排列组合综合应用2(分配问题)
排列组合问题之分组分配问题
排列组合问题之分组分配问题(一)(五个方面)一、非均匀分组(分步组合法)“非均匀分组”是指将所有元素分成元素个数彼此不相等的组。
例1、7人参加义务劳动,按下列方法分组有多少种不同的分法 ①分成3组,分别为1人、2人、4人;②选出5个人分成2组,一组2人,另一组3人。
解:①先选出1人,有17C 种,再由剩下的6人选出2人,有26C 种,最后由剩下的4人为一组,有44C 种。
由分步计数原理得分组方法共有124764105C C C =(种)。
②可选分同步。
先从7人中选出2人,有27C 种,再由剩下的5人中选出3人,有35C 种,分组方法共有2375210C C =(种)。
也可先选后分。
先选出5人,再分为两组,由分步计数原理得分组方法共有523753210C C C =(种)。
二、均匀分组(去除重复法)“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。
㈠全部均匀分组(去除重复法)例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法解:可选分同步。
先选3人为一组,有37C 种;再选3人为另一组,有34C 种。
又有2组都是3人,每22A 种分法只能算一种,所以不同的分法共有33742270C C A =(种)。
也可先选后分。
不同的分法共有3366372270C C C A ⋅=(种)。
㈡部分均匀分组(去除重复法)例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法解:分成2、2、2、4个元素的4堆,分别有210C 、28C 、26C 、44C 种,又有3堆都是2个元素,每33A 种分法只能算一种,所以不同的分组方法共有222410864333150C C C C A ⋅=(种)。
【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是均匀的,都有mm A 种顺序不同的分法只能算一种分法。
】三、编号分组㈠非均匀编号分组(分步先组合后排列法)例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法解:分组方法共有232752420C C A =(种)。
【排列组合(10)】排列与组合综合应用(二)
排列与组合综合应用(二)一、选择题1.某班上午有五节课,分別安排语文,数学.英语.物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻.且数学课不排第一节,则不同排课法的种数是()A. 16B. 24C. 8D. 122.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为()A. 50B. 80C. 120D. 1403.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排,若小明的父母至少有一人与他相邻,则不同坐法的总数为()A. 60B. 72C. 84D. 964.安排甲、乙、丙、丁四位教师参加星期一至星期六的值日工作,每天安排一人,甲、乙、丙每人安排一天,丁安排三天,并且丁至少要有两天连续安排,则不同的安排方法种数为()A. 72B. 96C. 120D. 1565.由0,1,2,3,5组成的无重复数字的五位偶数共有()A. 36个B. 42个C. 48个D. 120个6.某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有()种.A. 27B. 30C. 33D. 367.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有()A. 60种B. 90种C. 150种D. 240种8.某人连续投篮6次,其中3次命中,3次未命中.则他第1次、第2次两次均未命中的概率是()A. 12B. 310C. 14D. 15二、填空题(本大题共4小题,共20.0分)9.现有7件互不相同的产品,其中有4件次品,3件正品,每次从中任取一件测试,直到4件次品全被测出为止,则第三件次品恰好在第4次被测出的所有检测方法有______种.10.用数字1、2、3、4、5构成数字不重复的五位数,要求数字1,3不相邻,数字2、5相邻,则这样的五位数的个数是______(用数字作答).11.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有______种.12.某高中高三某班上午安排五门学科(语文,数学,英语,化学,生物)上课,一门学科一节课,要求语文与数学不能相邻,生物不能排在第五节,则不同的排法总数是______.三、解答题(本大题共8小题,共96.0分)13.我校今年五四表彰了19名的青年标兵,其中A,B,C,D 4名同学要按任意次序排成一排照相,试求下列事件的概率(1)A在边上;(2)A和B在边上;(3)A或B在边上;(4)A和B都不在边上.14.六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲、乙必须相邻;(2)甲、乙不相邻;(3)甲、乙之间恰有两人;(4)甲不站在左端,乙不站在右端.15.从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(写出计算过程,并用数字作答)(1)甲、乙两人必须跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒.16.4男3女站成一排,求满足下列条件的排法共有多少种?(1)任何两名女生都不相邻,有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?17.6本不同的书,按如下方法分配,各有多少种分法:(1)分给甲、乙、丙3人,每人各得2本;(2)分给甲、乙、丙3人,甲得1本,乙得2本,丙得3本;(3)分给甲、乙、丙3人,其中一人得1本,其中一人得2本,其中一人得3本.18.有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子.问:(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?19.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(Ⅰ)选其中5人排成一排;(Ⅱ)排成前后两排,前排3人,后排4人;(Ⅲ)全体排成一排,女生必须站在一起;(Ⅳ)全体排成一排,男生互不相邻;(Ⅴ)全体排成一排,甲不站在排头,也不站在排尾。
6.2.4组合的综合应用第2课时(分组与分配问题)教学设计
组合的综合应用备课人授课时间课题排列组合的综合应用-分组与分配问题课标要求掌握分组与分配问题教学目标知识技能理解并熟练掌握求排列组合的一般方法;掌握分组问题与分配问题的解决方法。
过程方法帮助学生在已有旧知识的基础上探究学习新知识,在学习中总结新的结论,并通过新、旧知识之间的联系熟练掌握新知识。
情感态度价值观通过对排列组合实际问题的解决,提高学生学习数学的兴趣。
重点能够应用排列组合知识准确求解分组问题与分配问题难点理解平均分组问题是有顺序的教教学环节、内容师生互动学 过 程 及 方 法一、复习回顾1、分类加法计数原理和分步乘法计数原理;2、排列数和组合数公式: 排列数公式: 乘积式:阶乘式:组合数公式:乘积式:阶乘式:师:前面我们学习了排列组合相关知识,本节课我们将继续探究排列组合的综合应用中的高频考点-分组与分配问题。
师:先请同学们回答两个问题! 1、学过哪些计数原理?生:(......) 2、排列数和组合数公式分别是什么? 生:(......)教师课时教案教教学环节、内容师生互动)1()3)(2)(1(+-⋅⋅⋅---=m n n n n n A m n )!(!m n n A mn-!)1()3)(2)(1(m m n n n n n C mn +-⋅⋅⋅---=)!(!!m n m n C m n-=学过程及方法二、情境导入2022年我国成功举办了二十四届冬季奥林匹克运动会情境:将 5 名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶 4 个项目进行培训,每名志愿者只分配到 1 个项目,每个项目至少分配 1 名志愿者,则不同的分配方案共有多少种?三、探究新知(分组问题)问题1:若分六本不同的书,如果按照1, 2, 3分成三堆,问有多少种分法?(不同元素的完全非均匀分组问题)解:由题可得,共有种。
点拨:组与组完全不同,只需分组即可!问题2:若分六本不同的书,平均分成三堆,每堆两本,问有多少种分法?(不同元素的完全均匀分组问题)解:由题可得,共有种。
排列组合中的分组分配问题的有效解法
排列组合中的分组分配问题的有效解法排列组合中的分组分配问题是指将一组元素分成不同的组,每个组中的元素个数可以不同,同时每个元素只能属于一个组。
这类问题在实际生活中非常常见,比如将不同班级的学生分配到不同的宿舍,将不同商品分配到不同的仓库等。
在解决这类问题时,可以使用回溯法进行穷举搜索,具体步骤如下:1. 定义一个空的结果集,用来存储所有的有效分组分配方案。
2. 定义一个空的临时集合,用来存储当前正在处理的分组分配方案。
3. 使用回溯法进行搜索,从第一个元素开始,尝试将其放入不同的组中。
4. 对于每个选择,如果选择当前组的元素数量小于或等于规定的数量,则将该元素加入到临时集合中,并递归处理下一个元素。
5. 如果当前组的元素数量大于规定的数量,则回溯到上一层,并尝试选择其他组进行分配。
6. 当所有元素都被分配完毕时,将临时集合存入结果集中。
7. 返回结果集,即为所有的有效分组分配方案。
这种解法的时间复杂度为O(k^n),其中n为元素的个数,k为分组的个数。
