失重状态。
4.2003年10月15日,我国成功地发射了“神舟五号”载人飞船,经过21小时的太 空飞行,返回舱于次日安全着陆。
已知飞船在太空中运行的轨道是一个椭圆,椭圆的一个焦点是地球的球心,如图4所示,飞船在飞行中是无动力飞行,只受到地球的万有引力作用,在飞船从轨道的A 点沿箭头方向运行到B 点的过程中,有以下说法:①飞船的速度逐渐增大 ②飞船的速度逐渐减小 ③飞船的机械能守恒④飞船的机械能逐渐增大。
上述说法中正确的是( )A .①③B .①④C .②③D .②④ 5、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图20所示。
天体运动复习讲义精简版(含经典例题后附习题及答案)
天体运动复习讲义1. 天体运动(1)万有引力提供向心力F 合外力=G Mmr 2 (万有引力为合外力,合外力提供向心力)G Mm r 2=m v 2r G Mmr2=mrω2 G Mm r 2=m 4π2T2r (2)天体问题的计算方法:万有引力G Mm r 2 = 向心力(m v 2r 或mrω2或m 4π2T2r )说明:等式左边为万有引力,等式右边为计算中常用的参数(线速度v , 角速度w , 周期 T ),计算时用万有引力G Mm r 2 等于带有参数线速度v 角速度w 周期 T 的向心力。
不能用m v2r=mrω2 = m 4π2T 2r ,因为m v 2r =mrω2 = m 4π2T2r 推算出V = WR = 2πR/T = 2πfR=2πnR 只能算出线速度v 角速度w 周期 T 的关系等式,没有用到万有引力公式。
例1:科学家们推测,太阳系的第十颗行星就在地球的轨道上.从地球上看,它永远在太阳背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟”.由以上信息可以推知( ) A.这颗行星的公转周期与地球相等 B.这颗行星的自转周期与地球相等 C.这颗行星的质量与地球质量相等 D.这颗行星的密度与地球密度相等(3)万有引力约等于重力G MmR2=mg → 2gR GM =(黄金代换式) 说明:①物体在地球表面且忽略物体随地球一起转动所需向心力②只有题目中说该行星地表重力加速度为g 时,等式才成立2. 人造卫星的加速度、线速度、角速度、周期跟轨道半径的关系F 万=G Mmr2=F 向=⎩⎪⎪⎨⎪⎪⎧ma →a =GM r 2→a ∝1r2m v2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r 3GM→T ∝r 3.说明:以地球为中心天体总结出:离地球越近的卫星线速度v 角速度W 加速度a 越大只有周期T 越小,即“越高越慢”)例2:一个卫星绕着某一星球作匀速圆周运动,轨道半径为R 1,因在运动过程中与宇宙尘埃和小陨石的摩擦和碰撞,导致该卫星发生跃迁,轨道半径减小为R 2,则卫星的线速度、角速度,周期的变化情况是 ( )A.增大,增大,减小;B.减小,增大,增大;C.增大,减小,增大; D.减小,减小,减小。
万有引力与航天经典习题详解
1、天文学家新发现了太阳系外的一颗行星。
这颗行星的体积是地球的4.7倍,是地球的25倍。
已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N ·m 2/kg 2,,由此估算该行星的平均密度为A.1.8×103kg/m 3B. 5.6×103kg/m 3C. 1.1×104kg/m 3D.2.9×104kg/m 3答案:D解析:本题考查天体运动的知识.首先根据近地卫星饶地球运动的向心力由万有引力提供2224T R m RMm G π=,可求出地球的质量.然后根据343R M πρ=,可得该行星的密度约为2.9×104kg/m 3。
2、发射人造卫星是将卫星以一定的速度送入预定轨道。
发射场一般选择在尽可能靠近赤道的地方,如图这样选址的优点是,在赤道附近A .地球的引力较大B .地球自转线速度较大C .重力加速度较大D .地球自转角速度较大答案:B 解析:由于发射卫星需要将卫星以一定的速度送入运动轨道,在靠进赤道处的地面上的物体的线速度最大,发射时较节能,因此B 正确。
3、近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T 1和2T ,设在卫星1、卫星2各自所在的高度上的重力加速度大小分别为1g 、2g ,则A .4/31122g T g T ⎛⎫= ⎪⎝⎭B . 4/31221g T g T ⎛⎫= ⎪⎝⎭C . 21122g T g T ⎛⎫= ⎪⎝⎭D . 21221g T g T ⎛⎫= ⎪⎝⎭答案:B4、关于地球的第一宇宙速度,下列表述正确的是A .第一宇宙速度又叫环绕速度B .第一宇宙速度又叫脱离速度C .第一宇宙速度跟地球的质量无关D .第一宇宙速度跟地球的半径无关解析:第一宇宙速度又叫环绕速度A 对,B 错;根据定义有R V mRmM G 22=可知与地球的质量和半径有关,CD 错。
5、宇宙飞船在半径为R 。
高中物理 万有引力与天体运动 精讲与练习! 超级经典~!!!
