偏微分方程 ppt课件
合集下载
《偏微分方程》课件
非线性偏微 分方程:方 程中含有偏 导数,且偏 导数项的系 数不是常数
椭圆型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 是常数
抛物型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 不是常数
双曲型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 是常数,但 方程的解不 是实数
边界条件:确定求解区域和边界条件,如Dirichlet边界条件、 Neumann边界条件等
初值条件:确定求解区域的初值条件,如Cauchy问题、初边值问题等
稳定性和收敛性:分析求解方法的稳定性和收敛性,确保解的准确性和 可靠性
应用实例:通过具体实例,展示求解方法的应用和效果
课件结构
课件目录
偏微分方程的应用
物理领域:描述 流体力学、热力 学、电磁学等现 象
工程领域:解决 结构力学、材料 力学、电子工程 等问题
生物领域:模拟 生物系统的生长、 扩散、反应等过 程
经济领域:用于 金融、经济模型、 风险管理等方面
偏微分方程的求解方法
分析法:通过分析方程的性质,寻找解的性质和形式
数值法:通过数值计算,求解偏微分方程的数值解
偏微分方程的求解方法:展示偏微分方程的求解方法,如分离变量法、积分因子法等
公式素材
偏微分方程的 定义和性质
偏微分方程的 应用实例
偏微分方程的 求解方法
偏微分方程的 扩展和研究进
展
动画素材
动画类型:2D动画、3D动画、Flash动画等 动画内容:偏微分方程的求解过程、应用实例等 动画风格:简洁明了、生动有趣、易于理解 动画时长:根据课件内容需要,控制在5-10分钟以内
偏微分方程PPT课件
偏微分方程ppt 下载
泊松方程: 适用于所有物质或电荷的重力场或静电场。 波动方程式:未知函数 u(x,y,z,t):
热传导方程式: 其中 k 代表该材料的热导率。
初始条件和边界条件称为定解条件,未附加定解条件的 偏微分方程称为泛定方程。对于一个具体的问题,定解 条件与泛定方程总是同时提出。定解条件与泛定方程作 为一个整体,称为定解问题。
u t
a
2
(
2u x2
2u y 2
2u y 2
),
这里a
2
k
/
c.
当物体有内部热源的时候,方程为
u t
a
2
(
2u x2
2u y 2
2u y 2
)
f
(x,
y, z,t).
因为
c t2 udtdV t2
k(x, y, z) u dSdt
t2
c F(x, y, z,t)dtdV.
t1 t
T (x) cos T (x x) cos 0
T (x) sin T (x x) sin ma
这里α,β,a分别是两个力和水平方向的夹角,以及弦线 在竖直方向的加速度。
注意到弦仅仅在接近水平位置振动,所以α和β都是很小 的量,于是前一个方程可以近似为
T (x) T (x x) 0
(u
- u1)。
第三边界条件,表示外界温度为u1,表面 的热量和温度差成正比。
2.1 一些常见的偏微分方程
Poisson 方程
带有稳定热源或内部无热源的稳定温度场的温度分布,不 可压缩流体的稳定无旋流动及静电场的电势等均满足这类 方程。下面的方程是Poisson 方程的第一边值问题。
偏微分方程讲义 建模、数值解和Matlab工具箱
数学物理方程02线性偏微分方程的分类公开课获奖课件百校联赛一等奖课件
a12 a11 a22
a1*1
a11
(
x
)2
2a12
x
y
a22
(
y
)2
a11 x
a22
y
2
0
由此推出
a1*2
a11
x
x
a12 ( x
y
x
y
)
a22
y
y
a11 x
a22
y
a11 x
a22
y
0
21
数学物理方程
而
a2*2
a11
