1《算法的概念》第一课时

合集下载

河北省石家庄市第一中学高中数学必修三《1.1.1 算法的概念》教案

河北省石家庄市第一中学高中数学必修三《1.1.1 算法的概念》教案

教材章节:§1.1.1课题:算法的概念教学目标:1.学问与力量:(1)体会算法思想,感悟算法含义.(2)了解算法的主要特点:有限性、确定性、程序性、普适性.(3)能用自然语言写出简洁问题的算法.(4)培育同学严密的规律思维力量,建立数学与算法思想的联系,提升同学的数学素养和算法意识.2.过程与方法:本节课突出重点突破难点的关键是重在对案例的算法的分析,案例的选择也主要从算法的典型性、与已往学问的连续性和可接受性的角度动身,使同学能够通过案例的学习理解算法的本质.依据本课时内容特点,教学中接受:小组争辩,合作探究的方式,促进学问的“动态生成”.3.情态与价值:培育同学独立思考、合作沟通的意识;增加同学算法意识.重点:体会算法思想,感悟算法含义,把握算法的主要特点.难点:用自然语言写出算法过程.教学过程:一、本意引言算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法在科学技术、社会进展中发挥着越来越大的作用,并日益融入社会生活的很多方面,算法思想也正在成为一般公民的常识,成为现代人应具备的一种基本数学素养.中国古代数学在世界数学史上一度居于领先地位.它留意实际问题的解决,以算法为中心,寓理于算,其中蕴涵了丰富的算法思想.计算机是20世纪最宏大的创造,它把人类社会带进了信息技术时代,而算法是计算机科学的重要基础,有算法计算机才能正常工作.要想了解计算机的工作原理,算法的学习是一个开头.二、导入新课同学们肯定都会使用计算机吧?会.会用计算机干什么?上网、玩玩耍、查资料、听音乐、看电影……这些只是计算机的使用.那么计算机是依据什么工作的?我们是怎样和计算机沟通的?依据计算机程序运行的.真正会用计算机是要会编写计算机程序来把握、指挥计算机工作.如设计玩耍软件.如何编写计算机程序?算法正是编程的初步和基础.从今日开头我们就来学习第一章算法初步.通过这一章的学习我们将学会用自然语言描述算法、画出程序框图、进一步编写出计算机程序.三、算法的概念实际问题:一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.试问他们怎样渡过河去?请你分步写出一个渡河方案.第一步,两个小孩同船过河去;其次步,一个小孩划船回来;第三步,一个大人划船过河去;第四步,对岸的小孩划船回来;第五步,两个小孩同船渡过河去.1.算法概念的探究一:探究1:解下面的二元一次方程组2121x yx y-=-⎧⎨+=⎩需要什么样的步骤?解:第一步,①+②×2,得51x=③;其次步,解③得15x=;第三步,②-①×2,得53y=④;第四步,解④,得35y=.第五步,得到方程组的解为1535xy⎧=⎪⎪⎨⎪=⎪⎩同学也可能使用加减消元法、代入消元法,也有可能先用加减消元法后用代入消元法.不管使用那一种方法,只需强调依据肯定规章解决问题的这些步骤就构成了解二元一次方程组的一个“算法”.思考:写出解一般的二元一次方程组()1111221222(1)(2)a xb y ca b a ba xb y c+=⎧-≠⎨+=⎩的具体步骤.这五个步骤就构成了解一般的二元一次方程组的一个“算法”.我们再依据这一算法编制计算机程序,就可以让计算机来解全部满足条件1221a b a b-≠的二元一次方程组(只需转变其中的111222,,,,,a b c a b c值)了.这样的算法就具有了肯定得普遍适用性,不是为解决一个问题而设计算法,而是为了解决一类问题,这才是算法的真正价值.小结:在数学中,依据肯定规章解决某一类问题的明确和有限的步骤称为算法.现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤.老师:你能举一个用算法解决问题的例子吗?对于好的例子可以作为后续学习、争辩的课题.老师:其实算法并不奇特,就在我们的身边,生活中处处体现算法的思想,算法使我们的生活更高效、更有条理.2.算法概念的探究二:探究2:设计一个算法,推断7是否为质数. 第一步,用2除7,得到余数1,所以2不能整除7; 其次步,用3除7,得到余数1,所以3不能整除7; 第三步,用4除7,得到余数3,所以4不能整除7; 第四步,用5除7,得到余数2,所以5不能整除7; 第五步,用6除7,得到余数1,所以6不能整除7; 因此,7是质数.变式一:设计一个算法,推断1997是否为质数.分析:用2~1996逐一去除1997求余数,需要1995个步骤,这些步骤基本是重复操作,我们可以按下面的思路优化这个算法,削减算法的步骤.(1)用i 表示2~1996中的任意一个整数,并从2开头取数;(2)用i 除1997,得到余数r .若r=0,则1997不是质数;若r≠0,将i 的值增加1,再执行同样的操作;(3)这个操作始终进行到i 取1996为止.老师可以在同学相互补充的基础上做点睛的指导优化算法,着重解决如下难点: (1)重复的操作应当怎样处理? (2)给一个什么样的条件结束算法?变式二:推断一个大于2的整数n 是否为质数的算法步骤如何设计? 第一步,给定一个n ;其次步,令i=2. 大于2的整数n . 第三步,用i 除n ,得到余数r .第四步,推断“0r =”是否成立.若是,则n 不是质数,结束算法;否则,将i 增加1,仍用i 表示; 第五步,推断“(1)i n >-”是否成立.若是,则n 是质数,结束算法;否则返回第三步.老师:对于反复操作的问题只需给一个循环操作的条件,不管多么简单都可以交给计算机去完成,这样的一类问题都得到了解决,意义是不行估量的如:数列求和问题、筛选问题、排序问题等等.算法的普适性,数学的强大工具性得到了完善体现.小结:算法最重要的特征是什么?普适性:能解决一类问题,具有普遍适用的特点.明确性:算法中的每一个步骤必需是有明确的定义的,不允许有模棱两可的解析,也不允许有多义性.有限性:算法必需能在有限步完成.程序性:算法是有肯定规律次序的步骤序列,编制成计算机程序后是可以执行的. 3.应用举例例1.(见教材P3 例1(2))例2.(见教材P4 例2)写出用“二分法”求方程220x -=(0)x >的近似解的算法. 解:详见教材例3.写出一个求有限整数列中的最大值的算法。