知识点一 开普勒三定律 ——知识回顾——开普勒第一定律:所有的行星围绕太阳运动的轨道都是( ),太阳处在所有椭圆的一个( )上.开普勒第二定律:行星与太阳的连线在相同的时间内 ( )相等.开普勒第三定律:所有行星的轨道的半长轴的三次方与 ( )的比值都相等,即( ) ——要点深化—— 研究天体运行时,太阳系中的行星及卫星运动的椭圆轨道的两个焦点相距很近,因此行星的椭圆轨道都很接近圆.在要求不太高时,通常可以认为行星以太阳为圆心做匀速圆周运动.这样做使处理问题的方法大为简化,而得到的结果与行星的实际运行情况相差并不很大.注意:在太阳系中,比例系数k 是一个与行星无关的常量,但不是恒量,在不同的星系中,k 值不相同,k 值与中心天体有关.该定律不仅适用于行星,也适用于其他天体.如对绕地球飞行的卫星来说,它们的k 值相同与卫星无关.例题:1.某行星绕太阳运行的椭圆轨道如图1所示,F1、F2是椭圆轨道的两个焦点,太阳在焦点F1上,A 、B 两点是F1、F2连线与椭圆的交点.已知A 点到F1的距离为a ,B 点到F1的距离为b ,则行星在A 、B 两点处的速率之比多大?2. 飞船沿半径为r 的圆周轨道绕地球运行,其周期为T0,如图4-5-2所示.如果飞船要返回地面,可在轨道上某一点P 处将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在B 点相切,求飞船从P 飞到B 所需的时间(设地球半径R0已知).在上述情况下,a 3T 2=k 的表达式中a 就是圆的半径R ,利用R 3T 2=k 的结论解决某些问题很方便.解析:行星在椭圆轨道上的A 、B 两点的速度方向均与万有引力方向垂直,万有引力提供向心力,根据万有引力定律有: G Mm a 2=m v A 2R A① G Mm b 2=m v B 2R B ② 由于A 、B 两点的对称性可知R A =R B .故①②得:v A v B =b a知识点二万有引力定律——知识回顾——1.内容:宇宙间的一切物体都是相互吸引的,引力的大小跟它们质量的乘积成正比,跟它们距离的平方成反比.2.公式:F=( ) ,G是万有引力常量,G=( ) . 3.适用条件:适用于可以看作质点的物体之间的相互作用.质量分布均匀的球体可以认为质量集中于球心,也可用此公式计算,其中r为两球心之间的距离.——要点深化——1.普遍性:任何客观存在的物体间都存在着相互作用的吸引力,即“万有引力”.2.相互性:两物体间的万有引力是一对作用力和反作用力,它们的大小相等、方向相反,分别作用在两个物体上.3.宏观性:在通常情况下,万有引力非常小,只有在质量巨大的星体间或天体与天体附近的物体间,它的存在才有实际的物理意义,故在分析地球表面的物体受力时,不考虑地面物体间的万有引力,只考虑地球对地面物体的万有引力.4.应用万有引力定律解释天体的运动1.基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供,GMm/r2=mv2/r=m 2r=m(2 /T)2r注意:(1)由于地球的自转,在地球表面的物体,重力与万有引力不严格相等,重力为万有引力的一个分力,由于二者差别较小,计算时可以认为二者相等,G MmR2=mg,GM=gR2.(2)距地面越高,物体的重力加速度越小,距地面高度为h处的重力加速度为g′=(RR+h)2g,其中R为地球半径,g为地球表面的重力加速度.知识点三天体质量M 、密度ρ的估算测出卫星绕天体做匀速圆周运动的半径R 和周期T ,由 GMm/R 2=m(2 /T)2R 得此天体质量:M=4 2R 3/(GT 2), =M/V=M/(4/3 R03)=3 R 3/(GT 2R03 ) (R0为天体半径). 当卫星沿天体表面绕天体运行时,R=R 0, 则 =3 /(GT 2). 知识点四卫星的绕行速度、角速度、周期与半径R 的关系(1)由GMm/R 2=mv 2/R 得v2=GM/R,所以R 越大,v 越小 (2)由GMm/R 2=m 2R 得 2=GM/R 3,所以R 越大,越小; (3)由GMm/R 2=m(2 /T)2R 得T2=4 2R3/(GM),所以R 越大,T 越大. 知识点五 三种宇宙速度(1)第一宇宙速度(环绕速度):v1=7.9km/s ,是人造地球卫星的最小发射速度,是绕地球做匀速圆周运动中的最大速度.(2)第二宇宙速度(脱离速度):v2=11.2km/s ,使物体挣脱地球引力束缚的最小发射速度. (3)第三宇宙速度(逃逸速度):v3=16.7km/s ,使物体挣脱太阳引力束缚的最小发射速度. 