(
x
)2
2a12
x
y
a22
(
y
)2
0
所以,方程(1)可改写为
(f)exuxx e yuyy u
29
数学物理方程
2、求出下列各方程旳通解,并代回原方程来检验是否有解:
(a)x2uxx 2xyuxy y2uyy xyux y2uy 0
(b)yuxx c2 yuyy 2c2uy 0 (c为常数)
(c) uxx
1 c2
u yy
0
(c为常数)
(d)uxx 3uxy 2uyy 0
u( x, y) (x, y)
数学物理方程
u( ,)
复合求导
u u u x x x u u u y y y
2u 2u ( )2 2 2u 2u ( )2 u 2 u 2
x2 2 x
x x 2 x x2 x2
2u 2u 2u 2u u 2 u 2
u 0
u(x, y) g( y ) y h( y )
x
x
25
例2 utt a2uxx 0
偏微分方程及其求解实例ppt课件
(hn1-2.*h(k,n)+h(k,n-1))./dr.^2);
end plot(r(3:n)./ra,p(k,3:n).*theta.*2./rb)
h hi1 hi1 r i 2r
2h hi1 2hi hi1
r 2
r 2
i
P
1 rb 4
1
r
h r
2h r 2
偏微分方程的求解实例2:
2u A x2
2u B
xy
C
2u y 2
D u x
E u y
Fu
f
x,
y,u,
u x
,
u y
(1) 导热方程:
u 2u
t x2 (2) 拉普拉斯方程: 如稳态静电场和稳态温度分布模型
2u 2u 0
x2 y2
(3) 波动方程: 一维弦振动模型
2u 2 2u
t 2
x2
偏微分方程的边界条件
function PDE1Dd_CrankNicolson % 使用Crank-Nicolson有限差分方法求解一维动态传
热模型
c1 = 100; c2 = 0; a = 10; b = 8; alpha = 2; n = 6; m = 8; U = CrankNicolson(@ic,c1,c2,a,b,alpha,n,m)
h t 3 9c
9c
h3 h33
4h r 4
3
h5 4h4
6h3 4h2 r 4
h1
h t
n
V
r i 2r
2h hi1 2hi hi1
r 2
r 2
i
3h r 3
hi2
2hi1 2hi1 2r 3
《高等数学课件:偏微分方程》
《高等数学课件:偏微分方程》
深入浅出地介绍偏微分方程的基本概念,探索解法和应用领域,为大家带来 一场关于高等数学的精彩之旅。
什么是偏微分方程
解释偏微分方程及其与常微分方程的区别,介绍偏微分方程在数学和实际应 用中的重要性。
一阶偏微分方程的基本形式
探索一阶偏微分方程的基本形式,讨论其定义、特点和解法。通过实例理解 其在实际问题中的应用。
抛物型、双曲型和椭圆型方程 的定义和区别
详细解释偏微分方程的分类和特点,探讨抛物型、双曲型和椭圆型方程的定 义和区别,并分析其数学性质。
常系数线性偏微分方程的解法
讲解常系数线性偏微分方程的解法,并通过实例分析其在物理和工程学中的应用。
变系数线性偏微分方程的解法
研究变系数线性偏微分方程的解法,包括得到特殊解和通解的方法。分析其 在经济学中的具体应用。
变系数二阶线性方程
讨论解变系数二阶线性方程 的特征值和特解的求解方法, 解释它们在量子力学和热传 导问题中的应用。
热传导方程的理解与求解
深入研究热传导方程的概念和数学描述,介绍其求解方法,并以实际物理现 象进行实例分析。
波动方程的理解与求解
详细解释波动方程的相关概念和特性,探讨其可行解的求取方法,并以声波 和电磁波现象为例说明。
二阶偏微分方程的基本形式
研究二阶偏微分方程的基本形式,详细说明其构造和性质。举例说明二阶偏微分方程的实际物理意义。
分类讨论一阶偏微分方程的解法
1
可分离变量法