在实际使用中,由于组合数目可能非常大,可能需要进行一些剪枝优化,以提高运行效率。
还可以使用动态规划方法解决分组分配问题。
动态规划方法将问题分为多个子问题,然后利用子问题的解来求解原问题。
具体步骤如下:1. 定义一个二维数组dp,dp[i][j]表示将前i个元素分配到j个组中的方案数。
2. 初始化dp数组,将所有元素分配到一个组中的方案数为1,其他地方为0。
3. 使用动态规划进行求解,从第一个元素开始,依次遍历所有可能的组合情况。
4. 对于每个元素,从1到j(j为组的数量)进行遍历,分别计算分配到该组和不分配到该组的方案数之和,并更新dp数组。
5. 当所有元素都遍历完毕后,dp[n][k]即为最终的解。
这种解法的时间复杂度为O(nk^2),可以在不超出计算能力的情况下求解大规模的分组分配问题。
排列组合中的分组分配问题可以使用回溯法和动态规划方法进行求解。
分配问题-2021年新高考数学题型全归纳之排列组合(解析版)
专题14 分配问题例1.将18个参加青少年科技创新大赛的名额分配给3个学校,要求每校至少有一个名额且各校分配的名额互不相等,则不同的分配方法种数为( ) A .96 B .114 C .128 D .136【解析】不同的名额分配方法为(1,2,15),(1,3,14),…,(1,8,9);(2,3,13),(2,4,12),…,(2,7,9);…,(5,6,7),共7+5+4+2+1=19种方法,再对应分配给学校有3319114A =,选B.例2.北京某大学为第十八届四中全会招募了名志愿者(编号分别是,,,号),现从中任意选取人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保号、号与号同时入选并被分配到同一厅的选取种数是( ) A . B . C . D . 【解析】号、号与号放在一组,则其余三个编号要么都比6小,要么都比24大,比6 小时,有种选法,都比24大时,有种选法,合计30种选法,号、号与在选厅时有两种选法,所以选取的种数共有种,故正确选项为C.例3.学校决定把12个参观航天航空博物馆的名额给二(1)、二(2)、二(3)、二(4)四个班级. 要求每个班分得的名额不比班级序号少;即二(1)班至少1个名额, 二(2)班至少2个名额,…… ,则分配方案有( ) A .10种 B .6种 C .165种 D .495种【解析】根据题意,先在编号为2、3、4的3个班级中分别分配1、2、3个名额,编号为1的班级里不分配;再将剩下的6个名额分配4个班级里,每个班级里至少一个,分析可得,共2510C = 种放法,即可得符合题目要求的放法共10种,故答案为A例4.将甲、乙、丙、丁四位辅导老师分配到A 、B 、C 、D 四个班级,每个班级一位老师,且甲不能分配到A 班,丁不能分配到B 班,则共有分配方案的种数为( ) A .10B .12C .14D .243012⋅⋅⋅30661524253260100615241035=C 2036=C 61524602)2010(=⨯+【解析】将分配方案分为甲分配到B班和甲不分配到B班两种情况:①甲分配到B班:有336A=种分配方案;②甲不分配到B班:有1122228A A A=种分配方案;由分类加法计数原理可得:共有6814+=种分配方案.故选:C.例5.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有()A.90种B.180种C.270种D.540种【解析】分两个步骤:先分配医生有336A=种方法,再分配护士有422364233390C C CAA=,由分步计数原理可得:422336423333690540C C CA AA⨯=⨯=,应选答案:D.例6.4名大学生被分配到3所学校实习,每所学校至少分配一名大学生,则不同的分配方案有()A.12B.24C.36D.72【解析】将4人分为2人、1人、1人的三组,共有:2142226C CA=种分法,将三组安排到3所学校共有336A=种分法,由分步乘法计数原理可得:不同的分配方案有6636⨯=种.故选:C.例7.将5名教师分配到甲、乙、丙三所学校任教,其中甲校至少分配两名教师,其它两所学校至少分配一名教师,则不同的分配方案共有几种()A.60B.80C.150D.360【解析】分成甲校分配3名教师和2名教师两种情况:甲校分配3名教师时,共有:315220C C =种分配方案 甲校分配2名教师时,共有:22253260C C A =种分配方案∴不同的分配方案共有:206080+=种本题正确选项:B例8.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院A ,医生乙只能分配到医院A 或医院B ,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( ) A .18种 B .20种 C .22种 D .24种【解析】根据医院A 的情况分两类:第一类:若医院A 只分配1人,则乙必在医院B ,当医院B 只有1人,则共有2232C A 种不同 分配方案,当医院B 有2人,则共有1222C A 种不同分配方案,所以当医院A 只分配1人时, 共有2232C A +122210C A =种不同分配方案;第二类:若医院A 分配2人,当乙在医院A 时,共有33A 种不同分配方案,当乙不在A 医院, 在B 医院时,共有1222C A 种不同分配方案,所以当医院A 分配2人时, 共有33A +122210C A =种不同分配方案; 共有20种不同分配方案. 故选:B例9.把3名新生分到甲、乙、丙、丁四个班,每个班至多分配1名且甲班必须分配1名,则不同的分配方法有 ( ) A .12种 B .15种C .18种D .20种【解析】根据题意,分2步进行分析:①、由于每个班至多分配1名且甲班必须分配1名,先在3名新生中任选一人,安排到甲班,有133C =种情况,②、在剩下的3个班级中任选2个,安排剩下的2名新生,有236A=种情况,则有3×6=18种不同的分配方法;本题选择C选项.例10.某公司将5名员工分配至3个不同的部门,每个部门至少分配一名员工,其中甲、乙两名员工必须分配在同一个部门的不同分配方法数为()A.24B.30C.36D.42【解析】解:如果5人分成1,1,3三组,则分配方法有:C22C31A33种,如果5人分成1,2,2三组,则分配方法有:C22C32A33种,由加法原理可得:不同分配方法数为C22C31A33+C22C32A33=36种.本题选择C选项.例11.将7名应届师范大学毕业生分配到3所中学任教.(最后结果用数字表示)(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?(2)一所学校安排4个人,一所学校安排2个人,一所学校1个人,有多少种不同的分配方案?(3)其中有两所学校都各安排3个人,另一所学校安排1个人,有多少种不同的分配方案?【解析】(1)421731105C C C⋅⋅=(种)(2)42137313630C C C A⋅⋅⋅=(种)(3)3313741322420C C CAA=(种)例12.按下列要求分配6本不同的书,各有多少种不同的分配方式? (1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本; (3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本.【解析】(1)无序不均匀分组问题.先选1本有16C 种选法;再从余下的5本中选2本有25C 种选法;最后余下的3本全选有33C 种选法.故共有12365360C C C = (种)选法.(2)有序不均匀分组问题.由于甲、乙、丙是不同三人,在1题的基础上,还应考虑再分配,共有12336533360C C C A =.(3)无序均匀分组问题.先分三步,则应是222642C C C 种选法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则222642C C C 种分法中还有(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,CD ,AB ),(EF ,AB ,CD ),共有33A 种情况,而这33A种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有2226423315C C C A =. (4)有序均匀分组问题.在3题的基础上再分配给3个人,共有分配方式222364233390C C C A A ⋅= (种). (5)无序部分均匀分组问题.共有4116212215C C C A = (种)分法. (6)有序部分均匀分组问题.在5题的基础上再分配给3个人,共有分配方式411362132290C C C A A ⋅= (种). (7)直接分配问题.甲选1本有16C 种选法,乙从余下5本中选1本有15C 种选法,余下4本留给丙有44C 种选法,共有11465430C C C = (种)选法.例13.有甲、乙、丙、丁、戊5位同学,求: (1)5位同学站成一排,有多少种不同的方法?(2)5位同学站成一排,要求甲、乙必须相邻,丙、丁不能相邻,有多少种不同的方法? (3)将5位同学分配到三个班,每班至少一人,共有多少种不同的分配方法? 【解析】 (1)55A =120.(2) 5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻故有22A 22A 2324A =.(3)人数分配方式有①311++有335360C A =种方法②221++有2235332290C C A A =种方法 所以,所有方法总数为6090150+=种方法例14.从射击、乒乓球、跳水、田径四个大项的雅典奥运冠军中选出6名作“夺冠之路”的励志报告. (1)若每个大项中至少选派一人,则名额分配有几种情况?