高中数学解析几何测试题2
解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(二)附答案高中数学
综上可知,当 或 时,抛物线与圆有且只有两个不同的公共点.
说明:“有且只有”、“当且仅当”等用语,都是指既有充分性,又有必要性.
评卷人
得分
三、解答题
4.解:(Ⅰ)设椭圆的方程为 ,
当 时,PQ的中点为(0,3),所以b=3------------------3分
而 ,所以 ,故椭圆的标准方程为 ---------5分
点E.
(1)求证: ;
(2)设直线l将矩形OABC分成面积相等的两部分,
求直线l的方程;
(3)在(2)的条件下,设圆M在矩形及其内部,
且与l和线段EA都相切,求面积最大的圆M
的方程.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.C本题考查抛物线的相关几何性质及直线与圆的位置关系
法一:抛物线y2=2px(p>0)的准线方程为 ,因为抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,所以
=0,即(x1,y1-3)·(x2,y2-3)=0,
即x1x2+y1y2-3(y1+y2)+9=0,x1x2+y1y2=3.
故 = x02+y02-4y0+3为定值。
6.(1)椭圆方程为 .
(2)圆的半径为 ,即内切圆的纵坐标为 ,可得横坐标也为 ,
∴圆的方程为 .
(3)定值— 证明略.
7.题设椭圆的方程为 .…………………………1分
(II)令x=0,得y=3或y=1.故A(0,3),B(0,1)。
设P(x,y),则 =(-x,3-y)·(-x,1-y)=x2+(3-y)(1-y)= x2+y2-4y+3.
高中数学解析几何压轴题专项拔高训练(二)
高中数学解析几何压轴题专项拔高训练一.选择题(共15小题)1.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()A.钝角B.直角C.锐角D.都有可能考点:直线与圆锥曲线的综合问题.专题:压轴题.分析:根据题设条件推导出以AB为直径的圆与右准线相离.由此可知∠APB为锐角.解答:解:如图,设M为AB的中点,过点M作MM1垂直于准线于点M1,分别过A、B作AA1、BB1垂直于准线于A1、B1两点.则∴以AB为直径的圆与右准线相离.∴∠APB为锐角.点评:本题考查圆锥曲线的性质和应用,解题时作出图形,数形结合,往往能收到事半功倍之效果.2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则()A.∠PFR>∠QFR B.∠PFR=∠QFRC.∠PFR<∠QFR D.∠PFR与∠AFR的大小不确定考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:设Q、P到l 的距离分别为d1,d2,垂足分别为M,N,则PN∥MQ,=,又由双曲线第二定义可知,由此能够推导出RF是∠PFQ的角平分线,所以∠PFR=∠QFR.解答:解:设Q、P到l 的距离分别为d1,d2,垂足分别为M,N,则PN∥MQ,∴=,又由双曲线第二定义可知,∴,,∴,∴RF是∠PFQ的角平分线,∴∠PFR=∠QFR故选B.点评:本题考查双曲线的性质和应用,解题时利用双曲线第二定义综合平面几何知识求解.3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()A.B.C.D.考点:直线与圆锥曲线的综合问题.专题:综合题;压轴题.分析:设直线l的斜率为k,则直线l的方程是y=k(x﹣c).将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2﹣2a2ck2x+a2c2k2﹣a2b2=0.然后利用向量关系及根与系数的关系,可求得λ1+λ2的值.解答:解:设M,N,P点的坐标分别为M(x1,y1),N(x2,y2),P(0,y0),又不妨设F点的坐标为(c,0).显然直线l存在斜率,设直线l的斜率为k,则直线l的方程是y=k(x﹣c).将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2﹣2a2ck2x+a2c2k2﹣a2b2=0.∴,.又∵,将各点坐标代入得,=.故选C.点评:本题以向量为载体,考查直线与椭圆的位置关系,是椭圆性质的综合应用题,解题时要注意公式的合理选取和灵活运用.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()A.B.e2﹣1 C.D.e2+1考点:圆锥曲线的综合.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:利用抛物线的定义,确定M的坐标,利用点差法将线段AB中点M的坐标代入,即可求得结论.解答:解:∵M在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,∴M的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB中点M的坐标代入,可得∴∴故选A.点评:本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.5.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13 D.15考点:圆与圆锥曲线的综合;椭圆的简单性质.专题:计算题;压轴题.分析:由题意可得:椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,再结合椭圆的定义与圆的有关性质可得答案.解答:解:依题意可得,椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,所以根据椭圆的定义可得:(|PM|+|PN|)min=2×5﹣1﹣2=7,故选B.点评:本题考查圆的性质及其应用,以及椭圆的定义,解题时要认真审题,仔细解答,注意公式的合理运用.6.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()A.B.C.D.考点:圆与圆锥曲线的综合.专题:综合题;压轴题.分析:由=(+),知E为PF的中点,令右焦点为F′,则O为FF′的中点,则PF′=2OE=a,能推导出在Rt△PFF′中,PF2+PF′2=FF′2,由此能求出离心率.解答:解:∵若=(+),∴E为PF的中点,令右焦点为F′,则O为FF′的中点,则PF′=2OE=a,∵E为切点,∴OE⊥PF∴PF′⊥PF∵PF﹣PF′=2a∴PF=PF′+2a=3a在Rt△PFF′中,PF2+PF′2=FF′2即9a2+a2=4c2∴离心率e==.故选:A.点评:本题考查圆与圆锥曲线的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A.B.C.D.考点:圆与圆锥曲线的综合.专题:计算题;压轴题.分析:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,由此可知=,从而能够得到结果.解答:解:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,则==.故选A.点评:本题考查圆锥曲线的性质和应用,解题时要注意合理地选取特殊点.8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为()A.y2=4x B.y2=4x(x≠0)C.y2=﹣4x D.y2=﹣4x(x≠0)考点:圆锥曲线的轨迹问题.专题:计算题;压轴题.分析:设P(x,y),欲动点P的轨迹方程,即寻找x,y之间的关系式,利用向量间的关系求出向量、的坐标后垂直条件即得动点P的轨迹方程.解答:解:设P(x,y),E(﹣1,y1),F(﹣1,y2)(y1,y2均不为零)由∥⇒y1=y,即E(﹣1,y).由∥⇒.由y2=4x(x≠0).故选B.点评:本题主要考查了轨迹方程的问题.本题解题的关键是利用了向量平行和垂直的坐标运算求得轨迹方程.9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()A.+=1(y≠0)B.+=1(y≠0)C.﹣=1(y≠0)D.﹣=1(y≠0)考点:圆锥曲线的轨迹问题.专题:综合题;压轴题.分析:设出切线方程,表示出圆心到切线的距离求得a和b的关系,再设出焦点坐标,根据抛物线的定义求得点A,B到准线的距离等于其到焦点的距离,然后两式平方后分别相加和相减,联立后,即可求得x和y的关系式.解答:解:设切线ax+by﹣1=0,则圆心到切线距离等于半径∴=2∴,∴a2+b2=设抛物线焦点为(x,y),根据抛物线定义可得平方相加得:x2+1+y2=4(a2+1)①平方相减得:x=4a,∴②把②代入①可得:x2+1+y2=4(+1)即:∵焦点不能与A,B共线∴y≠0∴∴抛物线的焦点轨迹方程为故选B.点评:本题以圆为载体,考查抛物线的定义,考查轨迹方程,解题时利用圆的切线性质,抛物线的定义是关键.10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22 B.20 C.18 D.16考点:圆与圆锥曲线的综合;抛物线的定义.专题:计算题;压轴题.分析:先以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100,根据条件得出M,N在以A为焦点,PT为准线的抛物线上,联立半圆方程和抛物线方程结合根与系数的关系,利用抛物线的定义即可求得答案.解答:解:以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100又,设M(x1,y1),N(x2,y2),M,N在以A为焦点,PT为准线的抛物线上;以AT的垂直平分线为y轴,TA方向为x轴建立坐标系,则有抛物线方程为y2=8x(y≥0),联立半圆方程和抛物线方程,消去y得:x2﹣16x+44=0∴x1+x2=16,|AM|+|AN|=|MP|+|NQ|=x1+x2+4=20.故选B.点评:本小题主要考查抛物线的定义、圆的方程、圆与圆锥曲线的综合等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.11.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()A.B.C.D.考点:圆锥曲线的共同特征.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:利用双曲线、椭圆的定义,建立方程,求出|PF1|=,|PF2|=,再利用余弦定理,即可求得结论.解答:解:不妨令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2①由椭圆的定义|PF1|+|PF2|=2②由①②可得|PF1|=,|PF2|=∵|F1F2|=4∴cos∠F1PF2==故选A.点评:本题考查圆锥曲线的共同特征,利用双曲线、椭圆的定义,建立方程是关键.12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()C.D.A.B.(,+∞)考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:如图,求出BC的斜率,根据圆心到切线的距离等于半径,求得切线BE的斜率k′,由题意可知,k′<k≤K BC,从而得到实数k的取值范围.解答:解:曲线即x2+(y﹣1)2=4,(y≥1),表示以A(0,1)为圆心,以2为半径的圆位于直线y=1 上方的部分(包含圆与直线y=1 的交点C和D),是一个半圆,如图:直线y=k(x﹣2)+4过定点B(2,4),设半圆的切线BE的切点为E,则BC的斜率为K BC==.设切线BE的斜率为k′,k′>0,则切线BE的方程为y﹣4=k′(x﹣2),根据圆心A到线BE距离等于半径得2=,k′=,由题意可得k′<k≤K BC,∴<k≤,故选A.点评:本题考查直线和圆的位置关系,点到直线的距离公式,倾斜角和斜率的关系,体现了数形结合的数学思想,判断k′<k≤K BC,是解题的关键.13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()A.B.C.8D.考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:根据向量关系,用坐标进行表示,求出点A,B的坐标,再利用抛物线的定义,可求|AF|+|BF|.解答:解:设A(x1,y1),B(x2,y2),则∵P(1,0)∴=(1﹣x2,﹣y2),=(x1﹣1,y1)∵,∴2(1﹣x2,﹣y2)=(x1﹣1,y1)∴将A(x1,y1),B(x2,y2)代入抛物线y2=12x,可得,又∵﹣2y2=y1∴4x2=x1又∵x1+2x2=3解得∵|AF|+|BF|=故选D.点评:本题重点考查抛物线的定义,考查向量知识的运用,解题的关键是确定点A,B的横坐标.14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.考点:直线与圆锥曲线的关系.专题:综合题;压轴题.分析:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22)A,B的中点坐标是(,)因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,由此能求得m.解答:解:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22),A,B的中点坐标是(,),因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,,x12+x22═+m,x2+x1=﹣,因为,所以xx12+x22=(x1+x2)2﹣2x1x2=,代入得,求得m=.故选B.点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值为()A.4B.﹣4 C.0或4 D.0或﹣4考点:直线与圆锥曲线的关系.专题:综合题;压轴题.分析:根据双曲线上存在两点M,N关于直线y=x+m对称,求出MN中点P(﹣,m),利用MN的中点在抛物线y2=9x上,即可求得实数m的值.解答:解:∵MN关于y=x+m对称∴MN垂直直线y=x+m,MN的斜率﹣1,MN中点P(x0,x0+m)在y=x+m上,且在MN上设直线MN:y=﹣x+b,∵P在MN上,∴x0+m=﹣x0+b,∴b=2x0+m由消元可得:2x2+2bx﹣b2﹣3=0∴M x+N x=﹣b,∴x0=﹣,∴b=∴MN中点P(﹣,m)∵MN的中点在抛物线y2=9x上,∴∴m=0或4故选D.点评:本题考查直线与双曲线的位置关系,考查对称性,考查抛物线的标准方程,解题的关键是确定MN中点P 的坐标.二.解答题(共15小题)16.已知椭圆C:,F1,F2是其左右焦点,离心率为,且经过点(3,1)(1)求椭圆C的标准方程;(2)若A1,A2分别是椭圆长轴的左右端点,Q为椭圆上动点,设直线A1Q斜率为k,且,求直线A2Q斜率的取值范围;(3)若Q为椭圆上动点,求cos∠F1QF2的最小值.考点:椭圆的简单性质;椭圆的应用.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的离心率为,且经过点(3,1),求椭圆C的标准方程;(2)设A2Q的斜率为k',Q(x0,y0),则可得kk'==,利用,即可求直线A2Q斜率的取值范围;(3)利用椭圆的定义、余弦定理,及基本不等式,即可求cos∠F1QF2的最小值.解答:解:(1)∵椭圆的离心率为,且经过点(3,1),建立方程,求出几何量,即可∴,∴椭圆C的标准方程为…(3分)(2)设A2Q的斜率为k',Q(x0,y0),则,…(5分)∴kk'=及…(6分)则kk'==又…(7分)∴,故A2Q斜率的取值范围为()…(8分)(3)设椭圆的半长轴长、半短轴长、半焦距分别为a,b,c,则有,由椭圆定义,有…(9分)∴cos∠F1QF2=…(10分)=…(11分)≥…(12分)==…(13分)∴cos∠F1QF2的最小值为.(当且仅当|QF1|=|QF2|时,即Q取椭圆上下顶点时,cos∠F1QF2取得最小值)…(14分)点评:本题考查椭圆的标准方程与几何性质,考查椭圆的定义,考查余弦定理,考查基本不等式的运用,综合性强.17.已知椭圆x2+=1的左、右两个顶点分别为A,B.双曲线C的方程为x2﹣=1.设点P在第一象限且在双曲线C上,直线AP与椭圆相交于另一点T.(Ⅰ)设P,T两点的横坐标分别为x1,x2,证明x1•x2=1;(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且•≤15,求S﹣S的取值范围.考点:直线与圆锥曲线的关系;平面向量数量积的运算.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线AP的方程与椭圆方程联立,确定P、T的横坐标,即可证得结论;(Ⅱ)利用•≤15,结合点P是双曲线在第一象限内的一点,可得1<x1≤2,利用三角形的面积公式求面积,从而可得S﹣S的不等式,利用换元法,再利用导数法,即可求S﹣S的取值范围.解答:(Ⅰ)证明:设点P(x1,y1)、T(x2,y2)(x i>0,y i>0,i=1,2),直线AP的斜率为k(k>0),则直线AP的方程为y=k(x+1),代入椭圆方程,消去y,整理,得(4+k2)x2+2k2x+k2﹣4=0,解得x=﹣1或x=,故x2=.同理可得x1=.所以x1•x2=1.(Ⅱ)设点P(x1,y1)、T(x2,y2)(x i>0,y i>0,i=1,2),则=(﹣1﹣x1,y1),=(1﹣x1,y1).因为•≤15,所以(﹣1﹣x1)(1﹣x1)+y12≤15,即x12+y12≤16.因为点P在双曲线上,所以,所以x12+4x12﹣4≤16,即x12≤4.因为点P是双曲线在第一象限内的一点,所以1<x1≤2.因为S1=|y2|,S2=,所以S﹣S==由(Ⅰ)知,x1•x2=1,即.设t=,则1<t≤4,S﹣S=5﹣t﹣.设f(t)=5﹣t﹣,则f′(t)=﹣1+=,当1<t<2时,f'(t)>0,当2<t≤4时,f'(t)<0,所以函数f(t)在(1,2)上单调递增,在(2,4]上单调递减.因为f(2)=1,f(1)=f(4)=0,所以当t=4,即x1=2时,S﹣S的最小值为f(4)=0,当t=2,即x1=时,S﹣S的最大值为f(2)=1.所以S﹣S的取值范围为[0,1].点评:本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力.18.设椭圆D:=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足,且AB⊥AF2.(Ⅰ)若过A、B、F2三点的圆C恰好与直线l:x﹣y﹣3=0相切,求圆C方程及椭圆D的方程;(Ⅱ)若过点T(3,0)的直线与椭圆D相交于两点M、N,设P为椭圆上一点,且满足(O为坐标原点),求实数t取值范围.考点:直线与圆锥曲线的综合问题;椭圆的应用.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用,可得F1为BF2的中点,根据AB⊥AF2,可得a,c的关系,利用过A、B、F2三点的圆C恰好与直线l:相切,求出a,即可求出椭圆的方程与圆的方程;(Ⅱ)设直线MN方程代入椭圆方程,利用韦达定理及向量知识,即可求实数t取值范围.解答:解:(Ⅰ)由题意知F1(﹣c,0),F2(c,0),A(0,b).因为AB⊥AF2,所以在Rt△ABF2中,,又因为,所以F1为BF2的中点,所以又a2=b2+c2,所以a=2c.所以F2(,0),B(﹣,0),Rt△ABF2的外接圆圆心为F1(﹣,0),半径r=a,因为过A、B、F2三点的圆C恰好与直线l:相切,所以=a,解得a=2,所以c=1,b=.