竖曲线表
excel竖曲线高程计算表 - 副本
第一竖曲线 K2+006.000 30.000 2.1724 -1.2838 600 K1+995.632 K2+016.368 0.0896 10.368
第二竖曲线 变坡点桩号 变坡点高程 坡度(i1) 坡度(i2) 曲线半径(R) 竖曲线起点桩号 竖曲线终点桩号 外距 (E) 切线长(T) K3+332.500 12.971 -1.2838 30.3399 333 K3+279.847 K3+385.153 4.1627 52.653
第三竖曲线 变坡点桩号 变坡点高程 坡度(i1) 坡度(i2) 曲线半径(R) 竖曲线起点桩号 竖曲线终点桩号 外距 (E) 切线长(T) K4+562.000 386.000 30.3399 -40.0216 10000 K1+043.925 K8+080.075 618.8426 3518.075
第四竖曲线 变坡点桩号 变坡点高程 坡度(i1) 坡度(i2) 曲线半径(R) 竖曲线起点桩号 竖曲线终点桩号 外距 (E) 切线长(T) K10+000.000 8.116 -40.0216 0.0000 0 K4+629.996 K5+506.200 #DIV/0! 0.000
竖曲线参数表
编号 1 2 3 4 5 交点桩号
K1+002 K2+006 K3+333 K4+562.000 K5+506.200
交点高程 8.189 30 12.971 386 8.116
曲线曲线 变坡点桩号 变坡点高程 坡度(i1) 坡度(i2) 曲线半径(R) 竖曲线起点桩号 竖曲线终点桩号 外距 (E) 切线长(T)
纵断面设计竖曲线
0.90
切线高程 HT = H1 + i1( Lcz - BPD) = 427.68 + 0.05×(5000.00 - 5030.00)
= 426.18m 设计高程 HS = HT - y1 = 426.18 - 0.90=425.18m (凸竖曲线应减去改正值)
K5+100.00:位于下半支
①按竖曲线终点分界计算:
横距x2= Lcz – QD = 5100.00 – 4940.00=160m
竖距
y2
x22 2R
1602 6.40 2 2000
切线高程 HT = H1 + i1( Lcz - BPD)
= 427.68 + 0.05×(5100.00 - 5030.00)
= 431.18m 设计高程 HS = HT – y2 = 431.18 – 6.40 = 424.78m
设3、计。坡长限制
大于i1为陡坡,汽车减速行驶,初速为V1,终速不低于V2,大于i2 的纵坡要限制其长度。 (1)最小坡长的限制
小坡长限制主要是指从汽车行驶平顺陛、路容美观、相邻竖曲线 设置、纵面视距等考虑.通常以计算行车速度9~15s的行程作为规 定值。《标准》规定值见表
(2)最大坡长限制 当汽车在坡道上行驶,车速下降到最低容许速度时所行驶的距离
路线纵断面图构成:
地面线:根据中桩点的高程绘的一条折线; 设计线:路线上各点路基设计高程的连线。 变坡导线:变坡点间的连线
一、纵断面设计的一般要求
1、满足设计标准 2、尽量避免使用极限值 3、纵断面和地形协调 4、填挖平衡 5、满足最小填土高度和排水要求 6、桥头和交叉口处应该平缓 7、考虑通道和农田的要求
K5+100.00:位于下半支
竖曲线
竖曲线是在变坡点处,为了行车平顺的需要而设置的一段曲线。
竖曲线的形状,通常采用圆曲线或二次抛物线两种。
在设计和计算上抛物线比圆曲线更为方便,故一般采用二次抛物线。
在纵坡设计时,由于纵断面上只反映水平距离和竖直高度,因此竖曲线的切线长与弧长是其在水平面上的投影,切线支距是竖直的高程差,相邻两条纵坡线相交角用坡度差表示。
一、竖曲线要素计算如图3-3所示,设变坡处相邻两纵坡度分别为i1和i2,坡度差以ω表示,则坡度差ω为i1和i2的代数差,即ω= i1-i2:当ω>0时,则为凸形竖曲线;当ω<0时,则为凹形竖曲线。
图3-3竖曲线示意图1、竖曲线的基本方程二次抛物线作为竖曲线的基本形式是我国目前常用的一种形式。
如图3-4所示,用二次抛物线作为竖曲线的基本方程:3-4 竖曲线要素示意图竖曲线上任意一点的斜率为:当x=0时:k= i1,则b= i1;当x=L,r=R时:,则:因此,竖曲线的基本方程式为:或 (3-19)2、竖曲线的要素计算曲线长:(3-20)切线长:(3-21)外距:(3-22)曲线上任意一点的竖距(改正值):(3-23)二、竖曲线设计标准竖曲线的设计标准包括竖曲线的最小半径和最小长度。
