等比数列试题及答案百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.正项等比数列{}n a 满足2
2
37610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .8 2.若1,a ,4成等比数列,则a =( )
A .1
B .2±
C .2
D .2-
3.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则
91078
a a a a +=+( ) A
1
B
1
C
.3-
D
.3+4.已知等比数列{}n a 中,1354a a a ⋅⋅=
,公比q =,则456a a a ⋅⋅=( ) A .32
B .16
C .16-
D .32-
5.已知数列{}n a 满足:11a =,*1()2
n
n n a a n N a +=∈+.则 10a =( ) A .
11021
B .
11022 C .1
1023
D .1
1024
6.设n S 为等比数列{}n a 的前n 项和,若11
0,,22
n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4
⎛⎤ ⎥⎝
⎦
B .20,3
⎛⎤ ⎥⎝
⎦
C .30,4⎛⎫ ⎪⎝⎭
D .20,3⎛⎫ ⎪⎝⎭
7.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-
B .3-
C .3
D .8
8.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .681a a >
B .01q <<
C .n S 的最大值为7S
D .n T 的最大值为7T
9.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=
( ) A .4
B .5
C .8
D .15
10.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9 B .10
C .11
D .1211.题目文件丢失!
12.已知单调递增数列{}n a 的前n 项和n S 满足()(
)*
21n n n S a a n =+∈N
,且0n
S
>,记
数列{}
2n
n a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )
A .7
B .8
C .10
D .11
13.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6
D .3
14.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31
B .32
C .63
D .64
15.设数列{}n a ,下列判断一定正确的是( )
A .若对任意正整数n ,都有24n
n a =成立,则{}n a 为等比数列
B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列
C .若对任意正整数m ,n ,都有2m n
m n a a +⋅=成立,则{}n a 为等比数列
D .若对任意正整数n ,都有312
11
n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列
16.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1
B .2
C .4
D .8
17.正项等比数列{}n a 的公比是1
3
,且241a a =,则其前3项的和3S =( ) A .14
B .13
C .12
D .11
18.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥
B .若13a a =,则12a a =
C .222
1322a a a +≥
D .若31a a >,则42a a >
19.已知正项等比数列{}n a 满足11
2
a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( ) A .
312
或112
B .
31
2 C .15
D .6
20.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2-
B .2-或1
C .1
D .2
二、多选题
21.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列
22.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )
A .101a <<
B
.11b <<
C .22n n S T <
D .22n n S T ≥
23.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有
()()()f x y f x f y +=,若112
a =
,()()*
n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为
12
C .数列{}n S 递增,最小值为
12
D .数列{}n S 递减,最大值为1
24.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *
==∈,数列12(1)n n n n a +⎧
⎫
+⎨
⎬+⎩
⎭的
前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a =
B .2n
n S =
C .38
n T ≥
D .1
2
n T <
25.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列
D .3a ,6a ,9a 成等比数列
26.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .12
33
BE BA BC =
+ C .数列{a n }为等比数列
D .14n
n n a a +-=
27.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
28.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚
痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路
B .此人第一天走的路程比后五天走的路程多6里
C .此人第二天走的路程比全程的
1
4
还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍
29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件
1201920201,1a a a >>,
201920201
01
a a -<-,下列结论正确的是( )
A .S 2019<S 2020
B .2019202010a a -<
C .T 2020是数列{}n T 中的最大值
D .数列{}n T 无最大值
30.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )
A .1
12n n n S S ++-=
B .12n n
a
C .21n
n S =- D .1
21n n S -=-
31.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{
}21
n
a n +的前n 项和为,n S 则( ) A .12a =
B .2
21
n a n =
- C .21
n n
S n =
+ D .1n n S na +=
32.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有
n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )
A .等差数列不可能是收敛数列
B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-
C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫
=
⎪ ⎪⎝⎭⎝⎭
,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫
⎨⎬⎩⎭
一定是收敛数
列
33.已知数列{}n a 满足11a =,()*123n
n n
a a n N a +=
∈+,则下列结论正确的有( ) A .13n a ⎧⎫
+⎨⎬⎩⎭
为等比数列 B .{}n a 的通项公式为1123
n n a +=-
C .{}n a 为递增数列
D .1n a ⎧⎫⎨
⎬⎩⎭
的前n 项和2
234n n T n +=-- 34.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,991001
01
a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的
D .使1n T >成立的最大自然数n 等于198
35.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( ) A .数列n S n ⎧⎫
⎨
⎬⎩⎭
的前10项和为100 B .若1,a 3,a m a 成等比数列,则21m = C .若
11
16
25n
i i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则
116m n
+的最小值为25
12
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.C 【分析】
利用等比数列的性质运算求解即可. 【详解】
根据题意,等比数列{}n a 满足2
2
37610216a a a a a ++=, 则有22
2
288216a a a a ++=,即()2
2816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 2.B 【分析】
根据等比中项性质可得24a =,直接求解即可.