所以椭圆的标准方程为:,圆的方程为(x+1)2+y2=1;(Ⅱ)设直线MN方程为y=k(x﹣3),M(x1,y1),N(x2,y2),P(x,y),则直线方程代入椭圆方程,消去y可得(4k2+3)x2﹣24k2x+36k2﹣12=0,∴△=(24k2)﹣4(4k2+3)(36k2﹣12)>0,∴k2<,x1+x2=,x1x2=,∵,∴x1+x2=tx,y1+y2=ty,∴tx=,ty=,∴x=,y=,代入椭圆方程可得3×[]2+4×[]2=12,整理得=∵k2<,∴0<t2<4,∴实数t取值范围是(﹣2,0)∪(0,2).点评:本题考查椭圆方程与圆的方程,考查直线与圆的位置关系,考查直线与椭圆的位置关系,难度大19.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且•的最大值为1,最小值为﹣2.(1)求椭圆C的方程;(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由.考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题;圆锥曲线的定义、性质与方程.分析:(1)设M(x',y'),化简•=x'2+2b2﹣a2(﹣a≤x≤a),从而求最值,进而求椭圆方程;(2)设直线MN的方程为x=ky﹣6并与椭圆联立,利用韦达定理求•的值,从而说明是直角.解答:解:(1)设M(x',y'),则y'2=b2﹣x'2,•=x'2+2b2﹣a2(﹣a≤x≤a),则当x'=0时,•取得最小值2b2﹣a2=﹣2,当x'=±a时,•取得最大值b2=1,∴a2=4,故椭圆的方程为.(2)设直线MN的方程为x=ky﹣,联立方程组可得,化简得:(k2+4)y2﹣2.4ky﹣=0,设M(x1,y1),N(x2,y2),则y1+y2=,y1y2=﹣,又A(﹣2,0),•=(x1+2,y1)•(x2+2,y2)=(k2+1)y1y2+k(y1+y2)+==﹣(k2+1)+k+=0,所以∠MAN为直角.点评:本题考查了圆锥曲线方程的求法及直线与圆锥曲线的位置关系应用,同时考查了向量的应用,属于难题.20.如图,P是抛物线y2=2x上的动点,点B,C在y轴上,圆(x﹣1)2+y2=1内切于△PBC,求△PBC面积的最小值.考点:圆与圆锥曲线的综合.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:设P(x0,y0),B(0,b),C(0,c),设b>c.直线PB:y﹣b=,化简,得(y0﹣b)x﹣x0y+x0b=0,由圆心(1,0)到直线PB的距离是1,知,由此导出(x0﹣2)b2+2y0b﹣x0=0,同理,(x0﹣2)c2+2y0c﹣x0=0,所以(b﹣c)2=,从而得到S△PBC=,由此能求出△PBC面积的最小值.解答:解:设P(x0,y0),B(0,b),C(0,c),设b>c.直线PB的方程:y﹣b=,化简,得(y0﹣b)x﹣x0y+x0b=0,∵圆心(1,0)到直线PB的距离是1,∴,∴(y0﹣b)2+x02=(y0﹣b)2+2x0b(y0﹣b)+x02b2,∵x0>2,上式化简后,得(x0﹣2)b2+2y0b﹣x0=0,同理,(x0﹣2)c2+2y0c﹣x0=0,∴b+c=,bc=,∴(b﹣c)2=,∵P(x0,y0)是抛物线上的一点,∴,∴(b﹣c)2=,b﹣c=,∴S△PBC===(x0﹣2)++4≥2+4=8.当且仅当时,取等号.此时x0=4,y0=.∴△PBC面积的最小值为8.点评:本昰考查三角形面积的最小值的求法,具体涉及到抛物线的性质、抛物线和直线的位置关系、圆的简单性质、均值定理等基本知识,综合性强,难度大,对数学思想的要求较高,解题时要注意等价转化思想的合理运用.21.已知直L1:2x﹣y=0,L2:x﹣2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.(Ⅰ)求圆心M的轨迹方程M;(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=﹣2x上存在点N使得|NA|=|NB|成立,求k的取值范围.考点:圆与圆锥曲线的综合;直线与圆相交的性质.专题:综合题;压轴题.分析:(Ⅰ)设M(x,y),M到L1,L2的距离分别为d1,d2,则d12+42=d22+82.所以,由此能求出圆心M的轨迹方程.(Ⅱ)设A(x1,y1),B(x2,y2),由,得(1﹣k2)x2﹣20kx﹣180=0.AB的中点为,AB的中垂线为,由,得.由此能求出k的取值范围.解答:解:(Ⅰ)设M(x,y),M到L1,L2的距离分别为d1,d2,则d12+42=d22+82.…(2分)∴,∴x2﹣y2=80,即圆心M的轨迹方程M:x2﹣y2=80.…(4分)(Ⅱ)设A(x1,y1),B(x2,y2),由,得(1﹣k2)x2﹣20kx﹣180=0.①∴AB的中点为,…(6分)∴AB的中垂线为,即,…(7分)由,得②…(8分)∵存在N使得|NA|=|NB|成立的条件是:①有相异二解,并且②有解.…(9分)∵①有相异二解的条件为,∴⇒且k≠±1.③…(10分)②有解的条件是,∴,④…(11分)根据导数知识易得时,k3﹣k+40>0,因此,由③④可得N点存在的条件是:﹣1或1<k<.…(12分)点评:本题主要考查双曲线标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.22.已知直线l1:ax﹣by+k=0;l2:kx﹣y﹣1=0,其中a是常数,a≠0.(1)求直线l1和l2交点的轨迹,说明轨迹是什么曲线,若是二次曲线,试求出焦点坐标和离心率.(2)当a>0,y≥1时,轨迹上的点P(x,y)到点A(0,b)距离的最小值是否存在?若存在,求出这个最小值.考点:圆锥曲线的轨迹问题.专题:综合题;压轴题;分类讨论;转化思想.分析:(1)联立直线l1和l2的方程,消去参数即可得到交点的轨迹方程,根据a的取值a>0,﹣1<a<0,a=﹣1,a<﹣1说明轨迹曲线,利用二次曲线判断形状,直接求出焦点坐标和离心率.(2)通过a>0,y≥1时,说明轨迹的图形,求出轨迹上的点P(x,y)到点A(0,b)距离的表达式,通过配方讨论b与的大小,求出|PA|的最小值.解答:解:(1)由消去k,得y2﹣ax2=1①当a>0时,轨迹是双曲线,焦点为,离心率;②当﹣1<a<0时,轨迹是椭圆,焦点为,离心率;③当a=﹣1时,轨迹是圆,圆心为(0,0),半径为1;④当a<﹣1时,轨迹是椭圆,焦点为,离心率(2)当a>0时,y≥1时,轨迹是双曲线y2﹣ax2=1的上半支.∵|PA|2=x2+(y﹣b)2==①当b>时,|PA|的最小值为;②当b≤时,|PA|的最小值为|1﹣b|点评:本题考查知识点比较多,涉及参数方程,双曲线方程椭圆方程,圆的方程,两点的距离公式等等,涉及分类讨论思想二次函数的最值,是难度比较大,容易出错的题目,考试常靠题型,多以压轴题为主.23.如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):(Ⅰ).求点M的轨迹方程;(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.考点:圆锥曲线的轨迹问题;向量在几何中的应用.专题:计算题;压轴题.分析:(1)设出M的坐标,根据两点关于直线对称时两点连线与对称轴垂直,且两点的中点在对称轴上,再根据平行四边形的对角线对应的向量等于两邻边对应向量的和得到点M的轨迹方程;(2)利用函数在切点处的导数值为曲线的切线斜率,求出腰A1B1的方程,分别令y=0和y=1求出与两底的交点横坐标,利用梯形的面积公式表示出梯形A1B1C1D1面积,利用基本不等式求出其最小值.解答:解:(1)如图,设M(x,y),B′(x0,2),又E(0,b)显然直线l的斜率存在,故不妨设直线l的方程为y=kx+b,则而BB′的中点在直线l上,故,①由于⇒代入①即得,又0≤x0≤2点M的轨迹方程(0≤x≤2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)易知曲线S的方程为(﹣2≤x≤2)设梯形A1B1C1D1的面积为s,点P的坐标为.由题意得,点Q的坐标为(0,1),直线B1C1的方程为y=1.对于有∴∴直线A1B1的方程为,即:令y=0得,,∴.令y=1得,,∴所以当且仅当,即时,取“=”且,时,s有最小值为.梯形A1B1C1D1的面积的最小值为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(15分)点评:本题考查两点关于一条直线对称的充要条件;向量运算的几何意义;曲线在切点处的导数值为曲线的切线斜率;利用基本不等式求函数的最值.属于一道难题.24.(1)已知一个圆锥母线长为4,母线与高成45°角,求圆锥的底面周长.(2)已知直线l与平面α成φ,平面α外的点A在直线l上,点B在平面α上,且AB与直线l成θ,①若φ=60°,θ=45°,求点B的轨迹;②若任意给定φ和θ,研究点B的轨迹,写出你的结论,并说明理由.考点:圆锥曲线的轨迹问题;旋转体(圆柱、圆锥、圆台).专题:综合题;压轴题.分析:(1)由圆锥的母线长为4,母线与高成45°角,知高和底面半径与母线构成一个等腰直角三角形,由勾股定理可知底面半径为2,由圆周公式2πR可算出底面周长.(2)①设l∩α=C,点A在平面α上的射影为点O.建立空间直角坐标系,设|AC|=a,有A(0,0,asin60°),C(0,﹣acos60°).设B(x,y,0),则=(0,﹣acos60°,﹣asin60°).=(x,y,﹣asin60°).所以.又由|•cos45°,知﹣acos60°•y+a2sin60°=a,平方整理得,由此知点B的轨迹.②设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asinφ),C(0,﹣acosφ),(0<φ<).设B(x,y,0),则(6分)=(0,﹣acosφ,﹣asinφ).=(x,y,﹣asinφ).所以φ.由|•cosθ=a••cosθ.知cos2θ•x2+(cos2θ﹣cos2φ)y2+a2ysinφsin2φ+a2sin2φ(cos2θ﹣sin2φ)=0.故当φ=时,点B的轨迹为圆;当θ<φ<时,点B的轨迹为椭圆;当θ=φ<时,点B的轨迹为抛物线;当θ>φ时,点B的轨迹为双曲线.解答:解:(1)∵圆锥的母线长为4,母线与高成45°角,高和底面半径与母线构成一个等腰直角三角形,即高和底面半径长度一样,则由勾股定理可知底面半径为2,则由圆周公式2πR可算出底面周长4π;(2分)(2)①设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asin60°),C(0,﹣acos60°).设B(x,y,0),则=(0,﹣acos60°,﹣asin60°).=(x,y,﹣asin60°).∴.又∵|•cos45°=a•.∴﹣acos60°•y+a2sin60°=a.(11分)平方整理得cos245°•x2+(cos245°﹣cos260°)y2+a2ysin60°sin120°+a2sin260°(cos245°﹣sin260°)=0.即,∴点B的轨迹椭圆;(4分)②设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asinφ),C(0,﹣acosφ),(0<φ<).设B(x,y,0),则(6分)=(0,﹣acosφ,﹣asinφ).=(x,y,﹣asinφ).∴φ.又∵|•cosθ=a••cosθ.∴﹣acosφ•y+a2sinφ=a.(11分)平方整理得cos2θ•x2+(cos2θ﹣cos2φ)y2+a2ysinφsin2φ+a2sin2φ(cos2θ﹣sin2φ)=0.i.当cos2θ﹣cos2φ=0,即θ=φ时,上式为抛物线方程;ii.当cos2θ﹣cos2φ>0,即θ<φ时,上式为椭圆方程;iii.当cos2θ﹣cos2φ<0,即θ>φ时,上式为双曲线方程.(14分)故当φ=时,点B的轨迹为圆;当θ<φ<时,点B的轨迹为椭圆;当θ=φ<时,点B的轨迹为抛物线;当θ>φ时,点B的轨迹为双曲线.(16分)点评:第(1)题考查圆锥的性质和应用,是基础题,解题时要认真审题,仔细解答.第(2)题考查圆锥曲线的轨迹的求法和判断,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.25.已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C 于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.考点:椭圆的标准方程;直线的斜率;直线与圆锥曲线的综合问题.专题:压轴题.分析:(1)待定系数法求椭圆的方程.(2)设出A、B坐标,利用一元二次方程根与系数的关系,求出A、B横坐标之差,纵坐标之差,从而求出AB斜率.(3)设出AB直线方程,与椭圆方程联立,运用根与系数的关系求AB长度,计算P到AB的距离,计算△PAB面积,使用基本不等式求最大值.解答:解:(Ⅰ)设椭圆C的方程为.由题意,解得a2=4,b2=2.所以,椭圆C的方程为.故点P(1,)(Ⅱ)由题意知,两直线PA,PB的斜率必存在,设PB的斜率为k,则PB的直线方程为.由得,.设A(x A,y A),B(x B,y B),则,同理可得.则,.所以直线AB的斜率为定值.(Ⅲ)设AB的直线方程为,由得.由,得m2<8.此时,.由椭圆的方程可得点P(1,),根据点到直线的距离公式可得P到AB的距离为,由两点间的距离公式可得=,故===≤×=.因为m2=4使判别式大于零,所以当且仅当m=±2时取等号,所以△PAB面积的最大值为.点评:直线与圆锥曲线的综合问题,注意应用一元二次方程根与系数的关系,式子的化简变形,是解题的难点和关键.26.已知点B(0,1),A,C为椭圆上的两点,△ABC是以B为直角顶点的直角三角形.(I)当a=4时,求线段BC的中垂线l在x轴上截距的取值范围.(II)△ABC能否为等腰三角形?若能,这样的三角形有几个?考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:综合题;压轴题;圆锥曲线中的最值与范围问题.分析:(I)依题意,可知椭圆的方程为:+y2=1,设C(4cosθ,sinθ),可求得直线l的方程为y=﹣x++,令y=0得x==cosθ(cosθ≠0),利用余弦cosθ的有界性即可求得线段BC的中垂线l在x轴上截距的取值范围;(II)当等腰直角三角形ABC的两条腰AB与BC不关于y轴对称时,设出AB的方程为y=kx+1(k>0),BC的方程为y=﹣x+1,利用直线与方程与椭圆方程联立,利用等腰直角三角形ABC中的两腰|AB|=|BC|,借助基本不等式即可求得a的取值范围;同理可求两条腰AB与BC关于y轴对称时a的取值范围.解答:解:(I)∵a=4,∴椭圆的方程为:+y2=1,故B(0,1),设C(4cosθ,sinθ),则BC的中点M(2cosθ,),∵BC的斜率k BC=,∴线段BC的中垂线l的斜率k=﹣=﹣,∴直线l的方程为:y﹣=﹣(x﹣2cosθ),∴y=﹣x++,令y=0得:x==cosθ(cosθ≠0)∵﹣1≤cosθ≤1且cosθ≠0,∴﹣≤x=cosθ≤且x≠0,∴线段BC的中垂线l在x轴上截距的取值范围为[﹣,0)∪(0,].(II)当等腰直角三角形ABC的两条腰AB与BC不关于y轴对称时,作图如右,设此时过B(0,1)的AB的方程为y=kx+1(k>0),则BC的方程为y=﹣x+1,由得:(a2k2+1)x2+2a2kx=0,设该方程两根为x1,x2,则x1+x2=﹣,x1x2=0,则|AB|==|x1﹣x2|•=•。
高中数学平面解析几何初步检测考试题(附答案)
高中数学平面解析几何初步检测考试题(附答案)试卷分析第2章平面解析几何初步综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线3a_-y-1=0与直线(a-23)_+y+1=0垂直,则a的值是()A.-1或13 B.1或13C.-13或-1 D.-13或1解析:选D.由3a(a-23)+(-1)1=0,得a=-13或a=1.2.直线l1:a_-y+b=0,l2:b_-y+a=0(a0,b0,ab)在同一坐标系中的图形大致是图中的()解析:选C.直线l1:a_-y+b=0,斜率为a,在y轴上的截距为b,设k1=a,m1=b.直线l2:b_-y+a=0,斜率为b,在y轴上的截距为a,设k2=b,m2=a.由A知:因为l1∥l2,k1=k20,m10,即a=b0,b0,矛盾.由B知:k1k2,m10,即ab,b0,矛盾.由C知:k10,m20,即a0,可以成立.由D知:k10,m2m1,即a0,ab,矛盾.3.已知点A(-1,1)和圆C:(_-5)2+(y-7)2=4,一束光线从A经_轴反射到圆C上的最短路程是()A.62-2 B.8C.46 D.10解析:选B.点A关于_轴对称点A(-1,-1),A与圆心(5,7)的距离为5+12+7+12=10.所求最短路程为10-2=8.4.圆_2+y2=1与圆_2+y2=4的位置关系是()A.相离 B.相切C.相交 D.内含解析:选D.圆_2+y2=1的圆心为(0,0),半径为1,圆_2+y2=4的圆心为(0,0),半径为2,则圆心距02-1=1,所以两圆内含.5.已知圆C:(_-a)2+(y-2)2=4(a0)及直线l:_-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()A.2B.2-1C.2-2 D.2+1解析:选B.圆心(a,2)到直线l:_-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.6.与直线2_+3y-6=0关于点(1,-1)对称的直线是()A.3_-2y-6=0B.2_+3y+7=0C.3_-2y-12=0D.2_+3y+8=0解析:选D.∵所求直线平行于直线2_+3y-6=0,设所求直线方程为2_+3y+c=0,由|2-3+c|22+32=|2-3-6|22+32,c=8,或c=-6(舍去),所求直线方程为2_+3y+8=0.7.若直线y-2=k(_-1)与圆_2+y2=1相切,则切线方程为()A.y-2=34(1-_)B.y-2=34(_-1)C._=1或y-2=34(1-_)D._=1或y-2=34(_-1)解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆_2+y2-2_=3与直线y=a_+1的公共点有()A.0个 B.1个C.2个 D.随a值变化而变化解析:选C.直线y=a_+1过定点(0,1),而该点一定在圆内部.9.过P(5,4)作圆C:_2+y2-2_-2y-3=0的切线,切点分别为A、B,四边形PACB的面积是()A.5 B.10C.15 D.20解析:选B.∵圆C的圆心为(1,1),半径为5.|PC|=5-12+4-12=5,|PA|=|PB|=52-52=25,S=122552=10.10.若直线m_+2ny-4=0(m、nR,nm)始终平分圆_2+y2-4_-2y-4=0的周长,则mn的取值范围是()A.(0,1) B.(0,-1)C.(-,1) D.(-,-1)解析:选C.圆_2+y2-4_-2y-4=0可化为(_-2)2+(y-1)2=9,直线m_+2ny-4=0始终平分圆周,即直线过圆心(2,1),所以2m+2n-4=0,即m+n=2,mn=m(2-m)=-m2+2m=-(m-1)2+11,当m=1时等号成立,此时n=1,与“mn”矛盾,所以mn<1.11.已知直线l:y=_+m与曲线y=1-_2有两个公共点,则实数m的取值范围是()A.(-2,2) B.(-1,1)C.[1,2) D.(-2,2)解析:选C. 曲线y=1-_2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l过点(-1,0)时,m=1;当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线).12.