1、竖曲线设计的限制因素(1)缓和冲击汽车在竖曲线上行驶时会产生径向离心力,在凸形竖曲线上行驶会减重,在凹形竖曲线上行驶会增重,如果这种离心力达到某种程度时,乘客就会有不舒适的感觉,同时对汽车的悬挂系统也有不利影响,故应对径向离心力加速度加以控制。
根据试验得知,离心加速度a限制在0.5~0.7m/s2比较合适。
汽车在竖曲线上行驶时其离心加速度为:(3-24)《标准》中确定竖曲线半径时取a=0.278 m/s2。
或(3-25)(2)行程时间不宜过短汽车从直坡段驶入竖曲线时,如果其竖曲线长度过短,汽车倏忽而过,冲击力大,旅客会感到不舒适,太短的竖曲线长度从视觉上也会感到线形突然转折。
因此,应限制汽车在竖曲线上的行程时间,一般不宜小于3s。
线路竖曲线测量
T i1
yE
i2
D
A
B
x
F
R α 2 O
第五部分
竖曲线的标高改正值计算公式
竖曲线的标高改正值计算公式
如图所示:
由于α很小 可认为Y方向与半径方向一致 可认为它是切线上与曲线上的高程差。
则:(R+y)2=R2+x2
故: 2Ry=x2-y2
又y2与x2 相比,其值甚微,可略去不计。故有:
Cα
T i1
Cα
T i1
yE
i2
D
A
B
x
F
R α 2 O
第六部分
竖曲线测设计算案例
竖曲线测设计算案例
例:设i1= -1.114%,i2= +0.154%,为凹曲线,变坡点的桩号为
K1+670,高程为48.60,欲设置R=5000m的竖曲线,
求:各测设元素、起点、终点的桩号和高程、曲线上每隔10间距
里程桩的标高改正数和设计高程。
按上列公式求得:
T
1 2
R
i1
i2
1 2
5000
1.114%
0.154%
31.7m
L R i1 i2 5000 1.114% 0.154% 63.4m
E T 2 31.70 2 0.10m 2R 2 5000
竖曲线测设计算案例
然后根据R=5000m和相应的桩距Xi,即可求得竖曲线上 各桩的标高改正数Yi,计算结果列于下表:
yE
i2
D
A
B
x
F
R α 2 O
竖曲线的标高改正值计算公式
当中桩位于竖曲线范围内,应对其坡道高程进行 修正。竖曲线的标高改正值计算公式为:
竖曲线的计算方法
竖曲线铁路线路的纵断面最理想的当然是平道,然而事实上是不可能的,为了适应地形的起伏,以减少工程量,纵断面必须用各种不同的坡面连接而成。
两相邻坡段的连续点谓之变坡点。
相邻坡段的坡度差是两相邻坡段的坡度代数差。
当相邻坡段的坡度差超过允许值时,为了保证行车平顺和安全,应在变坡点处用竖曲线连接起来。
允许不设竖曲线的坡度差允许值是根据车轮不脱轨、车钩不脱钩、列车不撞车和行车平稳等要求进行分析确定的。
一般情况下,竖曲线采用圆曲线,也可以采用抛物线,个别情况下,还可以采用连续短坡曲线。
竖曲线的计算一、圆曲线形竖曲线圆曲线形竖曲线的几何要素和各点设计标高,可按下列公式计算,如图。
R α x T TyRCα/2 BAi1i21、竖曲线的切线长度TT=R·tan(α/2)=R/2·tanα=R/2·△i‰=R/2000·△i(m) (5-1)式中 R-竖曲线半径(m);α-竖曲线转角(度);△i-相邻坡段的坡度代数差(‰)。
R=5000m时, T=2.5△i(m)R=10000m时,T=5.0△i(m)R=15000m时,T=7.5△i(m)R=20000m时,T=10.0△i(m)R=25000m时,T=12.5△i(m)2、竖曲线长度CC≈2T=R/1000·△i(m) (5-2)3、竖曲线纵距yy=x2/2R (m) (5-3)式中 x-竖曲线上计算点至竖曲线起(终)点的横距(m)。
当x=T时,变坡点的纵距Y即为竖曲线的外矢距E。
Y=E=T2/2R=1/2R(C/2)2=C2/8R (5-3.1)4、竖曲线上各点的设计标高H设h为计算点的坡度标高,则H=h±y (5-4)式中的y值,凹形取“+”,凸形取“-”。
【算例一】一凹形竖曲线i1=-4‰,i2=+2‰,△i=6‰,变坡点的里程为K235+165,标高为54.60m,R=15000m,计算竖曲线上各20m点的设计标高。
道路竖曲线计算
第二节 竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。
竖曲线的形状,通常采用平曲线或二次抛物线两种。
在设计和计算上为方便一般采用二次抛物线形式。
纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。
