高三数学复习圆的方程

合集下载

圆系方程 高三数学复习圆系方程及教案 高三数学复习圆系方程及教案

圆系方程 高三数学复习圆系方程及教案 高三数学复习圆系方程及教案

圆系方程在平面解析几何直线与圆的教学中,向学生介绍圆系方程可为解题提供便利。

这里主研究常用的一类圆系方程。

定理1 过直线L:y=kx+b及圆C:x2+y2+Dx+Ey+F=0的两个交点的圆系方程为:x2+y2+Dx+Ey+F+λ(kx-y+b)=0 ①(其中λ为待定常数)。

首先证明方程①表示圆。

由于直线l与圆C交,故方程组:;有两组不同的实数解,消去y整理得:(k2+1)x2+(D+kE+2kb)x+b2+bE+F=0 ;Δ=(D+kE+2kb)2-4(k2+1)(b2+bE+F)>0 ;整理得: D2+k2E2+2kDE+4kbD-4k2F>4(b2+bE+F) ②将方程①变形为:x2+y2+(D+kλ)x+(E-λ)y+λb+F=0.要证此方程表示圆,即证:(D+kλ)2+(E-λ)2-4(λb+F)>0,即:(k2+1)λ2+(2kD-2E-4b)λ+D2+E2-4F>0.将它看作是关于λ的一元二次不等式,要证其成立,只需证明:Δ=(2kD-2E-4b)2-4(k2+1)(D2+E2-4F)<0 ③而此式等价变形为: D2+k2E2+2kDE+4kbD-4k2F>4(b2+bE+F).它与②完全一致,由于原方程组有两组不同的实数解,所以②式成立,故③式恒成立,方程①表示圆。

其次,证明圆①一定经过直线L与圆C的两个交点。

设两交点分别为A(x1,y1) ,B(x2,y2),∵点A既在直线L上又在圆C上,∴kx1-y1+b=0, x12+y12+Dx1+Ey1+F=0,∴x12+y12+Dx1+Ey1+F+λ(kx1-y1+b)=0,即点A在圆①上,同理点B亦在此圆上。

故圆①经过A、B两点。

综上,定理1得证。

定理2 经过两圆C1:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0,的交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(包括圆C1,不包括圆C2,其中λ为常数且λ≠-1)特别地,当λ=-1时,即(D1-D2)x+(E1-E2)y+F1-F2=0表示两圆公共弦所在直线方程。

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。

以下是圆的方程专题练习,请考生查缺补漏。

一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。

圆的方程及性质课件-2023届高三数学一轮复习

圆的方程及性质课件-2023届高三数学一轮复习

3 3.
判断直线与圆的位置关系的两种方法 >0⇔相交,
(1)代数法:Δ=判―b别 ―2-→式4ac =0⇔相切, <0⇔相离.
(2)几何法:利用圆心到直线的距离 d 和圆半径 r 的大小关系:d<r⇔相交,d =r⇔相切,d>r⇔相离.
实际操作时,多用几何法.
练习 已知点 M(a,b)在圆 O:x2+y2=1 外,则直线 ax+by=1 与圆 O 的
①两条切线方程; ②直线 AB 的方程; ③线段 PA 的长度; ④线段 AB 的长度.
圆的切线方程的求法 (1)代数法:设切线方程为 y-y0=k(x-x0),与圆的方程组成方程组,消元后得到 一个一元二次方程,然后令判别式Δ=0 进而求得 k(当 k 不存在时,切线方程为 x =x0). (2)几何法:设切线方程为 y-y0=k(x-x0),利用点到直线的距离公式表示出圆心 到切线的距离 d,然后令 d=r,进而求出 k(当 k 不存在时,切线方程为 x=x0). (3)若点 M(x0,y0)在圆 x2+y2=r2 上,则过点 M 的圆的切线方程为 x0x+y0y= r2.
A.相交
B.相切
C.相离
D.不确定
【思路】 根据直线与圆的位置关系的判断方法——几何法或代数法求解, 也可以利用直线所过的定点,结合该定点与圆的位置关系求解.
【解析】 +m2-5=0,
方法一:由mx2x+-(y+y-1-1)m2==05,,消去 y,整理得(1+m2)x2-2m2x
因为 Δ=16m2+20>0,所以直线 l 与圆相交.
圆的定义 平面内到定点的距离___________的点的集合是圆,定点是圆心,定长是半 径. 注:平面内动点 P 到两定点 A,B 距离的比值为λ,即||PPAB||=λ, ①当λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当λ≠1 时,P 点轨迹是圆.

圆的方程

圆的方程

基础题例题
4.已知点 已知点P(x,y)为圆 x2+y2=4上的动点,则 x+y 的最大值为 上的动点, 的最大值为___ 已知点 为圆 上的动点
x = 2cosα ( 一 :设 (0 ≤α < 2 ) π 解法 ) y = 2sin α
x 则 +y = 2cosα +2sinα = 2 2sin α +π ) ≤ 2 2 ( 4 (法 ) x+ y =u 二 设
的方程为: (2)圆C的方程为: x −a) ) 的方程为 (
Hale Waihona Puke +(y −b) = r
2
2
2
练习1.写出过圆 上一点M的切线的方程 练习 写出过圆x2+y2=10上一点 的切线的方程 写出过圆 上一点 的切线的方程?
2、求经过圆外一点M(x0,y0)的切线的方程 。 、求经过圆外一点 ( 常用求法简介: 常用求法简介:

r
2.确定圆的方程必须具备 确定圆的方程必须具备 三个独立的条件 独立的条件。 三个独立的条件。
O
x
2.标准方程: 标准方程: 设圆心C(a,b),半径为r,则标准方程为 ,半径为 ,则标准方程为(x-a)2+(y-b)2=r2. 设圆心 当圆心在圆点时,圆的方程为 当圆心在圆点时,圆的方程为x2+y2=r2 3.一般方程: 一般方程: 当D2+E2-4F>0 时, 方程 2+y2+Dx+Ey+F=0叫做圆的一般 方程x 叫做圆的一般 1 D E (− ,− ) ,半径 r = D 2 + E 2 − 4F 方程. 方程 此时圆心为 半径 2 2 2
( 二 :设 心 解法 ) 圆 C(x0, y0), 则2x0 −y0 −7 = 0 Q 心 AB 垂 平 线 又 圆 在 的 直 分 y = −3上 , ∴y0 = −3 ∴ 0 =2 x