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?

输出x

第1课-算法的概念PPT课件

第1课-算法的概念PPT课件
第1课 算法的概念
1
.
曹冲称象:
2
.
3
.
学习目标:
1、掌握算法的概念和特征。 2、掌握计算机处理问题的基本原理,理解计
算机执行算法的过程。 3、理解算法在生活、学习中的重要意义;通
过对算法的学习感受问题分析的严谨性,养成 解决问题的良好习惯。
4
.
活动一:生活中的算法
算法的概念:我们把做某一件事或者某项工作 的方法、步骤或程序成为“算法”。
10
.
大家都很容易想到,让甲、乙搭配,丙、丁搭配应该 比较节省时间。而他们只有一个手电筒,每次又只能 过两个人,所以每次过桥后,还得有一个人返回送手 电筒。为了节省时间,肯定是尽可能让速度快的人承 担往返送手电筒的任务。
那么就应该让甲和乙先过桥,用时2分钟, 再由甲返回送手电筒,需要1分钟, 然后丙、丁搭配过桥,用时10分钟。 接下来乙返回,送手电筒,用时2分钟, 再和甲一起过桥,又用时2分钟。 所以花费的总时间为:2+1+10+2+2=17分钟。
8
.
我实践我创新
甲、乙、丙、丁4个人过桥,分别需要1分钟、 2分钟、5分钟、10分钟。因为天黑,他们必 须借助于手电筒过桥。可是,他们只有一个手 电筒,且桥的载重有限,每次最多过两人。4 个人怎样才能在最短的时间内过桥呢?
请分组写出每种过桥的算法,并比较每种算法 的效率。
9
.
用时最少的算法:
1、输入设备(类似人的感觉器官) 2、控制器(类似大脑控制中枢) 3、输出结果(类似人的执行结果)
6
.
计算机运算的工作原理如下图所示:
程序 数据
输入设备
输入设备
存储器
输出结果 输出设备
运算器