介绍可分离变量法,并通过示例演示其
线性方程和特殊形式
2
应用步骤和技巧。
讲解一阶线性方程和特殊形式的解法,
包括常数变易法和齐次方程的方法。
3
常系数一阶线性方程
深入浅出地介绍偏微分方程的基本概念,探索解法和应用领域,为大家带来 一场关于高等数学的精彩之旅。
什么是偏微分方程
解释偏微分方程及其与常微分方程的区别,介绍偏微分方程在数学和实际应 用中的重要性。
一阶偏微分方程的基本形式
探索一阶偏微分方程的基本形式,讨论其定义、特点和解法。通过实例理解 其在实际问题中的应用。
抛物型、双曲型和椭圆型方程 的定义和区别
详细解释偏微分方程的分类和特点,探讨抛物型、双曲型和椭圆型方程的定 义和区别,并分析其数学性质。
常系数线性偏微分方程的解法
讲解常系数线性偏微分方程的解法,并通过实例分析其在物理和工程学中的应用。
变系数线性偏微分方程的解法
研究变系数线性偏微分方程的解法,包括得到特殊解和通解的方法。分析其 在经济学中的具体应用。
变系数二阶线性方程
讨论解变系数二阶线性方程 的特征值和特解的求解方法, 解释它们在量子力学和热传 导问题中的应用。
热传导方程的理解与求解
深入研究热传导方程的概念和数学描述,介绍其求解方法,并以实际物理现 象进行实例分析。
波动方程的理解与求解
详细解释波动方程的相关概念和特性,探讨其可行解的求取方法,并以声波 和电磁波现象为例说明。
二阶偏微分方程的基本形式
研究二阶偏微分方程的基本形式,详细说明其构造和性质。举例说明二阶偏微分方程的实际物理意义。
分类讨论一阶偏微分方程的解法
1
可分离变量法
介绍可分离变量法,并通过示例演示其
线性方程和特殊形式
2
应用步骤和技巧。
讲解一阶线性方程和特殊形式的解法,
包括常数变易法和齐次方程的方法。
3
常系数一阶线性方程
计算机应用基础偏微分方程求解PPT课件
6.2 二阶偏微分方程的求解
二 抛物线型偏微分方程
第16页/共43页
6.2 二阶偏微分方程的求解
parabolic函数用于求解抛物型偏微分方程的解,调用格 式如下:
u1=parabolic(u0,tlist,b,p,e,t,c,a,f,d) b: 边界条件 u0: 初始条件 tlist;时间列表 u1:对应于tlist的解向量 p,e,t :网格数据
• 启动偏微分方程求解界面
– 在 MATLAB 下键入 pdetool
• 该界面分为四个部分
– 菜单系统 – 工具栏 – 集合编辑 – 求解区域
第20页/共43页
6.3 偏微分方程求解工具箱
菜单栏
工具栏
第21页/共43页
6.3 偏微分方程求解工具箱
第22页/共43页
5.3 偏微分方程求解工具箱
第9页/共43页
6.1 偏微分方程组求解
边界条件程序”c7mbc.m” function [pa, qa, pb, qb]=c7mpbc(xa, ua, xb, ub, t) pa=[0; ua(2)]; qa=[1; 0]; pb=[ub(1)-1; 0]; qb=[0; 1];
function u0=c7mpic(x) u0=[1; 0];
进入反应器,相当于总质量速率为G=2500kg.h-1.m2。反应管
外用速率为F 130kg h-1烟道气与反应混合物
逆流加热反应管,烟道气出口温度为620 C。其
它数据:催化剂的堆积密度=1440kg / m3,操作
压力P 1.2bar,乙苯的反应热H=140000kJ / m ol,
床层有效导热系数e 0.45w.m1.k 1,有效扩散系数
偏微分方程初步介绍公开课获奖课件百校联赛一等奖课件
0, 0
第三边值问题(Robin)
经典旳定解问题举例
热传导方程旳初、边值问题
u t
a2
2u x 2
f (x, t),
t 0,0 x L
u(x, t) (x)
t 0
u( x, t) x0
g (t), u(x, t) xL
h(t)
何为适定性?