【详解】
由等比中项性质可得:
2144a =⨯=,
所以2a =±, 故选:B 3.D 【分析】 根据1a ,
312a ,22a 成等差数列可得3121
222
a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将
910
78
a a a a ++化简即可求解.
【详解】
因为{}n a 是正项等比数列且1a ,31
2
a ,22a 成等差数列, 所以
3121
222
a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,
解得:1q =+
1q =
(
22
2
2910787878
13a a a q a q q a a a a ++====+++,
故选:D 4.A 【分析】
由等比数列的通项公式可计算得出()6
456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.
【详解】
由6
3
2
6
456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.
故选:A. 5.C 【分析】
根据数列的递推关系,利用取倒数法进行转化得1121n n
a a +=+ ,构造11n a ⎧⎫
+⎨⎬⎩⎭
为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=
+,所以两边取倒数得
12121n n n n a a a a ++==+,则11
1121n n a a +⎛⎫+=+ ⎪⎝⎭
, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则111
11122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭
,
所以121n n a =-,故10
1011
211023
a ==-. 故选:C 【点睛】
方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中
1
q
x p =
-)来进行求解. 6.A 【分析】
设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1
102n q -⨯>,
1
(1)
221n q q
-<-,即可求出参数q 的取值范围;
【详解】
解:设等比数列{}n a 的公比为q ,依题意可得1q ≠. 11
0,2
n a a >=
,2n S <, ∴1
102n q -⨯>,1
(1)221n q q
-<-, 10q ∴>>. 144q ∴-,解得3
4
q
. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤
⎥⎝⎦
.
故选:A . 【点睛】
等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 7.A 【分析】
根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】
设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2
326a a a =,
即2
(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,
故{}n a 前6项的和为616(61)6(61)
661(2)2422
S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 8.B 【分析】
根据11a >,66771
1,01
a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】
若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与671
01
a a -<-矛盾, 所以01q <<,故B 正确;
因为
671
01
a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以1
11n n a q a S q q
=
---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】
关键点点睛:本题的关键是通过穷举法确定01q <<. 9.C 【分析】
由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2
7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 10.C 【分析】
根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项
公式可得1
21n n a -=+,即求.
【详解】
因为121n n a a +=-,所以()1121n n a a +-=-,即
11
21
n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.
则112n n a --=,即1
21n n a -=+.
因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C
11.无
12.B 【分析】
由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1
122n n T n +=-⋅+,即可得解.
【详解】
由题意,()()*
21n n n S a a n N
=+∈,
当2n ≥时,()11121n n n S a a ---=+,
所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,
因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,
所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,
()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,
所以()()2
3
4
1
11212222222
212212
n n
n n n n T n n n +++--=++++⋅⋅⋅+-⋅=
-⋅=-⋅--,
所以()1
12
2n n T n +=-⋅+,
所以876221538T =⨯+=,9
87223586T =⨯+=,
所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】
关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 13.D 【分析】
由k a 是1a 与2k a 的等比中项及14a d =建立方程可解得k . 【详解】
k a 是1a 与2k a 的等比中项
212k k a a a ∴=,()()2
111121a k d a a k d ⎡⎤∴+-=+-⎣⎦⎡⎤⎣⎦
()()2
23423k d d k d ∴+=⨯+,3k ∴=.
故选:D 【点睛】
本题考查等差数列与等比数列的基础知识,属于基础题. 14.C 【分析】
根据等比数列前n 项和的性质列方程,解方程求得6S . 【详解】
因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62
153315-=-S ,解得663S =. 故选:C 15.C 【分析】
根据等比数列的定义和判定方法逐一判断. 【详解】
对于A ,若2
4n
n
a =,则2n
n a =±,+1
+12n n a =±,则1
2n n
a a +=±,即后一项与前一项的比不一定是常数,故A 错误;
对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2
m n
m n a a +⋅=可得0n a ≠,则+1
+12
m n m n a a +⋅=,所以1+1
222
n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;
对于D ,由312
11
n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满
足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】
方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若
()1
0,0n n n
a q q a a +=≠≠,则数列{}n a 为等比数列;
(2)等比中项法:对于数列{}n a ,若()2
210n n n n a a a a ++=≠,则数列{}n a 为等比数列;
(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列;
(4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 16.C 【分析】
根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】
因为数列{}n a 是等比数列,由17138a a a =,得3
78a =,
所以72a =,因此2
31174a a a ==.
故选:C. 17.B 【分析】
根据等比中项的性质求出3a ,从而求出1a ,最后根据公式求出3S ; 【详解】
解:因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以2
31a =. 所以31a =,2
11a q ∴=,因为1
3
q =
,所以19a =. 因此()3131131a q S q
-==-.