过点P(-2,4)作圆O:(_-2)2+(y-1)2=25的切线l,直线m:a_-3y=0与直线l平行,则直线l与m的距离为()A.4 B.2C.85D.125解析:选A.∵点P在圆上,切线l的斜率k=-1kOP=-11-42+2=43.直线l的方程为y-4=43(_+2),即4_-3y+20=0.又直线m与l平行,直线m的方程为4_-3y=0.故两平行直线的距离为d=|0-20|42+-32=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A(1,-1),B(-1,1)且圆心在直线_+y-2=0上的圆的方程是________.解析:易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=_,根据圆的几何性质,这条直线应该过圆心,将它与直线_+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.答案:(_-1)2+(y-1)2=414.过点P(-2,0)作直线l交圆_2+y2=1于A、B两点,则|PA||PB|=________. 解析:过P作圆的切线PC,切点为C,在Rt△POC中,易求|PC|=3,由切割线定理,|PA||PB|=|PC|2=3.答案:315.若垂直于直线2_+y=0,且与圆_2+y2=5相切的切线方程为a_+2y+c=0,则ac的值为________.解析:已知直线斜率k1=-2,直线a_+2y+c=0的斜率为-a2.∵两直线垂直,(-2)(-a2)=-1,得a=-1.圆心到切线的距离为5,即|c|5=5,c=5,故ac =5.答案:516.若直线3_+4y+m=0与圆_2+y2-2_+4y+4=0没有公共点,则实数m的取值范围是__________.解析:将圆_2+y2-2_+4y+4=0化为标准方程,得(_-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d=|31+4-2+m|32+42=|m-5|5>1,m<0或m>10.答案:(-,0)(10,+)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.三角形ABC的边AC,AB的高所在直线方程分别为2_-3y+1=0,_+y=0,顶点A(1,2),求BC边所在的直线方程.解:AC边上的高线2_-3y+1=0,所以kAC=-32.所以AC的方程为y-2=-32(_-1),即3_+2y-7=0,同理可求直线AB的方程为_-y+1=0.下面求直线BC的方程,由3_+2y-7=0,_+y=0,得顶点C(7,-7),由_-y+1=0,2_-3y+1=0,得顶点B(-2,-1).所以kBC=-23,直线BC:y+1=-23(_+2),即2_+3y+7=0.18.一束光线l自A(-3,3)发出,射到_轴上,被_轴反射后与圆C:_2+y2-4_-4y+7=0有公共点.(1)求反射光线通过圆心C时,光线l所在直线的方程;(2)求在_轴上,反射点M的横坐标的取值范围.解:圆C的方程可化为(_-2)2+(y-2)2=1.(1)圆心C关于_轴的对称点为C(2,-2),过点A,C的直线的方程_+y=0即为光线l所在直线的方程.(2)A关于_轴的对称点为A(-3,-3),设过点A的直线为y+3=k(_+3).当该直线与圆C相切时,有|2k-2+3k-3|1+k2=1,解得k=43或k=34,所以过点A的圆C的两条切线分别为y+3=43(_+3),y+3=34(_+3).令y=0,得_1=-34,_2=1,所以在_轴上反射点M的横坐标的取值范围是[-34,1].19.已知圆_2+y2-2_-4y+m=0.(1)此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线_+2y-4=0相交于M、N两点,且OMON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)方程_2+y2-2_-4y+m=0,可化为(_-1)2+(y-2)2=5-m,∵此方程表示圆,5-m>0,即m<5.(2)_2+y2-2_-4y+m=0,_+2y-4=0,消去_得(4-2y)2+y2-2(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(_1,y1),N(_2,y2),则y1+y2=165,①y1y2=m+85. ②由OMON得y1y2+_1_2=0即y1y2+(4-2y1)(4-2y2)=0,16-8(y1+y2)+5y1y2=0.将①②两式代入上式得16-8165+5m+85=0,解之得m=85.(3)由m=85,代入5y2-16y+m+8=0,化简整理得25y2-80y+48=0,解得y1=125,y2=45._1=4-2y1=-45,_2=4-2y2=125.M-45,125,N125,45,MN的中点C的坐标为45,85.又|MN|= 125+452+45-1252=855,所求圆的半径为455.所求圆的方程为_-452+y-852=165.20. 已知圆O:_2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.(1)求a、b间关系;(2)求|PQ|的最小值;(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.解:(1)连接OQ、OP,则△OQP为直角三角形,又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2_+y-3=0上,所以|PQ|min=|PA|min,为A到直线l的距离,所以|PQ|min=|22+1-3|22+12=255.(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=255.)(3)以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l与l的交点P0,所以r=322+12-1=355-1,又l:_-2y=0,联立l:2_+y-3=0得P0(65,35).所以所求圆的方程为(_-65)2+(y-35)2=(355-1)2.21.有一圆与直线l:4_-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.解:法一:由题意可设所求的方程为(_-3)2+(y-6)2+(4_-3y+6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得=-1,所以所求圆的方程为_2+y2-10_-9y+39=0.法二:设圆的方程为(_-a)2+(y-b)2=r2,则圆心为C(a,b),由|CA|=|CB|,CAl,得3-a2+6-b2=r2,5-a2+2-b2=r2,b-6a-343=-1,解得a=5,b=92,r2=254.所以所求圆的方程为(_-5)2+(y-92)2=254.法三:设圆的方程为_2+y2+D_+Ey+F=0,由CAl,A(3,6),B(5,2)在圆上,得32+62+3D+6E+F=0,52+22+5D+2E+F=0,-E2-6-D2-343=-1,解得D=-10,E=-9,F=39.所以所求圆的方程为_2+y2-10_-9y+39=0.法四:设圆心为C,则CAl,又设AC与圆的另一交点为P,则CA的方程为y-6=-34(_-3),即3_+4y-33=0.又因为kAB=6-23-5=-2,所以kBP=12,所以直线BP的方程为_-2y-1=0.解方程组3_+4y-33=0,_-2y-1=0,得_=7,y=3.所以P(7,3).所以圆心为AP的中点(5,92),半径为|AC|=52.所以所求圆的方程为(_-5)2+(y-92)2=254.22.如图在平面直角坐标系_Oy中,已知圆C1:(_+3)2+(y-1)2=4和圆C2:(_-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被C2截得的弦长相等.试求所有满足条件的点P的坐标.解:(1)由于直线_=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(_-4),圆C1的圆心到直线l的距离为d,因为圆C1被直线l截得的弦长为23,所以d=22-32=1.由点到直线的距离公式得d=|1-k-3-4|1+k2,从而k(24k+7)=0,即k=0或k=-724,所以直线l的方程为y=0或7_+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(_-a),k0,则直线l2的方程为y-b=-1k(_-a).因为圆C1和C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即|1-k-3-a-b|1+k2=|5+1k4-a-b|1+1k2,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk 或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因为k的取值有无穷多个,所以a+b-2=0,b-a+3=0,或a-b+8=0,a+b-5=0,解得a=52,b=-12,或a=-32,b=132.这样点P只可能是点P152,-12或点P2-32,132.经检验点P1和P2满足题目条件.。
高中数学期末备考:解析几何02圆的双切线模型及应用含解析
2.圆的双切线模型及应用圆的双切线模型是圆中常见的一类考题,由于其结论丰富,变化多端,颇受命题人的热爱,2020年的理数全国一卷的选择题11题就是一个典例应用.尽管如此,在实际应用中,学生对该模型中的相关几何结论的理解和使用仍然显得办法不多,因此,本文将系统的梳理一下圆的双切线模型中的常见结论及应用,希望提升同学们对这类问题的解决能力.如图1,从圆外任一点),(00y x P 向圆引两条切线,圆心C ,两切点B A ,,我们把线段PB P A ,的长度叫做切线长,设圆的半径为r ,则四边形P ABC 具有如下的性质:1.P AC PBC ;PB P A .2.切线长的计算:22r PC PB P A,当半径给定,切线长最小等价于PC 最小.3.C B A P AP CA BP BC ,,,, 四点共圆180 ACB APB ,C B A P ,,,的外接圆以PC 为直径 PC AB AP BC PB AC (托勒密定理).4.PC 平分ACB APB ,.5.222r PC r PB BC S S PBC P ABC ,当半径给定,四边形P ABC 最小等价于PC 最小.6.假设 2 APC BPC 且PCrPC BCsin .由基本的三角恒等关系可知:22(21sin 212cos PCr ,故可得:2cos ||||P A PB PB P A 224222232](21[)(r PC r PC PC r r PC .对2PC 使用均值不等式可得 PB P A 最小值.图17.假设),(00y x P ,圆C 的方程为022 F Ey Dx y x (0422 F E D )则切点弦AB 的方程为:0220000 F yy E x x Dy y x x .可以看到,该模型中的很多几何量最终都可以建立为PC 的函数从而求得最小值,这是应该注意的地方.下面我们将通过几个例子详细展示圆的双切线模型在高考以及模考中的应用,进一步体会相关结论的用途.例1.若P 是直线l :3490x y 上一动点,过P 作圆C :2240x y x 的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为()B.D.解析:考察性质5.因为直线与圆相切,所以90PAC PBC ,且PAC PBC ≌所以四边形PACB 面积12222PAC S S AC PA PA ,又PA,所以当PC 最小时,P A 最小,四边形PACB 面积的最小值,由图象可得,PC 最小值即为点C 到直线3490x y 的距离,所以min 3PC,所以min PA 所以四边形PACB面积的最小值2S PA ,故选:B例2.(2020全国1卷)已知⊙M:222220x y x y ,直线l :220x y ,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB 最小时,直线AB 的方程为()A.210x y B.210x y C.210x y D.210x y 解析:综合考察性质3,5,7.圆的方程可化为 22114x y ,点M 到直线l的距离为2d,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ,所以14442PAM PM AB S PA AM PA,而PA,当直线MP l时,min MP ,min 1PA ,此时PM AB 最小.∴ 1:112MP y x 即1122y x ,由1122220y x x y解得,10x y.所以以MP 为直径的圆的方程为 1110x x y y ,即2210x y y ,两圆的方程相减可得:210x y ,即为直线AB 的方程.我们在平时解析几何的教学与备考中,应该更加深入地总结出一些常见常考的解析几何模型及应用,这样就更好地展示出了解析几何的生命力,使得学生可以从几何与代数多角度来研究问题,提高学生的数学素养.练习题.1.已知圆C : 22111x y ,P 是直线10x y 的一点,过点P 作圆C 的切线,切点为A ,B ,则PC AB 的最小值为()B.C.2.设P 为圆224x y 外一点,过P 引圆的切线,两切点分别为A 和B ,若4PA PB,则cos APB ()A.21C.2D.23.过椭圆2213627x y 上一点P 分别向圆 221:34C x y 和圆 222:31C x y 作切线,切点分别为M 、N ,则222PM PN 的最小值为()A.90B.102C.107D.1654.已知点P 是直线:260l x y 上的动点,过点P 作圆222:(2)C x y r (0)r 的两条切线PM ,PN ,M ,N 为切点.若MPN 的最大值为60 ,则r 的值为()A.2B.1C.D5.已知圆C :224210x y x y ,点P 是直线4y 上的动点,过P 作圆的两条切线,切点分别为A ,B ,则AB 的最小值为()6.已知圆22:(2)(6)4 C x y ,点M 为直线:80l x y 上一个动点,过点M 作圆C 的两条切线,切点分别为A ,B ,则当四边形CAMB 周长取最小值时,四边形CAMB 的外接圆方程为()A.22(7)(1)4 x y B.22(1)(7)4 x y C.22(7)(1)2x y D.22(1)(7)2x y7.已知 3,4P ,过点P 作圆 22:11C x a y a (a 为参数,且a R )的两条切线分别切圆C 于点A 、B ,则sin APB 的最大值为()A.1B.128.已知圆22:20C x y x ,直线:10l x y ,P 为l 上的动点,过点P 作圆C 的两条切线PA 、PB ,切点分别A 、B ,当·PC AB 最小时,直线AB 的方程为()A.0x y B.0x y C.2210x y D.2210x y5.解析:圆C :224210x y x y 化为标准方程: 22214 x y ,其圆心 2,1C ,半径2r .过点P 引圆C 的两条切线,切点分别为点A、B ,如图:在△PAC 中,有11||||||||222PAC AB S CA AP CP,即||||||4AB AP CP ,变形可得:4||||||AP AB CP.设||CP x ,则44||AB x 所以当||CP 的值即x 最小时,24x 的值最大,此时||AB 最小.而||CP 的最小值为点C 到直线4y 的距离,即min ||3CP ,所以min ||AB .故选:B6.解析:圆22:(2)(6)4 C x y 的圆心(2,6)C ,半径2r ,点C 到直线l 的距离dCA AM ,四边形CAMB 周长2||2||44CA AM 48 ,当且仅当CM l 时取“=”,此时直线:80CM x y ,由8080x y x y得点(0,8)M ,四边形CAMB 的外接圆圆心为线段CM 中点(1,7)22(1)(7)2 x y .故选:D7.解析:圆心 ,1C a a ,半径为1,圆心C 在直线1y x 上运动,设APC ,则2APB ,由圆的几何性质可知1tan AC PA PA,所以,2222sin cos 2tan 22sin sin 211sin cos tan 1tan tan APB PA PA,当直线PC 与直线1y x 垂直时,PC取最小值,则PA 且min2PC,则min PAPA ,由双勾函数的单调性可知,函数1yx x在上为增函数,且10y x x,故函数21f xx x在上为减函数,故当PAsin APB取得最大值42.故选:C.8.解析:圆C 的标准方程为 2211x y ,圆心为 1,0,半径为1r .依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC ,所以14422PAC PC AB S PA AC PA△,而PA当直线PC ⊥l 时,PA 最小,此时PC AB 最小.结合图象可知,此时切点为 0,0,1,1 ,所以直线AB 的方程为y x ,即0x y .故选:A。
高中数学竞赛专题讲座之五:解析几何_2_
高中数学竞赛专题讲座之五: 《解析几何》各类竞赛试题选讲一、选择题1.(04湖南)湖南)已知曲线已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是(C) A .)2,12(-- B .)12,2(--C .)12,0[-D .)12,0(-2.(05全国)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是表示的曲线是( )A .焦点在x 轴上的椭圆轴上的椭圆B .焦点在x 轴上的双曲线轴上的双曲线C .焦点在y 轴上的椭圆轴上的椭圆D .焦点在y 轴上的双曲线轴上的双曲线3.(06浙江)已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有(共有( C )条. A .1 B .2 C .3 D .4 解: 由,5=AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条共切线。
正确答案为C. 4.(06安徽)过原点O 引抛物线224y x ax a =++的切线,当a 变化时,两个切点分别在抛物线(线( )上)上A .2213,22y x y x == B .2235,22y x y x ==C .22,3y x y x ==D .223,5y x y x ==5.若在抛物线)0(2>=a ax y 的上方可作一个半径为r 的圆与抛物线相切于原点O ,且该圆与抛物线没有别的公共点,则r 的最大值是(A ) A .a 21 B .a1C .aD .a 26.(06江苏)已知抛物线y 2=2px ,o 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的点P 共有(B) A .0个B .2个C .4个D .6个7.(06全国)如图3,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T .延长FT 交双曲线右支于P 点.若M 为线段FP 的中点,O 为坐为坐 标原点,则||||MO MT -与b a -的大小关系为(的大小关系为( ) A .||||MO MT b a ->-B .||||MO MT b a -=-C .||||MO MT b a -<-D .不确定.不确定8.(05四川)双曲线12222=-b y a x 的左焦点为1F ,顶点为21,A A ,P 是该双曲线右支上任意一点,则分别以线段211,A A PF 为直径的两圆一定为直径的两圆一定 ( )A .相交.相交B .内切.内切C .外切.外切D .相离.相离解:设双曲线的另一个焦点为2F ,线段1PF 的中点为C ,在△PF F 21中,C 为1PF 的中点,O 为21F F 的中点,从而|)||(|21||212112A A PF PF OC -==,从而以线段211,A A PF 为直径的两圆一定内切. 9.点A 是直线x y l 3:=上一点,且在第一象限,点B 的坐标为(3,2),直线AB 交x 轴正半轴于点C ,那么三角形AOC 面积的最小值是(A )10.(02湖南)已知A (-7,0),B (7,0),C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为(两点,此椭圆的另一个焦点的轨迹为( )(奥析263) A .双曲线.双曲线 B .椭圆.椭圆 C .椭圆的一部分.椭圆的一部分 D .双曲线的一部分.双曲线的一部分11.(03全国)过抛物线)2(82+=x y 的焦点F 作倾斜角为60O的直线。