存在性 唯一性 连续依赖性(稳定性)
自变量 未知函数
F (x, u,
u x1
,,
u xn
,
2u x12
,)
0
偏微分方程旳一般形式
某些概念
PDE旳阶 古典解
PDE旳 解
广义解
线性PDE
非线性PDE
是指这么一种函数,它本身以及它旳偏导 数在所考虑旳区域上连续,同步用满足方 程。
半线性PDE 拟线性PDE 完全非线性PDE
线性PDE: PDE中对所含未知函数及其各阶导数旳全体都是线 性旳。 线性PDE中全部具同一最高阶数旳偏导数构成旳 部分,称为线性方程旳主部。
r x2 y2
6.
u t
6u
u x
3u x3
0
KDV方程
特解都不易找到
7. ut uux eu
拟线性PDE
8.
v x v xx
v
2 y
v
yy
v2
拟线性PDE
9. a( x, y)(vxx vyy ) ev (vx vy ) 半线性PDE
10. ut ux sin u
11. ut 2 ux 2 u 2
a22
y
y
a11 x
a22
y
a11 x
a22
偏微分方程课件 云南财经大学
1.1.5. 非线性偏微分方程 我们把不是线性偏微分方程的偏微分方程统称为非线性偏 微分方程。在非线性偏微分方程中, 如果关于未知函数的所有 最高阶偏导数都是线性的, 则称它为拟线性偏微分方程。
二阶拟线性偏微分方程 二阶拟线性偏微分方程 三阶拟线性偏微分方程
在拟线性偏微分方程中, 由最高阶偏导数所组成的那一部 分, 称为方程的主部; 若主部内的系数都是常数或是自变量的 已知函数, 这时方程被称为是半线性的。
如果给定一个函数 u (x) , 将它及它对自变量的各阶偏导
数代入方程(1.1.1), 能使(1.1.1)成为恒等式, 则称函数是偏微分方 程(1.1.1)的解。
我们知道, 一个常微分方程如果有解, 就必有无穷多个解, 其表现形式是依赖于一个或几个任意常数的通解. 于是自然会 想到偏微分方程的通解也会含有任意元素.
它被称为三维Laplace方程。
利用Laplace算子
2 x2
2 y2
2 z2
,三维Laplace方程写成
u 0
对于函数 u u(x1, x2, , xn ,t) 的n维Laplace方程,利用
Laplace算子
2 x12
2 x22
2 xn2
则偏微分方程的一般形式为
实自变量 未知函数
5
机动 目录 上页 下页 返回 结束
《偏微分方程》第一章 绪论 第6页
其中是F自变量x,未知函数u及u的有限多个偏导数的已知函数. 例如关系式
等都是偏微分方程.
6
机动 目录 上页 下页 返回 结束
《偏微分方程》第一章 绪论 第7页
1.1.2. 偏微分方程的解
m
二阶拟线性偏微分方程 二阶拟线性偏微分方程 三阶拟线性偏微分方程
在拟线性偏微分方程中, 由最高阶偏导数所组成的那一部 分, 称为方程的主部; 若主部内的系数都是常数或是自变量的 已知函数, 这时方程被称为是半线性的。
如果给定一个函数 u (x) , 将它及它对自变量的各阶偏导
数代入方程(1.1.1), 能使(1.1.1)成为恒等式, 则称函数是偏微分方 程(1.1.1)的解。
我们知道, 一个常微分方程如果有解, 就必有无穷多个解, 其表现形式是依赖于一个或几个任意常数的通解. 于是自然会 想到偏微分方程的通解也会含有任意元素.
它被称为三维Laplace方程。
利用Laplace算子
2 x2
2 y2
2 z2
,三维Laplace方程写成
u 0
对于函数 u u(x1, x2, , xn ,t) 的n维Laplace方程,利用
Laplace算子
2 x12
2 x22
2 xn2
则偏微分方程的一般形式为
实自变量 未知函数
5
机动 目录 上页 下页 返回 结束
《偏微分方程》第一章 绪论 第6页
其中是F自变量x,未知函数u及u的有限多个偏导数的已知函数. 例如关系式
等都是偏微分方程.