知识点六 地球同步卫星所谓地球同步卫星,是相对于地面静止的,和地球自转具有相同周期的卫星,T=24h.同步卫星必须位于赤道正上方距地面高度h ≈3.6×104km (怎么计算?) 知识点七卫星的超重和失重.(1)卫星进入轨道前加速过程,卫星上物体超重. (2)卫星进入轨道后正运转时,卫星上物体完全失重.例:1.两个质量均为M 的星体,其连线的垂直平分线为HN ,O 为其连线的中点,如图2所示,一个质量为m 的物体从O 沿OH 方向运动,则它受到的万有引力大小变化情况是( ) A .一直增大B .一直减小C .先减小,后增大D .先增大,后减小解析:在点O 时,两星体对质量为m 的物体的引力大小相等,方向相反,其合力为零,沿OH 移至无穷远时,两星体对m 的引力为零,合力为零,m 在OH 连线上时,受到的引力合力沿OH 指向O. 答案:D2. 某星球可视为球体,其自转周期为T ,在它的两极处,用弹簧秤测得某物体重为P ,在它的赤道上,用弹簧秤测得同一物体重为0.9P ,某星球的平均密度是多少? JIE: 设被测物体的质量为m ,某星球的质量为M ,半径为R;在两极处时物体的重力等于地球对物体的万有引力,即:2Mm P G R3. 一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g0,行星的质量M 与卫星的质量m 之比M/m=81,行星的半径R0与卫星的半径R 之比R0/R=3.6,行星与卫星之间的距离r 与行星的半径R0之比r/R0=60.设卫星表面的重力加速度为g ,则在卫星表面有经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600.上述结果是否正确?若正确,列式证明;若有错误,求出正确结果.2Mm G mg r =⋯⋯在赤道上,因某星球自转物体做匀速圆周运动,某星球对物体的万有引力和弹簧秤对物体的拉力的合力提供向心力,根据牛顿第二定律有: 由以上两式解得某星球的质量为: 根据数学知识可知某星球的体积为: 根据密度的定义式可得某星球的平均密度为:2224π0.9Mm GP mRRT -=23240πR M GT =34π3V R=223π30π(0.9)M P VP P GTGTρ===-4.2009年2月11日,俄罗斯的“宇宙-2251”卫星和美国的“铱-33”卫星在西伯利亚上空约805km 处发生碰撞.这是历史上首次发生的完整在轨卫星碰撞事件.碰撞过程中产生的大量碎片可能会影响太空环境.假定有甲、乙两块碎片,绕地球运动的轨道都是圆,甲的运行速率比乙的大,则下列说法中正确的是( ) A .甲的运行周期一定比乙的长 B .甲距地面的高度一定比乙的高 C .甲的向心力一定比乙的小 D .甲的加速度一定比乙的大5. 已知地球自转周期为T0,有一颗与同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步轨道半径的四分之一,该卫星至少相隔多长时间才在同一城市的正上方出现一次( )A.T0/4 B T0/5 C T0/6 DT0/76. 如图所示,a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是:( )A.b 、c 的线速度大小相等,且大于a 的线速度B.a 、b 的向心加速度大小相等,且大于c 的向心加速度C.c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的cD.a 卫星由于某原因,轨道半径缓慢减小,其线速度将增大3222GM v R R B T GM A GMmC ma R GM aD R 由可知,甲的速率大,甲碎片的轨道半径小,故错;由公式可知甲的周期小,故错;由于未知两碎片的质量,无法判断向心力的大小,故错;碎片的加速度是指向心加速度,由得,可知甲的加速度解析:比乙大,故对.p ====2232230202G ()./4.38M m T Mm m R T R R TT T T R T T R 设地球的质量为,同步卫星的质量为,运动周期为,由万有引力定律和向心力公式得可知,设低轨道卫星运行的周期为,则,因而解析:p = ¢()=?022027t T t t t T D T 设卫星至少每隔时间才在同一地点的正上方出现一次,得:,解得:,即卫星至少每隔时间才在同一地点的正上方出现一次只有正确.,p p p =+=解析: 因为b 、c 在同一轨道上运行,故其线速度大小、向心加速度大小均相等.又b 、c 轨道半径大于a 的轨道半径,由知,vb=vc<va ,故A 选项错;由加速度a=GM/r2可知ab=ac<aa ,故B 选项错.