(2)若将6名冠军分配到5个院校中的4个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法? 【解析】(1)6个名额没有差异,所以选择隔板法,(2)首先先从5个院校选择4个院校,然后将6名冠军分组,3111,或是2211,两种情况,最后再分配乘以44A . 试题解析:(1)名额分配只与人数有关,与不同的人无关.所以选择隔板法,1035=C 6分(2)从5个院校中选4个,再从6个冠军中,先组合,再进行排列,有2243464564227800C C C C A A ⎛⎫⋅+⋅= ⎪⎝⎭种分配方法. 12分例15.将4名大学生分配到A 、B 、C 三个乡镇去当村官,每个乡镇至少分配一名,则大学生甲分配到乡镇A 的概率为 (用数字作答) 【解析】将4名大学生分配到A 、B 、C 三个乡镇去当村官,每个乡镇至少分配一名的事件个数为363324=A C ,每个乡镇至少分配一名,大学生甲分配到乡镇A 的个数是633=A ,所以概率是61366==P 例16.安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答) 【解析】210例17.为了宣传校园文化,让更多的学生感受到校园之美,某校学生会组织了6个小队在校园最具有代表性的3个地点进行视频拍摄,若每个地点至少有1支小队拍摄,则不同的分配方法有_____种(用数字作答) 【解析】(1)若按照1:1:4进行分配有436390C A ⨯=种方案;(2)若按照1:2:3进行分配有323633360C C A ⨯=种方案;(3)若按照2:2:2进行分配有4236433390C C A A ⨯=种方案; 由分类加法原理,所以共有9036090540++=种分配方案.例18.在送医下乡活动中,某医院安排甲、乙、丙、丁、戊五名医生到三所乡医院工作,每所医院至少安排一名医生,且甲、乙两名医生不安排在同一医院工作,丙、丁两名医生也不安排在同一医院工作,则不同的分配方法总数为 . 【解析】试题分析:甲、乙、丙、丁、戊五名医生到三所乡医院工作,每所医院至少安排一名医生,①当有二所医院分2人另一所医院分1人时,总数有22353322C C A A ⋅⋅种,其中有、甲乙二人或丙丁二人在同一组有33334A A +种;②有二所医院分1人另一所医院分3人.有113223C C A ⋅⋅种.故满足条件的分法共有2233311353333223224906242484C C A A A C C A A ⋅⋅--+⋅⋅=--+=种. 例19.某学校要将4名实习教师分配到3个班级,每个班级至少要分配1名实习教师,则不同的分配方案有_______种. 【解析】第一步取两个教师作为一组共有246C =种取法,第二步将三组教师分配到3个班级共有336A =种安排方法,所以根据分步乘法计数原理知,共有66=36⨯种不同的安排方法,故填36.例20.将六名教师分配到甲、乙、丙、丁四所学校任教,其中甲校至少分配两名教师,其它三所学校至少分配一名教师,则不同的分配方案共有_________种.(用数字作答) 【解析】若甲校2人,乙、丙、丁其中一校2人,共有223643C C A 种,若甲校3人,乙、丙、丁每校1人,共有3363C A ,则不同的分配方案共有223643C C A +3363C A 660=种故答案为660。
小学数学《排列组合的综合应用》练习题(含答案)
小学数学《排列组合的综合应用》练习题(含答案)例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有 5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有 5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有 15+10+ 6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2C47+6C37+3C27+C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.习题六解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.五点共线有4组,四点共线的有9组,三点共线的有8组,利用排除法:C320-4C35-9C34-8C33=1140-4×10-9×4-8=1056.6.因为任一张人民币的币值都大于所有币值比它小的人民币的币值的和,例如1角的大于1分、2分、5分的和,因此不论取多少张,它们组成的币值都不重复,所以组成的币值与组合总数一致,有C110+C210+……+C1010=210-1=1023种.因为由这些人民币能组成的最小的币值是1分,最大的币值是十张币值的和,即1888分,而1023<1888,可见从1分到1888分中间有一些币值不能组成.。
山东省聊城市第四中学届高三数学二轮复习《排列组合》综合应用题(二)(无答案)
高中数学学习材料(灿若寒星精心整理制作)高三复习排列组合综合应用题(二)【知识点一】分组问题例1.例1. 将6本不同的书按如下方法分配,各有多少种分法?(1)分给甲、乙、丙3人,每人各得2本;(2)分给甲、乙、丙3人,甲得1本乙得2本丙得3本;(3)分给甲乙丙3人,其中一人得1本,一人得2本,一人得3本;(4)若平均分成3堆,有几种分法【变式】四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有__________种(用数字作答)【变式】甲、乙、丙三家公司承包6项工程,甲承包3项,乙承包2项,丙承包1项.不同的承包方案有多少种?【知识点五】几何元素的计数问题例5 已知平面M 内有4个点,平面N 内有5个点,问这九个点最多能确定⑴多少个平面? ⑵多少个四面体?【变式】如在以AB 为直径的半圆周上,有异于B A 、的六个点654321C ,C ,C ,C C C ,,, 直径AB 上有异于B A 、的四个点4321,,,D D D D .问:⑴以这10个点中的3个点为顶点作三角形可作多少个?其中含1C 点的有多少个?⑵以图中的12个点(包括B A 、)中的4个为顶点,可作出多少个四边形?作业:1.学生可从本年级开设的7门选修课中任选3门,从6种课外活动小组中选择2种,不同的选法种数是 .2.5人分4张无座足球票,每人至多1张,而且票必须分完,那么不同排法种数是 .3.5名同学去听同时举行的3个课外知识讲座,每名同学可自由选择听其中的1个讲座,不同选择的种数是 .4.正十二边形的对角线的条数是 .以正方体的顶点为顶点的三棱锥的个数是 .5.要排出某班一天中语文、数学、政治、英语、体育、艺术6堂课的课程表要求数学排在上午(前4节),体育课排在下午(后2节),不同的排法种数是 .6.一种汽车牌照号码由2个英文字母后接4个数字组成,且2个英文字母不能相同,不同的牌照号码的个数是 .7.某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种请法?8. ⑴平面内有n条直线,其中没有两条平行,也没有三条交于一点,共有多少个交点?⑵空间有n个平面,其中没有两个互相平行,也没有三个交于一条直线,一共有多少条交线?9.100件产品中有97件合格品,3件次品,从中任意抽取5件进行检查.⑴抽取5件都是合格品的抽法有多少种?⑵抽取5件中恰好有2件是次9品的抽法有多少种?⑶抽取5件中至少有2件是次品的抽法有多少种?10.书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?11.用数字0,1,2,3,4,5组成没有重复数字的数::⑴能够组成多少个六位奇数?⑵能够组成多少个大于201 345的正整数?12. ⑴平面内有两组平行线,一组有m条,另一组有n条,这两组平行线相交,可以构成多少个平行四边形?⑵空间有三组平行平面,第一组有m个,第二组有n个,第三组有l个,不同两组的平面都相交,且交线不都平行,可构成多少个平行六面体?13.某产品的加工需要经过5道工序.⑴如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?⑵如果其中两道工序即不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?14.有4名男生,5名女生,分成甲、乙、丙三组,每组3人,有多少种不同的分法?15.有3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.⑴全体站成一排,其中甲不在最左端,乙不在最右端;⑵全体站成一排,甲、乙中间必须有2人;⑶全体站成一排,男、女生各不相邻.。
排列组合中分组分配问题