1.1《算法的概念》教学设计-青岛版初中信息技术第三册

1.1《算法的概念》教学设计-青岛版初中信息技术第三册
(4)算法设计方法:介绍算法设计的方法和技巧,如贪心算法、分治算法、回溯算法、动态规划算法等。
(5)算法优化技巧:介绍算法优化技巧,如时间复杂度分析、空间复杂度分析、算法改进等。
(6)算法竞赛与挑战:介绍国内外知名的算法竞赛和挑战,如ACM国际大学生程序设计竞赛、Google Code Jam等。
2. 拓展建议
(3)将实际问题转化为算法:学生需要学会分析实际问题,将其转化为算法问题,并设计出相应的算法。
(4)算法的表示方法:不同的算法表示方法具有不同的特点和适用场景,学生需要学会选择合适的表示方法描述算法。
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源准备
1. 教材:确保每位学生都有本节课所需的教材或学习资料。教师应提前准备《青岛版初中信息技术第三册》第1.1节《算法的概念》的内容,并将其分发给学生,以便学生能够跟随教学进度进行学习。
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解算法概念知识点,结合实例帮助学生理解。
突出算法概念重点,强调算法概念难点,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕算法概念问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
重点题型整理
1. 算法的定义与特点
(1)题目:请简要描述算法的定义和特点。
答案:算法是解决问题的一系列步骤,包括输入、输出、条件和循环等基本操作。算法的特点包括输入、输出、确定性、有效性和有穷性。
2. 算法的表示方法
(2)题目:请列举几种常见的算法表示方法,并说明它们的优缺点。

1.算法的概念

1.算法的概念

例如,某计算工具具有七位有效数字(如 FORTRAN中的单精度运算),在计算下列三个
量 A=101,2 B=1,C=1012 的和时,如果采
用不同的运算顺序,就会得到不同的结果,即
A+B+C =1012+1+ 1012 =0 A+C十B =1012+ 1012 +1=1
而在数学上,A +B +C与A+C+B是完全等价的。 这可知,算法和计算公式是有差别的。
1.算法的概念
3)有穷性(finiteness)
算法的有穷性是指算法必须能在有限的时 间内执行完,即算法必须能在执行有限个步骤 之后终止。数学中的无穷级数,在实际计算时 只能取有限项,即计算无穷级数的过程只能是 有穷的。因此,一个数的无穷级数的表示只是 一种计算公式,而根据精度要求确定的计算过 程才是有穷的算法。
例如,某计算工具规定:大于100的数认为是比 1大很多,而小于10的数不能认为是比1大很多; 且在正常情况下出现的数或是大于100,或是小于 10.但指令“输入一个X,若x比1大很多,则输 出数字1,否则输出数字0”是不确定的。这是因 为,在正常的输入情况下,这一指令的执行可以 得到正确的结果,但在异常情况下(输入的x在 10与100之间),这一指令执行的结果就不确定 了.
于求两个整数的最大公约数的过程,这就是著 名的欧几里得算法——辗转相除法,其具体过 程如下:
设给定的两个正整数为m和n,求它们的最大 公约数的步骤为:
(1)以m除以n,令所得的余数为r(r必小于n);
(2)若r=0,则输出结果n,算法结束;否则,继续步骤(3)
(3)令m=n,n=r,并返回步骤(1)继续进行。
(4)算法必须拥有足够的情报
一个算法是否有效,还取决于为算法的执行所 提供的情报是否足够。例如,对于指令“如果小明是 学生,则输出字母Y,否则输出N”。当算法执行过程 中提供了小明一定不是学生的某种信息时,执行的结 果将输出字母N;当提供的只是部分学生的名单,且小 明恰在此名单之中,则执行的结果将输出字母Y。但如 果在提供的部分学生的名单中找不到小明的名字.则 在执行该指令时无法确定小明是否是学生。

人教版高中数学必修三课件:1.1.1 算法的概念

人教版高中数学必修三课件:1.1.1 算法的概念
解:b→a→c→d→e
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能

青岛版新版八年级信息技术上册教案

青岛版新版八年级信息技术上册教案

学科:信息技术八年级上册主备人:孙甜甜日期:2019年7月15日题目:算法的概念第1课时课型:新授课教材分析:本课选自青岛出版社初中《信息技术》第三册第一单元第一课时,本节课是学生初中阶段学习算法的开始,是以后学生继续学习算法的基础,通过本节课的学习为学生打下学习算法的基础,初步培养学生算法思想,培养学生的逻辑思维能力。