高三数学圆的方程

高三数学圆的方程

群散去的差不多了,她依旧在充当吃瓜群众。看着正在相互交涉的买卖双方,她又凑近了一些。(古风一言)剑指山河兵临城下,不为夙愿,只为 守护你的安然。第076章 嫌弃这马真是可爱,慕容凌娢对马的了解很少,自然不敢妄下断言,但等到人群散去的差不多了,她依旧在充当吃瓜群 众。看着正在相互交涉的买卖双方,她只是更仔细的观察着这匹黑马。正在她肆无忌惮的观察时,那匹黑马突然一扭头,她们一人一马四目相对, 时间仿佛停顿了下来……一切都变得很慢很慢……“噗~”那马看着慕容凌娢,打了一个响鼻,然后嫌弃的翻了一个白眼,满满地都是怨气摇摇 脑袋,甩甩尾巴,便再也不理睬她了。这……这也太尴尬了,慕容凌娢居然会被一只马嫌弃!简直是受到了1000点的暴击!慕容凌娢感觉整个人 都不好了,生无可恋啊~“算了算了,还是去别处看看吧。”慕容凌娢回过神来,发现围观的人都已经走光了。“唉!”那大汉重重的叹了口气, 摸了摸马的鬃毛,“如今这般落魄,留着你也是受罪,还不如给你个痛快……”他说着便要解开拴在木桩上的绳子,那黑马似乎也明白了什么, 开始焦躁不安的挣扎,无奈被绳子束缚,再怎么用力拽也无用。这是要杀马的套路啊!当慕容凌娢脑子转过来弯时,大汉已经准备把马迁走了。 “等等!”慕容凌娢拦住了他,大义凌然的挡在黑马身边,“这马我要了。”“二十两银子,不能再少了!”在醉影楼呆了那么久,慕容凌娢已 经搞清楚了这个年代的物价,一两银子差不多是500RMB,二十两银子……大概就是1WRMB。这也太贵了!自己这回出来,总共就带了四两银子,可 是这马,要是没人要,就要惨死在街头了……怎么办?这个年代又没有动物保护协会这样的组织,她实在不想看见这只马就这样死 掉……“我……”情急之下,慕容凌娢摸到了自己挂在脖子上的那块血玉,就是穿越时拿着的那块。“我用这块玉来换可以吗?”“这是……” 大汉接过慕容凌娢的玉,摆弄了几下,又丢了回来,“我又不知道这东西是真是假,万一你给我个假的,我不就亏大了吗!”“这个绝对是真 的!”慕容凌娢着急着想解释,可是那大汉始终不为所动。“二十两银子是吗?”“韩哲轩!”慕容凌娢惊喜的回过头,“你刚才跑哪里去了! 找你半天,还以为你丢了呢……”“方蛤蟆?慌什么?,人多,被挤掉线了而已,看来该换网了。”韩哲轩依旧是不紧不慢态度,没有想要认真回 答慕容凌娢。他脸上带着常有的笑意,把钱袋递给了大汉,“这么多够了吧?”“够了够了!”“那马我带走了。”韩哲轩把马的缰绳接下来, 交到了慕容凌娢手里,“归你了,不用谢我。”“公子您慢走!”……“老哥(稳),这回坑了不少钱吧!”等韩哲轩

利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习

利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习

= −1 + 2cos ,
1.(2024 ·宜春模拟)已知曲线ቊ
( 为参数)上任意一点 0 , 0 ,
= 1 + 2sin
[2 2, +∞)
不等式 ≥ 0 + 0 恒成立,则实数的取值范围是__________.
解析 根据题意,曲线ቊ
= −1 + 2cos ,
( 为参数),
利用圆的参数方程解决最值问题
一 利用圆的参数方程求代数式的最值
二 利用圆的参数方程求范围
三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
2
= 0 + cos ,
1. 圆的方程有标准方程、一般方程、参数方程,一般我们把方程ቊ
(
= 0 + sin
是参数)称为圆 − 0 2 + − 0 2 = 2 的参数方程.
当sin = 1时,取得最大值,最大值为1.
5
4
故实数的取值范围是[− , 1].
1 2
+
2
5
4
− .
06 利用圆的参数方程解决最值问题
10
利用圆的参数方程,采用代入法把求实数的取值范围问题转化为求三角函数的值域问
题,使问题迅速获解,可谓转化巧妙.
06 利用圆的参数方程解决最值问题
11
12
磨尖点三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
典例3 (2024 ·上海模拟)已知动圆 −
2
+ −
14
2
= 1经过原点,则动圆上的
2+2
点到直线 − + 2 = 0距离的最大值是_______.

圆的方程课件-2025届高三数学一轮复习

圆的方程课件-2025届高三数学一轮复习

解析:由题设知 = , = , = ,所以
< < ,要使,,三点中的一个点在圆内,一个点在圆上,
一个点在圆外,所以圆以 为半径,故圆的方程为


+ + ��

= .
求圆的方程的两种方法
1.(多选)(2024·重庆模拟)设圆的方程是 −
= ,故 = − −
⋅ = − −
+ −



+ ,所以
+ + − = − .由圆的方程
= ,易知 ≤ ≤ ,所以,当 = 时, ⋅ 的值最大,
最大值为 × − = .
建立函数关系式求最值
所以点到两点的距离相等且为半径,
所以



+ −
=
+ −

= ,
即 − + + − + = ,解得 = ,
所以 , − , = ,
所以⊙ 的方程为 −

+ +

= .
方法三:设点 , , , ,⊙ 的半径为,则 =
10
则 + 的最大值为____.
2.设点 , 是圆 −

解析:由题意知 = −, − , = −, − − ,
所以 + = −, − ,由于点 , 是圆上的点,故其坐标满足方
程 −

+ = ,
故 = − −


+ = ,即表示以点 , 为圆心, 为半径
的圆.