6
机动 目录 上页 下页 返回 结束
《偏微分方程》第一章 绪论 第7页
1.1.2. 偏微分方程的解
m
偏微分方程演讲稿ppt课件
偏微分方程
PARTIAL DIFFIERENTIAL EQUATION (P.D.E)
演讲人:Marky
1
目录
• 1 偏微分方程的基本概念 • 2 有限差分方法 • 3 常系数扩散方程及初边值问题 • 4 复金兹堡-朗道方程的简单介绍
深圳大学材料学院
2
1 偏微分方程的基本概念
3
1.1 偏微分方程定义
深圳大学材料学院
17
4 复金兹堡-朗道方程的简单介绍
18
复Ginzburg-Landau方程(CGLE)形式如下:
t
A
A
(1
i
)
2 x
A
(1
i
)
A2
A
其中,A=(x,t)是关于时间t和空间x的复变量;μ是标度参数,通常
情况下,μ=1 ;实数α,β是系统参数。当α,β→∞,α/β=常数,
上方程转变为非线性薛定谔方程。当α,β→0,方程可以化为一个简
, tn1)
u(x j
,tn )
[
u t
]nj
O(
)
(1)
u(x j1, tn ) u(x j , tn ) h
[
u x
]nj
O(h)
(2)
u(x j1, tn )
2u(x j , tn ) h2
u(x j1,t n)
[
2u x 2
]nj
O(h2 )
(3)
深圳大学材料学院
11
利用(1)式和(2)有
1.2.1 偏微分方程的解
偏微分方程的解:如果给定一个函数,将它及它对自变量的各阶偏导 数代入原偏微分方程,能使方程成为恒等式,则称函数是偏微分方程的解。
PARTIAL DIFFIERENTIAL EQUATION (P.D.E)
演讲人:Marky
1
目录
• 1 偏微分方程的基本概念 • 2 有限差分方法 • 3 常系数扩散方程及初边值问题 • 4 复金兹堡-朗道方程的简单介绍
深圳大学材料学院
2
1 偏微分方程的基本概念
3
1.1 偏微分方程定义
深圳大学材料学院
17
4 复金兹堡-朗道方程的简单介绍
18
复Ginzburg-Landau方程(CGLE)形式如下:
t
A
A
(1
i
)
2 x
A
(1
i
)
A2
A
其中,A=(x,t)是关于时间t和空间x的复变量;μ是标度参数,通常
情况下,μ=1 ;实数α,β是系统参数。当α,β→∞,α/β=常数,
上方程转变为非线性薛定谔方程。当α,β→0,方程可以化为一个简
, tn1)
u(x j
,tn )
[
u t
]nj
O(
)
(1)
u(x j1, tn ) u(x j , tn ) h
[
u x
]nj
O(h)
(2)
u(x j1, tn )
2u(x j , tn ) h2
u(x j1,t n)
[
2u x 2
]nj
O(h2 )
(3)
深圳大学材料学院
11
利用(1)式和(2)有
1.2.1 偏微分方程的解
偏微分方程的解:如果给定一个函数,将它及它对自变量的各阶偏导 数代入原偏微分方程,能使方程成为恒等式,则称函数是偏微分方程的解。
偏微分方程课件 云南财经大学
, xn , t )的n维波动方程
19
机动 目录 上页 下页 返回 结束
《偏微分方程》第一章 绪论 第20页
例1.1.2 热传导方程 在三维空间中, 考察一均匀、各向同性的物体G, 假定其内部 有热源, 并且与周围介质有热交换, 求物体内部温度的分布和变化 规律。 问题: 设函数u (x, y, z, t )为物体G在点(x, y, z)处时刻t的温度, 求u所 满足的方程。 我们可利用能量守恒定律和富里叶(Fourier)热传导定律来建 立数学模型, 导出热传导方程 (略) 。