学情分析:合理的把握学情是上好一堂课的基础,八年级的学生好奇心强、有了一定的自学能力但是逻辑思维能力还是有点欠缺,因此,对于本节课我将采用让学生自主思考、理论联系实际的方法加深学生对算法的认识理解教学目标(含重难点):1.掌握算法的概念和特征(重点)2.掌握计算机处理问题的基本原理,理解计算机执行运算的过程(难点)3.理解算法在生活、学习中的重要意义;通过对算法的学习感受问题分析的严谨性,养成解决问题的良好习惯教法学法:教法:启发法、讲解法、演示法、任务驱动法学法:自主合作与探究、实践法;教学准备:PPT 网络机房学科核心素养:信息意识计算思维数字化学习与创新教学过程:一、【情境创设】教师引入:“引导学生阅读“我阅读我思考”教师向学生展示“农夫带狼、羊、白菜”过河以及“鸡兔同笼”的例子,引导学生思考生:积极阅读课本中“我阅读我思考”的内容,并认真思考教师所给出的两个例子。

引出本课所学的内容,以及小组所探究的任务。

二、【自主学习】活动一:生活中的算法师:课件出示什么是算法?引导学生研读文本,随机选一名同学回答问题。

生:认真研读课文,找出算法的概念,并汇报:在日常生活和学习中,做事需要遵循一定的的方法和步骤。

解数学题、购物消费、洗衣做饭......都有一套问题解决的方法和步骤。

这种解决生活中问题的的方法和步骤,我们称之为“生活中的算法”。

师:同学们,在我们小学阶段学过“曹冲称象”的故事,谁知道用的是什么原理?具体步奏是怎样的?生:学生思考并汇报结果。

1.教师引导学生思考说出具体步骤是怎样的?2.学生汇报自己探究情况。

2016-2017学年高一数学人教B版3讲义:第一章算法初步1.1.1算法的概念 含答案

2016-2017学年高一数学人教B版3讲义:第一章算法初步1.1.1算法的概念 含答案

1.1。

1算法的概念明目标、知重点1。

了解算法的含义,体会算法的思想;2。

能够用自然语言叙述算法;3.掌握正确的算法应满足的要求;4。

会写出解线性方程(组)的算法.1.算法的概念及描述(1)算法的定义算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.(2)算法的特征①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当模棱两可.③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一问题的解法不一定是唯一的,对于同一个问题可以有不同的算法.⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.(3)描述算法的方式描述算法可以有不同的方式:自然语言、数学语言(算法语言)、框图语言等.2.算法设计的目的设计算法的目的实际上是寻求一类问题的算法,它可以通过计算机来完成.设计算法的关键是把过程分解成若干个明确的步骤,然后用计算机能够接受的”语言”准确地描述出来,从而达到计算机执行的目的.3.算法设计的要求(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.[情境导学]赵本山和宋丹丹的小品《钟点工》中有这样一个问题:(宋丹丹)要把大象装冰箱,总共分几步?哈哈哈哈,三步.第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门关上.探究点一算法的概念思考1 算法随着时代的发展其含义在不断的变化,阅读教材第3页的上半页,你能说出现代对算法是怎样理解的吗?答算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.思考2 描述算法有怎样的方式?答可以用自然语言和数学语言、数学语言(算法语言)、框图语言等.例1 下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1 B.2C.3 D.4答案C解析②③④正确,而解决某类问题的算法不一定唯一,从而①错.反思与感悟算法实际上是解决问题的一种程序性方法,它能够解决某一个或一类问题.跟踪训练1 下列语句表达中是算法的是( )①从济南到巴黎可以先乘火车到北京,再坐飞机抵达;②利用公式S =错误!ah计算底为1,高为2的三角形的面积;③错误!x〉2x+4;④求M (1,2)与N(-3,-5)两点连线所在直线的方程,可先求直线MN 的斜率,再利用点斜式方程求得.A.①②③ B.①③④C.①②④ D.②③④答案C解析算法是解决问题的步骤与过程,这个问题并不仅仅限于数学问题,①②④都表达了一种算法.探究点二算法的设计例2 “一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡?"思考1 用代数方法如何求解?答设有x只小鸡,y只小兔,则有(Ⅰ) 错误!,将方程组(Ⅰ)中的第一个方程的两边同乘以-2加到第二个方程中去,得到(Ⅱ)错误!解方程组(Ⅱ)中的第二个方程,得y=7,将y代入第一个方程,得x =10。