高三-圆的标准方程和一般方程

高三-圆的标准方程和一般方程

复习课:圆的标准方程和一般方程教学目标重点:掌握圆的标准方程和一般方程,能根据题目条件选择恰当的形式求圆的方程,理解圆的一般方程和标准方程之间的关系,并能互化.灵活运用圆的几何性质解决问题.了解参数方程的概念,理解圆的参数方程.难点:与圆有关的综合题的求解方法.能力点:等价转化的数学思想、数形结合的数学思想的应用,逻辑推理能力的培养和训练. 自主探究点:了解参数方程的概念,理解圆的参数方程,利用参数方程解决求最值问题. 易错点:运算出现错误,对问题分析不全面导致漏解. 学法与教具1.学法:学生动脑、动手总结规律,梳理知识,解决问题.2.教具:投影仪. 一、【知识梳理】1.圆的定义:平面内与定点的距离等于定长的点的集合(轨迹)叫圆.在平面直角坐标系内确定一个圆需要三个独立条件:如三个点,半径和圆心(两个坐标)等. 2.圆的方程(1)标准式:222()()x a y b r -+-= ,其中r 为圆的半径,(,)a b 为圆心. (2)一般式:22220 (40)x y Dx Ey F D E F ++++=+->,其中圆心为(,)22D E--,半径(3)过圆与直线(或圆)交点的圆系方程:i) 22()0x y Dx Ey F Ax By C λ+++++++=,ii) 2222111222()0x y D x E y F x y D x E y F λ+++++++++=(1-=λ时为一条过两圆交点的直线,该方程不包括圆C 2)(4)二元二次方程220 Ax By Cxy Dx Ey F +++++=表示圆的充要条件:220,0,40A B C D E AF =≠=+->.二、【范例导航】题型1:求圆的方程【例1】(1)求经过点(5,2),(3,2)A B ,圆心在直线230x y --=上的圆的方程;(2)求圆心在直线30x y -=上,与y 轴相切,且被直线y x =截得的弦长为. 【分析】本题可以设圆的标准方程,建立关于圆心(,)a b 和半径r 的三个方程构成的方程组. 【解析】(1)解法一:设圆的标准方程为222()()x a y b r -+-=根据题意可得222222(5)(2)(3)(2)230a b r a b r a b ⎧-+-=⎪-+-=⎨⎪--=⎩,解得45a b r ⎧=⎪=⎨⎪=⎩所求圆的方程为22(4)(5)10x y -+-=.解法二:因为圆过(5,2),(3,2)A B 两点,所以圆心在线段AB 的中垂线4x =上,又因为圆心在直线230x y --=上,联立解得4,5a b ==.进而求得圆的半径r 圆方程为:22(4)(5)10x y -+-=.(2)因为圆与y 轴相切,且圆心在直线30x y -=上, 故圆方程可设为222(3)()9x b y b b -+-=又因为直线y x =截圆得弦长为则有2229b +=,解得1b =±, 故所求圆方程为:22(3)(1)9x y -+-=或22(3)(1)9x y +++=【点评】求圆的方程时,根据题目条件选择合适的方程形式,同时注意圆的几何性质的充分利用,如在第(1)问解法二中,利用圆心在线段AB 的中垂线上,可以使简化运算.第(2)问求解时注意两组结果.变式训练:求半径为4,与圆22:4240A x y x y +---=相切,且和直线0y =相切的圆的方程.【解析】由题意,设所求圆的方程为圆222:()()C x a y b r -+-=.圆C 与直线0y =相切,且半径为4,所以圆心C 的坐标为1:(,4)C a 或2:(,4)C a -. 又已知圆22:4240A x y x y +---=的圆心A 的坐标为(2,1),半径为3. 若两圆相切,则两圆心之间的距离437CA =+=或431CA =-=.(1) 当1:(,4)C a 时,222(2)(41)7a -+-=,或222(2)(41)1a -+-= (无解),故可得2a =±∴所求圆方程为22(2(4)16x y -++-=或22(2(4)16x y --+-=. (2) 当2:(,4)C a -时,222(2)(41)7a -+--=,或222(2)(41)1a -+--= (无解),故2a =±∴所求圆的方程为22(2(4)16x y -+++=或22(2(4)16x y --++=. 【点评】对本题,易发生以下误解:(1)忽略圆心在x 轴下方的情形,(2)只考虑两圆相外切的情况.题型2:轨迹问题【例2】(1)已知点M 与两个定点(0,0),(3,0)O A 的距离的比为12,求点M 的轨迹方程. (2) 已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.【分析】第(1)问用直接法求轨迹方程,第(2)问用相关点代入法求轨迹方程,所得轨迹都是圆. 【解析】(1)设所求轨迹上任意一点(,),M x y 根据题意:12MOMA =,即:2MO MA =,即= 故所求轨迹方程为:22(1)4x y ++=.(2)设AB 的中点(,)M x y ,点00(,)A x y ,则004232x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,得 002423x x y y =-⎧⎨=-⎩,又因为A 在圆周上运动,故可得:22(241)(23)4x y -++-=,所求轨迹方程为:2233()()122x y -+-=.【点评】本题是比较简单的两道题目,分别用了直接法和相关点代入法求轨迹方程,旨在让学生复习求轨迹方程的方法,同时更进一步了解哪些点的运动轨迹是圆。