高中数学解析几何深度练习题及答案
高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。
解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。
因此,三角形ABC为等腰三角形。
题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。
解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。
由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。
即 k * (-3/k) = -1。
解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。
题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。
解答:由于L1与L2垂直,它们的斜率之积为 -1。
L1的斜率为 -4/3,所以L2的斜率为 3/4。
通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。
2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。
解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。
2022_2023学年高中数学第2章平面解析几何初步单元测评湘教版选择性必修第一册
第2章测评一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022江苏南京六校高二联考)直线2x+3y+1=0的斜率和它在y轴上的截距分别为( )A.2,1B.C.-,-D.-,-2.已知直线l经过点(3,1),且直线l的一个法向量是(1,1),则l的方程是( )A.y=-x+4B.y=x-2C.y=-x+2D.y=x+23.(2022安徽池州高二期末)若圆C1:x2+y2-2x-4y-4=0,圆C2:x2+y2-6x-10y-2=0,则圆C1,C2的公切线条数为( )A.1B.2C.3D.44.(2022北京第十二中学高二期中)已知圆的一条直径的端点分别是A(-1,0),B(3,-4),则该圆的方程为( )A.(x+1)2+(y-2)2=8B.(x-1)2+(y+2)2=8C.(x+1)2+(y-2)2=32D.(x-1)2+(y+2)2=325.经过两条直线2x+y+2=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线方程为( )A.2x+3y-2=0B.2x+3y+3=0C.3x+2y-2=0D.3x+2y+3=06.经过点A(1,2)可作圆x2+y2+mx-2y+4=0的两条切线,则实数m的取值范围是( )A.(-∞,-2)∪(2,+∞)B.(-5,-2)∪(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-5,-2)∪(2,+∞)7.(2022江苏阜宁中学高二月考)已知圆C1与圆C2:(x+2)2+(y-1)2=4关于直线y=x对称,则圆C1的方程为( )A.(x+1)2+(y-2)2=4B.(x-1)2+(y-2)2=4C.(x+1)2+(y+2)2=4D.(x-1)2+(y+2)2=48.(2022四川成都树德中学高二月考)阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k(k>0,k≠1)的点的轨迹是圆,后人将该圆称为阿波罗尼斯圆.若平面内两定点A,B间的距离为2,动点P满足,当P,A,B不共线时,△PAB面积的最大值是( )A.2B.C.D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022山西长治二中高二月考)若l1与l2为两条不重合的直线,它们的倾斜角分别是α1,α2,下列命题是真命题的为( )A.若l1∥l2,则两条直线的斜率相等B.若两条直线的斜率相等,则l1∥l2C.若l1∥l2,则α1=α2D.若α1=α2,则l1∥l210.(2022湖北宜昌夷陵中学等高二联考)已知直线l的一个方向向量为u=-,且直线l经过点(1,-2),则下列结论中正确的是( )A.直线l的倾斜角等于150°B.直线l在x轴上的截距等于C.直线l与直线x-3y+2=0垂直D.直线l与直线x+y+2=0平行11.(2022江苏苏州第十中学高二月考)已知直线l1:x-y-1=0,动直线l2:(k+1)x+ky+k=0(k∈R),则下列结论正确的是( )A.存在k,使得直线l2的倾斜角为90°B.对任意的k,直线l1与l2都有公共点C.对任意的k,直线l1与l2都不重合D.对任意的k,直线l1与l2都不垂直12.(2022辽宁实验中学高二月考)已知实数x,y满足方程x2+y2-2x-4y+1=0,则下列说法正确的是( )A.x2+y2的最大值为2+B.(x+2)2+(y+1)2的最大值为22+12C.x+y的最大值为3+2D.4x-3y的最大值为8三、填空题:本题共4小题,每小题5分,共20分.13.我国古代名著《墨经》中给出了圆的定义为“一中同长也”.已知O为坐标原点,P(-1,),若☉O,☉P的“长”分别为1,r(r>0),且两圆相切,则r= .14.(2022江苏阜宁中学高二月考)已知直线l:mx-y=1,若直线l与直线x-my-1=0平行,则实数m 的值为 .动直线l被圆C:x2+y2+2x-24=0截得弦长的最小值为 .15.(2022福建南安第三中学高二月考)一个圆过圆C:x2+y2-2x=0与直线l:x+2y-3=0的交点,且圆心在y轴上,则这个圆的方程为 .16.(2022山东潍坊高二联考)已知P(3,-2),M为圆x2+(y-2)2=4上的动点,则线段MP长度的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知直线l1:ax+2y+6=0和l2:x+(a-1)y+a2-1=0(a≠1),试求a为何值时,(1)l1∥l2; (2)l1⊥l2.18.(12分)已知圆C:x2+y2+2x-4y-4=0.(1)在下列两个条件中任选一个作答.①已知不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;②从圆外一点P(2,1)向圆引切线,求切线方程.(注:如果选择两个条件分别解答,按第一个解答计分)(2)若圆C2:x2+y2=4与圆C相交于D,E两点,求线段DE的长.19.(12分)(2022山东高二“学情检测”)已知△ABC的顶点A(4,2),AB边上的中线CM所在直线方程为x-y-3=0,AC边上的高BH所在直线方程为x+2y-2=0.求:(1)顶点C的坐标;(2)点B到直线AC的距离.20.(12分)已知A(0,3),O为坐标原点,直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.21.(12分)(2022四川绵阳重点高中高二联考)已知圆C经过(2,4),(1,3)两点,圆心C在直线x-y+1=0上,过点A(0,1)且斜率为k的直线l与圆C相交于M,N两点.(1)求圆C的标准方程;(2)若=12(O为坐标原点),求直线l的斜率.22.(12分)(2022黑龙江哈尔滨九中高二期中)已知线段AB的端点B的坐标是(6,8),端点A在圆x2+y2=16上运动,M是线段AB的中点,且直线l过定点(1,0).(1)求点M的轨迹方程;(2)记(1)中求得的图形的圆心为C,若直线l与圆C交于P,Q两点,求△CPQ面积的最大值,并求此时直线l的方程.参考答案第2章测评1.D 将直线2x+3y+1=0化为斜截式,得y=-x-,所以直线的斜率为-,在y轴上的截距为-,故选D.2.A 由直线l的一个法向量可知直线的斜率为-1.∵直线l经过点(3,1),且直线l的斜率为-1,根据直线的点斜式可得直线l的方程是y-1=-(x-3),整理得y=-x+4,故选A.3.B 依题意,圆C1:(x-1)2+(y-2)2=9,圆心为C1(1,2),半径为r1=3,圆C2:(x-3)2+(y-5)2=36,圆心为C2(3,5),半径为r2=6.因为|C1C2|=,且r2-r1<<r1+r2,故圆C1,C2相交,则圆C1,C2有2条公切线.故选B.4.B 由题意可知,线段AB的中点为(1,-2),即该圆的圆心为(1,-2).又圆的半径为r=|AB|==2,故圆的方程为(x-1)2+(y+2)2=8.故选B.5.A 联立方程组解得则交点为A(-2,2).因为所求直线垂直于直线3x-2y+4=0,故所求直线的斜率k=-.故所求直线方程为y-2=-(x+2),即2x+3y-2=0.故选A.6.B 由圆x2+y2+mx-2y+4=0整理得x+2+(y-1)2=-3,∴-3>0,解得m<-2或m>2.由题意知点A在圆外,∴1+4+m-4+4>0,解得m>-5.综上可得,-5<m<-2或m>2.故选B.7.D 设圆心C2(-2,1)关于直线y=x的对称点C1的坐标为(a,b),则线段C1C2的中点为,且.则解得即圆C1的圆心为C1(1,-2).因为两圆关于直线对称,则圆的半径长度不变,即圆C1的半径为2,所以圆C1的方程为(x-1)2+(y+2)2=4.故选D.8.A 如图所示,以经过A,B两点的直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,则A(-1,0),B(1,0).设P(x,y),因为,所以,整理得x2+y2-6x+1=0,即(x-3)2+y2=8.因为P,A,B三点不共线,故当P点在y轴上时,△PAB面积最大,此时三角形的高为OP=2,所以△PAB面积的最大值是×2×2=2.故选A.9.CD 当α1=α2=90°时,l1∥l2,但两条直线斜率不存在,故A错误;若两条直线的斜率相等,且两直线不重合,可得l1∥l2,故B错误;若l1∥l2,由平行线的性质,可得α1=α2,故C正确;若α1=α2,由平行线的性质,可得l1∥l2,故D正确.故选CD.10.CD 因为直线l的一个方向向量为u=-,所以直线l的斜率为k==-.设直线的倾斜角为α(0≤α<π),则tanα=-,所以α==120°,故A错误;因为直线l经过点(1,-2),所以直线l的方程为y+2=-(x-1),令y=0,则x=-+1,所以直线l在x轴上的截距为-+1,故B错误;因为直线x-3y+2=0的斜率为,直线l的斜率为-,所以-=-1,所以直线l与直线x-3y+2=0垂直,故C正确;因为直线x+y+2=0的斜率为-,直线l的斜率也为-,且两直线截距不等,故两直线平行,故D 正确.故选CD.11.ABD 当k=0时,直线l2斜率不存在,此时l2的倾斜角为90°,故A正确;由可得x(2k+1)=0,对于任意的k,此方程组都有解,所以对任意的k,直线l1与l2都有公共点,故B正确;当k=-时,直线l2:x-y-=0,即x-y-1=0,此时直线l1与l2重合,故C不正确;由x-y-1=0可得直线l1的斜率为1,若直线l2与l1垂直,则直线l2的斜率为=-1,此方程无解,所以对任意的k,直线l1与l2都不垂直,故D正确.故选ABD.12.BCD 方程x2+y2-2x-4y+1=0整理可得(x-1)2+(y-2)2=4,则方程x2+y2-2x-4y+1=0表示的图形是以点C(1,2)为圆心,2为半径的圆,如图所示.代数式x2+y2表示圆C上的点P(x,y)到原点O的距离的平方,当点P为直线OC与圆C的交点,且C在线段OP上时,|OP|取得最大值,即|OP|max=|OC|+2=2+,所以(x2+y2)max==9+4,故A错误;由于代数式(x+2)2+(y+1)2表示圆C上的点Q(x,y)到点A(-2,-1)的距离的平方,当点Q为直线AC与圆C的交点,且点C在线段AQ上时,|AQ|取得最大值,即|AQ|max=|AC|+2=+2=3+2,所以[(x+2)2+(y+1)2]max==22+12,故B正确;设x+y=k,则直线x+y-k=0与圆C有公共点,所以圆心到直线的距离≤2,解得3-2≤k≤3+2,所以x+y的最大值为3+2,故C正确;设4x-3y=t,则直线4x-3y-t=0与圆C有公共点,所以≤2,解得-12≤t≤8,所以4x-3y的最大值为8,故D正确.故选BCD.13.1或3 由题意,O为坐标原点,P(-1,).根据圆的定义可知,☉O的圆心为O(0,0),半径为1,☉P的圆心为P(-1,),半径为r.因为两圆相切,则有|PO|=r+1或|PO|=|r-1|.因为|PO|==2,则有r+1=2或|r-1|=2,解得r=1或3.14.-1 2 由题意得m×(-m)-(-1)×1=0,所以m=±1.当m=1时,两直线重合,舍去,故m=-1.因为圆C的方程x2+y2+2x-24=0可化为(x+1)2+y2=25,即圆C的圆心为C(-1,0),半径为5.由于直线l:mx-y-1=0过定点P(0,-1),所以过点P且与PC垂直的弦的弦长最短,|PC|=,则最短弦长为2×=2.15.x2+(y+2)2=10 由解得所以圆C与直线l的交点为,B(1,1).因为直线AB的斜率为-,线段AB,所以线段AB的垂直平分线的斜率为2,则可得y-=2x-,即y=2x-2.又因为圆心在y轴,所以圆心为(0,-2),半径为圆心到交点B的距离,则所求圆的方程为x2+(y+2)2=10.16.[3,8] 因为圆x2+(y-2)2=4的圆心坐标为C(0,2),半径r=2.又P(3,-2),所以|PC|==5.因为M为圆上的动点,所以5-r≤|MP|≤5+r,即3≤| MP|≤8,所以线段MP长度的取值范围是[3,8].17.解(1)若l1∥l2,则解得故a=-1.(2)若l1⊥l2,则a+2(a-1)=0,解得a=.18.解(1)①将圆C的方程化为(x+1)2+(y-2)2=9,∴圆心C的坐标为(-1,2),半径为3.∵直线l在两坐标轴上的截距相等且不为零,故直线l的斜率为-1.设直线l的方程为y=-x+b,∵直线l与圆(x+1)2+(y-2)2=9相切,∴=3,整理得b=1±3.故所求直线l的方程为y=-x+1±3.②将圆C的方程化为(x+1)2+(y-2)2=9,∴圆心C的坐标为(-1,2),半径为3.当过点P的直线斜率不存在时,直线方程为x=2,此时圆心C到直线的距离为3,所以直线x=2是圆C的切线.当过点P的直线斜率存在时,设切线方程为y-1=k(x-2),即kx-y+1-2k=0.由题意可知=3,解得k=,∴切线方程为x-y+1-2×=0,整理得4x-3y-5=0.综上所述,切线方程为4x-3y-5=0或x=2.(2)联立两圆方程得①-②得2x-4y=0,则DE所在直线的方程为x-2y=0.则圆心C到直线DE的距离为d=.∴线段DE的长为2=4.19.解(1)设C(m,n),由于AB边上的中线CM所在直线方程为x-y-3=0,AC边上的高BH所在直线方程为x+2y-2=0.则解得故可得顶点C的坐标为(3,0).(2)设B(a,b),则解得则可得B点坐标为,-.由(1)可得直线AC的方程为,整理得2x-y-6=0.故点B到直线AC的距离d=.20.解(1)由题得圆心在直线l:y=2x-4和直线y=x-1上,则可得解得即圆心C的坐标为(3,2).设过A(0,3)的圆C的切线方程为y-3=k(x-0),即kx-y+3=0,由直线kx-y+3=0与圆C相切,可得=1,解得k=0或k=-,故所求切线方程为y=3或3x+4y-12=0.(2)根据圆心C在直线l:y=2x-4上,可设圆心C为(a,2a-4),则圆的方程为(x-a)2+(y-2a+4)2=1.若圆C上存在点M,使|MA|=2|MO|,设M(x,y),∵|MA|=2|MO|,∴=2,整理可得x2+(y+1)2=4,故点M在以D(0,-1)为圆心,2为半径的圆上.又点M也在圆C上,故圆C和圆D有交点,∴2-1≤|CD|≤1+2,即1≤≤3,得解得0≤a≤,即a的取值范围为.21.解(1)设圆C的标准方程为(x-a)2+(y-b)2=r2(r>0),则由题意可得解得所以圆C的标准方程为(x-2)2+(y-3)2=1.(2)设直线l的方程为y=kx+1,设M(x1,y1),N(x2,y2),将y=kx+1代入(x-2)2+(y-3)2=1,整理得(1+k2)x2-4(1+k)x+7=0,x1+x2=,x1x2=.=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=+8=12,即=4,解得k=1.经检验,符合题意,所以直线l的斜率为1.22.解(1)设M(x,y),A(x0,y0),∵M是线段AB中点,∴整理可得∵点A在圆x2+y2=16上,∴(2x-6)2+(2y-8)2=16,整理得(x-3)2+(y-4)2=4,即M点的轨迹方程为(x-3)2+(y-4)2=4.(2)由直线l与圆C交于P,Q两点知直线l斜率存在且不为0.设直线l的方程为y=k(x-1),即kx-y-k=0,则圆心C到直线l距离d=,∵S△CPQ=|PQ|·d=d=2,当且仅当4-d2=d2,即d2=2时,等号成立.由d2=2得=2,解得k=1或k=7.故△CPQ面积的最大值为2,此时直线l的方程为x-y-1=0或7x-y-7=0.。
新教材高中数学第2章平面解析几何单元质量测评课件新人教B版选择性必修第一册
A.-12或 1
B.-98或 1
C.-89
D.1
解析 因为两直线平行,所以有 2(k2-k)+3(2k2+k-3)=0,即 8k2+k
-9=0,解得 k=-89或 k=1.检验知 k=1 时不成立,故 k=-98.
解析 答案
2.“1<m<3”是“方程m-x2 1+3-y2m=1 表示椭圆”的(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 当 m=2 时,方程m-x2 1+3-y2m=1 为 x2+y2=1,该方程表示圆,
m-1>0,
即充分性不成立.若方程m-x2 1+3-y2m=1
表示椭圆,则3-m>0, m-1≠3-m,
解
得 1<m<3 且 m≠2,即必要性成立.故选 B.
9.下列说法正确的是( ) A.截距相等的直线都可以用方程ax+ay=1 表示 B.方程 x+my-2=0(m∈R)能表示平行于 y 轴的直线 C.经过点 P(1,1),倾斜角为 θ 的直线方程为 y-1=tanθ(x-1) D.经过两点 P1(x1,y1),P2(x2,y2)的直线方程为(y2-y1)(x-x1)-(x2- x1)(y-y1)=0
答案
解析 对于 A,若直线过原点,横纵截距都为零,则不能用方程ax+ay= 1 表示,所以不正确;对于 B,当 m=0 时,平行于 y 轴的直线方程形式为 x=2,所以正确;对于 C,若直线的倾斜角为 90°,则该直线的斜率不存在, 不能用 y-1=tanθ(x-1)表示,所以不正确;对于 D,设点 P(x,y)是经过两 点 P1(x1,y1),P2(x2,y2)的直线上的任意一点,根据P→1P2∥P→1P可得(y2-y1)(x -x1)-(x2-x1)(y-y1)=0,所以正确.故选 BD.