1.1.1算法的概念1

1.1.1算法的概念1
在数学中,算法通常是指按照一定规则 解决某一类问题的明确和有限的步骤.现在, 算法通常可以编成计算机程序,让计算机执 行并解决问题.
2.算法的要求
(1)写出的算法,必须能解决一类问题(例如解任 意一个二元一次方程组),并且能重复使用; (2) 算法过程要能一步一步执行,每一步执行的 操作,必须确切,不能含混不清,而且在有限步之 内完成后能得出结果.
例题
变式: 任意给定一个大于2的整数n,
试设计一个程序或步骤对n是否为质数 做出判断。
第一步:给定大于2的整数n. 第二步:令i=2 第三步:用i除n,得到余数r. 第四步:判断”r=0”是否成立,若是, 则n不是质数,结束算法;否则,将i的 值增加1,仍用i表示,即:i=i+1. 第五步:判断”i>(n-1)”是否成立,若 是,则n是质数,结束算法;否则,将 返回第3步.
D. 加减乘除运算法则
5.下列语句表达中是算法的有( C ). ① 从济南到巴黎可以先乘火车到北京再坐 飞机抵达; ②利用公式 S = ah÷2 计算底为1高为2的 1 三角形的面积; ③ x>2x +4; 2 ④求M(1,2)与N(3,5)两点连线的方程可 先求MN的斜率再利用点斜式方程求得. A. 1 个 B. 2 个 C. 3 个 D. 4 个
算法步骤:
第一步, 令 f ( x) x 2 ,给定精确度d.
2
第二步, 给定区间[a,b],满足f(a) · f(b )< 0 . ab 第三步, 取中间点 m . 2 第四步, 若f(a) · f(m) < 0,则含零点的区间为 [a,m];否则,含零点的区间为[m, b]. 将新得到的含零点的仍然记为[a,b]. 第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.

算法的概念及描述课件高中信息技术浙教版(2019)必修1(18张PPT)

算法的概念及描述课件高中信息技术浙教版(2019)必修1(18张PPT)
判断任意一个一元二次方程是否有实数根
输入a、b、c的值 if b**2-4*a*c>=0 :
(输出“该方程有实数根”) else:
(输出“该方程没有实数根”)
伪代码 接近 计算 机程序代码 的算法描述 方式,介于自 然语言和程 序设计语言 之间。
历年真题
7.关于算法流程图下面说法正确的是(D)
A、流程图必须包含一个判断框 B、流程图直观易懂,但是容易产生二义性 C、算法描述只能使用流程图 D、流程图中无须填写程序代码
的值为( C )
A.2 B.3 C.4 D.5
历年真题
6.某算法的流程图如图所示,依次输入x的值为3、2、1、-1后,该算法的输出结果
为( A )
A3 B4 C5 D6
伪代码描述算法
判断任意一个一元二次方程是否有实数根 1、输入a、b、c 2、如果b2-4ac>=0,输出“该方程有实数根”;否则,输出 “该方程没有实数根”
算法---程序的“灵魂”
广义上讲,算法是为了解决一类特定问题而采取的确定的、有限的步骤。 在计算机领域,算法作为一个精心设计的运算序列,描述了计算机如何将输入转换 为输出的过程。
算法的一般特征如下:
有输入:可以没有吗?
可以没有
有输出:算法必须要有吗? 必须要有
有穷性:写出所有的偶数 可行性:计算宇宙的面积
4.在《几何原本》一书中,“辗转相除法”可以求出任意两个正整数的最大公约 数,具体步骤如下: (1)输入两个正整数m和n (2)以m除以n,得到余数r (3)若r=0,则输出n的值,算法结束,否则执行步骤(4) (4)令m n,n r,并返回步骤(2)