高三数学 圆的方程复习教案高三全册数学教案

高三数学 圆的方程复习教案高三全册数学教案

芯衣州星海市涌泉学校圆的方程课题圆的方程备注三维目的掌握圆的方程的几种形式,能纯熟求圆方程,能利用几何性质解决圆的弦长问题培养学生的数形结合思想和良好的思维品质重点圆的方程的几种形式,能利用几何性质解决圆的弦长问题难点能纯熟求圆方程,能利用几何性质解决圆的弦长问题辨析(1)确定圆的几何要素是圆心与半径.(√)(2)点A(x1,y1),B(x2,y2),那么以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.(√)(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(√)(4)方程x2+2ax+y2=0一定表示圆.(×)(5)圆x2+2x+y2+y=0的圆心是.(×)考点自测1.x2+y2-4x+6y=0的圆心坐标是()A.(2,3)B.(-2,3)C.(-2,-3) D.(2,-3)2.假设点(1,1)在圆(x-a)2+(y+a)2=4的内部,那么实数a的取值范围是()A.-1<a<1 B.0<a<1C.a>1或者者a<-1 D.a=±13.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,那么a的取值范围是()A.a<-2或者者a> B.-<a<0C.-2<a<0 D.-2<a<4.圆C经过A(5,1),B(1,3)两点,圆心在x轴上,那么圆C的方程为______________.知识梳理1.圆的定义2.确定一个圆最根本的要素是圆心和半径.3.圆的标准方程(x-a)2+(y-b)2=r2(r>0),其中(a,b)为圆心,r 为半径.4.圆的一般方程5.确定圆的方程的方法和步骤6.点与圆的位置关系例题选讲题型一求圆的方程例1根据以下条件,求圆的方程.(1)经过P(-2,4)、Q(3,-1)两点,并且在x轴上截得的弦长等于6;(2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2).变式训练假设圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,那么圆C的标准方程为____________.题型二与圆有关的最值问题例2实数x、y满足方程x2+y2-4x+1=0.求:(1)的最大值和最小值;(2)y-x的最小值;(3)x2+y2的最大值和最小值.变式训练两点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,那么△PAB面积的最大值与最小值分别是()题型三与圆有关的轨迹问题例3设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.变式训练点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.高考链接如图,圆心坐标为(,1)的圆M与x轴及直线y=x分别相切于A、B两点,另一圆N与圆M外切且与x轴及直线y=x分别相切于C、D两点.(1)求圆M和圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.每日一练1,在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上,求圆C的方程.,2,求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.3,过三点A〔1,3〕,B〔4,2〕,C〔1,-7〕的圆交于y轴于M、N两点,那么MN=〔A〕26〔B〕8〔C〕46〔D〕10后记。

高三数学课件:圆的方程

高三数学课件:圆的方程
2 2
2
(3)直径式:(x-x1)(x-x2)+(y-y1)(y-y2)=0,其中 直径式: 直径式 , 点(x1,y1),(x2,y2)是圆的一条直径的两个端 , 是圆的一条直径的两个端 。(用向量法证之 用向量法证之) 点。(用向量法证之)
(4)半圆方程: y = r2 −(x −a)2 +b, y = − c +bx− x2 −d )半圆方程: (5)圆系方程: 圆系方程: 圆系方程 i)过圆 :x2+y2+Dx+Ey+F=0和直线 过圆C: 过圆 和直线 l:Ax+By+C=0的交点的圆的方程为 : 的交点的圆的方程为 x2+y2+Dx+Ey+F+λ(Ax+By+C)=0 ii)过两圆 1:x2+y2+D1x+E1y+F1=0,C2: 过两圆C 过两圆 , x2+y2+D2x+E2y+F2=0的交点的圆的方程为 的交点的圆的方程为 x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0( λ≠-1)该方程不包括圆 2; 该方程不包括圆C 该方程不包括圆 时为一条直线方程, ( λ = −1时为一条直线方程,相交两圆时 为公共弦方程; 为公共弦方程;两等圆时则为两圆的对称 轴方程) 轴方程)
(1+k2)[x1 + x2)2 −4x1x2] (2)代数法:用弦长公式 )代数法:
的半径为3, 相切, 例4、已知⊙O的半径为 ,直线 l 与⊙O相切, 、已知⊙ 的半径为 相切 相切,并与⊙ 相交的公共弦恰 一动圆与 l 相切,并与⊙O相交的公共弦恰 的直径, 为⊙O的直径,求动圆圆心的轨迹方程。 的直径 求动圆圆心的轨迹方程。 【点评】建立适当的 点评】 坐标系能使求轨迹方 程的过程较简单、 程的过程较简单、所 求方程的形式较“ 求方程的形式较“整 A 齐” .

圆的方程、直线与圆及圆与圆的位置关系+课件-2025届高三数学一轮基础专项复习

圆的方程、直线与圆及圆与圆的位置关系+课件-2025届高三数学一轮基础专项复习
代数法
联立直线与圆的方程,消元后得到关于 (或 )的一元二次方程,利用 判断.
点与圆的位置关系法
若直线过定点且该定点在圆内,则可判断直线与圆相交.
注意 在直线与圆的位置关系的判断方法中,若直线和圆的方程已知或圆心到直线的距离易表达,则用几何法;若直线或圆的方程中含有参数,且圆心到直线的距离不易表达,则用代数法.
5.[人A选必一P86例4变式,2022全国乙卷(理)]过四点,,, 中的三点的一个圆的方程为_ ____________________________________________________________________________________________.
或或或
【解析】 若圆过,,三点,设过这三点的圆的一般方程为 ,分别将三点的坐标代入,可得解得易得 ,所以过这三点的圆的方程为,即 .若圆过,,三点,通解 设过这三点的圆的一般方程为 ,分别将三点的坐标代入,可得解得易得 ,所以过这三点的圆的方程为,即 .
第八章平面解析几何
2025年高考数学专项复习
第三节 圆的方程、直线与圆及圆与圆的位置关系
目录
圆的方程

直线与圆的位置关系

圆与圆的位置关系

与圆有关的最值问题

圆的方程

教材知识萃取
1.圆的定义与方程
教材知识萃取
规律总结(1)若没有给出 ,则圆的半径为 .(2)在圆的一般方程中:当 时,方程 表示一个点 ;当 时,方程 没有意义,不表示任何图形.(3)以 , 为直径端点的圆的方程为 .
注意 在求过一定点的圆的切线方程时,应先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外(此时一定要注意斜率不存在的情况),则切线有两条;若点在圆内,则切线不存在.