平面解析几何初步直线圆的方程等一轮复习专题练习(二)含答案新教材高中数学
高中数学专题复习《平面解析几何初步直线圆的方程等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(2020年上海市春季高考数学试卷(含答案))已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( ) A .圆B .椭圆C .抛物线D .双曲线2.若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( ) A . ]412[ππ, B .]12512[ππ, C .]36[ππ, D .]20[π, (2020湖南理)3.将直线2x -y +λ=0,沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y=0相切,则实数λ的值为( ) A .-3或7 B .-2或8C .0或10D .1或11(2020天津)4.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为 ( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y x D .0422=-+x y x (2020全国文8) 5.圆(x -1)2+y 2=1的圆心到直线y=33x 的距离是( ) A .21 B .23 C .1D .3(2020全国理)6.过点(2,1)P 作圆22:2210C x y ax ay a +-+++=的切线有两条,则a 取值范围是_____7.过点P (2,1),且倾斜角是直线l :01=--y x 的倾斜角的两倍的直线方程为( )A 、012=--y xB 、2=xC 、)2(21-=-x yD 、012=--y x8.圆222460x y x y ++--=的圆心和半径分别是( )A、(1,2),11- B、(1,2),11 C、(1,2),11-- D、(1,2),11-9.下列方程中圆心在点(2,3)P -,并且与y 轴相切的圆是( ) A、22(2)(3)4x y -++= B、22(2)(3)4x y ++-= C、22(2)(3)9x y -++= D、22(2)(3)9x y ++-=10.已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(山东卷11) A .106B .206C .306D .406第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.若第一象限内的动点P (x ,y )满足,则以P 为圆心R 为半径且面积最小的圆的方程为____O 1C2C(第18题) xy. .12.在等腰直角三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到点P (如图1).若光线QR 经过ABC ∆的重心(三角形三条中线的交点),则AP = ▲ .13.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴都相切,则该圆的标准..方程是__________; 14.方程052422=+-++m y mx y x 表示圆的充要条件是 .15.设A ,B ,C 为单位圆O 上不同的三点,则点集{(,)|,A x y OC xOA yOB ==+02,02}x y <<<<所对应的平面区域的面积为 ▲ .16.直线x +2y -2=0与直线2x -y =0的位置关系为 ▲ .(填“平行”或“垂直”) 评卷人得分三、解答题17.(本题满分15分)设ABC ∆顶点坐标()()()0,1,3,0,3,0A B C -,圆M 为AB C ∆的外接圆.(Ⅰ)求圆M 的标准方程(Ⅱ)直线l 过点(1,3)且与圆M 相交于P 、Q ,弦PQ 长为23,求直线l 的方程.18.如图,在平面直角坐标系xOy 中,已知圆1C :22(1)1x y ++=,圆2C :22(3)(4)1x y -+-=.(1)若过点1(1 0)C -,的直线l 被圆2C 截得的弦长为 65,求直线l 的方程;(2)设动圆C 同时平分圆1C 的周长、圆2C 的周长. ①证明:动圆圆心C 在一条定直线上运动; ②动圆C 是否经过定点?若经过,求出定点的 坐标;若不经过,请说明理由.(本小题满分16分)关键字:直线与圆;已知弦长;求直线方程;垂径定理;求轨迹方程;过定点问题19.若圆x 2+(y -1)2=1上任意一点(x ,y )都使不等式x +y +m ≥0恒成立,则实数m 的取值范围是________.解析:设⎩⎪⎨⎪⎧x =cos θy =1+sin θ,则x +y =1+sin θ+cos θ=1+2sin(θ+π4)≥1-2,由不等式x +y +m ≥0恒成立, 得不等式x +y ≥-m 恒成立, ∴1-2≥-m ,∴m ≥2-1.20.已知点A 是圆22:450C x y ax y +++-=上任意一点,且A 关于直线210x y +-=的对称点也在圆C 上,求实数a 的值。
高中数学第2章平面解析几何初步-两条直线平行与垂直的判定同步练习湘教版选择性必修第一册
2.3 两条直线的位置关系2.3.1 两条直线平行与垂直的判定A级必备知识基础练1.下列各组直线中,互相垂直的一组是()A.2x-3y-5=0与4x-6y-5=0B.2x-3y-5=0与4x+6y+5=0C.2x+3y-6=0与3x-2y+6=0D.2x+3y-6=0与2x-3y-6=02.(多选题)下列各直线中,与直线2x-y-3=0平行的是()A.2ax-ay+6=0(a≠0,a≠-2)B.y=2xC.2x-y+5=0D.2x+y-3=03.(多选题)(2022山东五莲高二期中)已知直线l:x-2y-2=0,()A.直线x-2y-1=0与直线l平行B.直线x-2y+1=0与直线l平行C.直线x+2y-1=0与直线l垂直D.直线2x+y-2=0与直线l垂直4.(2022四川成都七中高二入学测试)已知A(3,1),B(1,-2),C(1,1),则过点C且与线段AB平行的直线方程为()A.3x+2y-5=0B.3x-2y-1=0C.2x-3y+1=0D.2x+3y-5=05.如果直线l1的斜率为a,l1⊥l2,则直线l2的斜率为()A. B.aC.-D.-或不存在6.(2022河北唐山五十九中高二月考)已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),则AB边上的高所在直线的斜率为.7.若直线l1,l2的斜率是一元二次方程x2-7x+t=0的两根,若直线l1,l2垂直,则t= .8.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(1,2),B(n-1,3),C(-1,3-n).(1)若∠A是直角,求实数n的值;(2)求过坐标原点,且与△ABC的高AD垂直的直线l的方程.B级关键能力提升练9.已知点M(1,-2),N(m,2),若线段MN的垂直平分线的方程是+y=1,则实数m的值是()A.-2B.-7C.3D.110.(2022广州大学附属中学高二月考)已知直线l1过点A(-2,m)和点B(m,4),直线l2为2x+y-1=0,直线l3为x+ny+1=0.若l1∥l2,l2⊥l3,则实数m+n的值为()A.-10B.-2C.0D.811.(多选题)(2022山东济南山师附中高二期中)已知直线l1:x+my-1=0,l2:(m-2)x+3y+1=0,则下列说法正确的是()A.若l1∥l2,则m=-1或m=3B.若l1∥l2,则m=-1C.若l1⊥l2,则m=-D.若l1⊥l2,则m=12.(多选题)(2022湖北荆州高二期末)已知直线l1:3x+y-3=0,直线l2:6x+my+1=0,则下列表述正确的有()A.直线l2的斜率为-B.若直线l1垂直于直线l2,则实数m=-18C.直线l1倾斜角的正切值为3D.若直线l1平行于直线l2,则实数m=213.点M(1,2)在直线l上的射影是H(-1,4),则直线l的方程为,线段MH的垂直平分线的方程为.14.已知A(1,0),B(3,2),C(0,4),点D满足AB⊥CD,且AD∥BC,试求点D的坐标.15.若△ABC的顶点A的坐标为(2,3),三角形其中两条高所在的直线方程为x-2y+3=0和x+y-4=0,试求此三角形的边AB,AC所在直线的方程.C级学科素养创新练16.已知直线l1:x cos2α+y+2=0,若l1⊥l2,则直线l2的倾斜角的取值范围是()A. B.C. D.17.(多选题)(2022河北高二学情监测)已知直线l1:x sin α+y=0与直线l2:x+3y+c=0,则下列结论中正确的是()A.直线l1与直线l2可能相交B.直线l1与直线l2可能重合C.直线l1与直线l2可能垂直D.直线l1与直线l2可能平行参考答案2.3两条直线的位置关系2.3.1两条直线平行与垂直的判定1.C对于A,k1k2=≠-1,因此l1与l2不垂直;对于B,k1k2==-≠-1,因此l1与l2不垂直;对于C,k1k2==-1,因此l1⊥l2;对于D,k1k2==-≠-1,因此l1与l2不垂直.故选C.2.ABC与直线2x-y-3=0平行的直线都可以化为2x-y+m=0(m≠-3)的形式,因此选项A,B,C符合,故选ABC.3.ABD直线l:x-2y-2=0的斜率k=,在y轴上截距为-1.对于A,直线x-2y-1=0的斜率为,在y轴上截距为-,∴直线x-2y-1=0与直线l平行,故A正确;对于B,直线x-2y+1=0的斜率为,在y轴上截距为,∴直线x-2y+1=0与直线l平行,故B正确;对于C,直线x+2y-1=0的斜率为-,∴直线x+2y-1=0与直线l不垂直,故C错误;对于D,直线2x+y-2=0的斜率为-2,∴直线2x+y-2=0与直线l垂直,故D正确.故选ABD.4.B由题可知,k AB=,则过点C且与线段AB平行的直线的斜率为.又该直线过点(1,1),则该直线方程为y-1=(x-1),整理得3x-2y-1=0.5.D当a≠0时,由l1⊥l2得k1·k2=a·k2=-1,解得k2=-;当a=0时,l1与x轴平行或重合,则l2与y 轴平行或重合,故直线l2的斜率不存在.故直线l2的斜率为-或不存在.6.-由题可得k AB=.设AB边上高线的斜率为k,则k·k AB=-1,即k·=-1,解得k=-.所以AB边上的高所在直线的斜率为-.7.-1设直线l1,l2的斜率分别是k1,k2.因为k1,k2是一元二次方程x2-7x+t=0的两根,则k1·k2=t.又直线l1,l2垂直,所以k1·k2=-1.故可得t=-1.8.解(1)当n=2时,∠A不是直角,不合题意;当n≠2时,∵∠A是直角,∴k AB·k AC=-1,即=-1,解得n=.综上所述,实数n的值为.(2)∵直线l与△ABC的高AD垂直,∴直线l与直线BC平行或重合.∵B,C不重合,∴n≠0,∴直线l的斜率k=k BC==1,又直线l过坐标原点,∴直线l的方程为x-y=0.9.C由题知直线+y=1的斜率为-,则直线MN的斜率为2,即k MN==2,解得m=3.10.A由题意可得直线l1,l2,l3的斜率存在,分别设为k1,k2,k3.因为l1∥l2,所以k1=k2,即=-2,解得m=-8.因为l2⊥l3,所以k2·k3=-1,即(-2)×-=-1,解得n=-2.所以m+n=-8+(-2)=-10.故选A.11.AD若l1∥l2,则1×3-m(m-2)=0,解得m=3或m=-1,故A正确,B不正确;若l1⊥l2,则1×(m-2)+m×3=0,解得m=,故C不正确,D正确.故选AD.12.BD当m=0时,直线l2的斜率不存在,故A错误;当直线l1垂直于直线l2,则有3×6+1×m=0,解得m=-18,故B正确;由题知,直线l1的斜率为-3,故倾斜角的正切值为-3,故C错误;当直线l1平行于直线l2,则-3=-,且3≠-,解得m=2,故D正确.故选BD.13.x-y+5=0x-y+3=0由题得,k MH==-1.又点M在直线l上的射影是点H,则直线l与直线MH垂直,所以直线l的斜率为k=1.故直线l的方程为y-4=x+1,整理得x-y+5=0.由于线段MH的垂直平分线过MH的中点.由题知,线段MH的中点为(0,3),且垂直平分线的斜率等于直线l的斜率,所以垂直平分线的方程为y-3=x,整理得x-y+3=0.14.解设D(x,y),则k AB==1,k BC==-,k CD=,k DA=.因为AB⊥CD,AD∥BC,所以k AB·k CD=-1,k DA=k BC,即解得故点D的坐标为(10,-6).15.解因为点A的坐标不满足所给的两条高所在直线的方程,所以所给的两条直线方程是过顶点B,C的高所在直线的方程.又所给两条直线的斜率分别为,-1,若k AB=-2,则k AC=1,则直线AB的方程为y-3=-2(x-2),整理得2x+y-7=0,直线AC的方程为y-3=x-2,整理得x-y+1=0.同理,若k AC=-2,则k AB=1,则直线AC的方程为2x+y-7=0,直线AB的方程为x-y+1=0.16.C当cos2α≠0时,k1=-.∵l1⊥l2,∴k1·k2=-1,∴k2=.∵0<cos2α≤1,∴k2=.设l2的倾斜角为θ,θ∈[0,π),则tanθ≥,∴≤θ<;当cos2α=0时,直线l1的斜率为0,倾斜角为0.∵l1⊥l2,∴l2的倾斜角θ=.综上,直线l2的倾斜角的取值范围为.故选C.17.ABD由题知,直线l1:x sinα+y=0的斜率为k1=-sinα,过定点(0,0),直线l2:x+3y+c=0斜率为k2=-,过点(-c,0).若直线l1与直线l2相交,则sinα≠,而-1≤sinα≤1,即sinα≠成立,故选项A正确;若直线l1与直线l2重合,则c=0,且sinα=,而-1≤sinα≤1,故选项B正确;若直线l1与直线l2垂直,则k1k2=sinα=-1,则sinα=-3,与-1≤sinα≤1矛盾,则直线l1与直线l2不可能垂直,故选项C错误;若直线l1与直线l2平行,则sinα=且c≠0,而-1≤sinα≤1,可以有sinα=,故选项D正确.故选ABD.。
高中数学第二章平面解析几何初步2.4.2空间两点的距离公式练习(含解析)新人教B版必修2
对应学生用书P75知识点一空间两点间的距离高中数学第二章平面解析几何初步2.4.2空间两点的距离公式练习(含解析)新人教B版必修21.在空间直角坐标系中,点A(3,2,-5)到x轴的距离d等于( )A.32+22 B.22+-52C.32+-52 D.32+22+-52答案 B解析过点A作AB⊥x轴于点B,则B(3,0,0),所以点A到x轴的距离d=|AB|=22+-52.2.如图,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′O′,则A′C 的中点E与AB的中点F的距离为( )A.2aB.22aC.aD.12a答案 B解析A′(a,0,a),C(0,a,0),点E的坐标为a2,a2,a2,而F⎝⎛⎭⎪⎫a,a2,0,∴|EF|=a24+02+a24=22a,故选B.知识点二空间两点间距离公式的应用3.点P(x ,y ,z)满足x -12+y -12+z +12=2,则点P 在( )A .以点(1,1,-1)为球心,以2为半径的球面上 B .以点(1,1,-1)为中心,以2为棱长的正方体内 C .以点(1,1,-1)为球心,以2为半径的球面上 D .以上都不正确 答案 C 解析x -12+y -12+z +12表示P(x ,y ,z)到点M(1,1,-1)的距离,即|PM|=2为定值.故点P 在以点(1,1,-1)为球心,以2为半径的球面上.4.如图所示,PA ,AB ,AD 两两垂直,四边形ABCD 为矩形,M ,N 分别为AB ,PC 的中点.求证:MN⊥AB.证明 如图所示,以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A(0,0,0),设B(a ,0,0),D(0,b ,0),C(a ,b ,0),P(0,0,c),连接AN .因为M ,N 分别是AB ,PC 的中点,所以M ⎝ ⎛⎭⎪⎫a 2,0,0,N ⎝ ⎛⎭⎪⎫a 2,b 2,c 2,则|AM|2=a 24,|MN|2=b 2+c 24,|AN|2=a 2+b 2+c24,所以|AN|2=|MN|2+|AM|2,所以MN⊥AB.对应学生用书P75一、选择题1.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( )A .62 B . 3 C .32 D .63答案 A解析 如图所示,在正方体OABC -O 1A 1B 1C 1中,设正方体的棱长为a(a >0),则点P 在顶点B 1处,建立分别以OA ,OC ,OO 1所在直线为x 轴,y 轴,z 轴的空间直角坐标系,则点P 的坐标为(a ,a ,a),由题意得a 2+a 2=1,∴a 2=12,∴|OP|=3a 2=3×12=62. 2.与两点A(3,4,5),B(-2,3,0)距离相等的点M(x ,y ,z)满足的条件是( ) A .10x +2y +10z -37=0 B .5x -y +5z -37=0 C .10x -y +10z +37=0 D .10x -2y +10z +37=0 答案 A解析 由|MA|=|MB|,即(x -3)2+(y -4)2+(z -5)2=(x +2)2+(y -3)2+z 2,化简得10x +2y +10z -37=0,故选A .3.到定点(1,0,0)的距离小于或等于2的点的集合是( ) A .{(x ,y ,z)|(x -1)2+y 2+z 2≤2} B .{(x ,y ,z)|(x -1)2+y 2+z 2≤4} C .{(x ,y ,z)|(x -1)2+y 2+z 2≥4}D .{(x ,y ,z)|x 2+y 2+z 2≤4} 答案 B解析 由空间两点间的距离公式可得,点P(x ,y ,z)到定点(1,0,0)的距离应满足x -12+y 2+z 2≤2,即(x -1)2+y 2+z 2≤4.4.△ABC 的顶点坐标是A(3,1,1),B(-5,2,1),C ⎝ ⎛⎭⎪⎫-83,2,3,则它在yOz 平面上射影的面积是( )A .4B .3C .2D .1 答案 D解析 △ABC 的顶点在yOz 平面上的射影点的坐标分别为A′(0,1,1),B′(0,2,1),C′(0,2,3),∵|A′B′|=0-02+1-22+1-12=1,|B′C′|=0-02+2-22+3-12=2, |A′C′|=0-02+2-12+3-12=5,∴|A′B′|2+|B′C′|2=|A′C′|2,∴△ABC 在yOz 平面上的射影△A′B′C′是一个直角三角形,它的面积为1.5.已知A(x ,5-x ,2x -1),B(1,x +2,2-x),当|AB|取最小值时,x 的值为( ) A .19 B .-87 C .87 D .1914答案 C 解析 |AB|=x -12+3-2x2+3x -32=14x 2-32x +19=14⎝ ⎛⎭⎪⎫x -872+57, ∴当x =87时,|AB|最小.二、填空题6.在空间直角坐标系中,设A(m ,1,3),B(1,-1,1),且|AB|=22,则m =________. 答案 1 解析 |AB|=m -12+[1--1]2+3-12=22,解得m =1.7.已知点P 32,52,z 到线段AB 中点的距离为3,其中A(3,5,-7),B(-2,4,3),则z =________.答案 0或-4解析 由中点坐标公式,得线段AB 中点的坐标为12,92,-2.又点P 到线段AB 中点的距离为3,所以32-122+52-922+[z--2]2=3,解得z=0或-4.8.点B(3,0,0)是点A(m,2,5)在x轴上的射影,则点A到原点的距离为________.答案4 2解析由点B(3,0,0)是点A(m,2,5)在x轴上的射影,得m=3,所以点A到原点的距离为d=32+22+52=32=42.三、解答题9.如图所示,直三棱柱ABC-A1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E,F分别是棱AB,B1C1,AC的中点,求|DE|,|EF|.解以点C为坐标原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.∵|CC1|=|CB|=|CA|=2,∴C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),由空间直角坐标系中的中点坐标公式可得D(1,1,0),E(0,1,2),F(1,0,0),∴|DE|=1-02+1-12+0-22=5,|EF|=0-12+1-02+2-02=6.10.如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD,ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<2),(1)求MN的长;(2)当a为何值时,MN的长最小.解由于平面ABCD、ABEF互相垂直,其交线为AB,且CB⊥AB,所以CB⊥平面ABEF,故以B为原点O,BC所在直线为z轴正半轴,BA所在直线为x轴正半轴,BE所在直线为y轴正半轴,建立空间直角坐标系.由于N点在对角线BF上,且BN=a,N点到x轴和到y轴的距离相等,所以N点坐标为2 2a,22a,0.同理M点的坐标为M22a,0,1-22a.于是:(1)MN=22a-22a2+22a-02+22a-12=a-222+12,0<a<2.(2)由(1)知MN=a-222+12,故当a=22时,MN有最小值,且最小值为22.。