当c 加速时,c 受到的万有引力F<mv2/r ,故它将偏离原轨道做离心运动;当b 减速时,b 受到的万有引力F>mv2/r ,故它将偏离原轨道做向心运动.所以无论如何c 也追不上b ,b 也等不到c ,故C 选项错.对a 卫星,当它的轨道半径缓慢减小时,在转动一段较短时间内,可近似认为它的轨道半径未变,视为稳定运行,r 减小时v 逐渐增大,故D 选项正确.7. “嫦娥二号”卫星于2010年10月1日发射,它的绕月飞行轨道由“嫦娥一号”时的200公里高度降低到了100公里.如果“嫦娥二号”卫星在近地点600km 处通过发动机短时点火,实施变轨.变轨后卫星从远地点高度12万余公里的椭圆轨道进入远地点高度37万余公里的椭圆轨道,直接奔向月球.则卫星在近地点变轨后的运行速度( ) A .小于7.9km/sB .大于7.9km/s ,小于11.2km/sC .大于11.2km/sD .大于11.2km/s ,小于16.7km/s解析:7.9km/s 是第一宇宙速度,是卫星在地面附近做匀速圆周运动所具有的线速度.当卫星进入地面附近的轨道速度大于7.9km/s 而小于11.2km/s 时,卫星将沿椭圆轨道运行,当卫星的速度等于或大于11.2km/s 时就会脱离地球的吸引,不再绕地球运行,11.2km/s 被称为第二宇宙速度.“嫦娥二号”变轨后仍沿椭圆轨道绕地球运动,故B 正确.8. 在天体运动中,将两颗彼此距离较近的恒星称为双星.它们围绕两球连线上的某一点做圆周运动.由于两星间的引力而使它们在运动中距离保持不变.已知两星质量分别为M1和M2,相距L ,求它们的角速度./v GM r9. 某人造卫星运动的轨道可近似看做是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r1慢慢变到r2,用Ek1、Ek2分别表示卫星在这两个轨道上的动能,则( ) A .r1<r2,Ek1<Ek2 B .r1>r2,Ek1<Ek2 C .r1<r2,Ek1>Ek2 D .r1>r2,Ek1>Ek2错解:本题中由于阻力作用会误认为v2<v1,错选D. 错解分析:深刻理解速度是由高度决定的,加深“越高越慢”的印象,才能走出误区.12k1k2B r r GMv E E r 【正解】由于阻力使卫星高度降低,故,由知变轨后卫星速度变大,动能变大,也可理解为卫星在做向心运动时引力做功大于克服阻力做功,故动能增加大正.,故确>=<332GM GM R v T R R GM人造卫星及天体的运动都近似为匀速圆周运动.当天体做变轨运动时关键看轨道半径的变化,然后根据公式,,判断线速度、角速度点和周期:.评的变化w p ===。
7.2 万有引力定律(专题训练)【四大题型】-2023-2024学年高中物理同步知识点解读与专题训练
7.2 万有引力定律(专题训练)【四大题型】一.万有引力定律的内容、推导及适用范围(共8小题)二.万有引力常量的测定(共8小题)三.万有引力的计算(共9小题)四.空壳内及地表下的万有引力(共7小题)一.万有引力定律的内容、推导及适用范围(共8小题)A.只有天体间才存在万有引力9.关于卡文迪什及其扭秤装置,下列说法中错误的是()A.帮助牛顿发现万有引力定律B.首次测出万有引力恒量的数值C.被誉为“第一个称出地球质量的人”D.使万有引力定律有了实用价值10.以下关于物理学史和物理方法的叙述中正确的是()A.牛顿测定引力常量的实验运用了放大法测微小量B.在建立合力、分力、重心、质点等概念时都用到了等效替代法C.在推导匀变速直线运动位移公式时,把整个运动过程划分为很多小段,每一小段近似看成匀速直线运动,然后把各段位移相加,应用了“微元法”D.伽利略利用斜槽实验,直接得到了自由落体规律11.在物理学发展的进程中,许多物理学家的科学发现推动了人类历史的进步。
对以下科学家所作科学贡献的表述中,符合史实的是:()A.牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律,并测出了引力常量G的数值B.牛顿第一定律是由实验得出的定律C.开普勒研究了第谷的行星观测记录,提出了开普勒行星运动定律D.伽利略认为物体的自然状态是静止的,力是维持物体运动的原因12.在物理学的研究中用到的思想方法很多,下列说法不正确的是()A.甲图中推导匀变速直线运动位移与时间关系时运用了微元法B.乙图中卡文迪许测定引力常量的实验中运用了等效替代法C.丙图中探究向心力大小与质量、角速度和半径之间关系时运用了控制变量法D.丁图中伽利略在研究自由落体运动时采用了实验和逻辑推理的方法13.(多选)卡文迪许利用如图所示的扭秤实验装置测量了引力常量G。