分组分配问题一.基本内容1.案例分析:将4个不同的元素分为2份,每份2个,请问有多少不同的分法?解析:若按照2422C C 6=的方法进行分组,不妨设4个元素分别为,,,a b c d ,则会出现以下情况:①,ab cd ;②,cd ab ;③,ac bd ;④,bd ac ;⑤,ad bc ;⑥,bc ad .显然,用组合数公式计算出来的结果重复了三次,最终的分组结果应以为:242222C C 3A =2.基本原理2.1分组问题属于“组合”问题,常见的分组问题有三种:将n 个不同元素分成m 组,且每组的元素个数分别为m m m m m ,,,,321 ,记m m mm m m n mm m n mm n mn C C C C N )()(121321211-+++-+--⋅⋅⋅⋅= .(1)非均匀不编号分组:n 个不同元素分成m 组,每组元素数目均不相等,且不考虑各组间的顺序,其分法种数为N .(2)均匀不编号分组:将n 个不同元素分成不编号(即无序)的m 组,每组元素数目相等,其分法种数为m mA N .(3)部分均匀不编号分组:将n 个不同元素分成不编号的m 组,其中有r 组元素个数相等,其分法种数为r rA N ,如果再有k 组均匀分组,应再除以kk A .2.2分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.3.相同元素的分组问题:挡板法及其应用:对于n 个相同元素分成m 组(m n <),且每组至少一个元素的分组问题,可采用“隔板法”解决:n 个元素之间形成1n -个空格,只需放入1m -个隔板即可,故不同的分配方案有11C m n --种,其等效于不定方程的非负整数解个数:不定方程r x x x n =+⋅⋅⋅++21的非负整数解.(1)方程r x x x n =+⋅⋅⋅++21的正整数解为11--n r C 个.(2)方程r x x x n =+⋅⋅⋅++21的非负整数解为11--+n r n C 个.二.例题分析例1.某校有5名大学生打算前往观看冰球,速滑,花滑三场比赛,每场比赛至少有1名学生且至多2名学生前往,则甲同学不去观看冰球比赛的方案种数有()A .48B .54C .60D .72【解析】将5名大学生分为1-2-2三组,即第一组1个人,第二组2个人,第三组2个人,共有2215312215C C C A ∙∙=种方法;由于甲不去看冰球比赛,故甲所在的组只有2种选择,剩下的2组任意选,所以由2224A =种方法;按照分步乘法原理,共有41560⨯=种方法;故选:C.例2.甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有,,A B C 三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A .193243B .100243C .23D .59【解析】首先求所有可能情况,5个人去3个地方,共有53243=种情况,再计算5个人去3个地方,且每个地方至少有一个人去,5人被分为3,1,1或2,2,1当5人被分为3,1,1时,情况数为3353C A 60⨯=;当5人被分为2,2,1时,情况数为12354322C C A 90A ⨯⨯=;所以共有6090150+=.由于所求甲不去A ,情况数较多,反向思考,求甲去A 的情况数,最后用总数减即可,当5人被分为3,1,1时,且甲去A ,甲若为1,则3242C A 8⨯=,甲若为3,则2242C A 12⨯=共计81220+=种,当5人被分为2,2,1时,且甲去A ,甲若为1,则224222C A 6A ⨯=,甲若为2,则112432C C A 24⨯⨯=,共计62430+=种,所以甲不在A 小区的概率为()1502030100243243-+=,故选:B.例3.安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为()A .15B .310C .325D .625【解析】5名大学生分三组,每组至少一人,有两种情形,分别为2,2,1人或3,1,1人;当分为3,1,1人时,有3353C A 60=种实习方案,当分为2,2,1人时,有22353322C C A 90A ⋅=种实习方案,即共有6090150+=种实习方案,其中甲、乙到同一家企业实习的情况有13233333C A C A 36+=种,故大学生甲、乙到同一家企业实习的概率为36615025=,故选:D.例4.学校要安排2名班主任,3名科任老师共五人在本校以及另外两所学校去监考,要求在本校监考的老师必须是班主任,且每个学校都有人去,则有()种不同的分配方案.A .18B .20C .28D .34【解析】根据本校监考人数分为:本校1人监考,另外4人分配给两所学校,有2,2和3,1两种分配方案,所以总数为:28)(2233142222222412=+∙A C C A A C C C ;本校2人监考,另外3人分配给两所学校,有2,1一种分配方案,所以总数为:()212223226C C C A =,根据分类计数原理,所有分配方案总数为28+6=34;故选:D.例5.现有甲、乙、丙、丁、戊五位同学,分别带着A 、B 、C 、D 、E 五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A .45B .12C .47D .38【解析】先从五人中抽取一人,恰好拿到自己的礼物,有15C 种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有224222C C A 种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由3211C C 种情况,综上:共有22111425322245C C C C C A ⎛⎫⋅+= ⎪⎝⎭种情况,而五人抽五个礼物总数为55120A =种情况,故恰有一位同学拿到自己礼物的概率为4531208=.故选:D 例6.为贯彻落实《中共中央国务院关于全面深化新时代教师队伍建设改革的意见》精神,加强义务教育教师队伍管理,推动义务教育优质均衡发展,安徽省全面实施中小学教师“县管校聘”管理改革,支持建设城乡学校共同体.2022年暑期某市教体局计划安排市区学校的6名骨干教师去4所乡镇学校工作一年,每所学校至少安排1人,则不同安排方案的总数为()A .2640B .1440C .2160D .1560【解析】将6人分组有2种情况:2211,3111,所以不同安排方案的总数为2234646422C C A 1560A C ⎛⎫+= ⎪⎝⎭.故选:D.例7.为促进援疆教育事业的发展,某省重点高中选派了3名男教师和2名女教师去支援边疆工作,分配到3所学校,每所学校至少一人,每人只去一所学校,则两名女教师分到同一所学校的情况种数为______.【解析】①若2位女老师和1名男老师分到一个学校有1333C A =18种情况;②若2位女老师分在一个学校,则3名男教师分为2组,再分到3所学校,有2333C A =18种情况,故两名女教师分到同一所学校的情况种数为181836+=种.故答案为:36.例8.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遣到,,A B C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲、乙2名干部不被分到同一个贫困县的概率为___________.【解析】每个贫困县至少分到一人,4名干部分到三个县有211342132236C C C A A =种方案,其中甲、乙2名干部被分到同一个贫困县的方案有336A =种所以甲、乙2名干部不被分到同一个贫困县的概率为3665366P -==,故答案为:56例9.为弘扬学生志愿服务精神,某学校开展了形式多样的志愿者活动.现需安排5名学生,分别到3个地点(敬老院、幼儿园和交警大队)进行服务,要求每个地点至少安排1名学生,则有_______________________种不同的安排方案(用数字作答).【解析】先将5人分为三组,每组的人数分别为3、1、1或2、2、1,再将三组分配给三个地点,由分步乘法计数原理可知,不同的安排方案数为2233535322150C C C A A ⎛⎫+= ⎪⎝⎭种.故答案为:150.例10.6名教师分配到3所薄弱学校去支教,每个学校至少分配一名教师,甲乙两人不能去同一所学校,丙丁两人必须去同一所学校,共有________种分配方案(用数字作答).【解析】按题目要求可按4、1、1或3、2、1或2、2、2分配,若按4、1、1分配,丙丁必须在4人里,需要从其余剩下的4人里选2人,有24C 种,去掉选中甲乙的1种情况,有(24C -1)种选法,安排去3个学校,共有(24C -1)33A =30种;若按3、2、1分配有两类,丙丁为2,甲乙中选1人作1,分配到3个学校有1323C A ,丙丁在3人组中,从剩余4人中取1人,组成3人组,剩余3人取2人组成2人组,剩余1人构成1人组,去掉甲乙构成2人组的情况2种,共有12432C C -种取法,安排去3个学校有(12432C C -)33A 种,两类共有1323C A +(12432C C -)33A =72种;若按2、2、2分配有2·33A =12种,∴共有30+72+12=114种分配方案.下面是挡板法及其应用,仅做了解即可.例11.不定方程12x y z ++=的非负整数解的个数为()A .55B .60C .91D .540解析:不定方程12x y z ++=的非负整数解的个数⇔将12个相同小球放入三个盒子,允许有空盒的放法种数.现在在每个盒子里各加一个相同的小球,问题等价于将15个相同小球放入三个盒子,没有空盒的放法种数,则只需在15个小球中形成的空位(不包含两端)中插入两块板即可,因此,不定方程12x y z ++=的非负整数解的个数为21491C =.故选:C.例12.方程123412x x x x +++=的正整数解共有()组A .165B .120C .38D .35解析:如图,将12个完全相同的球排成一列,在它们之间形成的11个空隙中任选三个插入三块隔板,把球分成四组,每一种分法所得球的数目依次是1x 、2x 、3x 、4x ,显然满足123412x x x x +++=,故()1234,,,x x x x 是方程123412x x x x +++=的一组解,反之,方程123412x x x x +++=的每一组解都对应着一种在12个球中插入隔板的方式,故方程123412x x x x +++=的正整数解的数目为:31111109165321C ⨯⨯==⨯⨯,故选:A.。
排列组合中的分组分配问题完整
五非均分组分配对象确定问题
例6 六本不同的书按1∶2∶3分给甲、乙、丙三个人 有多少种不同的分法?
C61C52C33
非均分组有分配对象要把组数当作元素个数 再作排列。
五非均分组分配对象不固定问题
例7 六本不同的书分给3人,1人1本,1人2本,1人3本 有多少种分法
C
2 10
C
2 8
C
2 6
C
4 4
A
3 3
C
2 10
C
2 8
C
2 6
C
4 4
3 有六本不同的书分给甲、乙、丙三名同学,按下条 件,各有多少种不同的分法?