高二数学解析几何练习题及答案
高二数学解析几何练习题及答案解析几何是高中数学的重要内容之一,是数学中的一个分支,它主要研究几何图形的性质及其相互之间的关系。
对于高二学生来说,解析几何练习题的掌握与理解是非常关键的。
下面将介绍一些高二数学解析几何的典型练习题及其答案,希望能够帮助到广大学生。
练习题一:已知点A(3,4),B(7,8),C(5,2),D(x,y)为AB的中点,求点D的坐标。
解答:若D为AB的中点,则有以下关系:x = (x1 + x2)/2y = (y1 + y2)/2带入坐标值可得:x = (3 + 7)/2 = 5y = (4 + 8)/2 = 6因此,点D的坐标为(5,6)。
练习题二:已知直线L过点A(2,3),B(5,7),求直线L的斜率和方程。
解答:直线的斜率可以通过两点间的坐标差来计算,即:斜率 k = (y2 - y1)/(x2 - x1)带入坐标值可得:k = (7 - 3)/(5 - 2) = 4/3直线经过点A(2,3),可以得到直线的方程为:y - y1 = k(x - x1)y - 3 = (4/3)(x - 2)3y - 9 = 4x - 84x - 3y = 1因此,直线L的斜率为4/3,方程为4x - 3y = 1。
练习题三:已知点A(3,4),B(7,8),C(5,2),判断三角形ABC是否为等腰三角形。
解答:要判断三角形ABC是否为等腰三角形,需要比较两边的长度是否相等。
我们可以利用两点间的距离公式来计算各边的长度。
已知点A(3,4),B(7,8),C(5,2),则有:AB的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 3)^2 + (8 - 4)^2] = √32AC的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(5 - 3)^2 + (2 - 4)^2] = √8BC的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(5 - 7)^2 + (2 - 8)^2] = √36因为√32≠√8≠√36,所以三角形ABC不是等腰三角形。
高中数学必修课程模块二解析几何考试题
高中数学必修课程模块二解析几何考试题1.若直线的倾斜角为,则直线的斜率为()A.B. C.D.2.直线关于轴对称的直线方程为()A. B. C. D.3.直线与圆相切,则的值为()A. ,B.C.D.4.圆和圆的位置关系是()A.相交 B.内切 C.外离 D.内含5.若为圆的弦的中点,则直线的方程是()A.B. C. D.6.直线(为实常数)的倾斜角的大小是()A. B. C.D.7.直线与圆的位置关系是()A.相交但直线不过圆心 B. 相切C.相离D.相交且直线过圆心8.与圆同圆心,且面积为圆面积的一半的圆的方程为()A. B.C. D.9.已知点,点在直线上,若直线垂直于直线,则点的坐标是()A. B. C.D.10.圆心为的圆与直线交于、两点,为坐标原点,且满足,则圆的方程为()A. B.C.D.11.过点(1,2)且与直线平行的直线方程是 .12.以点为圆心,且经过点的圆的方程是______________.13.点到直线的距离为_______.14.圆关于直线对称的圆的方程是,则实数的值是.15.圆和圆的位置关系是________16.已知圆经过点,且圆心坐标为,则圆的标准方程为.17.已知直线经过直线与直线的交点,且垂直于直线.(Ⅰ)求直线的方程;(Ⅱ)求直线与两坐标轴围成的三角形的面积.18.已知直线经过点,其倾斜角的大小是.(Ⅰ)求直线的方程;(Ⅱ)求直线与两坐标轴围成三角形的面积.19.已知直线:与:的交点为.(Ⅰ)求交点的坐标;(Ⅱ)求过点且平行于直线:的直线方程;(Ⅲ)求过点且垂直于直线:直线方程.20.已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.(Ⅰ)求圆的方程;(Ⅱ)设直线与圆相交于两点,求实数的取值范围;(Ⅲ)在(Ⅱ)的条件下,是否存有实数,使得弦的垂直平分线过点,若存有,求出实数的值;若不存有,请说明理由.21.已知点及圆:.(Ⅰ)若直线过点且与圆心的距离为1,求直线的方程;(Ⅱ)设过点P的直线与圆交于、两点,当时,求以线段为直径的圆的方程;(Ⅲ)设直线与圆交于,两点,是否存有实数,使得过点的直线垂直平分弦?若存有,求出实数的值;若不存有,请说明理由22.已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.(Ⅰ)求圆的方程;(Ⅱ)设直线与圆相交于两点,求实数的取值范围;(Ⅲ)在(2)的条件下,是否存有实数,使得过点的直线垂直平分弦?若存有,求出实数的值;若不存有,请说明理由.23.已知关于的方程.(Ⅰ)若方程表示圆,求的取值范围;(Ⅱ)若圆与圆外切,求的值;(Ⅲ)若圆与直线相交于两点,且,求的值.高中数学必修课程模块二解析几何答案1 2 3 4 5B D A6 7 8 9 10D A A B11. 12. 13.14. 2 15. 相交16.17. 解:(Ⅰ)由解得因为点P的坐标是(,2).则所求直线与垂直,可设直线的方程为.把点P的坐标代入得,即.所求直线的方程为.(Ⅱ)由直线的方程知它在轴、轴上的截距分别是、,所以直线与两坐标轴围成三角形的面积.18.解:(Ⅰ)因为直线的倾斜角的大小为,故其斜率为,又直线经过点,所以其方程为.(Ⅱ)由直线的方程知它在轴、轴上的截距分别是、,所以直线与两坐标轴围成三角形的面积.19.解:(Ⅰ)由解得所以点的坐标是.(Ⅱ)因为所求直线与平行,所以设所求直线的方程为.把点的坐标代入得,得.故所求直线的方程为.(Ⅲ)因为所求直线与垂直,所以设所求直线的方程为.把点的坐标代入得,得.故所求直线的方程为.20. 解:(Ⅰ)设圆心为().因为圆与直线相切,且半径为,所以,即.因为为整数,故.故所求圆的方程为.(Ⅱ)把直线即.代入圆的方程,消去整理,得.因为直线交圆于两点,故.即,因为,解得.所以实数的取值范围是.(Ⅲ)设符合条件的实数存有,因为,则直线的斜率为,的方程为,即.因为垂直平分弦,故圆心必在上.所以,解得.因为,故存有实数,使得过点的直线垂直平分弦.21.解:(Ⅰ)设直线的斜率为(存有)则方程为. 又圆C的圆心为,半径,由,解得.所以直线方程为,即.当的斜率不存有时,的方程为,经验证也满足条件. (Ⅱ)因为,而弦心距,所以.所以为的中点.故以为直径的圆的方程为.(Ⅲ)把直线即.代入圆的方程,消去,整理得.因为直线交圆于两点,故,即,解得.则实数的取值范围是.设符合条件的实数存有,因为垂直平分弦,故圆心必在上.所以的斜率,而,所以.因为,故不存有实数,使得过点的直线垂直平分弦.22.解:(Ⅰ)设圆心为().因为圆与直线相切,且半径为,所以,,即.因为为整数,故.故所求的圆的方程是.(Ⅱ)直线即.代入圆的方程,消去整理,得.因为直线交圆于两点,故,即,解得,或.所以实数的取值范围是.(Ⅲ)设符合条件的实数存有,由(2)得,则直线的斜率为,的方程为,即.因为垂直平分弦,故圆心必在上.所以,解得.因为,故存有实数,使得过点的直线垂直平分弦.23.解:(Ⅰ)方程可化为,显然时方程表示圆.(Ⅱ)由(Ⅰ)知圆的圆心为,半径为,可化为,故圆心为,半径为.又两圆外切,所以,即,可得.(Ⅲ)圆的圆心到直线的距离为,由则,又,所以得.。
(全国通用版)2018-2019高中数学 第二章 平面解析几何初步 2.2.4 点到直线的距离练习
2.2.4 点到直线的距离1点(3,1)到直线y=2x的距离为()A.5B.C.D.解析:直线方程化为2x-y=0,故所求距离d=.答案:B2已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a的值是()A. B.2- C.-1 D.+1解析:由点到直线的距离公式,得=1,因为|a+1|=,所以a=±-1.又因为a>0,所以a=-1.答案:C3已知直线3x+2y-3=0和6x+my+1=0互相平行,那么它们之间的距离是()A.4B.C.D.解析:因为两直线平行,所以3m=12,即m=4,6x+my+1=0可化为3x+2y+=0,由两平行直线间的距离公式得d=.答案:D4已知点P(a,b)是第二象限的点,那么它到直线x-y=0的距离是()A.(a-b)B.b-aC.(b-a)D.解析:因为P(a,b)是第二象限的点,所以a<0,b>0.所以a-b<0.所以点P到直线x-y=0的距离d=(b-a).答案:C5若P,Q分别为3x+4y-12=0与3x+4y+3=0上任一点,则|PQ|的最小值为()A. B. C.3 D.6解析:|PQ|的最小值即两条平行线间的距离,则根据两条平行线间的距离公式得|PQ|==3.答案:C6已知x,y满足3x+4y-10=0,则x2+y2的最小值为()A.2B.4C.0D.1解析:因为x2+y2视为原点到直线上的点P(x,y)的距离的平方,所以x2+y2的最小值为原点到直线3x+4y-10=0的距离的平方.因为d==2,所以x2+y2的最小值为4.答案:B7过点M(1,5)和点N(-2,9)分别作两条平行直线,使它们之间的距离等于5,则满足条件的直线共有()A.0组B.1组C.2组D.3组解析:因为|MN|==5,所以满足条件的直线有且仅有1组,它们与线段MN所在的直线垂直.答案:B8已知定点A(0,1),点B在直线x+y=0上运动,当线段AB最短时,点B的坐标是.解析:可设B(x,-x),所以d(A,B)=,又d(A,B)min=,这时x=-,点B的坐标为.答案:9已知点M(1,4)到直线l:mx+y-1=0的距离为3,则实数m=.解析:由已知可得=3,即|m+3|=3,解得m=0或m=.答案:0或10与直线l:5x-12y+6=0平行且到l的距离为2的直线m的方程为.解析:设所求直线为5x-12y+c=0,则由两平行直线间的距离公式得2=,解得c=32或c=-20.故所求直线的方程为5x-12y+32=0或5x-12y-20=0.答案:5x-12y+32=0或5x-12y-20=011已知直线l过直线y=-x+1和y=2x+4的交点,(1)若直线l与直线x-3y+2=0垂直,求直线l的方程;(2)若原点O到直线l的距离为1,求直线l的方程.解(1)由得交点(-1,2),因为直线x-3y+2=0的斜率是,直线l与直线x-3y+2=0垂直,所以直线l的斜率为-3,所以所求直线l的方程为y-2=-3(x+1),即3x+y+1=0.(2)如果l⊥x轴,则l的方程为x=-1符合要求.如果l不垂直于x轴,设l的方程为y-2=k(x+1),即kx-y+2+k=0,原点O到直线l的距离=1,解之,得k=-,此时l:y-2=-(x+1).综上,直线l的方程为3x+4y-5=0或x=-1.12两条互相平行的直线分别过A(6,2),B(-3,-1)两点,并且各自绕着A,B点旋转(但始终保持平行关系).如果两条平行线间的距离为d.(1)求d的变化范围;(2)求当d取得最大值时两条直线的方程.解(1)根据题意可知,当两平行线均与线段AB垂直时,距离d=|AB|=3最大;当两平行线重合,即都过A,B点时,距离d=0最小.但平行线不能重合,所以0<d≤3.(2)当d=3时,所求的两条直线的斜率相同,且k=-3,所以两条直线的方程分别为3x+y-20=0和3x+y+10=0.★13已知点P(2,-1),求:(1)过点P且与原点O距离为2的直线l的方程;(2)过点P且与原点O距离最大的直线l的方程,并求此最大距离.解(1)点P的坐标为(2,-1),由题意知可分两种情况:①若直线l的斜率不存在,则其方程为x=2,原点到直线x=2的距离为2,满足题意;②若直线l的斜率存在,设为k,则l的方程为y+1=k(x-2),即kx-y-2k-1=0.由已知,得=2,解得k=.此时l的方程为3x-4y-10=0.综上,可得直线l的方程为x=2或3x-4y-10=0.(2)过点P且与原点O距离最大的直线是过点P且与PO垂直的直线,故设直线l、直线OP的斜率分别为k l,k OP.由题意知k OP=-,由l⊥OP,得k l·k OP=-1,即k l=-=2.由直线方程的点斜式得y+1=2(x-2),即2x-y-5=0.即直线l:2x-y-5=0是过点P且与原点O距离最大的直线,且最大距离为.★14已知在△ABC中,A(1,1),B(m,)(1<m<4),C(4,2),则当m为何值时,△ABC的面积S最大? 解∵A(1,1),C(4,2),∴|AC|=.又直线AC的方程为x-3y+2=0,根据点到直线的距离公式可得点B(m,)到直线AC的距离d=,∴S=|AC|·d=|m-3+2|=.∵1<m<4,∴1<<2⇒-.∴0≤,∴S=.∴当=0,即m=时,S最大.故当m=时,△ABC的面积S最大.。
高中数学平面解析几何练习题(含解析)
高中数学平面解析几何练习题(含解析)一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0-D .(][),20,-∞-+∞2.过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x =B .24y x =-C .212=-x yD .212x y =3.过 ()()1320A B --,,,两点的直线的倾斜角是( )A .45︒B .60︒C .120D .1354.已知()3,3,3A ,()6,6,6B ,O 为原点,则OA 与BO 的夹角是( ) A .0B .πC .π2D .2π35.已知抛物线2:4C y x =与圆22:(1)4E x y -+=交于A ,B 两点,则||AB =( )A .2B .C .4D .6.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为( )A .3B .4C .5D .1127.动点P ,Q 分别在抛物线24x y =和圆228130+-+=x y y 上,则||PQ 的最小值为( )A .B C D 8.直线2360x y +-=关于点(1,1)对称的直线方程为( ) A .3220x y -+= B .2370x y ++= C .32120x y --=D .2340x y +-=9.已知椭圆2222:1()0x c bb y a a +>>=的上顶点为A ,左、右焦点分别为12,F F ,连接2AF 并延长交椭圆C 于另一点B ,若12:7:3F B F B =,则椭圆C 的离心率为( )A .14B .13C .12D 10.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题11.直线2310x y -+=与5100x y +-=的夹角为________.12.已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 13.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 14.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.三、解答题15.已知△ABC 底边两端点(0,6)B 、(0,6)C -,若这个三角形另外两边所在直线的斜率之积为49-,求点A 的轨迹方程.16.已知1F 、2F 是椭圆()2222:10x yC a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F △的面积为9,求实数b 的值.17.已知圆C :22120x y Dx Ey +++-=关于直线x +2y -4=0对称,且圆心在y 轴上,求圆C 的标准方程.18.已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ λ⋅+⋅为定值?若存在,求出λ的值;若不存在,说明理由.参考答案:1.B【分析】根据圆的一般式变形为标准式,进而可得参数范围. 【详解】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+, 由该曲线表示圆, 可知25100a a +>, 解得0a >或2a <-, 故选:B. 2.C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C 3.D【分析】根据两点坐标求出直线的斜率,结合直线倾斜角的范围即可得出结果. 【详解】由已知直线的斜率为 ()03tan 1018021k αα--===-≤<--,,所以倾斜角135α=. 故选:D. 4.B【分析】求出OA 和BO ,利用向量关系即可求出.【详解】因为()3,3,3A ,()6,6,6B ,则()3,3,3OA =,()6,6,6BO =---, 则3cos ,1OA BO OA BO OA BO⨯⋅<>===-⋅,所以OA 与BO 的夹角是π. 故选:B. 5.C【分析】先联立抛物线与圆求出A ,B 横坐标,再代入抛物线求出纵坐标即可求解.【详解】由对称性易得A ,B 横坐标相等且大于0,联立()222414y xx y ⎧=⎪⎨-+=⎪⎩得2230x x +-=,解得123,1x x =-=,则1A B x x ==,将1x =代入24y x =可得2y =±,则||4AB =. 故选:C. 6.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案. 【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m=,解得4m =. 记抛物线的准线为l ,作PN l ⊥于N ,作BAl 于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+=,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A. 7.B【分析】设2001,4P x x ⎛⎫⎪⎝⎭,根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设2001,4P x x ⎛⎫⎪⎝⎭,圆化简为22(4)3x y +-=,即圆心为(0,4)所以点P 到圆心的距离d = 令20t x =,则0t ≥, 令21()1616f t t t =-+,0t ≥,为开口向上,对称轴为8t =的抛物线, 所以()f t 的最小值为()812f =,所以min d所以||PQ的最小值为min d =故选:B 8.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,以(2,2)x y --代换原直线方程中的(,)x y 得()()223260x y -+--=,即2340x y +-=.故选:D. 9.C【分析】根据椭圆的定义求得12,F B F B ,在1ABF 中,利用余弦定理求得22cos F AF ∠,在12AF F △中,再次利用余弦定理即可得解.【详解】解:由题意可得122F B F B a +=, 因为12:7:3F B F B =, 所以1273,55F B a F B a ==, 因为A 为椭圆的上顶点,所以12AF AF a ==,则85AB a =,在1ABF 中,22222211221644912525cos 82225a a a AF AB BF F AF AF ABa a +-+-∠===⨯⨯,在12AF F △中,122212121222cos F F AF AF A F A F A F F =+∠-, 即222224c a a a a =+-=,所以12c a =,即椭圆C 的离心率为12. 故选:C.10.A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A 11.4π##45︒ 【分析】根据直线方程可得各直线斜率,进而可得倾斜角之间的关系,从而得夹角. 【详解】直线2310x y -+=的斜率123k ,即倾斜角α满足2tan 3α=, 直线5100x y +-=的斜率215k =-,即倾斜角β满足1tan 5β=-,所以()12tan tan 53tan 1121tan tan 153βαβαβα----===-+⎛⎫+-⨯ ⎪⎝⎭, 所以34βαπ-=,又两直线夹角的范围为0,2π⎡⎤⎢⎥⎣⎦,所以两直线夹角为4π,故答案为:4π. 12.【分析】将圆C 一般方程化为标准方程,先求圆心到直线的距离,再由圆的弦长公式即可解出k 的值.【详解】解:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1;圆心()1,0-到直线y kx =,由弦长为1可得1=,解得k =故答案为:13.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒===22(2)(3)13x y -+-=; (2)若圆过A B D 、、三点, 设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过 A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程 为25y x =-+,联立得47,33x y r ==⇒,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =, 线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=. 