历年真题
5.某算法的部分流程图如图2-1-6所示。执行这部分流程,若输入a的值为36,则输出c

算法的概念教案

算法的概念教案

算法的概念教案教案:算法的概念一、教学内容本节课的教学内容选自人教版小学数学四年级上册第五单元《算法与程序设计》的第一课时,主要介绍算法的概念和特点。

教材通过丰富的实例,让学生初步理解算法是指解决问题的步骤,并且能够简单描述一些基本的算法。

具体内容包括:1. 算法的定义:通过实例让学生理解算法是解决问题的一系列步骤。

2. 算法的特点:引导学生分析算法具有的目的性、顺序性、重复性等特点。

3. 简单算法的描述:让学生学会用自然语言描述一些简单的算法。

二、教学目标1. 让学生了解算法的概念,理解算法是解决问题的一系列步骤。

2. 培养学生分析问题、解决问题的能力,提高学生的逻辑思维能力。

3. 培养学生学会用自然语言描述算法,培养学生的表达能力和合作意识。

三、教学难点与重点重点:算法的概念和特点,简单算法的描述。

难点:理解算法具有的目的性、顺序性、重复性等特点,用自然语言描述算法。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:课本、练习本、文具。

五、教学过程1. 实践情景引入(5分钟)教师通过一个生活中的实际问题,如“如何计算班级中学生的平均身高?”引发学生思考,引导学生认识到解决问题需要一系列的步骤。

2. 算法的定义(10分钟)(1)教师引导学生讨论:解决问题需要哪些步骤?3. 算法的特点(10分钟)(2)教师通过讲解,让学生理解算法具有这些特点的原因。

4. 简单算法的描述(10分钟)(1)教师引导学生尝试用自然语言描述教材中的实例算法。

(2)教师给出一些简单的算法,让学生用自然语言描述。

5. 随堂练习(5分钟)教师给出一些简单的算法题目,让学生独立完成,检查学生对算法概念的理解。

六、板书设计算法的概念1. 算法是解决问题的一系列步骤。

2. 算法具有目的性、顺序性、重复性等特点。

3. 简单算法的描述。

七、作业设计(1)计算班级中学生的平均身高。

(2)计算一组数据的平均数。

答案:(1)计算班级中学生的平均身高:先测量每个学生的身高,将所有学生的身高相加,除以学生人数。

算法的概念及描述课件学年浙教版(2019)高中信息技术必修1(22张PPT)

算法的概念及描述课件学年浙教版(2019)高中信息技术必修1(22张PPT)
2.1 算法的概念及描述
农夫如何安全带这三样东西过河?
一个农夫带着一条狼、一头山羊 和一篮蔬菜要过河,但只有一条船。 乘船时,农夫在场的时候,这三样东 西相安无事。一旦农夫不在,狼会吃 羊,羊会吃菜。船很小,只够农夫带 一样东西过河。农夫该如何解此难题?
农夫如何安全带这三样东西过河?
方法一: 1、农夫带羊过河,农夫回来;
功能
开始/结束框 表示算法的开始或结束
输入/输出框 表示算法中数据的输入或输出
处理框
表示算法中数据的运算处理
判断框
表示算法中的条件判断
流程线
表示算法中的流向
连接框
表示算法中的转接
尝试画出求根公式的流程图
2. 流程图描述算法
开始
输入二项系数a, 一项系数b,常数c
计算判别式
b2 4ac
0?
x1=((-b)+math.sqrt(ref))/(2*a) x2=((-b)-math.sqrt(ref))/(2*a) printf(“方程有实数解”) printf(“x1=”,x1) printf(“x2=”,x2) else: printf(“方程无实数解”)
体验算法多样性
求两个正整数的最大公约数问题
2. 流程图描述算法
流程图用一些图形符号表示规定的操作,并用带箭头的流程线连接这些 图形符号,表示操作进行方向。
自然语言描述如下: (1)输入变量flag的值。 (2)若flag的值为1, 则设置指示灯为 绿色,输出“空车位”;否则,设置 指示灯为红色,输出“非空车位。
2. 流程图描述算法
图形
名称
过程方法具体描述: ax²+bx+c=0
(1)输入一般形式下的二次项系数a,一次项系数b,常数项c; (2)计算判别式 b2 4ac 的值;

人教版高中数学必修三(教案)1.1 算法与程序框图(3课时)

人教版高中数学必修三(教案)1.1 算法与程序框图(3课时)

第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <g ,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <g ,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序.算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解 →写出算法.③ 练习:举例更多的算法例子; → 对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③基本的程序框和它们各自表示的功能:程序框名称功能终端框表示一个算法的起始和结束(起止框)输入、输出框表示一个算法输入和输出的信息处理(执行)框赋值、计算判断框判断一个条件是否成立流程线连接程序框④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图.(学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题. 第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1. 说出下列程序框的名称和所实现功能.2. 算法有哪三种逻辑结构?并写出相应框图顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A 组1题.。