(1)每人各得两本; (2)甲得一本,乙得两本,丙得三本; (3)一人一本,一人两本,一人三本; (4)甲得四本,乙得一本,丙得一本; (5)一人四本,另两人各一本·
排列组合中的分组分配问题
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
一、 提出分组与分配问题,澄清模糊概念 n 个不同元素按照某些条件分配给 k 个不同得对象,称为
分配问题,分定向分配和不定向分配两种问题;将 n 个不同 元素按照某些条件分成 k 组,称为分组问题.分组问题有不平 均分组、平均分组、和部分平均分组三种情况。分组问题和 分配问题是有区别的,前者组与组之间只要元素个数相同是 不区分的;而后者即使 2 组元素个数相同,但因对象不同, 仍然是可区分的.对于后者必须先分组后排列。
C61C52C33 A33
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
(仅供参考)排列组合中分组(分堆)与分配问题
太奇MBA 数学助教李瑞玲一.分组(分堆)与分配问题将n 个不同元素按照某些条件分配给k 个不同的对象,称为分配问题,又分为定向分配和不定向分配两种问题。
将n 个不同元素按照某些条件分成k 组,称为分组问题。
分组问题有不平均分组,平均分组,部分平均分组三情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使两组的元素个数相同,但因所要分配的对象不同,仍然是可区分的。
对于后者必须先分组后排列。
一.基本的分组问题例1.六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本(均分三组)(平均分组问题)(2)一组一本,一组两本,一组三本(不平均分组问题)(3)一组四本,另外两组各一本(部分平均分组问题)分析:(1)分组和顺序无关,是组合问题。
分组数为90222426=C C C ,而这90种分组方法实际上重复了6次。
现把六本不同的书标上6,5,4,3,2,1六个号码,先看一下这种情况:(1,2)(3,4)(5,6)(1,2)(5,6)(3,4)(3,4)(1,2)(5,6)(3,4)(5,6)(1,2)(5,6)(1,2)(3,4)(5,6)(3,4)(1,2)由于书是均匀分组的,三组的本数都一样,又与顺序无关,所以这种情况下这六种分法是同一种分法,于是可知重复了6次。
以上的分组实际上加入了组的顺序,同理其他情况也是如此,因此还应取消分组的顺序,即除以33P ,于是最后知分法为1569033222426==P C C C .(2)先分组,分组方法是60332516=C C C ,那么还要不要除以33P ???(很关键的问题)由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有60332516=C C C 。
(3)先分组,分组方法是30111246=C C C ,这其中有没有重复的分法???(需要好好考虑)现还把六本不同的书标上6,5,4,3,2,1六个号码,先看以下情况1)先取四本分一组,剩下的两本,一本一组,情况如下(1,2,3,4)56(1,2,3,4)652)先取一本分一组,再取四本分一组,剩余的一本为一组,情况如下5(1,2,3,4)66(1,2,3,4)53)先取一本分一组,再取一本为一组,剩下的四本为一组,情况如下56(1,2,3,4)65(1,2,3,4)由此可知每一种分法重复了2次,原因是其中两组的的书的本数都是一本,这两组有了顺序,需要把分组的顺序取消掉,而四本的那一组,由于书的本数不一样,不可重复,故最后的结果为1523022111246==P C C C .通过以上三个小题的分析,可以得出分组问题的一般结论如下:一般地,将n 个不同的元素分成p 组,各组内元素个数分别为p m m m ,,,21⋯,其中k 组内元素个数相等,那么分组方法数为()kk mm m m m m n m m n m n P C C C C pp i i ⋯⋯⋯121211−+++−−,即选完元素后要除以元素相同的总组数的全排列!三.基本的分配问题1.定向分配问题例2六本不同的书,分给甲乙丙三人,求在下列条件下各有多少种不同的分法?(1)甲两本,乙两本,丙两本(2)甲一本,乙两本,丙三本(3)甲四本,乙一本,丙一本分析:由于分配给三人,每人分几本是一定的,属于分配问题中的定向分配问题。
排列组合中的分组分配问题的有效解法
排列组合中的分组分配问题的有效解法1. 引言1.1 什么是排列组合中的分组分配问题在排列组合中的分组分配问题中,我们面临着将一组元素分为多个子集的问题。
在这个问题中,我们通常需要满足一定的条件,比如每个子集的元素个数必须相等,或者每个子集的元素之和必须满足某个条件。
这种问题在实际生活中有很多应用,比如排班问题、分组比赛问题等。
具体来说,我们可以将排列组合中的分组分配问题看作将n个元素分为m个子集的问题。
每个子集中的元素个数可以不同,也可以相同。
我们需要找到一种方法,使得每个子集满足特定的条件,同时保证所有子集之间没有重复元素。
在解决这类问题时,我们通常需要考虑不同算法的效率和准确性。
通过选择合适的算法,我们可以更快地找到问题的解决方案,提高问题的求解效率。
对于排列组合中的分组分配问题,需要有效的解法来解决复杂的组合问题,提升计算效率。
【200字】1.2 为什么需要有效解法排列组合中的分组分配问题是一个常见的数学问题,通常涉及到如何将一组元素分成若干组,使得每个元素恰好属于一组,并且每个组的元素数量符合特定的条件。
这类问题在实际生活中也有着广泛的应用,比如在分配任务、资源、奖励等方面。
为了解决这类问题,需要找到一种有效的解法。
有效解法可以帮助我们节省时间和精力。
排列组合中的分组分配问题往往有着庞大的搜索空间,如果没有一个高效的解法,我们可能需要耗费大量的时间和资源来找到最优解。
而通过有效的解法,我们可以在较短的时间内找到满足要求的分组方案,提高工作效率。
有效解法可以帮助我们减少错误和避免漏解。
在解决排列组合中的分组分配问题时,如果没有一个清晰的解题思路和方法,容易导致错误的分组方案或者遗漏可能的解决方案。
而使用有效的解法,可以系统地进行搜索和分析,减少出错的可能性,提高解题的准确性和完整性。
找到排列组合中的分组分配问题的有效解法是非常重要的。
有效解法不仅可以节省时间和精力,提高工作效率,还可以减少错误和遗漏,保障解题的准确性和完整性。
排列组合中的分配分组问题
排列组合中的分配分组问题排列、组合以其独特的研究对象和研究方法,在高中数学教学中占有特殊的地位,是高考必考内容之一,它既是学习概率的预备知识,又是进一步学习数理统计、组合数学等高等数学的基础,因此排列与组合问题的应用题是高考的常见题型。
本文就笔者自己解决排列组合问题中的分配分组问题的一些浅见拙知与大家分享,不值一飧,还望批评与指正。
一、基本定义:1、 排列:从n 个不同的元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中取出m 个元素的一个排列。
2、 组合:从n 个不同的元素中取出)(n m m ≤个元素合成一组,叫做从n 个不同的元素中取出m 个元素的一个组合。
3、 排列数与组合数公式:)1)......(1(A +--=m n n n mn!)1().........1(m m n n n C A C m n m n m n+--== 二、解题思路总析:从排列与组合的定义来看,这两个数学名词的相同之处在于“选”—从n 个不同的元素中取出)(n m m ≤个元素;不同之处在于:排列有“序”——取出的m 各元素之间有顺序,组合无“序”——取出的m 各元素之间无顺序。
所以根据题目的意思分析元素之间是否有序就成了解决问题是用排列数公式还是用组合数公式的关键。
另外,在分配分组问题中,还存在分成的各组元素个数相等或不相等的问题,各组元素个数相等的分配分组称为“均匀”,各组元素个数全不相等的分配分组称为“不均匀”。
综合以上两点,笔者把排列组合中的分配分组问题统分为四类:1、 均匀有序:各组元素个数相等,各组之间有顺序;2、 均匀无序:各组元素个数相等,各组之间没有顺序;3、 不均匀无序:各组元素个数全不相等,各组之间没有顺序;4、 不均匀有序:各组元素个数全不相等,各组之间有顺序。
其中均匀有序又称“双肯定”分法,不均匀无序又称“双否定”,均匀无序和不均匀有序称为“单肯定”下面就以具体例题来说明上面四类问题的一般解法:例1:有6本不同的书,(1)甲、乙、丙3人每人2本,有多少种不同的分法?(2)分成3堆,每堆2本,有多少种不同的分法?(3)分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分法?(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少种不同的分法?解析:对于问题(1),首先从6本不同的书中选出2本来给甲,选出的2本书之间无顺序,为26C ;其次,从剩下的4本书中选出2本来给乙,为24C ;最后剩下的2本给丙,为22C ;整个解题过程应用的是分步计数原理,所以最终的分法数为90C *C *C N 2224261==;对于问题(2),与问题(1)的相同在于都是均匀分组,差别仅仅在于,一个是分给3人,一个是分成3堆,即就是分成的3组之间一个是有顺序的,一个是没有顺序的,所以问题(2)的解决可以在问题(1)解决的基础上对3组进行“消序”,即15A C *C *C N 332224262==; 对于问题(3),解决方法与问题(1)一样,用分步计数原理,先从6本不同的书中选出1本来,再从剩下的5本书中选出2本来,最后剩下的3本作为一堆,最终的分法数为60C *C *C N 3325163==;对于问题(4),分析题目,可见问题(4)与问题(3)的相同在于都是不均匀分组,差别在于问题(3)是分成3堆,即分成的3组无序,问题(4)是分给3人,即分成的3组有序,所以问题(4)的解决可以在问题(3)解决的基础上对3组进行“排序”,即603A *C *C *C N 333325164==。
专题课排列组合综合应用课件高二下学期数学人教A版选择性
类型二:多面手问题
例2 某外语组有9人,每人至少会英语和日语中的一门,其中7人会英
语,3人会日语,从中选出会英语和日语的各一人到边远地区支教,有
多少种不同的选法? 方法一 直接分类(从元素考虑)
由图可知既会英语又会日语的有
7+3-9=1人,记为甲,只会英语6人,只会日语2人。
Ⅰ类:甲去教英语,有 N1 C12 2种方法; Ⅱ类:甲去教日语,有 N2 C16 6 种方法; Ⅲ类:甲未被选中,有 N3 C16C12 12 种方法; 由分类加法计数原理得 N N1 N2 N3 20
专题课 排列组合综合应用
排列组合题 型
有条件的抽(选)取问题 多面手问题 分组分配问题
类型一:有限制条件的抽(选)取问题
例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各 有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (1)至少有一名队长当选; (2)至多有两名女生当选; (3)既要有队长,又要有女生当选.