圆的方程课件-2025届高三数学一轮复习

圆的方程课件-2025届高三数学一轮复习

题后师说
求圆的方程的两种方法
巩固训练1
(1)已知圆心为(-2,1)的圆与y轴相切,则该圆的标准方程是(
A.(x+2)2+(y-1)2=1
B.(x+2)2+(y-1)2=4
C.(x-2)2+(y+1)2=1
D.(x-2)2+(y+1)2=4
)
答案: B
解析:根据题意知圆心为(-2,1),半径为2,故圆的方程为:(x+2)2+(y-1)2
(2)求直角边BC的中点M的轨迹方程.
解析:设点M(x,y),C(x0,y0),因为点B(3,0),M是线段BC的中点,所以x=
x0 +3
y0 +0
,y=
,所以x0=2x-3,y0=2y.
2
2
由(1)知,点C的轨迹方程为x2+y2-2x-3=0(y≠0),即(x-1)2+y2=4(y≠0),
将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4(y≠0),
(x-1)2+(y+1)2=5
均在⊙M上,则⊙M的方程为________________.
解析:因为点M在直线2x+y-1=0上,所以设M(a,1-2a).由点(3,0),(0,
1)均在⊙M上,可得点(3,0),(0,1)到圆心M的距离相等且为⊙M的半径,所以r
= a − 3 2 + 1 − 2a 2 = a2 + 1 − 2a − 1 2 ,解得a=1.所以M(1,-1),r=
圆.( × )
(3)方程x2+y2+4mx-2y+5m=0表示圆.( × )
(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则02 + 02 +Dx0+
Ey0+F>0.( √ )

圆的方程项训练—— 高三数学一轮复习

圆的方程项训练—— 高三数学一轮复习

高考数学一轮复习-圆的方程-专项训练基 础 巩固练1.已知圆C 的一条直径的两个端点的坐标分别是O (1,1)和A (3,3),则圆的标准方程是( )A.(x-2)2+(y-2)2=1B.(x-2)2+(y+2)2=2C.(x-2)2+(y-2)2=2D.(x+2)2+(y+2)2=22.“方程x 2+y 2-4x+6y+a=0表示的图形是圆”是“a 2-144≤0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2023扬州月考)若直线2x+y-1=0是圆x 2+(y+a )2=1的一条对称轴,则a=( )A.-1B.1C.12D.-124.设P (x ,y )是圆C :(x-2)2+y 2=1上任意一点,则(x-5)2+(y+4)2的最大值为( )A.6B.25C.26D.365.(多选题)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的圆的方程为( )A.(x-2)2+(y-1)2=5B.(x-2)2+(y-3)2=13C.(x -43)2+(y -73)2=22D.(x -85)2+(y-1)2=95 6.(多选题)已知曲线C :Ax 2+By 2+Dx+Ey+F=0,下列说法正确的是( )A.若A=B=1,则C 是圆B.若A=B ≠0,D 2+E 2-4AF>0,则C 是圆C.若A=B=0,D 2+E 2>0,则C 是直线D.若A ≠0,B=0,则C 是直线7.(2023连云港期中)已知圆C 的圆心在y 轴上,半径长为1,且过点(1,2),则圆C 的标准方程为 .8.点P (4,-2)与圆x 2+y 2=4上任意一点连线的中点的轨迹方程是 .9.已知圆过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为4√3,求圆的方程.综合提升练10.(多选题)已知点A(-1,0),B(0,2),P是圆(x-1)2+y2=1上任意一点,若△P AB面积的最大值为a,最小值为b,则()A.a=2B.a=2+√52C.b=2-√52D.b=√52-111.过点M(2,2)的直线l与坐标轴的正半轴分别相交于A,B两点,O为坐标原点,若△OAB的面积为8,则△OAB外接圆的标准方程是()A.(x-2)2+(y-2)2=8B.(x-1)2+(y-2)2=8C.(x+2)2+(y-2)2=8D.(x-1)2+(y+2)2=812.若点C到A(-1,0),B(1,0)的距离之比为√3,则点C到直线x-2y+8=0的距离的最小值为()A.2√5−√3B.√5−√3C.2√5D.√313.对任意实数m,圆x2+y2-3mx-6my+9m-2=0过定点,则定点坐标为.14.如图,已知圆O:x2+y2=16,A,B是圆O上的两个动点,点P(2,0),则矩形P ACB的顶点C的轨迹方程是.15.在平面直角坐标系xOy中,曲线Γ:y=x2-mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A,B,C三点的圆过定点.创 新 应用练16.在平面几何中,将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.如线段的最小覆盖圆就是以该线段为直径的圆,锐角三角形的最小覆盖圆就是该三角形的外接圆.若A (-2,0),B (2,0),C (0,4),则△ABC 的最小覆盖圆的半径为( )A.32B.2C.52D.3参考答案1.C2.B3.A4.D5.AB6.BC7.x 2+(y-2)2=1 8.(x-2)2+(y+1)2=19.解 方法一:设圆的方程为x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F>0),①将P ,Q 的坐标分别代入①,得{4D -2E +F =-20,②D -3E -F =10.③令x=0,由①得y 2+Ey+F=0.④由已知得|y 1-y 2|=4√3,其中y 1,y 2是方程④的两根.∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F=48.⑤解②③⑤联立成的方程组,得{D =-2,E =0,F =-12或{D =-10,E =-8,F =4.故所求圆的方程为x 2+y 2-2x-12=0或x 2+y 2-10x-8y+4=0.方法二:求得PQ 的中垂线方程为x-y-1=0.①∴所求圆的圆心C 在直线x-y-1=0上,∴设其坐标为C (a ,a-1),圆C 的半径r=|CP|=√(a -4)2+(a +1)2.②又圆C 截y 轴所得的线段长为4√3,而圆心C 到y 轴的距离为|a|,∴r 2=a 2+(4√32)2,代入②并将两端平方,并整理得a 2-6a+5=0,解得a 1=1,a 2=5.∴当圆心为(1,0)时,半径r 1=√13;当圆心为(5,4)时,半径r 2=√37.故所求圆的方程为(x-1)2+y 2=13或(x-5)2+(y-4)2=37.10.BC 11.A 12.A13.(1,1)或(15,75) 14.x 2+y 2=2815.解 由曲线Γ:y=x 2-mx+2m (m ∈R ),令y=0,得x 2-mx+2m=0.设A (x 1,0),B (x 2,0),可得Δ=m 2-8m>0,则m<0或m>8,x 1+x 2=m ,x 1x 2=2m.令x=0,得y=2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =0,得x 1x 2+4m 2=0,即2m+4m 2=0,所以m=0(舍去)或m=-12.此时C (0,-1),AB 的中点,即圆心为M (-14,0),半径r=|CM|=√174,故所求圆的方程为(x +14)2+y 2=1716. (2)设过A ,B 两点的圆的方程为x 2+y 2-mx+Ey+2m=0,将点C (0,2m )代入可得E=-1-2m , 所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx-(1+2m )y+2m=0.整理得x 2+y 2-y-m (x+2y-2)=0.令{x 2+y 2-y =0,x +2y -2=0,可得{x =0,y =1或{x =25,y =45,故过A ,B ,C 三点的圆过定点(0,1)和(25,45). 16.C。