第一单元第1课《算法的概念》教学设计-青岛版)初中信息技术第五册

第一单元第1课《算法的概念》教学设计-青岛版)初中信息技术第五册

第一单元第1课算法的概念
一、【学习目标】
知识技能
1.理解算法的概念和特征;
2.掌握计算机处理问题的基本原理,理解计算机执行算法的过程。

过程方法
1.通过生活中现象的呈现,来分析了解算法。

2通过问题的解决,知道算法对解决问题的重要性。

情感目标
理解算法在生活学习中的重要意义;通过对算法的学习感受问题分析的严谨性,养成解决问题的良好习惯。

教学重、难点
重点:算法的概念。

难点:算法的特征
教学方法任务驱动法、自主学习法、讨论法
教学流程。

2.1算法的概念及描述 第1课时 分层作业 浙教版(2019)高中信息技术

2.1算法的概念及描述 第1课时 分层作业 浙教版(2019)高中信息技术

2.1算法的概念及描述第1课时(分层作业)【夯实基础】1.下列关于算法的叙述,不正确的是()A.算法是解决问题的有序步骤B.算法具有确定性、可行性、有限性等基本特征C.一个问题的算法都只有一种D.常见的算法描述方法有自然语言、流程图和伪代码等2.用流程图表示条件“A>B”是否成立,要用图形()A.B.C.D.3.下列关于算法的特征描述,不正确的是()A.有穷性B.至少有一个输出C.至少有一个输入D.确定性4.算法的表示方法有很多,其中哪种表示方法容易产生歧义,影响算法的确定性?()A.自然语言B.流程图C.伪代码D.程序语言5.计算机解决问题的步骤和方法是()A.编程B.分析C.算法D.抽象建模6.以下选项中,不属于流程图基本元素的是()A.循环框B.连接点C.判断框D.起止框7.为有效减少接触式传染病的传播,有关专家提出要全面普及七步洗手法。

下列表达方式中,更容易让人们掌握七步洗手法操作流程的是()A.文字表达方式B.图示表达方式C.表格表达方式D.口头表达方式8.在用“更相减损术”求最大公约数的过程中,输入的是两个正整数。

这说明算法具有()A.有输入B.有输出C.有穷性D.确定性【巩固提升】1.下列问题不能用算法描述的是( )A.已知a、b、c的值,求一元二次方程ax2+bx+c=0(a≠0)的实数根B.计算某个班级学生身高的平均值C.列出方程y=2x+1的所有实数解D.根据三角形三边长度求三角形面积2. “洗衣机的洗衣流程”情境问题,洗衣机模拟人洗衣的过程,自动执行洗衣程序,节省了大量的人力,这主要归功于由算法控制的机器设备。

算法指在有限步骤内解决问题所使用的方法,从下图2的“洗涤算法”中,可以看出算法具有的特征是()图1 图2A.无穷性 B.单一性 C.确定性 D.繁琐性3. 关于以下流程图的说法不正确的是()A.该算法作用是输入两个数,输出较大的数。