3
机动 目录 上页 下页 返回 结束
《偏微分方程》第一章 绪论
教材及参考资料
第 4页
教 材:偏微分方程(第三版) ,陈祖墀,高教出版社。 参考书目: 1. 数学物理方程(第二版),谷超豪、李大潜等,高教出版社。 2. 现代偏微分方程导论, 陈恕行, 科学出版社。 3.偏微分方程讲义(俄罗斯数学教材选译),高教出版社。
11
机动 目录 上页 下页 返回 结束
《偏微分方程》第一章 绪论 第12页
注:Lu可视为线性算子L作用在函数u上。例如
2 2 2 2 2 Lu ( 2 a 2 2 2 )u t xn x1 x2 2 2 2 2u u u u 2 2 a 2 2 2 t xn x1 x2 2 2 2 2 2 2 x1 x2 xn 2 2 2 2u 2u u ( 2 2 2 )u 2 2 x1 x2 xn x1 x2
2 2 Laplace算子 2 2 x1 x2
, xn , t ) 的n维Laplace方程,利用
2 2 写成 xn
y ( y1, y2 , , ym ) 是参数,则
偏微分方程的有限元方法市公开课一等奖省赛课获奖PPT课件
第19页
展开J
(Ju(nu)n
)
1 2
(un , un
)
(
f
,
un
)
1 2
n i 1
n
(i , j )cic j
j 1
n
( f , j )c j
j 1
令
J (un ) 0 j 1, 2, , n
c j
则c1, c2 ,, cn满足
n
(i , j )ci ( f , j ) j 1, 2, , n
第1页
偏微分方程有限元方法
一 边值问题变分原理
1 引论 (1)等周问题
在长度一定全部平面封闭曲线中,求所 围面积为最大曲线。
模型:在条件
s2
dx
2
dy
2
ds
l
下
s1 ds ds
求使得泛函 s(x, y) 1 s2 x dy y dx ds
2 s1 ds ds
到达最大函数 x(s), y(s。)
x (a,b)
J (u) 1 (Lu,u) ( f ,u)
2
1
b d p du udx
b
qu
2
dx
b
fudx
2 a dx dx
a
a
1 b ( pu2 qu2 2 fu)dx
2a
引入泛函算子
(u, v)
b
[
p
du
dv
quv]dx
a dx dx
则 J (u) 1 (u,u) ( f ,u)
x2
,,x
n
)T
ann
b (b1, b2 ,,bn )T
则J(x)可表示为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分方程
假设: 1. 细弦,就是与张力相比,弦的重量可以忽略不计。 2. 有弹性,表示张力的大小可以按胡可(Hooke)定律来计算。
3. 柔软,是指弦可以弯曲,同时发生于弦中张力的方向总是沿 着弦所在曲线的切线方向。
4. 横振动,是指弦的运动只发生在一个平面上,且弦上各点的 位移与弦的平衡位置垂直。
偏微分方程
偏微分方程
偏微分方程
偏微分方程
下面考虑物体内部有热源(例如物体中通有电流,或有化学反应等情况)。 设在单位时间内单位体积中所产生的热量为F(x,y,z,t),则
则有热源的热传导方程为
偏微分方程
无热源的情况下得到的热传导方程:
有热源的情况下得到的热传导方程:
称为齐次热传导方程 称为非齐次热传导方程
定解问题的提法是否合适?
例如:这个定解问题的解是否一定存在? 解的存在性问题
这个定解问题的解是否只有一个?