故选:B 18.C 【分析】
取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】
解:设等比数列的公比为q ,
对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;
对于B 选项,若13a a =,则2
11a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得222
1313222a a a a a +≥⋅=,故正确;
对于D 选项,若31a a >,则()
2110a q ->,所以()
1422
1a a a q q -=-,其正负由q 的符
号确定,故D 不确定. 故选:C. 19.B 【分析】
首先利用等比数列的性质求3a 和公比q ,再根据公式求5S . 【详解】
正项等比数列{}n a 中,
2432a a a =+∴,
2332a a =+∴,
解得32a =或31a =-(舍去) 又11
2
a =
, 23
1
4a q a =
=, 解得2q
,
5
151
(132)
(1)312112
a q S q --∴===--,
故选:B 20.A 【分析】
由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,
所以()2
13
1416
a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A .
二、多选题
21.BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 22.ABC 【分析】
利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】
因为数列{}n a 为递增数列, 所以123a a a <<,
所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,
所以2
1122b b b <=
,即1b <
又2
2234b b b <=,即21
2
2b b =
<, 所以11b >
,即11b <<,故B 正确;
{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++
= 22(121)
2[13(21)]22
n n n n +-++⋅⋅⋅+-=
=,
因为12n n n b b +⋅=,则1
122n n n b b +++⋅=,所以22n n b b +=,
则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+
=1101101122(222)(222)()(21)n n n
b b b b --++⋅⋅⋅++++⋅⋅⋅+=+-
1)1)n n
>-=-,
当n =1
时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时
假设当n=k
时,21)2k k ->
21)k k ->, 则当n=k +1
1121)21)21)2k k k k k ++-=
+-=->
2221(1)k k k >++=+
所以对于任意*n N ∈
,都有21)2k k ->,即22n n T S >,故C 正确
【点睛】
本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 23.AC 【分析】
计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =
,所以1(1)2
f =, 所以2
21
(2)(1)4
a f f ===
, 31
(3)(1)(2)8
a f f f ===,
……
所以1
()2
n n a n N +=∈,
所以11(1)
122111212
n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112
S a ==, 故选:AC 【点睛】
关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列
{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档
题 24.ACD 【分析】
在1+14,()n n a S a n N *
==∈中,令1n =,则A 易判断;由3
2122S a a =+=,B 易判断;
令12(1)n n n b n n a ++=
+,13
8
b =,
2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++=
==-++⋅+⋅,裂项求和3182
n
T ≤<,则CD 可判断.
解:由1+14,()n n a S a n N *
==∈,所以2114a S a ===,故A 正确;
32212822S a a =+==≠,故B 错误;
+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,
1
2n n
a a +=, 所以2n ≥时,2422n n
n a -=⋅=,
令12(1)n n n b n n a ++=
+,12123
(11)8
b a +=
=+, 2n ≥时,()()11
12211
(1)12212n n n n n n n b n n a n n n n +++++=
==-++⋅+⋅,
113
8
T b ==,2n ≥时,
()()2334
113111111111
8223232422122122
n n n n T n n n ++=+-+-+
+
-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,31
82
n T ≤<,故CD 正确;
故选:ACD. 【点睛】
方法点睛:已知n a 与n S 之间的关系,一般用()11,12n n
n a n a S S n -=⎧
=⎨-≥⎩递推数列的通项,注
意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和. 25.AD 【分析】
根据等比数列的定义判断. 【详解】
设{}n a 的公比是q ,则1
1n n a a q -=,
A .2
3513a a q a a ==,1a ,3a ,5a 成等比数列,正确; B ,32
a q a =,36
3a q a =,在1q ≠时,两者不相等,错误; C .24
2a q a =,484
a q a =,在21q ≠时,两者不相等,错误; D .
36936
a a
q a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD .
结论点睛:本题考查等比数列的通项公式.
数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,
a a a 仍是等比数列,
实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,
n k k k k a a a a 仍是等比
数列. 26.BD 【分析】 证明12
33
BE BA BC =
+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}
是以4为首项,4为公比的等比数列,所以14n
n n a a +-=,所以选项D 正确,易得
321a =,选项C 不正确.
【详解】
因为2AE EC =,所以2
3
AE AC =, 所以2
()3
AB BE AB BC +=+, 所以12
33
BE BA BC =
+,所以选项B 正确;
设BD tBE =(0t >),
则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以
()()1111
23n n n n BE a a BA a a BC t t
-+=
-+-, 所以
()11123n n a a t --=,()11233
n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,
显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,
11
4n n
n n a a a a +--=-,
所以数列{1n n a a --}是以4为首项,4为公比的等比数列,
所以14n
n n a a +-=,所以选项D 正确,
易得321a =,显然选项C 不正确. 故选:BD 【点睛】
本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 27.AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意. ③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1
*
1n n a a q n N -=∈.