第8章 第3节 圆的方程-2023届高三一轮复习数学精品备课(新高考人教A版2019)

第8章 第3节 圆的方程-2023届高三一轮复习数学精品备课(新高考人教A版2019)

5.已知圆 C 经过点 A(1,3),B(4,2),与直线 2x+y-10=0 相切,则圆 C 的标准方程为________.
(x-2)2+(y-1)2=5 解析 由题意,设圆 C 的方程为(x-a)2+(y-b)2=r2, 因为点 B(4,2)在直线 2x+y-10=0 上, 所以点 B(4,2)是圆与直线 2x+y-10=0 的切点, 连接圆心 C 和切点的直线和与切线 2x+y-10=0 垂直, 则 kBC=12,则 BC 的方程为 y-2=12(x-4), 整理得 x-2y=0,
(√)
(4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20
+y20+Dx0+Ey0+F>0.
(√)
◇教材改编
2.圆 x2+y2-4x+6y=0 的圆心坐标和半径分别是
( D) A.(2,3),3
B.(-2,3), 3
C.(-2,-3),13
D.(2,-3), 13
解析 圆的方程可化为(x-2)2+(y+3)2=13, 所以圆心坐标是(2,-3),半径 r= 13.
(2)可知yx-+32表示直线 MQ 的斜率 k. 设直线 MQ 的方程为 y-3=k(x+2), 即 kx-y+2k+3=0. 由直线 MQ 与圆 C 有交点, ∴|2k-71++2kk2+3|≤2 2, 可得 2- 3≤k≤2+ 3, ∴yx-+32的最大值为 2+ 3,最小值为 2- 3.
(3)设 y-x=b,则 x-y+b=0. 当直线 y=x+b 与圆 C 相切时,截距 b 取到最值, ∴ 1|22+-(7+-b1|)2=2 2,∴b=9 或 b=1. ∴y-x 的最大值为 9,最小值为 1.
►考向三 与圆有关的轨迹问题[师生共研] [例 3] 已知圆 x2+y2=4 上一定点 A(2,0),B(1,1)为 圆内一点,P,Q 为圆上的动点. (1)求线段 AP 中点的轨迹方程; (2)若∠PBQ=90°,求线段 PQ 中点的轨迹方程. [自主解答] (1)设 AP 的中点为 M(x,y), 由中点坐标公式可知,P 点坐标为(2x-2,2y). 因为 P 点在圆 x2+y2=4 上, 所以(2x-2)2+(2y)2=4. 故线段 AP 中点的轨迹方程为(x-1)2+y2=1.

高三数学知识点之圆的方程知识点总结

高三数学知识点之圆的方程知识点总结

高三数学知识点之圆的方程知识点总结
下面整理了高三数学知识点之圆的方程,希望大家能把觉得有用的知识点摘抄下来,在空余时间进行复习。

1、圆的定义
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程
(_-a) +(y-b) =r
(1)标准方程,圆心(a,b),半径为r;
(2)求圆方程的方法:
一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(_-a)2+(y-b)2=r2,圆上一点为(_0,y0),则过此点的切线方程为(_0-a)(_-a)+(y0-b)(y-b)= r2
以上就是高三数学知识点之圆的方程,希望能帮助到大家。