为了测量石英丝极微小的扭转角,该实验装置中采取的“微小量放大”的主要措施是()A.减小石英丝的直径B.增大T型架横梁的长度C.利用平面镜对光线的反射D.增大刻度尺与平面镜的距离14.(多选)关于万有引力定律发现过程中的科学史,下列说法正确的是()A.托勒密和哥白尼都坚持日心说B.开普勒发现三定律利用了第谷的观测数据C.卡文迪许测定了万有引力常量D .月-地检验的结果表明月球与地球表面的物体,受到地球的引力遵循同样的规律 15.探究向心力大小的实验中采用了 物理方法(选填“A 或B”,A 等效替代,B 控制变量法);万有引力常量是 通过扭秤实验测得的。
高中物理天体运动经典习题
第三讲知识点梳理一、开普勒三大定律1、第一:2、第二:3、第三:二、万有引力定律三、万有引力和重力的关系四、解决天体问题的两条主线1、万有引力等于重力2、万有引力提供向心力五、“开三”推导及比例问题速算1、开普勒第三定律的推导2、比例问题速算六、三大宇宙速度1、第一宇宙速度2、第二宇宙速度3、第三宇宙速度七、卫星问题1、近地卫星2、同步卫星(六一定)3、赤道表面物体、近地卫星和同步卫星向心加速度大小比较八、卫星的对接及对接1、卫星对接2、卫星变轨九、双星问题经典习题练习一、选择题1、关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2、理论和实践证明,开普勒定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用。
下面对于开普勒第三定律的公式,下列说法正确的是:()A.公式只适用于轨道是椭圆的运动B.式中的K值,对于所有行星(或卫星)都相等C.式中的K值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关D.若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离3、如图所示,椭圆为某行星绕太阳运动的轨道,A、B分别为行星的近日点和远日点,行星经过这两点时的速率分别为v A和v B;阴影部分为行星与太阳的连线在相等时间内扫过的面积,分别用S A和S B表示.根据开普勒第二定律可知()A.v A>v BB.v A<v BC.S A>S BD.S A<S B4、如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对小行星的引力相同B.各小行星绕太阳运动的周期小于一年C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值5、如图,a、b两颗人造地球卫星分别在如图所示的两个不同的轨道上运行,下列说法中正确的是()A.a卫星的运行速度比第一宇宙速度大B.b卫星的运行速度较小C.b卫星受到的向心力较大6、探测器绕月球做匀速圆周运动,变轨后在周期较大的轨道上仍做匀速圆周运动,则变轨后与变轨前相比()A.轨道半径变小B.向心加速度变小C.线速度变大D.角速度变大7、天宫一号是中国第一个目标飞行器,已于2011年9月29日21时16分3秒在酒泉卫星发射中心发射成功,它的发射标志着中国迈入中国航天“三步走”战略的第二步第二阶段.21时25分,天宫一号进入近地点约200公里,远地点约346.9公里,轨道倾角为42.75度,周期为5382秒的运行轨道.由此可知()A.天宫一号在该轨道上的运行周期比同步卫星的运行周期长B.天宫一号在该轨道上任意一点的运行速率比同步卫星的运行速率小C.天宫一号在该轨道上任意一点的运行加速度比同步卫星的运行加速度小D.天宫一号在该轨道上远地点距地面的高度比同步卫星轨道距地面的高度小8、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A.1:81 B.1:27 C.1:9 D.1:39、宇航员在地球表面,以一定初速度竖直上抛一小球,测得小球从抛出到返回的时间为t;若他在某星球表面以相同的初速度竖直上抛同一小球,小球从抛出到返回时间为25t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 万有引力定律基础知识一.