解的唯一性问题
此外,还要考虑解的稳定性问题(或称为解对定解条件或自由 项的连续依赖性问题),即当定解条件或自由项作很小的变化 时,问题的解是否也作很小的变化。
定解问题的存在性、唯一性、稳定性统称为定解问题的适定性。 如果一个定解问题的解是存在的、唯一的、稳定的,称这个问 题是适定的,即认为这样的定解问题的提法是合适的。
偏微分方程
1.4定解问题的适定性
1.4定解问题的适定性
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
叠加原理的适用范围非常广泛。 叠加原理对于用线性方程和线性定解条件描述的物理现象来说, 都是成立的。
例如,一维热传导方程及其定解问题的叠加原理。
偏微分方程
偏微分方程
偏微分方程
偏微分方程
分析
特解 通解 通解
偏微分方程
偏微分方程
偏微分方程
第二章 二阶线性偏微分方程的分类和标准型
偏微分方程
偏微分方程
偏微分方程
根据复合函数求导法则,有
偏微分方程
偏微分方程
记
的符号是自变量可逆 变换下的不变量
偏微分方程
注:混合型的 退缩的
偏微分方程
偏微分方程
定理:设φ(x,y)满足隐函数存在定理中的条件,,则φ(x,y)是方程 (2.1.10)的解的充要条件是φ(x,y)=c是一阶常微分方程
偏微分方程
偏微分方程
数学物理方程通常是指物理学、力学、 工程技术和其他学科中出现的偏微分方 程。
反映有关的未知变量关于时间的导数和 关于空间变量的导数之间的制约关系。
连续介质力学、电磁学、量子力学等等 方面的基本方程都属于数学物理方程的 范围。
偏微分方程
偏微分方程是指含有未知函数以及未知 函数的某些偏导数的等式。
(1.1.5)
偏微分方程
对于一个非线性偏微分方程,如果它关于未知函数 的最高阶偏导数是线性的,则称它是拟线性偏微分 方程。 例
偏微分方程
对于线性偏微分方程而言,将方程中不含未知函数及 其偏导数的项称为自由项。
当自由项为零时,该方程称为齐次方程,否则称为非 齐次方程。 注:齐次、非齐次是对线性偏微分方程而言的。
(1.1.1) (1.1.2) (1.1.3) (1.1.4) (1.1.5)
偏微分方程
偏微分方程的一般形式
注:F中可以不显含自变量和未知函数,但是, 必须含有未知函数的某个偏导数。 涉及几个未知函数及其偏导数的多个偏微分 方程构成一个偏微分方程组。 注:除非特别说明,一般假设函数u及其在 方程中的各阶偏导数连续。
偏微分方程
偏微分方程
偏微分方程
偏微分方程
设空间中有一电荷密度为ρ(x,y,z)的静电场。
在此电场内任取一由封闭曲面S包围的区域Ω,
由静电学基本原理知,通过S向外的电通量等于Ω中总电量的4π倍。
即
其中E为电场强度矢量,
n为Ω上的单位外法线向量。
偏微分方程
又由库仑定律知,静电场是有势的。即存在静电位势u=u(x,y,z),使 E=-grad u
偏微分方程
(1.1.1) (1.1.2) (1.1.3) (1.1.4) (1.1.5)
偏微分方程
如果一个偏微分方程对未知函数及它的所有偏导数都是 线性的,且它们的系数都是仅依赖于自变量的已知函数, 则这样的偏微分方程称为线性偏微分方程。
(1.1.1) (1.1.2)
(1.1.3) (1.1.4)
代入上式,得静电位势u满足以下的泊松方程 即
偏微分方程
偏微分方程
一个偏微分方程与定解条件一起构成对于具体问题的完整描 述,称为定解问பைடு நூலகம்。 定解问题中的偏微分方程称为泛定方程。
常见的定解条件,可分为初始条件与边界条件。
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
5. 微小横振动,是指振动的幅度及弦在任意处切线的倾角都很 小。
偏微分方程
偏微分方程
例 1.2.2 热传导方程
所谓热传导,就是物体内温度较高的点处的热量 向温度较低点处的流动。 热传导问题归结为求物体内部温度的分布规律。
偏微分方程
设物体在Ω内无热源。 在Ω中任取一封闭曲面S。 以函数u(x,y,z,t)表示物体在t时刻M=M(x,y,z)处的温度。
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
一个偏微分方程与定解条件一起构成对于具 体问题的完整描述,称为定解问题。
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
的通积分。 证明: 设φ(x,y)是方程(2.1.10)的解。
偏微分方程
偏微分方程
双曲型方程的第一标准形式
偏微分方程
双曲型方程的第二标准形式 双曲型方程的第一标准形式和第二标准形式统称为双曲型方程的标准形式
偏微分方程
抛物型方程的标准形式
偏微分方程
偏微分方程
(1.1.1)
(1.1.2) (1.1.3)
偏1.微1 分基方本程概念
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
偏微分方程
例1.2.1 弦的微小横振动问题
弦振动方程是在18世纪由达朗贝尔等人首先给予系 统研究的。
设有一根长为L均匀柔软富有弹性的细弦,平衡时沿 直线拉紧,在受到初始小扰动下,作微小横振动。 试确定该弦的运动方程。