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析1.已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积【答案】(1);(2)的方程为; 的面积为.【解析】(1)先由圆的一般方程与标准方程的转化可将圆C的方程可化为,所以圆心为,半径为4,根据求曲线方程的方法可设,由向量的知识和几何关系:,运用向量数量积运算可得方程:;(2)由第(1)中所求可知M的轨迹是以点为圆心,为半径的圆,加之题中条件,故O在线段PM的垂直平分线上,又P在圆N上,从而,不难得出的方程为;结合面积公式可求又的面积为.试题解析:(1)圆C的方程可化为,所以圆心为,半径为4,设,则,,由题设知,故,即.由于点P在圆C的内部,所以M的轨迹方程是.(2)由(1)可知M的轨迹是以点为圆心,为半径的圆.由于,故O在线段PM的垂直平分线上,又P在圆N上,从而.因为ON的斜率为3,所以的斜率为,故的方程为.又,O到的距离为,,所以的面积为.【考点】1.曲线方程的求法;2.圆的方程与几何性质;3.直线与圆的位置关系2.圆心在直线上的圆与轴的正半轴相切,圆截轴所得弦的长为,则圆的标准方程为 .【答案】【解析】因为圆心在直线上,所以,可设圆心为.因为圆与轴相切,所以,半径,又因为圆截轴所得弦长为所以,.解得,故所求圆的方程为.【考点】圆的方程,直线与圆的位置关系.3.(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.(1)已知平面β内有一点P′(2,2),则点P′在平面α内的射影P的坐标为_________;(2)已知平面β内的曲线C′的方程是(x′﹣)2+2y2﹣2=0,则曲线C′在平面α内的射影C的方程是_________.【答案】(2,2);(x﹣1)2+y2=1.【解析】(1)由题意知点P′在平面上的射影P距离x轴的距离不变是2,距离y轴的距离变成2cos45°=2,∴点P′在平面α内的射影P的坐标为(2,2)(2)设(x′﹣)2+2y2﹣2=0上的任意点为A(x0,y),A在平面α上的射影是(x,y)根据上一问的结果,得到x=x0,y=y,∵,∴∴(x﹣1)2+y2=1,故答案为:(2,2);(x﹣1)2+y2=1.4.以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为()A.x2+y2+2x=0B.x2+y2+x=0C.x2+y2﹣x=0D.x2+y2﹣2x=0【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为(x﹣1)2+y2=1,即x2﹣2x+y2=0,故选D.5.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x-1)2+(y+1)2=1 B.(x+2)2+(y-2)2=1 C.(x+1)2+(y-1)2=1 D.(x-2)2+(y+2)2=1【答案】D【解析】圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1,选D6.点(1,1)在圆(x-a)2+(y+a)2=4内,则实数a的取值范围是________.【答案】(-1,1)【解析】∵点(1,1)在圆的内部,∴(1-a)2+(1+a)2<4,∴-1<a<1.7.在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.(1)求实数b的取值范围;(2)求圆C的方程;(3)圆C是否经过定点(与b的取值无关)?证明你的结论.【答案】(1)<1且b≠0.(2)x2+y2+2x-(b+1)y+b=0(3)C必过定点(-2,1)【解析】(1)令x=0,得抛物线与y轴的交点是(0,b),令f(x)=0,得x2+2x+b=0,由题意b≠0且Δ>0,解得b<1且b≠0.(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0,这与x2+2x+b =0是同一个方程,故D=2,F=b,令x=0,得y2+Ey+b=0,此方程有一个根为b,代入得E=-b-1,所以圆C的方程为x2+y2+2x-(b+1)y+b=0.(3)圆C必过定点(0,1),(-2,1).证明:将(0,1)代入圆C的方程,得左边=02+12+2×0-(b+1)×1+b=0,右边=0,所以圆C 必过定点(0,1);同理可证圆C必过定点(-2,1).8. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.9.若圆心在x轴上、半径为的圆C位于y轴左侧,且被直线x+2y=0截得的弦长为4,则圆C的方程是()A.(x-)2+y2=5B.(x+)2+y2=5C.(x-5)2+y2=5D.(x+5)2+y2=5【答案】B【解析】设圆心为(a,0)(a<0),因为截得的弦长为4,所以弦心距为1,则d==1,解得a=-,所以,所求圆的方程为(x+)2+y2=5.10.与直线l:x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.【答案】(x-2)2+(y-2)2=2【解析】【思路点拨】数形结合得最小圆的圆心一定在过x2+y2-12x-12y+54=0的圆心与直线x+y-2=0垂直的垂线段上.解:∵圆A:(x-6)2+(y-6) 2=18,∴A(6,6),半径r1=3,且OA⊥l,A到l的距离为5,显然所求圆B的直径2r2=2,即r2=,又OB=OA-r1-r2=2,由与x轴正半轴成45°角,∴B(2,2),∴方程为(x-2)2+(y-2)2=2.11.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是() A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4 C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1【答案】A【解析】设圆上任一点为Q(x0,y),PQ的中点为M(x,y),则解得又因为点Q在圆x2+y2=4上,所以+=4,即(2x-4)2+(2y+2)2=4,即(x-2)2+(y+1)2=1.12.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是().A.10B.20C.30D.40【答案】B【解析】配方可得(x-3)2+(y-4)2=25,其圆心为C(3,4),半径为r=5,则过点(3,5)的最长弦AC=2r=10,最短弦BD=2=4,且有AC⊥BD,则四边形ABCD的面积为S=AC×BD=20.13.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,当CQ⊥l时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.114.过点引直线与曲线相交于两点,O为坐标原点,当的面积取最大值时,直线的斜率等于.【答案】-【解析】由得:;表示圆心在原点,半径的圆位于轴下方的部分(含端点);如下图:直线的方程为:,即,所以,当,即,整理得:又因为,所以,.故答案填:【考点】1、圆的标准方程;2、直线与圆的位置关系;3、数形结合.15.圆心在曲线上,且与直线相切的面积最小的圆的方程是_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学复习圆的方程
5.圆的方程
一、内容归纳
1. 知识精讲.
①圆的方程
(1)标准式:(x-a)2+(y-b)2=r2(r0),其中r为圆的半径,(a,b)为圆心。

(2)一般式:x2+y2+Dx+Ey+F=0(D2+E2-4F0),其中圆心为(-,-),半径为,
(3)直径式:(x-x1)(x-x2)+(y-y1)(y-y2)=0,其中点(x1,
y1),(x2,y2)是圆的一条直径的两个端点。

(用向量法证之)(4)半圆方程:等
(5)圆系方程:
i)过圆C:x2+y2+Dx+Ey+F=0和直线l:Ax+By+C=0的交点的
圆的方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0
ii)过两圆C1:x2+y2+D1x+E1y+F1=0,C2:
x2+y2+D2x+E2y+F2=0的交点的圆的方程为
x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)该方
程不包括圆C2;
(时为一条直线方程,相交两圆时为公共弦方程;两等圆
时则为两圆的对称轴方程)
(6) 圆的参数方程
圆心在(0,0),半径为r的圆的参数方程为为参数
圆心在(a,b),半径为r的圆的参数方程为为参数
②圆的一般方程与二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0的
关系;
二元二次方程表示圆的充要条件A=C≠0,B=0 ,D2+E2-4AF0。

二、问题讨论
例1、根据下列条件,求圆的方程。

(1)和圆x2+y2=4相外切于点P(-1,),且半径为4;
(2)经过坐标原点和点P(1,1),并且圆心在直线2x+3y+1=0上;
(3)已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得
的线段长为4,求圆的方程。