开普勒运动定律(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F =G 221r m m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G 221rm m , g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r +)2·g 在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有F =F 向+m 2g ,所以m 2g=F 一F 向=G 221rm m -m 2R ω自2 因地球目转角速度很小G 221r m m » m 2R ω自2,所以m 2g= G 221rm m 假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G 221rm m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=13Gm R ,比现在地球自转角速度要大得多.四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm GR 得g=2M G R ,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =* 五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.G 2r mM =m 224T πr ,由此可得:M=2324GT r π;ρ=V M =334R M π=3223R GT r π(R 为行星的半径) 由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度六.卫星的绕行角速度、周期与高度的关系(1)由()()22mMv G m r h r h =++,得v =h ↑,v ↓ (2)由G ()2h r mM +=m ω2(r+h ),得ω=()3h r GM +,∴当h ↑,ω↓ (3)由G ()2h r mM +()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑ 七.三种宇宙速度:① 第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。
也是人造卫星绕地球做匀速圆周运动的最大速度。
② 第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速度。
③ 第三宇宙速度(逃逸速度):v 3=16.7km/s ,使卫星挣脱太阳引力束缚的最小发射速度。
八.第一宇宙速度的计算.方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力.G ()2h r mM +=m ()h r v +2,v=h r GM +。
当h ↑,v ↓,所以在地球表面附近卫星的速度是它运行的最大速度。
其大小为r>>h (地面附近)时,1V =.9×103m/s 方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.()21v mg m r h =+.当r >>h 时.g h ≈g 所以v 1=gr =7.9×103m/s 第一宇宙速度是在地面附近h <<r ,卫星绕地球做匀速圆周运动的最大速度.九.两种最常见的卫星⑴近地卫星。
近地卫星的轨道半径r 可以近似地认为等于地球半径R ,由式②可得其线速度大小为v 1=7.9×103m/s ;由式③可得其周期为T =5.06×103s=84min 。
由②、③式可知,它们分别是绕地球做匀速圆周运动的人造卫星的最大线速度和最小周期。
神舟号飞船的运行轨道离地面的高度为340km ,线速度约7.6km/s ,周期约90min 。
⑵同步卫星。
同步地球卫星的特点:1、同步地球卫星的主要特征是与地面相对静止,卫星这个特征就决定了;2、所有同步卫星必须在赤道上空,其轨道平面必然和赤道平面重合;3、所有同步卫星运转周期与地球自转周期相同;4、所有同步卫星高度必为定值(大约3.59×107米);5、所有同步卫星以相同的速率绕地球运行,即v 一定。
“同步”的含义就是和地球保持相对静止,所以其周期等于地球自转周期,即T =24h 。
由式G ()2h r mM +=m ()h r v +2= m 224T π(r+h )可得,同步卫星离地面高度为 h =3224πGMT -r =3·58×107 m 即其轨道半径是唯一确定的离地面的高度h =3.6×104km ,而且该轨道必须在地球赤道的正上方,运转方向必须跟地球自转方向一致即由西向东。
如果仅与地球自转周期相同而不定点于赤道上空,该卫星就不能与地面保持相对静止。