故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.14.1y =或247250x y ++=或4350x y --=【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l , 易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上, 在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y , 则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=, 综上,切线方程为1y =或247250x y ++=或4350x y --=. 故答案为:1y =或247250x y ++=或4350x y --=.15.()22108136x y x +=≠【分析】设(,)A x y ,利用斜率的两点式列方程并整理可得轨迹方程,注意0x ≠. 【详解】设(,)A x y 且0x ≠,则22663649AB ACy y y k k x x x -+-=⋅==-, 整理得:A 的轨迹方程()22108136x y x +=≠. 16.3b =【分析】由题意以及椭圆的几何性质列方程即可求解. 【详解】因为12PF PF ⊥,所以1290F PF ∠=︒, 所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=, ()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅, 1212192F PF S PF PF =⋅=△, 所以2244490c a =-⨯=,所以2449b =⨯.所以3b =; 综上,b =3.17.22(2)16x y +-=. 【分析】由题设知圆心(,)22D EC --,且在已知直线和y 轴上,列方程求参数D 、E ,写出一般方程,进而可得其标准方程. 【详解】由题意知:圆心(,)22D EC --在直线x +2y -4=0上,即-2D -E -4=0. 又圆心C 在y 轴上,所以-2D=0. 由以上两式得:D =0, E =-4,则224120x y y +--=, 故圆C 的标准方程为22(2)16x y +-=.18.(1)2211222x y ⎛⎫+-= ⎪⎝⎭ (2)存在,1λ=【分析】(1)①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,利用点差法求解; ②当直线l 不存在斜率时,易知()0,0M ,验证即可;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,与椭圆方程联立,结合韦达定理,利用数量积运算求解; ②当直线l 不存在斜率时,直线l 的方程为:0x =,易得(P、(0,Q ,验证即可.【详解】(1)解:①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,则应用点差法:22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式联立作差得:12121212()()()()042x x x x y y y y -+-++=, ∴()()()()121200121212121212002122PQ PQ PQ OM y y y y y y y y y y k k k k x x x x x x x x x x -+-+=⋅=⋅=⋅=⋅=--+-+, 又∵001PQ MA y k k x -==, ∴0000112y y x x -⋅=-,化简得22000220x y y +-=(00x ≠), ②当直线l 不存在斜率时,()0,0M ,综上,无论直线是否有斜率,M 的轨迹方程为2211222x y ⎛⎫+-= ⎪⎝⎭;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩并化简得:22(21)420k x kx ++-=,∴0∆>恒成立,∴122421k x x k +=-+,122221x x k ⋅=-+,又AP ()11,x k x =⋅,AQ ()22,x k x =⋅,OP ()11,1x k x =⋅+,OQ ()22,1x k x =⋅+,∴AP AQ OP OQ λ⋅+⋅()()()22121212111k x x k x x k x x λ=+⋅⋅++⋅⋅+++,()()()222222211222141212121k k k k k k λλλ-+++++=-+=-+++, 若使AP AQ OP OQ λ⋅+⋅为定值, 只需()222121λλ++=,即1λ=,其定值为3-, ②当直线l 不存在斜率时,直线l 的方程为:0x =,则有(P、(0,Q , 又AP ()1=,AQ ()0,1=,OP (=,OQ (0,=, ∴2λλ⋅+⋅=--AP AQ OP OQ ,当1λ=时,AP AQ OP OQ λ⋅+⋅也为定值3-, 综上,无论直线是否有斜率,一定存在一个常数1λ=, 使AP AQ OP OQ λ⋅+⋅为定值3-.。
新版高中数学北师大版必修2习题:第二章解析几何初步 检测
第二章检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点A(a,3),B(-1,b+2),且直线AB的倾斜角为90°,则a,b的值为()A.a=-1,b∈R且b≠1B.a=-1,b=1C.a=3,b=1D.a=3,b=-1解析:∵直线AB的倾斜角为90°,∴AB⊥x轴.∴a=-1,b∈R且b≠1.答案:A2.已知直线l过点P(-1,2),倾斜角为45°,则直线l的方程为()A.x-y+1=0B.x-y-1=0C.x-y-3=0D.x-y+3=0答案:D3.如图所示,在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()解析:当a>0时,直线y=ax的斜率k=a>0,直线y=x+a在y轴上的截距等于a>0,此时,选项A,B,C,D都不符合;当a<0时,直线y=ax的斜率k=a<0,直线y=x+a在y轴上的截距等于a<0,只有选项C符合,故选C.答案:C4.如果直线ax+2y+2=0与直线3x-y-2=0平行,那么a的值为()A.-3B.-6C.3 2D.23解析:由题意得-a2=3,即a=-6.答案:B5.已知点A(1,0,2),B(1,-3,1),点M在z轴上且到A,B两点的距离相等,则点M的坐标为()A.(-3,0,0)B.(0,-3,0)C.(0,0,-3)D.(0,0,3)答案:C6.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)解析:由题意可得,圆的圆心为(a,0),半径为√2,则√1+(-1)≤√2,即|a+1|≤2,解得-3≤a≤1.答案:C7.与圆(x-3)2+(y-3)2=8相切,且在x轴、y轴上的截距相等的直线共有()A.4条B.3条C.2条D.1条解析:过原点可引圆的两条切线,斜率为-1的直线有两条与圆相切,这四条直线都满足题意.答案:A8.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=()A.5B.√13C.10D.√10解析:将A(1,-2,-3),C(-2,-2,-5)代两点间距离公式即可.答案:B9.过点P(-2,4)作圆(x-2)2+(y-1)2=25的切线l,直线l1:ax+3y+2a=0与l平行,则l1与l之间的距离是()A.285B.125C.85D.25解析:直线l1的斜率k=-a3,l1∥l,又l过P(-2,4),∴l:y-4=-a3(x+2), 即ax+3y+2a-12=0,又直线l与圆相切,∴=5.∴a=-4.√a2+9∴l1与l的距离为d=12.故选B.5答案:B10.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为()A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5解析:∵圆(x+2)2+y2=5的圆心(-2,0)关于原点(0,0)的对称点为(2,0),∴所求圆的方程为(x-2)2+y2=5.答案:A11.过点M(1,2)的直线l与圆C:(x-2)2+y2=9交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程为() A.x=1 B.y=1C.x-y+1=0D.x-2y+3=0,故直线l的方程为x-2y+3=0.解析:当CM⊥l,即弦长最短时,∠ACB最小,则k l·k CM=-1,可得k l=12答案:D12.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.5√2-4B.√17-1C.6-2√2D.√17解析:由题意知,圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9的圆心分别为C1(2,3),C2(3,4),且|PM|+|PN|=|PC1|+|PC2|-4.因为点C1(2,3)关于x轴的对称点为C(2,-3),所以|PC1|+|PC2|=|PC|+|PC2|≥|CC2|=5√2,即|PM|+|PN|=|PC1|+|PC2|-4≥5√2-4.答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知A(-1,2,0),B(-2,6,4),则|AB|=.答案:√3314.当a为任意实数时,直线ax-y+1-3a=0恒过定点.解析:原方程可化为a(x-3)-(y-1)=0,即直线l恒过定点(3,1).答案:(3,1)15.已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0,则它们的公共弦长为.解析:由两圆C1,C2方程可知公共弦所在直线方程为x-2y+4=0,则圆C1的圆心(1,-5)到直线(公共弦)的距离为d=√5=3√5.故弦长=2×√(5√2)2-(3√5)2=2√5.答案:2√516.已知圆O:x2+y2=5和点A(1,2),则过点A且与圆O相切的直线与两坐标轴围成的三角形的面积等于.解析:∵点A(1,2)在圆x2+y2=5上,故过点A的圆的切线方程为x+2y-5=0,令x=0,得y=52, 令y=0,得x=5,∴S△=12×52×5=254.答案:254三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)已知两条直线l1:mx+8y+n=0和l2:2x+my-1=0.试确定m,n的值,使(1)l1和l2相交于点(m,-1);(2)l1∥l2;(3)l1⊥l2且l1在y轴上的截距为-1.解(1)∵m2-8+n=0,且2m-m-1=0,∴m=1,n=7.(2)由m·m-8×2=0,得m=±4,由8×(-1)-n·m≠0,得m=4,n≠-2时或m=-4,n≠2时,l1∥l2.(3)当且仅当m·2+8·m=0,即m=0时,l1⊥l2,又-n8=-1,∴n=8.即m=0,n=8时,l1⊥l2,且l1在y轴上的截距为-1.18.(12分)已知圆心为(1,1)的圆C经过点M(1,2).(1)求圆C的方程;(2)若直线x+y+m=0与圆C交于A,B两点,且△ABC是直角三角形,求实数m的值.解(1)由题意知,圆的半径r=|CM|=√(1-1)2+(2-1)2=1,所以圆C 的方程为(x-1)2+(y-1)2=1.(2)由题意知,|CA|=|CB|=1,且∠ACB=90°,则圆心C 到直线x+y+m=0的距离为√22,即|1+1+m |√1+1=√22,解得m=-1或m=-3.19.(12分)已知直线l 1:x+2y-3=0与l 2:2x-y-1=0的交点是P ,直线l 过点P 及点A (4,3). (1)求l 的方程;(2)求过点P 且与l 垂直的直线l'的方程. 解(1)由{x +2y -3=0,2x -y -1=0,解得{x =1,y =1.∴P (1,1),∴l 的方程为y -13-1=x -14-1,化简,得l 的方程为2x-3y+1=0. (2)∵所求直线l'与l 垂直,∴斜率为-32.又l'过点(1,1),∴所求直线l'的方程为y-1=-32(x-1),即3x+2y-5=0.20.(12分)如图所示,在Rt △ABC 中,已知A (-2,0),直角顶点B (0,-2√2),点C 在x 轴上.(1)求Rt △ABC 外接圆的方程;(2)求过点(-4,0)且与Rt △ABC 外接圆相切的直线的方程. 解(1)由题意可知,点C 在x 轴的正半轴上,可设其坐标为(a ,0)(a>0), 又AB ⊥BC ,则k AB ·k BC =-1, 即-2√22·2√2a =-1,解得a=4.则所求圆的圆心为(1,0),半径为3,故所求圆的方程为(x-1)2+y 2=9.(2)由题意,知直线的斜率存在,故设所求直线的方程为y=k (x+4),即kx-y+4k=0. 当圆与直线相切时,有d=√k +1=3,解得k=±34,故所求直线方程为y=34(x+4)或y=-34(x+4), 即3x-4y+12=0或3x+4y+12=0.21.(12分)已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y=x 上截得弦长为2√7;③圆心在直线x-3y=0上,求圆C 的方程.解所求的圆C 与y 轴相切,又与直线y=x 相交,设交于A ,B 两点,因为圆心C 在直线x-3y=0上,所以设圆心C 为(3a ,a ). 又圆与y 轴相切, 所以R=3|a|,如图所示.又圆心C 到直线x-y=0的距离|CD|=√2=√2|a|.因为在Rt △CBD 中,R 2-|CD|2=(√7)2, 所以9a 2-2a 2=7,a 2=1,a=±1,3a=±3, 所以圆心的坐标C 分别为(3,1)和(-3,-1),故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9. 22.(12分)已知圆M 过C (1,-1),D (-1,1)两点,且圆心M 在x+y-2=0上. (1)求圆M 的方程;(2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.解(1)设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0).根据题意得{(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解得a=b=1,r=2,故所求圆M 的方程为(x-1)2+(y-1)2=4.(2)如图所示,四边形PAMB 的面积S=S △PAM +S △PBM =12(|AM|·|PA|+|BM|·|PB|),又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|,连接PM ,则|PA|2=|PM|2-|AM|2=|PM|2-4,即S=2√|PM |2-4.因此,要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,所以|PM|min=3+4+8=3,所以四边形PAMB面积的最小值为2√|PM|2-4=2√5.5。
2020届高三数学 章末综合测试题(16)解析几何(2)
2020届高三数学章末综合测试题(16)解析几何一、选择题:本大题共12小题,每小题5分,共60分.1.若直线l 与直线y =1、x =7分别交于点P 、Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13 C .-32 D.23解析:设P 点坐标为(a,1),Q 点坐标为(7,b ),则PQ 中点坐标为⎝⎛⎭⎪⎫a +72,1+b 2,则⎩⎪⎨⎪⎧a +72=1,1+b2=-1,解得⎩⎪⎨⎪⎧a =-5,b =-3,即可得P (-5,1),Q (7,-3),故直线l的斜率为k PQ =1+3-5-7=-13.答案:B2.若直线x +(a -2)y -a =0与直线ax +y -1=0互相垂直,则a 的值为( ) A .2 B .1或2 C .1D .0或1解析:依题意,得(-a )×⎝ ⎛⎭⎪⎫-1a -2=-1,解得a =1.答案:C3.已知圆(x -1)2+(y -33)2=r 2(r >0)的一条切线y =kx +3与直线x =5的夹角为π6,则半径r 的值为( ) A.32B.332 C.32或332D.32或 3 解析:∵直线y =kx +3与x =5的夹角为π6,∴k =± 3.由直线和圆相切的条件得r=32或332. 答案:C4.顶点在原点、焦点在x 轴上的抛物线被直线y =x +1截得的弦长是10,则抛物线的方程是( )A .y 2=-x ,或y 2=5x B .y 2=-x C .y 2=x ,或y 2=-5xD .y 2=5x解析:由题意,可知抛物线的焦点在x 轴上时应有两种形式,此时应设为y 2=mx (m ≠0),联立两个方程,利用弦长公式,解得m =-1,或m =5,从而选项A 正确.答案:A5.已知圆的方程为x 2+y 2-6x -8y =0,若该圆中过点M (3,5)的最长弦、最短弦分别为AC 、BD ,则以点A 、B 、C 、D 为顶点的四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 6解析:已知圆的圆心为(3,4),半径为5,则最短的弦长为252-12=46,最长的弦为圆的直径为10,则四边形的面积为12×46×10=206,故应选B.答案:B6.若双曲线x 2a 2-y 2b2=1的一个焦点到其对应准线和一条渐近线的距离之比为2∶3,则双曲线的离心率是( )A .3B .5 C. 3D. 5解析:焦点到准线的距离为c -a 2c =b 2c ,焦点到渐近线的距离为bc a 2+b 2=b ,b c =23,e= 3.答案:C7.若圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2 B .(x -1)2+(y -1)2=2 C .(x -1)2+(y +1)2=2D .(x +1)2+(y +1)2=2解析:如图,据题意知圆的直径为两平行直线x-y=0,x-y-4=0之间的距离2 ,故圆的半径为 ,又A(2,-2),故圆心C(1,-1),即圆的方程为(x-1)2+(y+1)2=2.答案:C8.已知抛物线y 2=2px (p >0),过点E (m,0)(m ≠0)的直线交抛物线于点M 、N ,交y 轴于点P ,若PM →=λME →,PN →=μNE →,则λ+μ=( )A .1B .-12C .-1D .-2解析:设过点E 的直线方程为y =k (x -m ).代入抛物线方程,整理可得k 2x 2+(-2mk 2-2p )x +m 2k 2=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=2p +2mk2k2,x 1x 2=m 2.由⎩⎪⎨⎪⎧PM →=λME →,PN →=μNE →,可得⎩⎪⎨⎪⎧x 1=λ(m -x 1),x 2=μ(m -x 2),则λ+μ=x 1m -x 1+x 2m -x 2=x 1(m -x 2)+x 2(m -x 1)(m -x 1)(m -x 2)=m (x 1+x 2)-2x 1x 2m 2+x 1x 2-m (x 1+x 2)=m (x 1+x 2)-2m 22m 2-m (x 1+x 2)=-1.答案:C9.直线MN 与双曲线C :x 2a 2-y 2b2=1的左、右支分别交于M 、N 点,与双曲线C 的右准线相交于P 点,F 为右焦点,若|FM |=2|FN |,又NP →=λPM →(λ∈R ),则实数λ的值为( )A.12 B .1 C .2D.13解析:如图所示,分别过点M 、N 作MB ⊥l 于点B ,NA ⊥l 于点A .由双曲线的第二定义,可得 = =e , 则 = =2.∵△MPB ∽△NPA ,∴ = = ,即 = . 答案:A10.在平面直角坐标系内,点P 到点A (1,0),B (a,4)及到直线x =-1的距离都相等,如果这样的点P 恰好只有一个,那么a =( )A .1B .2C .2或-2D .1或-1解析:依题意得,一方面,点P 应位于以点A (1,0)为焦点、直线x =-1为准线的抛物线y 2=4x 上;另一方面,点P 应位于线段AB 的中垂线y -2=-a -14⎝ ⎛⎭⎪⎫x -a +12上. 由于要使这样的点P 是唯一的,因此要求方程组⎩⎪⎨⎪⎧y 2=4x ,y -2=-a -14⎝ ⎛⎭⎪⎫x -a +12有唯一的实数解.结合选项进行检验即可.当a =1时,抛物线y 2=4x 与线段AB 的中垂线有唯一的公共点,适合题意;当a =-1时,线段AB 的中垂线方程是y =12x +2,易知方程组⎩⎪⎨⎪⎧y 2=4x ,y =12x +2有唯一实数解.综上所述,a =1,或a =-1. 答案:D11.