当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。
一、竖曲线如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。
当 i 1- i 2为正值时,则为凸形竖曲线。
当 i 1 - i 2 为负值时,则为凹形竖曲线。
(一)竖曲线基本方程式我国采用的是二次抛物线形作为竖曲线的常用形式。
其基本方程为:Py x 22=若取抛物线参数P 为竖曲线的半径 R ,则有:Ry x 22= Rx y 22=(二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距h 通过推导可得:==PQ h )()(2112li y l x R y y A A q p ---=-Rl 22=2、竖曲线曲线长: L = R ω3、竖曲线切线长: T= T A =T B ≈ L/2 =2ωR 4、竖曲线的外距: E =RT 22⑤竖曲线上任意点至相应切线的距离:Rx y 22=式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ;R —为竖曲线的半径,m 。
二、竖曲线的最小半径(一)竖曲线最小半径的确定1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。
(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。
竖曲线
竖曲线竖曲线设计竖曲线定义:纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。
竖曲线的形状,通常采用平曲线或二次抛物线两种。
在设计和计算上为方便一般采用二次抛物线形式。
纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。
当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。
一.凹凸竖曲线的判别如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i2-i1,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。
当i2- i1为正值时,则为凹形竖曲线。
当i2 – i1 为负值时,则为凸形竖曲线。
二.主要公式坡度差:ω= I2-I1竖曲线曲线长:L = Rω竖曲线切线长:T= TA =TB ≈L/2 = Rω/2或者:T=(I1-I2)/2*R竖曲线的外距: E =T2 /2R修正值:X=D2 /2R其中D为所求点桩号到竖曲线起点或终点的距离三.竖曲线的半径竖曲线半径的确定1.凸形竖曲线极限最小半径确定考虑因素:(1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。
(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。
因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。
(3)满足视距的要求汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。
为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。
2.凹形竖曲线极限最小半径确定考虑因素(1)缓和冲击:在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。
路线纵断面竖曲线计算与设计 竖曲线设计的一般要求及半径选择要点
通常为了使行车有较好的舒适条件,设计时多采用大于极限最小半径1.5—2.0 倍,该值为竖曲线一般最小值。我国按照汽车在竖曲线上以设计速度行驶3s行 程时间控制竖曲线最小长度。
各级公路的竖曲线最小长度和半径按下表规定所列,在竖曲线设计时,不但保 证竖曲线半径要求,还必须满足竖曲线最小长度规定。
➢ 反向竖曲线:反向竖曲线间应设置一段直线坡段, 直线坡段的长度一般不小于设计速度的3秒行程。
➢ 竖曲线设置应满足排水需要。
竖曲线半径选择的 要点
公路竖曲线最小半径和竖曲线最小长度
设计速度(km/h) 120
1008060源自403020