因为卫星轨道所在平面必然和地球绕日公转轨道平面重合,同步卫星的线速度 v=hr GM +=3.07×103m/s 通讯卫星可以实现全球的电视转播,从图可知,如果能发射三颗相对地面静止的卫星(即同步卫星)并相互联网,即可覆盖全球的每个角落。
由于通讯卫星都必须位于赤道上空3.6×107m 处,各卫星之间又不能相距太近,所以,通讯卫星的总数是有限的。
设想在赤道所在平面内,以地球中心为圆心隔50放置一颗通讯卫星,全球通讯卫星的总数应为72个。
十.了解不同高度的卫星飞行速度及周期的数据卫星飞行速度及周期仅由距地高度决定与质量无关。
设卫星距地面高度为h ,地球半径为R ,地球质量为M ,卫星飞行速度为v ,则由万有引力充当向心力可得v=[GM/(R+h )]½。
知道了卫星距离地面的高度,就可确定卫星飞行时的速度大小。
不同高度处人造地球卫星的环绕速度及周期见下表:高度(km) 0 300 500 1000 3000 5000 35900(同步轨道) 38000(月球轨道) 环绕速度(km/s) 7.91 7 .73 7. 62 7.36 6.53 5.29 2.77 0.97周期(分) 84.4 90 .5 94.5 105 150 210 23小时56分 28天十一.卫星的超重和失重(1)卫星进入轨道前加速过程,卫星上物体超重.(2) 卫星进入轨道后正常运转时,卫星上物体完全失重.十二.人造天体在运动过程中的能量关系当人造天体具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道上运动的人造天体却具有较小的动能。
反之,如果人造天体在运动中动能减小,它的轨道半径将减小,在这一过程中,因引力对其做正功,故导致其动能将增大。
同样质量的卫星在不同高度轨道上的机械能不同。
其中卫星的动能为rGMm E K 2=,由于重力加速度g 随高度增大而减小,所以重力势能不能再用E k =mgh 计算,而要用到公式rGMm E P -=(以无穷远处引力势能为零,M 为地球质量,m 为卫星质量,r 为卫星轨道半径。
由于从无穷远向地球移动过程中万有引力做正功,所以系统势能减小,为负。
)因此机械能为r GMm E 2-=。
同样质量的卫星,轨道半径越大,即离地面越高,卫星具有的机械能越大,发射越困难。
十三.相关材料1.人造卫星做圆轨道和椭圆轨道运行的讨论当火箭与卫星分离时,设卫星的速度为v (此即为发射速度),卫星距离地心为r,并设此时速度与万有引力垂直(通过地面控制可以实现)如图所示,则2Mm F G r 万,若卫星以v 绕地球做圆周运动,则所需要的向心力为:F 向=2v m r①当F 万=F 向时,卫星将做圆周运动.若此时刚好是离地面最近的轨道,则可求出此时的发射速度v =7.9 km/s.②当F 万<F 向时,卫星将做离心运动,做椭圆运动,远离地球时引力做负功,卫星动能转化为引力势能.(神州五号即属于此种情况)③当F 万>F 向时,卫星在引力作用下,向地心做椭圆运动,若此时发生在最近轨道,则v <7.9 km/s ,卫星将坠人大气层烧毁。
因此:星箭分离时的速度是决定卫星运行轨道的主要条件.卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术.以卫星从椭圆远点变到圆轨道为例加以分析:如图所示,在轨道A 点,万有引力F A >2v m r,要使卫星改做圆周运动,必须满足F A =2v m r和F A ⊥v ,在远点已满足了F A ⊥v 的条件,所以只需增大速度,让速度增大到2v m r=F A ,这个任务由卫星自带的推进器完成. 这说明人造卫星要从椭圆轨道变到大圆轨道,只要在椭圆轨道的远点由推进器加速,当速度达到沿圆轨道所需的速度,人造卫星就不再沿椭圆轨道运动而转到大圆轨道.“神州五号”就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的. 十四.处理人造天体问题的基本思路由于运行中的人造天体,万有引力全部提供人造地球卫星绕地球做圆周运动的向心力,因此所有的人造地球卫星的轨道圆心都在地心.解关于人造卫星问题的基本思路:①视为匀速圆周运动处理;②万有引力充当向心力;③根据已知条件选择向心加速度的表达式便于计算;④利用代换式gR 2=GM 推导化简运算过程。
注意:①人造卫星的轨道半径与它的高度不同.②离地面不同高度,重力加速度不同, 说明:可以看出,绕地球做匀速圆周运动的人造卫星的轨道半径r 、线速度大小v 和周期T 是一一对应的,其中一个量确定后,另外两个量也就唯一确定了。