28.BCD 【分析】
设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为1
2
q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】
解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为1
2
q =
的等比数列.
所以6
6
1161[1()](1)2=3781112
a a q S q --==--,解得1
192a =. 选项A:5
561119262a a q ⎛⎫==⨯= ⎪⎝⎭
,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962
a a q ==⨯
=,而61
94.54S =,9694.5 1.5-=,故C 正确.
选项D:2
123111
(1)192(1)33624
a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD 【点睛】
本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 29.AB 【分析】
由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定
20191a >,202001a <<,从可判断各选项.
【详解】
当0q <时,2
2019202020190a a a q =<,不成立;
当1q ≥时,201920201,1a a >>,
201920201
01
a a -<-不成立;
故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;
2201920212020110a a a -=-<,故B 正确;
因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】
本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 30.BC 【分析】
先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】
由23464a a a =得33
34a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由
2410a a +=,得4
410q q
+=,即22520q q -+=,解得2q
或1
2q =
.又因为数列{}n a 单调递增,所以2q
,所以112810a a +=,解得11a =.所以12n n
a ,
()
1122112
n n
n S ⨯-=
=--,所以()1
12
1212n n n n n S S ++-=---=.
故选:BC 【点睛】
本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.
31.ABD 【分析】
由已知关系式可求1a 、n a ,进而求得{}21
n
a n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】
由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=, 则当2n ≥时,1(21)2n n n T T n a --=-=,即2
21n a n =
-,而122211
a =
=⨯-也成立, ∴221n a n =-,*n N ∈,故数列{}21
n a n +通项公式为211(21)(21)2121n n n n =-+--+,
∴111111111121 (133557232121212121)
n n
S n n n n n n =-
+-+-++-+-=-=---+++,即有1n n S na +=, 故选:ABD 【点睛】
关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21
n
a n +的通项公式,利用裂项法求前n 项和n S . 32.BCD 【分析】
根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D. 【详解】
当0n S >时,取2111222
222n d d d
d d d S n a n n n a n a ⎛⎫⎛⎫=
+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭,
为使得1n S r >,所以只需要1122d d n a r
+->1112222
d a ra dr r
n N d dr -+
-+⇒>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错; 对于B ,1
1n n x x q
-=,若1q >,则对任意正数r ,
当11log 1q r n x ⎛⎫
+>+ ⎪ ⎪⎝⎭
时, 1n x r >+,所以不存在正整数N 使得定义式成立,
若1q =,显然符合;若1q =-为摆动数列()1
11n n x x -=-,
只有1x ±两个值,不会收敛于一个值,所以舍去;
若()1,1q ∈-,取0a =,1log 11q r N x ⎡⎤=++⎢⎥⎣⎦
,
当n N >时,1
11
1
0n n r
x x q x r x --=<=,故B 正确; 对于C ,()1
sin cos sin 0222
n x n n n πππ⎛⎫⎛⎫===
⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫
=
+- ⎪⎝
⎭, 当0d >时,n S 单调递增并且可以取到比
1
r
更大的正数,
当n N
>=时,110n n r S S -=<,同理0d <,所以D 正确. 故选:BCD 【点睛】
关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列
的通项公式求解,属于中档题. 33.ABD 【分析】 由()*123n
n n
a a n N a +=
∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】 因为
112323n n
n n a a a a ++==+,所以11132(3)n n a a ++=+,又11
340a +=≠,
所以13n a ⎧⎫+⎨⎬⎩⎭
是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确.
由{}n a 的通项公式为11
23n n a +=-知,{}n a 为递减数列,选项C 不正确. 因为1231n n a +=-,所以 1n a ⎧⎫⎨⎬⎩⎭
的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-
22(12)2312
234n n n n +-⨯-=⨯-=--.选项D 正确, 故选:ABD
【点睛】
本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题.
34.ABD
【分析】
由已知9910010a a ->,得0q >,再由99100101
a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·
T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.
【详解】
对于A ,9910010a a ->,21971·1a q ∴>,()2
981··1a q q ∴>. 11a >,0q ∴>. 又99100101
a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;
对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?
1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·
T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·
····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.
∴不正确的是C .
故选:ABD .
【点睛】
本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.
35.AB
【分析】
由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭
为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为
11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭,通过裂项求和可求得11
1n i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】
由已知可得:43n a n =-,22n S n n =-,
=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002
+.所以A 正确; 1,a 3,a m a 成等比数列,则231=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确; 因为
11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭所以11
11111116=1=455494132451n i i i n n n a a n =+⎛⎫-+-++-> ⎪++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以
()()1161116116125=116172412121212n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45n m =不成立,故选项D 错误.
故选:AB.
【点睛】
本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般.。