类型一:有限制条件的抽(选)取问题
例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各 有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (2)至多有两名女生当选; 解 直接法(分类加法原理,从元素角度考虑)
Ⅰ类:0名女生当选,有 N1 C85 56 种方法; Ⅱ类:1名女生当选,有 N2 C15C84 350 种方法; Ⅲ类:2名女生当选,有 N3 C52C83 560 种方法; 由分类加法原理得 N N1 N2 N3 966
英语 日语 7人 3人
类型二:多面手问题
例2 某外语组有9人,每人至少会英语和日语中的一门,其中7人会英
语,3人会日语,从中选出会英语和日语的各一人到边远地区支教,有
排列组合综合(二)讲义-2021-2022学年高二下学期数学北师大版选修2-3
排列组合综合应用(二)知识要点常用方法:1.优先排序法--特殊位置或特殊元素2.捆绑法--哥俩好(先捆再排)3.插空法--离我远点(先排再插)4.排除法--正难则反5.隔板法--相同物品放在不同位置(或分给不同的人)精讲精练【例题1】A、B、C、D、E五种不同的商品要在货架上排成一排,其中A、B两种商品必须排在一起,而C、D两种商品不能排在一起,则不同的排法共有多少种?练习1:1、排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?2、7名同学排队照相。
(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【例题2】某博物馆要在10天内接待4所学校的学生参观,每天至多安排一所学校,其中一所人数较多的学校要连续参观2天,其余学校均只参观1天,则在这10天内不同的安排方法数是多少种?练习2:1、某学生制定了数学问题解决方案:星期一和星期日分别解决4个数学问题,且从星期二开始,每天所解决问题个数与前一天相比,要么“多一种”要么“持平”要么“少一种”。
在一周中每天所解决问题个数不同方案共有多少种?2、有10件不同电子产品,其中有2件产品运营不稳定。
技术人员对它们进行一一测试,直到2件不稳定产品所有找出后测试结束,则正好3次就结束测试办法种数是多少种?【例题3】如图,A、B、C、D为海上的四个小岛,要建三座桥,将这四个岛连接起来,则不同的建桥方案共有多少种?练习3:1、某都市街道如图,某人从A地前去B地,则路程最短走法有多少种?2、如图,用四种不同颜色给图中A,B,C,D,E,F六个点涂色,规定每个点涂一种颜色,且图中每条线段两个端点涂不同颜色,则不同涂色办法有多少种?【例题4】把10个相同的球放入3个不同的盒子里,若要求(1)每个盒子里至少有一个球,有多少种放法?(2)每个盒子里都至少有2个球,有多少种放法?(3)某些盒子允许空着,有多少种放法?练习4:1、学校筹划运用周五下午第一、二、三节课举办语文、数学、英语、理综4科专项讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同安排办法共有多少种?2、六名大四学生(其中4名男生,2名女生)被安排到A、B、C三所学校实习,每所学校2人,且2名女生不能到同一学校,也不能到C学校,男生甲不能到A学校,则不同安排办法为多少种?【例题5】(1)方程x+y+z=13有多少组正整数解?(2)方程x+y+z=13有多少组非负整数解?(3)方程x+y+z=13有多少组x,y,z均不小于2的正整数解?练习5:1、求方程X+Y+Z=10的正整数解的个数。
排列组合分配问题的解题思路
排列组合分配问题的解题思路可以分为以下几个步骤:
明确题目要求:首先,需要仔细阅读题目,理解题目的要求,明确问题的背景和条件。
判断问题类型:根据题目的描述和要求,判断问题属于排列问题还是组合问题。
排列问题考虑顺序,而组合问题不考虑顺序。
选择解题方法:针对不同的问题类型,选择不同的解题方法进行求解。
常见的解题方法有直接法、间接法、平均分组法、插空法、捆绑法、隔板法等。
应用公式计算:根据所选的解题方法,应用相应的公式进行计算。
对于排列问题,常用的公式有Pn=n(n-1)(n-2)...(n-m+1);对于组合问题,常用的公式有Cn=n(n-1)(n-2)...(n-m+1)/m(m-1)(m-2)...2*1。
检验结果:在得出结果后,需要将结果代回原题进行检验,确保结果的正确性。
在解决排列组合问题时,还需要注意以下几点:
优先考虑特殊元素和特殊要求,比如限制条件、相邻或不相邻等问题;
注意分类讨论,比如多元问题的分类法;
对于复杂的排列组合问题,可以尝试使用逐一实验法;
需要细心和耐心,避免出现计算错误或遗漏情况。
排列组合中的分组分配问题
排列组合中的分组分配问题分组分配问题是排列组合教学中的一个重点和难点.某些排列组合问题看似非分配问题,实际上可运用分配问题的方法来解决.一、提出分组与分配问题,澄清模糊概念n个不同元素按照某些条件分配给k个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况.分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列.二、基本的分组问题例1 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法1每组两本.2一组一本,一组二本,一组三本.3一组四本,另外两组各一本.分析:1分组与顺序无关,是组合问题.分组数是624222C C C=90种 ,这90种分组实际上重复了6次.我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:1,23,45,6与3,41,25,6,由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法.以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数33A,所以分法是22264233C C CA=15种.2先分组,方法是615233C C C,那么还要不要除以33A我们发现,由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有615233C C C=60种分法.3分组方法是642111C C C=30种 ,那么其中有没有重复的分法呢我们发现,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,不可能重复.所以实际分法是41162122C C CA=15种.通过以上三个小题的分析,我们可以得出分组问题的一般方法.结论1:一般地,n个不同的元素分成p组,各组内元素数目分别为m1,m2,…,mp,其中k组内元素数目相等,那么分组方法数是321112ppmmmmn n m n m m mkkC C C CA---⋯.三、基本的分配的问题 一定向分配问题例2 六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法 (1) 甲两本、乙两本、丙两本. (2) 甲一本、乙两本、丙三本. (3) 甲四本、乙一本、丙一本.分析:由于分配给三人,每人分几本是一定的,属分配问题中的定向分配问题,由分布计数原理不难解出:分别有222642C C C =90种,615233C C C =60种, 411621C C C =30种.二不定向分配问题例3六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法 (1) 每人两本.2 一人一本、一人两本、一人三本.3 一人四本、一人一本、一人一本.分析:此组题属于分配中的不定向分配问题,是该类题中比较困难的问题.由于分配给三人,同一本书给不同的人是不同的分法,所以是排列问题.实际上可看作“分为三组,再将这三组分给甲、乙、丙三人”,因此只要将分组方法数再乘以33A ,即22264233C C C A 33A =90种, 615233C C C 33A=360种 41162122C C C A 33A =90种.结论 2. 一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数.通过以上分析不难得出解不定向分配题的一般原则:先分组后排列. 例4 六本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种分法分析:六本书和甲、乙、丙三人都有“归宿”,即书要分完,人不能空手.因此,考虑先分组,后排列.先分组,六本书怎么分为三组呢有三类分法1每组两本2分别为一本、二本、三本3两组各一本,另一组四本.所以根据加法原理,分组法是22264233C C C A +615233C C C +41162122C C C A =90种.