B.该算法中没有体现“运算”。

1.1.1算法的概念

1.1.1算法的概念

§1.1.1算法的概念 算法的概念
讲授新课 想一想.任意给定一个大于1的整数n, 想一想.任意给定一个大于1的整数 ,试设计 一个程序或步骤对n是否为质数做出判定 是否为质数做出判定. 一个程序或步骤对 是否为质数做出判定. 第一步:判断 是否等于2.若 =2 是否等于2. =2, 是质数 是质数; 第一步:判断n是否等于2.若n=2,则n是质数; 若n>2,则执行第二步. 2 则执行第二步. 第二步:依次从2~(n-1)检验是不是 的因 第二步:依次从2 )检验是不是n的因 即整除n的数 若有这样的数, 不是质 的数, 数,即整除 的数,若有这样的数,则n不是质 若没有这样的数, 是质数 是质数. 数;若没有这样的数,则n是质数. 评析:这是判断一个大于1的整数 是否为质 评析:这是判断一个大于1的整数n是否为质 数的最基本算法. 数的最基本算法.
§1.1.1算法的概念 算法的概念
4.一个农夫带着一条狼 、 一头山羊和一篮蔬 一个农夫带着一条狼、 一个农夫带着一条狼 菜要过河,但只有一条小船 乘船时,农夫只能带 但只有一条小船.乘船时 菜要过河 但只有一条小船 乘船时 农夫只能带 一样东西.当农夫在场的时候 当农夫在场的时候,这三样东西相安无 一样东西 当农夫在场的时候 这三样东西相安无 一旦农夫不在,狼会吃羊 羊会吃菜.请设计一 事.一旦农夫不在 狼会吃羊 羊会吃菜 请设计一 一旦农夫不在 狼会吃羊,羊会吃菜 个算法,使农夫能安全地将这三样东西带过河 个算法 使农夫能安全地将这三样东西带过河. 使农夫能安全地将这三样东西带过河 第一步:农夫带羊过河; 第一步:农夫带羊过河; 第二步:农夫独自回来; 第二步:农夫独自回来; 第三步:农夫带狼过河; 第三步:农夫带狼过河; 第四步:农夫带羊回来; 第四步:农夫带羊回来; 第五步:农夫带蔬菜过河; 第五步:农夫带蔬菜过河; 第六步:农夫独自回来; 第六步:农夫独自回来; 第七步:农夫带羊过河. 第七步:农夫带羊过河.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1-1《算法的概念》第一课时
教学目标:1.了解算法的含义,体会算法的思想;2.能够用自然语言叙述算法;3.掌握正确的算法应满足的要求;4.会写出解线性方程(组)的算法.
教学重点:1.通过实例体会算法思想,初步理解算法的含义;
2.解二元一次方程组、判断一个数为质数和用“二分法”求方程近似解的算法设计.
教学难点:用自然语言描述算法.
教学过程:
一.学生自学,发现问题(教材2-3页)
二.生生交流,合作学习(讨论引例,例1)
引例1:解二元一次方程组:⎩⎨⎧=+-=-②①121
2y x y x
分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程. (可以让学生上黑板演练)
解:第一步,②-①×2得5y=3;③第二步,解③得y=3/5;第三步,将y=3/5代入①,得x=1/5,
第四步,得到方程组的解为⎪⎪⎩
⎪⎪⎨⎧==5351y x 评注:1.以上求解的步骤就是解二元一次方程组的算法;2本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法.
引例2:写出求方程组()012212221
11≠-⎩⎨⎧=+=+b a b a c y b x a c y b x a ②①的解的算法.
解:第一步,②×a 1 - ①×a 2,得:()12211221c a c a y b a b a -=- ③第二步,解③得
1
2211221b a b a c a c a y --= 第三步,将12211221b a b a c a c a y --=代入①,得1
2212112b a b a c b c b x --=. 第四步,得到方程组的解为⎪⎪⎩
⎪⎪⎨⎧--=--=12211
22112212112b a b a c a c a y b a b a c b c b x 上述步骤构成了解二元一次方程组的一个算法,
我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组.
三.师生交流,探究点拨(一)算法概念
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.
说明:1.算法一词出现于12世纪,指的是用阿拉伯数字进行算术运算的过程;
2.“算法”没有一个精确化的定义,教科书只对它作了描述性的说明;
3.在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成;
4.算法的特点:
逻辑性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,只有执行完前一步才能进行下一步,并且每一步都要准确无误.
确定性:算法中的每一步都应该是确定的,并且能有效地执行且得到确定的结果
有限性:一个算法的步骤是有限的,它应在有限步操作之后停止,而不能是无限的
非唯一性:求解某个问题的算法不一定是唯一的,对于一个问题可以有不同的算法
(二)典型例题
例1 (1)设计一个算法,判断7是否为质数.
(2)设计一个算法,判断35是否为质数.算法分析:
(1)根据质数的定义,可以这样判断:依次用2~6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.
根据以上分析,可写出如下的算法:
第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.
第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.
第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.
第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.
第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.
(2)类似地,可写出“判断35是否为质数”的算法:
四.练习反馈,纠错释疑
1.写出“判断整数n(n>2)是否为质数”的算法
2. p5.练习1.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.
五.课堂小结
算法的概念:算法通常指可以用来解决的某一类问题的步骤或程序,这些步骤或程序必须是明确的和有效的,而且能够在有限步之内完成的。

课后反思:。

相关文档
最新文档