凸形竖
极限最 小值
11000
6500
3000
1400
450
250
100
曲线半
径(m) 一般最 小值
17000
10000
4500
2000
700
400
200
极限最 凹形竖 小值
4000
3000
竖曲线设计的一般要求 及半径选择的要点
模块三
01 02
路线纵断面
03
路线纵断面线形组成分析
路线纵断面竖曲线计算与设计
竖曲线设计的一般要求及半径选择的要点
路线纵断面设计
路线纵断面设计成果
C目 录 ONTENTS
1 竖曲线设计的要求 2 竖曲线半径选择的要点
1 竖曲线设计的要求
竖曲线设计,首先应确定合适的半径。在不过分增加工程量的情况下,宜选择 较大的竖曲线半径;只有当地形限制或其它特殊困难时,才选用极限最小半径。
纵断面设计竖曲线
K12+450 172.513
5000
+950 190.013
4000
K13+550 173.513
3000
试计算K12+700~K13+300段50m间隔的整桩号的设计高程 值。
K5+100.00:位于下半支
②按变坡点分界计算:
横距x2= ZD – Lcz = 5120.00 – 5100.00 =20m
竖距
y2
x
2 2
2R
202 0.10 2 2000
切线高程 HT = H1 + i2( Lcz - BPD) = 427.68 - 0.04×(5100.00 - 5030.00)
夜间行车安全,前灯照明应有足够的距离;二是
保证跨线桥下行车有足够的视距。
《标准》规定竖曲线的最小长度应满足3s行程要 求。
(三)凹形竖曲线最小半径和最小长度
凹形竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
作业:
某二级公路一路段有三个变坡点
▪下半支曲线x = T2时:
E1
T12 2R
E2
T22 2R
▪ 由于外距是变坡点处的竖距,则E1 = E2 = E,
故 T1 = T2 = T
T2 E
或
2R
R 2 L T
E 8 84
[例4-3]:某山岭区一般二级公路,变坡点桩号为k5+030.00, 高程H1=427.68m,i1=+5%,i2=-4%,竖曲线半径R=2000m。
i
22
2
A
(3)竖曲线上任一点竖距h:
x2
x2
h PQ yP yQ 2R i1x i1x 2R
竖曲线的形式及高程计算
一、设置竖曲线的要求铁路线路所包含的坡度除平坡外,有上坡、下坡。
所谓坡度,即铁路线路的高程变化率,用千分率表示,就是每1000m水平距离高程上升或下降的数值,通常用符号“+、-、0”依次表示上坡、下坡或平坡。
在进行纵断面设计时,相邻两坡段的交点叫变坡点,两变坡点之间的水平距离叫坡段长度。
《铁路线路设计规范》规定:工、Ⅱ级铁路相邻坡段坡度的代数差大于3%0和Ⅲ级铁路相邻坡段坡度的代数差大于4‰时,需用竖曲线连接。
竖曲线的形状主要分为圆曲线形和抛物线形两种。
《新建客货共线铁路设计暂行规定》规定:纵断面宜设计为较长的坡段,相邻坡段的连接宜设计为较小的坡度差。
旅客列车设计行车速度为200 km/h的路段,最小坡段长度不宜小于600m,困难条件下最小坡段长度不应小于400m,且最小坡段长度不得连续使用2个以上。
旅客列车设计行车速度为160km/h的路段,最小坡段长度不宜小于400m,且最小坡段长度不宜连续使用2个以上。
竖曲线不得与缓和曲线、相邻竖曲线重叠设置,也不得设在明桥面和正线道岔内。
二、竖曲线的计算方法1.圆曲线形竖曲线计算《铁路线路设计规范》规定:Ⅰ、Ⅱ级铁路竖曲线半径为10000m Tv=5 X △i ,Ⅲ级铁路竖曲线半径为5000m。
Tv=2.5 X △i(1)竖曲线的切线长Tv=Rv ×tan a/2 = Rv/2 ×tan a= Rv/2000 × △i △i=△i2-△i1 的绝对值Tv-竖曲线的切线长(m);Rv--竖曲线半径,a----竖曲线转角,△i-相邻坡段坡度的代数差(‰)。
(2)竖曲线的曲线长C≈2T。
(3)竖曲线的纵距竖曲线的纵距即竖曲线上任意点与切线上相邻点的标高差,用y表示,即y=x2/2Rv式中Y-竖曲线的纵距(m);x-竖曲线上任意点距竖曲线始点或终点的距离(m);(4)竖曲线标高H=Hp±y 式中H-竖曲线标高(m);Hp-计算点坡度线标高,【例题】某一级铁路,有一圆曲线形竖曲线(如图3-20所示),竖曲线中点里程为K24+400,标高为65.7 m,上坡i1=+2‰,下坡i2=-4‰,试计算竖曲线上每20 m点的标高。