再考虑排列,即再乘以33A .所以一共有540种不同的分法.四、分配问题的变形问题例5 四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种 分析:恰有一个空盒,则另外三个盒子中小球数分别为1,1,2.实际上可转化为先将四个不同的小球分为三组,两组各1个,另一组2个,分组方法有11243222C C C A 种,然后将这三组即三个不同元素分配给四个小盒不同对象中的3个的排列问题,即共有11243222C C C A 34A =144种.例6有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法有多少种分析:先考虑分组,即10人中选4人分为三组,其中两组各一人,另一组二人,共有112109822C C C A 种分法.再考虑排列,甲任务需2人承担,因此2人的那个组只能承担甲任务,而一个人的两组既可承担乙任务又可承担丙任务,所以共有112109822C C C A 22A =2520种不同的选法.例7设集合A={1,2,3,4},B={6,7,8},A 为定义域,B 为值域,则从集合A 到集合B 的不同的函数有多少个分析:由于集合A 为定义域,B 为值域,即集合A 、B 中的每个元素都有“归宿”,而集合B 的每个元素接受集合A 中对应的元素的数目不限,所以此问题实际上还是分组后分配的问题.先考虑分组,集合A 中4个元素分为三组,各组的元素数目分别为1、1、2,则共有11243222C C C A 种分组方法.再考虑分配,即排列,再乘以33A,所以共有11243222C C C A 33A =36个不同的函数. 总之,掌握上述两个结论,就能顺利解决任何分配问题.而且,学会了分配问题,还能将一些其他的排列组合问题转化为分配问题来解决.练习:把编号为1,2,3,4,5的五个球完全放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球,则不同放法的总数是: A60B150C300D540。
排列组合问题之分组分配问题
排列组合问题之 分组分配问题(—)(五个方面)一、非均匀分组(分步组合法)“非均匀分组”是指将所有元素分成元素个数彼此不相等的组。
例1、7人参加义务劳动,按下列方法分组有多少种不同的分法① 分成3组,分别为1人、2人、4人;② 选出5个人分成2组,一组2人,另一组3人。
解:①先选出1人,有C ;种,再由剩下的6人选出2人,有C ;种,最后由剩下的4人为一 组,有C 4种。
由分步计数原理得分组方法共有 C 7C 6C 4 105 (种)。
②可选分同步。
先从7人中选出2人,有C ;种,再由剩下的5人中选出3人,有C 3 种,分组方法共有 C ^C l 210 (种)。
也可先选后分。
先选出5人,再分为两组,由分步 计数原理得分组方法共有 C l C ;C ; 210 (种)。
、均匀分组(去除重复法)“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。
㈠全部均匀分组(去除重复法)例2、7人参加义务劳动,选出 6个人,分成2组,每组都是3人,有多少种不同的分法 解:可选分同步。
先选3人为一组,有C ;种;再选3人为另一组,有C :种。
又有2组都㈡部分均匀分组(去除重复法)例3、10个不同零件分成 4堆,每堆分别有2、2、2、4个,有多少种不同的分法解:分成2、2、2、4个元素的4堆,分别有C 0、C ;、Cf 、C :种,又有3堆都是2个_3元素,每A 3种分法只能算一种,所以不同的分组方法共有 【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是 均匀的,都有A m 种顺序不同的分法只能算一种分法。
】三、编号分组 ㈠非均匀编号分组(分步先组合后排列法)例4、7人参加义务劳动,选出 2人一组、3人一组,轮流挖土、运土,有多少种分组方法 解:分组方是3人,每 A 种分法只能算一种,所以不同的分法共有 C y'C 70 (种)。
也可先选后分。
不同的分法共有C 6 CeC 70 (种)。
1.2.3排列组合综合应用问题
排列组合综合问题
例1 有12人,按照下列要求分配,求不同的分法种数. (1)分为两组,一组7人,一组5人; (2)分为甲、乙两组,甲组7人,乙组5人;
把12 人分成两组,一组7人,一组5人与把12人分 成甲、乙两组,甲组7人,乙组5人,实质上是一样 的,都必须分成两步: 第一步:从12 人中选出7人组成一组(或甲组) 有C127种方法; 第二步:剩余的5人组成一组(或乙组) 有C55种方法. 所以总的分配种数为C127.C55种。 所以(1)、(2)分配种数都为C127.C55
有条件限制的组合问题
例4 已知集合A={1,2,3,4,5,6,7,8,9}求含有5个元
素,且其中至少有两个是偶数的子集的个数. 法1:5个元素中至少有两个是偶数可分成三类: ①2个偶数,3个奇数;②3个偶数,2个奇数; ③4个偶数,1个奇数. 所以共有子集个数为 C42.C53+C43.C52+C44.C51=105(个) 法2:从反面考虑,全部子集个数为C95,而不 符合条件的有两类: ①5个都是奇数;②4 个奇数,1个偶数. 所以共有子集个数为C95-C55-C54.C41=105
有条件限制的排列问题
例35个不同的元素a,b,c,d, e每次取全排列. (1)a,e必须排在首位或末位,有多少种排法?
分两步完成,把a,e排在首末两端有A22种, 再把其余3个元素排在中间3个位置有A33种. 由乘法原理,共有A22. A33=12(种)排法. 点评:问题(1)是排列问题中某几个元素必须 “在”某些位置的问题,处理这类问题的原则 是:有条件限制的元素或位置优先考虑 .(优 限法)
排列组合综合问题
例2 求不同的排法种数. (3)4男4女排成一排,同性者相邻;
4男4女排成一列,同性者相邻,把4男、4女 捆绑成一个排列,然后同性者之间再全排列, 所以共有A22.A44.A44种——“捆绑法”
分配问题
《排列组合中的分配问题专题讲座》排列组合中的分配问题是一类基本问题,主要包括平均分配问题(分堆问题)、不平均分配问题等,是组合知识和排列知识的综合应用,解决问题的发方法比较独特,现举例说明问题的解法例1:6本不同的书平均分给甲、乙、丙三人,有多少种不同的分法?解析:分给甲、乙、丙的书各不相同,分步解决,得:222426C C C例2:6本不同的书分给甲3本、乙2本、丙1本,有多少种不同的分法? 解析:关键是理解如何完成一件事,分三个步骤就可以第一步给甲3本有36C 种方法 第二步给乙2本有23C 种方法 第三步给丙1本有11C 种方法 则有36C 23C 11C 种不同的给法例3:6本不同的书分给甲4本、乙1本、丙1本,有多少种不同的分法?解析:同第二个题则有46C 12C 11C 种方法例4:6本不同的书分给甲、乙、丙三人,其中一人1本,一人2本,一人3本,有多少种不同的分法?解析:先分成3组,再将这三组分给三个人36C 23C 11C 33A ,在分组时要注意各组的本数不同.例5:6本不同的书平均分成3份,有多少种不同的分法?解析:这是分份或分堆的的问题,可以由第一个题来解决,方法如下: 把6本不同的书平均分给甲、乙、丙三人可以分两步去考虑, (1)先把6本书平均分成3份,设有x 种方法(2)把这三份分给三个人有33P 种方法则把6本不同的书平均分给甲、乙、丙三人有33xP 种方法 由第一题的结果可得:33xA =222426C C C ,解得:33222426A C C C x 另解:6本不同的书可以用A 、B 、C 、D 、E 、F 来表示,分成三份,若写成222426C C C ,则出现了重复:举例如下,不妨分成的三组为 AB ,CD ,EF ,则下列分组方法:AB ,EF ,CD ;EF 、AB 、CD ; EF 、CD 、AB ;CD 、AB 、EF ;CD 、EF 、AB 也在222426C C C 中,但和AB ,CD ,EF 是一样的分组方法,即有重复出现,一种分法重复了33A 回,只要其中的一种就可以,则结果为33222426A C C C x = 例6:6本不同的书分成3份,一份3本、一份2本、一份1本,有多少种不同分法?解析:虽然此题也是分份问题,但由于每份的数量不同,则问题的实质同第二个题一样则结果为36C 23C 11C例7:6本不同的书分成3份,一份4本、一份1本、一份1本,有多少种不同分法?解析:此题所分的三份中由于有两份的数量相同,则可以利用第三个试题来解决,方法同第四个试题,则结果为22111246A C C C x = 推广到一般结论:分组时先看成指定人去分,将结果除以x x A ,有几份数量相同x 就是几。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜春中学数学学科2-3册笫一章排列组合的综合应用2导学案 编号:58编写:丁红平 审核:高二数学理科备课组学习目标:1.进一步理解和应用分步计数原理和分类计数原理;2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力 ;3.学会应用数学思想和方法解决排列组合问题。