已知椭圆C :x 24+y 2=1的焦点为F 1、F 2,若点P 在椭圆上,且满足|PO |2=|PF 1|·|PF 2|(其中O 为坐标原点),则称点P 为“★点”.下列结论正确的是( )A .椭圆C 上的所有点都是“★点”B .椭圆C 上仅有有限个点是“★点” C .椭圆C 上的所有点都不是“★点”D .椭圆C 上有无穷多个点(但不是所有的点)是“★点”解析:设椭圆C :x 24+y 2=1上点P 的坐标为(2cos α,sin α),由|PO |2=|PF 1|·|PF 2|,可得4cos 2α+sin 2α=(2cos α+3)2+sin 2α·(2cos α-3)2+sin 2α,整理可得cos 2α=12,即可得cos α=±22,sin α=±22,由此可得点P 的坐标为⎝ ⎛⎭⎪⎫±2,±22,即椭圆C 上有4个点是“★点”.答案:B12.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,P 为双曲线上的一个动点(不是顶点),若从点A 引双曲线的两条渐近线的平行线,与直线OP 分别交于Q 、R 两点,其中O 为坐标原点,则|OP |2与|OQ |·|OR |的大小关系为( )A .|OP |2<|OQ |·|OR |B .|OP |2>|OQ |·|OR | C .|OP |2=|OQ |·|OR |D .不确定解析:设P (x 0,y 0),双曲线的渐近线方程是y =±b a x ,直线AQ 的方程是y =b a(x -a ),直线AR 的方程是y =-b a (x -a ),直线OP 的方程是y =y 0x 0x ,可得Q ⎝⎛⎭⎪⎫abx 0bx 0-ay 0,aby 0bx 0-ay 0,R ⎝⎛⎭⎪⎫abx 0bx 0+ay 0,aby 0bx 0+ay 0.又x 02a 2-y 02b2=1,可得|OP |2=|OQ |·|OR |. 答案:C第Ⅱ卷 (非选择 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若两直线2x +y +2=0与ax +4y -2=0互相垂直,则其交点的坐标为__________. 解析:由已知两直线互相垂直可得a =-2,则由⎩⎪⎨⎪⎧2x +y +2=0,-x +2y -1=0得两直线的交点坐标为(-1,0).答案:(-1,0)14.如果点M 是抛物线y 2=4x 的一点,F 为抛物线的焦点,A 在圆C :(x -4)2+(y -1)2=1上,那么|MA |+|MF |的最小值为__________.解析:如图所示,过点M 作MB ⊥l 于点B .由抛物线定义,可得|MF |=|MB |,则|MA |+|MF |=|MA |+|MB |≥|CB |-1=4+1-1=4.答案:415.若过原点O 且方向向量为(m,1)的直线l 与圆C :(x -1)2+y 2=4相交于P 、Q 两点,则OP →·OQ →=__________.解析:可由条件设出直线方程,联立方程运用韦达定理可求解,其中OP →·OQ →=x 1x 2+y 1y 2是引发思路的关键.答案:-316.如果F 1为椭圆C :x 22+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,那么|F 1A |+|F 1B |的值为__________.解析:将l :y =x -1代入椭圆C :x 22+y 2=1,可得x 2+2(x -1)2-2=0,即3x 2-4x =0,解之得x =0,或x =43.可得A (0,-1),B ⎝ ⎛⎭⎪⎫43,13.又F 1(-1,0),则|F 1A |+|F 1B |=(-1)2+12+⎝ ⎛⎭⎪⎫43+12+⎝ ⎛⎭⎪⎫132=823. 答案:823三、解答题:本大题共6小题,共70分.17.(10分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4.(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y =x +2相切,求椭圆焦点坐标; (2)若点P 是椭圆C 上的任意一点,过原点的直线L 与椭圆相交于M 、N 两点,记直线PM 、PN 的斜率分别为k PM 、k PN ,当k PM ·k PN =-14时,求椭圆的方程.解析:(1)由b =21+1,得b =2,又2a =4,a =2,a 2=4,b 2=2,c 2=a 2-b 2=2, 故两个焦点坐标为(2,0),(-2,0).(2)由于过原点的直线L 与椭圆相交的两点M 、N 关于坐标原点对称, 不妨设M (x 0,y 0),N (-x 0,-y 0),P (x ,y ). 点M 、N 、P 在椭圆上,则它们满足椭圆方程,即有x 02a 2+y 02b 2=1,x 2a 2+y 2b 2=1,两式相减,得y 2-y 02x 2-x 02=-b 2a2.由题意它们的斜率存在,则k PM =y -y 0x -x 0,k PN =y +y 0x +x 0, k PM ·k PN =y -y 0x -x 0·y +y 0x +x 0=y 2-y 02x 2-x 02=-b 2a 2,则-b 2a 2=-14.由a =2,得b =1.故所求椭圆的方程为x 24+y 2=1.18.(12分)已知两点M (-1,0),N (1,0),点P 为坐标平面内的动点,满足|MN →|·|NP →|=MN →·MP →.(1)求动点P 的轨迹方程;(2)若点A (t,4)是动点P 的轨迹上的一点,K (m,0)是x 轴上的一动点,试讨论直线AK 与圆x 2+(y -2)2=4的位置关系.解析:(1)设P (x ,y ),则MN →=(2,0),NP →=(x -1,y ), MP →=(x +1,y ).由|MN →|·|NP →|=MN →·MP →, 得2(x -1)2+y 2=2(x +1), 化简,得y 2=4x .故动点P 的轨迹方程为y 2=4x . (2)由点A (t,4)在轨迹y 2=4x 上, 则42=4t ,解得t =4,即A (4,4). 当m =4时,直线AK 的方程为x =4, 此时直线AK 与圆x 2+(y -2)2=4相离. 当m ≠4时,直线AK 的方程为y =44-m(x -m ), 即4x +m (m -4)y -4m =0,圆x 2+(y -2)2=4的圆心(0,2)到直线AK 的距离d =|2m +8|16+(m -4)2,令d =|2m +8|16+(m -4)2<2,解得m <1; 令d =|2m +8|16+(m -4)2=2,解得m =1; 令d =|2m +8|16+(m -4)2>2,解得m >1.综上所述,当m <1时,直线AK 与圆x 2+(y -2)2=4相交; 当m =1时,直线AK 与圆x 2+(y -2)2=4相切; 当m >1时,直线AK 与圆x 2+(y -2)2=4相离.19.(12分)如图,已知直线L :x =my +1过椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且交椭圆C 于A 、B 两点,若抛物线x 2=43y 的焦点为椭圆C 的上顶点.(1)求椭圆C 的方程;(2)若直线L 交y 轴于点M ,且MA →=λ1AF →,MB →=λ2BF →,当m 变化时,求λ1+λ2的值. 解析:(1)易知b =3,得b 2=3. 又∵F (1,0),∴c =1,a 2=b 2+c 2=4, ∴椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +1,3x 2+4y 2-12=0,得(3m 2+4)y 2+6my -9=0,Δ=144(m 2+1)>0, 于是1y 1+1y 2=2m3.(*)∵L 与y 轴交于点M ⎝ ⎛⎭⎪⎫0,-1m ,又由MA →=λ1AF →,∴⎝ ⎛⎭⎪⎫x 1,y 1+1m =λ1(1-x 1,-y 1),∴λ1=1-1my 1.同理λ2=-1-1my 2.从而λ1+λ2=-2-1m ⎝ ⎛⎭⎪⎫1y 1+1y 2=-2-23=-83.即λ1+λ2=-83.20.(12分)设G 、M 分别为△ABC 的重心与外心,A (0,-1),B (0,1),且GM →=λAB →(λ∈R ). (1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足|AP →|=|AQ →|,试求k 的取值范围.解析:(1)设C (x ,y ),则G ⎝ ⎛⎭⎪⎫x 3,y3. ∵GM →=λAB →,(λ∈R ),∴GM ∥AB .∵点M 是三角形的外心,∴M 点在x 轴上,即M ⎝ ⎛⎭⎪⎫x3,0. 又∵|MA →|=|MC →|,∴⎝ ⎛⎭⎪⎫x 32+(0+1)2= ⎝ ⎛⎭⎪⎫x 3-x 2+y 2, 整理,得x 23+y 2=1,(x ≠0),即为曲线C 的方程.(2)①当k =0时,l 和椭圆C 有不同两交点P 、Q ,根据椭圆对称性有|AP →|=|AQ →|. ②当k ≠0时,可设l 的方程为y =kx +m ,联立方程组⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,消去y ,整理,得(1+3k 2)x 2+6kmx +3(m 2-1)=0.(*) ∵直线l 和椭圆C 交于不同两点, ∴Δ=(6km )2-4(1+3k 2)×(m 2-1)>0, 即1+3k 2-m 2>0.(**)设P (x 1,y 1),Q (x 2,y 2),则x 1,x 2是方程(*)的两相异实根, 于是有x 1+x 2=-6km1+3k 2.则PQ 的中点N (x 0,y 0)的坐标是x 0=x 1+x 22=-3km 1+3k 2,y 0=kx 0+m =m 1+3k2,即N ⎝ ⎛⎭⎪⎫-3km 1+3k 2,m 1+3k 2,又∵|AP →|=|AQ →|,∴AN →⊥PQ →,∴k ·k AN =k ·m1+3k 2+1-3km 1+3k2=-1,∴m =1+3k22.将m =1+3k 22代入(**)式,得1+3k 2-⎝ ⎛⎭⎪⎫1+3k 222>0(k ≠0), 即k 2<1,得k ∈(-1,0)∪(0,1). 综合①②得,k 的取值范围是(-1,1).21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,它的一条准线方程为x =2.(1)求椭圆C 的方程;(2)若点A 、B 为椭圆上的两个动点,椭圆的中心到直线AB 的距离为63,求∠AOB 的大小.解析:(1)由题意,知c a =22,a2c=2,得a =2,c =1,故a 2=2,b 2=1, 故椭圆方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2), 设直线AB 的方程为x =±63,或y =kx +b . 当直线AB 的方程为x =63时,由⎩⎪⎨⎪⎧x =63,x22+y 2=1,可求A ⎝⎛⎭⎪⎫63,63,B ⎝ ⎛⎭⎪⎫63,-63. 从而OA →·OB →=0,可得∠AOB =π2.同理可知当直线AB 的方程为x =-63时,和椭圆交得两点A 、B . 可得∠AOB =π2.当直线AB 的方程为y =kx +b . 由原点到直线的距离为63,得b 1+k2=63. 即1+k 2=32b 2.又由⎩⎪⎨⎪⎧y =kx +b ,x 22+y 2=1,消去y ,得(1+2k 2)x 2+4kbx +2b 2-2=0.得x 1+x 2=-4kb 1+2k 2,x 1x 2=2b 2-21+2k 2,从而y 1y 2=(kx 1+b )(kx 2+b )=k 2x 1x 2+kb (x 1+x 2)+b 2=b 2-2k 21+2k2.OA →·OB →=x 1x 2+y 1y 2=2b 2-21+2k 2+b 2-2k 21+2k2=3b 2-2(1+k 2)1+2k 2, 将1+k 2=32b 2代入上式,得OA →·OB →=0, ∠AOB =90°.22.(12分)已知动点P 与双曲线x 2-y 23=1的两焦点F 1、F 2的距离之和为大于4的定值,且|PF 1→|·|PF 2→|的最大值为9.(1)求动点P 的轨迹E 的方程;(2)若A 、B 是曲线E 上相异两点,点M (0,-2)满足AM →=λMB →,求实数λ的取值范围.解析:(1)双曲线x 2-y 23=1的两焦点F 1(-2,0)、F 2(2,0). 设已知定值为2a ,则|PF 1→|+|PF 2→|=2a ,因此,动点P 的轨迹E 是以F 1(-2,0),F 2(2,0)为焦点,长轴长为2a 的椭圆. 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0). ∵|PF 1→|·|PF 2→|≤⎣⎢⎡⎦⎥⎤|PF 1→|+|PF 2→|22=a 2, 当且仅当|PF 1→|=|PF 2→|时等号成立,∴a 2=9,b 2=a 2-c 2=5,∴动点P 的轨迹E 的方程是x 29+y 25=1. (2)设A (x 1,y 1),B (x 2,y 2),则由AM →=λMB →, 得⎩⎪⎨⎪⎧ -x 1=λx 2,-2-y 1=λ(y 2+2),且M 、A 、B 三点共线,设直线为l ,①当直线l 的斜率存在时,设l :y =kx -2,由⎩⎪⎨⎪⎧ y =kx -2,x 29+y 25=1,得(5+9k 2)x 2-36kx -9=0, Δ=(-36k )2-4(5+9k 2)(-9)>0恒成立.由韦达定理,得⎩⎪⎨⎪⎧x 1+x 2=36k 5+9k 2,x 1x 2=-95+9k 2.将x 1=-λx 2代入,消去x 2得(1-λ)2λ=144k 25+9k 2. 当k =0时,得λ=1; 当k ≠0时,(1-λ)2λ=1445k 2+9,由k 2>0,得 0<(1-λ)2λ<16,得9-45<λ<9+45,且λ≠1. ②当直线l 的斜率不存在时,A 、B 分别为椭圆短轴端点,此时λ=-2-y 12+y 2=9±4 5. 综上所述,λ的取值范围是[9-45,9+45].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解析几何测试题2
(本卷满分:150分,考试时间:120分钟)
第I 卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分。
1.若直线1=x 的倾斜角为α,则α等于 ( )
A .0
B .4π
C .2π
D .不存在
2. 抛物线y =4x 2
的准线方程是 ( )
A .x =1
B .1
4x =- C .y =-1 D .116y =-
3..已知双曲线
2
2a
x -
2
2b
y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,
△OAF 的面积为2
2
a
(O 为原点),则两条渐近线的夹角为 ( ) A .30º
B .45º
C .60º
D .90º
4. 点(2,3)P 到直线:03)1(=+-+y a ax 的距离d 为最大时,d 的值为 ( )
A .7
B .5
C .3
D .1 5.“点M 在曲线y x =上”是“点M 到两坐标轴距离相等”的 ( ) A .充要条件
B .必要不充分条件
C .充分不必要条件
D .既不充分又不必要条件
6.方程022
2
=+-++c by ax y x 表示圆心为C (2,2),半径为2的圆,则c b a ,,的值 依次为 ( ) A.2、4、4; B.-2、4、4; C.2、-4、4; D.2、-4、-4
7.已知椭圆的焦点)0,1(1-F , )0,1(2F ,P 是椭圆上一点,且21F F 是1PF ,2PF 的等差中项,则椭圆的方程是 ( )
A .
2
2
116
9
x
y
+
= B .
2
2
116
12
x
y
+
= C .
2
2
14
3
x
y
+
= D .
2
2
13
4
x
y
+
=
8.设a,b,c 分别是△ABC 中,∠A ,∠B ,∠C 所对边的边长,则直线 sinA ·x+ay+c =0与bx -sinB ·y+sinC =0的位置关系是 ( )
A.平行
B.重合
C.垂直
D.相交但不垂直
9.已知F 1、F 2是双曲线
)0,0(12
22
2>>=-
b a b
y a
x 的两焦点,以线段F 1F 2为边作正三角形
MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( ) A .324+ B .13- C .
2
13+ D .13+
10.已知实数x, y 满足10y x -+≤,则22(1)(1)x y +++的最小值是 ( )
A .12
B .22
C .2
D .2
11.若双曲线
222
2
1x y a
b
-
=与直线2y x =无交点,则离心率e 的取值范围是 ( )
A .(1,5]
B .(1,5)
C .(1,2]
D .(1,2)
12.(理科)E 、F 是椭圆
2
2
14
2
x
y
+
=的左、右焦点,l 是椭圆的一条准线,点P 在l 上,
则∠EPF 的最大值是 ( ) A .60° B .30° C .90° D .45°
(文科)双曲线
)0,0(12
22
2>>=-
b a b
y a
x 的左、右焦点分别为F 1、F 2,过点 F 1作倾斜角
为30︒的直线l ,l 与双曲线的右支交于点P ,若线段PF 1的中点M 落在y 轴上,则双曲线的渐近线方程为 ( ) A .y x =± B .3y x =± C .2y x =±
D .2y x =±
第II 卷(非选择题 共90分)
二、填空题(每小题4分,共16分,把答案填在题中横线上)
13.点(1,0)关于直线x+y+1=0的对称点是 。
14.若(2,1)p -为圆2
2
(1)25x y -+=的弦AB 的中点, 则直线AB 的方程为 。
15.(理科)过抛物线2
4x y =的焦点作直线l 交抛物线于A (x 1, y 1), B (x 2, y 2),则21x x =_ 。
(文科)设抛物线24y x =的焦点为F ,经过点(2,1)P 的直线与抛物线交于A 、B 两点,
P F 1
O
F 2
x
y
M 30︒ )
又知点P 恰好为A B 的中点,则AF BF +的值是 . 16.以下四个关于圆锥曲线的命题中:
①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=
,则动点P 的轨迹为双曲线; ②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2
O P O A O B =+
则动点P
的轨迹为椭圆;
③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;
④双曲线135
19
25
2
2
2
2
=+=-
y
x
y
x
与椭圆
有相同的焦点.
其中真命题的序号为 (写出所有真命题的序号)
三、解答题(本大题6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(12分) 一动点P 到两定点)2,2(1--F 、)2,2(2F 的距离之差的绝对值等于22,求点P 的轨迹方程。
18、 (12分) 将直线515y x =-+绕着它与x 轴的交点按逆时针方向旋转θ角后,恰好与圆2
2
x y +4280x y ++-=相切,求旋转角θ的最小值.
19. (12分) 已知直线:120()
l kx y k k R
-++=∈
(1)证明直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,记△AOB的面积为S,求S的最小值,并求此时直线l的方程。
20.(12分)一座拱桥桥洞的截面边界由抛物线弧段COD和矩形
ABCD的三边组成,拱的顶部O距离水面5m,水面上的矩形的高
度为2m,水面宽6m,如图所示,一艘船运载一个长方体形的集装
箱,此箱平放在船上,已知船宽5m,船面距离水面1.5m,集装箱
的尺寸为长×宽×高=4×3×3(m). 试问此船能否通过此桥?并说明理由. A
D C
B
6m
2m F
y
x
21.(12分)双曲线
222
2
1(0,0)x y a b a
b
-
=>>的右焦点为F ,渐近线1l 上一点36(,
)
3
3
P 满
足:直线PF 与渐近线1l 垂直。
(1)求该双曲线方程;
(2)设A 、B 为双曲线上两点,若点N (1,2)是线段AB 的中点,求直线AB 的方程.
22. (14分) (理科)如图,梯形ABCD 的底边AB 在y 轴上,原点O 为AB 的中点,
4242||,||2,,3
3
AB C D AC BD ==-⊥M 为CD 的中点.
(1)求点M 的轨迹方程;
(2)过M 作AB 的垂线,垂足为N ,若存在正常数0λ, 使0MP PN λ=
,且P 点到A 、B 的距离和为定值,
求点P 的轨迹E 的方程;
(3)过1
(0,)2
的直线与轨迹E 交于P 、Q 两点,且0O P O Q ∙=
,求此直线方程.
D C
B
x
y
O
(文科)双曲线C :
12
22
2=-
b
y a
x (a >0,b >0)的离心率为e ,若直线l : x =
c
a
2
与两条
渐近线相交于P 、Q 两点,F 为右焦点,△FPQ 为等边三角形. (1)求双曲线C 的离心率e 的值;
(2)若双曲线C 被直线y =ax +b 截得的弦长为a
e b 2
2
,求双曲线c 的方程.。