解:(1)设圆心Q的坐标为(a,b) ∵⊙O与⊙Q相外切于P ∴O、P、Q共线,且λ==-=- 由定比分点公式求得a=-3,
b=3
∴所求圆的方程为(x+3)2+(y-3)2=16
(2)显然,所求圆的圆心在OP的垂直平分线上,OP的垂直平分线方程为:
= 即x+y-1=0
解方程组 x+y-1=0
2x+3y+1=0 得圆心C的坐标为(4,-3)。

又圆的半径
r=|OC|=5
∴所求圆的方程为(x-4)2+(y+3)2=25
(3)设圆的方程为x2+y2+Dx+Ey+F=0 ①将P、Q点的坐标分别代入①,得:
4D-2E+F=-20 ②
D-3E-F=10 ③令x=0,由①得y2+Ey+F=0 ④
由已知|y1-y2|=4,其中y1、y2是方程④的两根。

∴(y1-y2)2=(y1+y2)2-4y1y2=E2-4F=48 ⑤
②、③、⑤组成的方程组,得
D=-2D= -10
E=0 或 E= -8
F= -12F=4
故所求圆的方程为x2+y2-2x-12=0或x2+y2-10x-8y+4=0
[思维点拔]无论是圆的标准方程或是圆的一般方程,都有三
个待定系数,因此求圆的方程,应有三个条件来求。

一般地,已知圆心或半径的条件,选用标准式,否则选用一般式。

例2、(优化设计P112例1)设为两定点,动点P到A点的距
离与到B点的距离的比为定值,求P点的轨迹。

解:设动点P的坐标为(x,y). 由.化简得当,整理得. 当a=1时,化简得x=0.
所以当时,P点的轨迹是以为圆心,为半径的圆;
当a=1时,P点的轨迹为y轴。

【评述】上述解法是直接由题中条件,建立方程关系,,然后化简方程,这种求曲线方程的方法称为直接法。

例3、(优化设计P112例2)一圆与y轴相切,圆心在直线上,且直线截圆所得的弦长为,求此圆的方程。

解:因圆与y轴相切,且圆心在直线上,故设圆方程为,
由于直线截圆所得的弦长为,则有
解得,故所求圆方程为或
【评述】求圆的弦长方法
(1)几何法:用弦心距,半径及半弦构成直角三角形的三边(2)代数法:用弦长公式
例4、已知⊙O的半径为3,直线与⊙O相切,一动圆与相切,并与⊙O相交的公共弦恰为⊙O的直径,求动圆圆心的轨迹
方程。

解:取过O点且与平行的直线为x轴,过O点且垂直于
的直线为y轴,建立直角坐标系。

设动圆圆心为M(x,y),⊙O与⊙M的公共弦为
AB,⊙M与切于点C,则
AB为⊙O的直径,MO垂直
平分AB于O。

由勾股定理得
即:这就是动圆圆心的轨迹方程
【点评】建立适当的坐标系能使求轨迹方程的过程较简单、
所求方程的形式较"整齐"
备用题:
例5、设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹。

解:本题关键是找出动点P与定点M及已知动点N之间的联系,用平行四边形对角线互相平分这一定理即可。

设P(x,y),N(x0,y0),则线段OP的中点坐标为(,),线段MN的中点坐标为(,)。

因为平行四边形对角线互相平分,故=,=
从而 x0=x+3
y0=y-4
N(x+3,y-4)在圆上,故(x+3)2+(y-4)2=4
因此所求轨迹为圆:(x+3)2+(y-4)2=4,但应除去两点:(-,)和(-,)
[思维点拔]:求与圆有关的轨迹问题,充分利用圆的方程和
圆的几何性质,找出动点与圆上点之间的关系或动点所满足
的几何条件。

例6、已知圆的方程是:x2+y2-2ax+2(a-2)y+2=0,其中
a≠1,且a∈R。

(1)求证:a取不为1的实数时,上述圆恒过定点;
(2)求与圆相切的直线方程;
(3)求圆心的轨迹方程。

解:将方程x2+y2-2ax+2(a-2)y+2=0整理得x2+y2-4y+2-a (2x-2y)=0
令 x2+y2-4y+2=0
x-y=0
解之得 x=1
y=1
∴定点为(1,1)
(2)易得已知圆的圆心坐标为(a,2-a),半径为|a-1|。

设所求切线方程为y=kx+b,即kx-y+b=0
则圆心到直线的距离应等于圆的半径,即=|a-1|恒成立。

整理得
2(1+k)2a2-4(1+k2)a+2(1+k2)=(k+1)2a2+2(b-2)(k+1)a+(b-2)2恒成立。

比较系数可得
2(1+k2)=(k+1)2
-4(1+k2)=2(b-2)(k+1)
2(1+k2)=(b-2)2解之得k=1,b=0。

所以,所求的切线方程是y=x。

(3)圆心坐标为(a,a-2),又设圆心坐标为(x,y),则有
x=a
y=2-a
消去参数得x+y=2为所求的圆心的轨迹方程。

[思维点拔]:本题是含参数的圆的方程,与圆的参数方程有本质的区别。

当参数取某一确定的值时,方程表示一个确定的圆,当a变动时,方程表示圆的集合,即圆系。

解本题(1)可用分离系数法求解;(2)可用待定系数法求解;(3)可用配方法求解。

一般地,过两圆C1:f(x,y)=0与C2:g(x,y)=0的交点的圆系方程为:f(x,y)+λg(x,y)=0(λ为参数)。

三、课堂小结
1、求圆的方程:主要用待定系数法,有两种求数,一是利
用圆的标准方程,求出圆心坐标和半径;二是利用圆的一般方程求出系数D、E、F的值。

2、已知圆经过两已知圆的交点,求圆的方程,用经过两圆
交点的圆系方程简捷。

3、解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算。

4、与圆有关的轨迹问题,可根据题设条件选择适当方法(如直接法、定义法、动点转移法等),有时还需要结合运用其他方法,如交轨法、参数法等。

四、【布置作业】优化设计P113。

相关文档
最新文档