.学习重点:排列组合在分配问题中的应用 学习难点:排列组合在分配问题中的应用 学习过程:一、(约3分钟)引例:1.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .2.全员分配问题分组法:(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种 答案:B .3.名额分配问题隔板法:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.4.限制条件的分配问题分类法:某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.5、平均分堆问题---除序法:12本不同的书,平均分为3堆,不同的分法种数为多少种。
解:先从12本书中选出4本到第一堆,再从剩下的8本中选出4本到第二堆,第三步从剩下的4本中选4本到第三堆,但题中是不要堆序,所以不同的分法共有444128433C C C A 种。
二、(约10分钟)例1、有12 人。
按照下列要求分配,求不同的分法种数。
①分为三组,一组5人,一组4人,一组3人;②分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人;③分为甲、乙、丙三组,一组5人,一组4人,一组3人; ④分为甲、乙、丙三组,每组4人; ⑤分为三组,每组4人。
⑥分成三组,其中一组2人,另外两组都是 5人。
①3347512CC C ②3347512CC C ③333347512A C C C ④4448412CC C ⑤334448412A C C C ⑥2255510212A C C C 小结:例1与练习1说明了非平均分配、平均分配以及部分平均分配问题。
例2、从1,2,3,…,2000这2000个自然数中,取出10个互不相邻的自然数,有多少种方法? 解:将问题转化成把10名女学生不相邻地插入站成一列横列的1990名男生之间(包括首尾两侧),有多少种方法?因为任意相邻2名男学生之间最多站1名女学生,队伍中的男学生首尾两侧最多也可各站1名女学生.于是,这就是1991个位置中任选10个位置的组合问题,故共有种方法. 利用“插孔”法,也可以减少元素,从而简化问题. 例3、(1)7个相同的小球,任意放入4个不同的盒子中,共有多少种不同的方法? 解:相当于将7个小球用3块隔板分成4份310C (挡板占位法)(2)7个相同的小球,任意放入4个不同的盒子中,每个盒子至少有1个小球的不同放法有多少种?解:将7个小球用3块隔板分成4份但盒子又不能空, 36C (挡板不占位)例4、 有一群孩子外出旅行,回来时准备包车回家,包车费20元,他们把每个人的钱凑合起来,其中有23人,每人有0.5元硬币一枚,另外10人,每人有1元硬币一枚,问有多不同的凑合方法?解:把所有人的硬币都凑合起来共有23×0.5+10×1=21.5元,所以多1.5元,这样问题可转化为取多余钱的方法数即取3个0.5的硬币或取1个0.5硬币和1个1元硬币的方法数,则有 110123323C C C ⋅+ 种取法。
小结:对于某些问题如果直接去考虑,就会比较复杂,若能转化为与其等价的问题,就变得简单,容易解决,这种方法叫转化法。
(约5分钟)各学习小组将上面自主探索的结论、解题方法、知识技巧进行讨论,交流,议疑解惑。
(约8分钟)由各学习小组派出代表利用多媒体或演板或口头叙述等形式展示个人或小组合作探究的结论、解题方法、知识技巧。
(即学习成果)(约5分钟) 由教师归纳总结点评约8分钟)1. 36名护士被分配到3所学校为学生体检,每校分配1名医生和2名护土,不同的分配方法共有 ( ).A .90种B .180种C .270种D .540种 分析:(一)先分组、后分配:第一步:将3名医生分成3组,每组一人只有一种分法.第二步:将6名护士分成3组,每组2人有:()/种分法.第三步:将医生3组及护士3组进行搭配,使每组有一名医生、2名护士,有种搭配方法.第四步:将所得的3组分配到3所不同的学校有种分配法.故共有不同的分配方法:·=540(种).故选(D).分析:(二)第一步:先将6名护士分配到3所不同学校,每所学校2名,则有(种)分法.第二步:再将3名医生分配到3所不同的学校,每所学校1人,有种分法.故共有=540(种)故选(D).说明:处理此类问题应注意准确分步.2.4个不同小球放入编号为1、2、3、4的四个盒子,则恰有一个空盒的放法有_________种.简析:这是一个排列与组合的混合问题.因恰有一个空盒,所以必有一个盒子要放2个球,故可分两步进行:第一步选,从4个球中任选2个球,有种选法。
从4个盒子中选出3个,有种选法;第二步排列,把选出的2个球视为一个元素,与其余的2个球共3个元素对选出的3个盒子作全排列,有种排法.所以满足条件的放法共有 =144种.3.学生会的12名同学分配到三个不同的年级对同学们进行仪容仪表检查,若每个年级4人,则不同的分配方案有( ) A 、4441284C C C种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:先从12人中选出4人到第一个年级,再从剩下的8人中选4人到第二个年级,第三步从剩下的4人中选4人到第三个年级,不同的选法共有4441284C C C 种,选A . 4.5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种 答案:B .5. 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中 有且只有两个的编号与座位号一致的坐法是( ) A 10种 B 20种 C 30种 D 60种 答案:B6.五个人排成一列,重新站队时,各人都不站在原来的位置上,那么不同的站队方式共有( ) (A )60种 (B )44种 (C )36种 (D )24种 答案:B7.若7个座位3个孩子去坐,要求每个孩子的旁边都有空位置,有多少种不同的排法? 搬凳子插入:33A 8.分配问题(1)6本不同的书分给5名同学每人一本,有多少种不同分法?56A (2)5本相同的书分给6名同学每人至多一本,有多少种不同的分法?56C (3)6本不同的书全部分给5名同学每人至少一本,有多少种不同的分法?5526A C(4)6本不同的书分给3名同学,甲1本、乙2 本、丙3本,有多少种不同的分法?332516C C C(5)6本不同的书分给甲、乙、丙3名同学每人两本,有多少种不同分法?222426C C C(6)8本不同的书分给3名同学,其中1名同学2本、另两人3本,有多少种不同分法?3322333628A A C C C ⋅⋅ (7)7名志愿者中安排6人在周六、周日两天参加社会公益活动,若每天安排3人,者有多少种不同的安排方法?3437C C或22223437A A C C ⋅ (8)将5名实习教师分配到高一年级的3个班实习,每个班至少1名,最多2名,则不同的分配方案有多少?33222325A A C C ⋅ 七.课后练习1.把12支不同的钢笔分给3人,一人得6支,二人各得3,有几种分法?解:先分堆:有2236612A C C 种.再将这三堆分配给三人,有33A 种。
共有223336612A A C C 种. 本题亦可用“选位,选项法”,即:=3.2. 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种数有多少种?【解析】: 解法1、先将3个人(各带一把椅子)进行全排列有33A ,○*○*○*○,在四个空中分别放一把椅子,还剩一把椅子再去插空有A 14种,所以每个人左右两边都空位的排法有3314A A =24种. 解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个空,*○*○*○*○*再让3个人每人带一把椅子去插空,于是有A 34=24种.3. 停车场划出一排12个停车位置,今有8辆车需要停放.要求空车位置连在一起,不同的停车方法有几种?【解析】:先排好8辆车有88A 种方法,要求空车位置连在一起,则在每2辆之间及其两端的9个空档中任选一个,将空车位置插入有C 19种方法,所以共有C 19A 88种方法.注:题中*表示元素,○表示空.4.把5个不同的小球全部放入三个不同的盒子中,使每个盒子都不空的方法数是多少?33221112353322112325A A C C C A A C C C + 理论:平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要除以 mm A ,即m!,其中m 表示组数。