模拟在锂电池热失控机制研究的应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(8)
(8)
058
275
2009/11
240°C LiCoO2 LiFePO4 LiFePO4 LiFePO4 ARC J.R. Dahn LiCoO2
(9)
LiFePO4 LiPF6 EC/DEC Li
[Ni0.1Co0.8Mn0.1]O2 LiFePO4 LiBOB EC/DEC
ARC
LiFPO4 ARC
Li[Ni0.1Co0.8Mn0.1]O2 1M LiPF6 EC/DEC
0.7M LiBOB EC/DEC (a~c) LiCoO2 LiCoO2
LiFPO4 Mn0.1]O2 LiCoO2 1M LiPF6 EC/DEC DEC
Li[Ni0.1Co0.8 LiFePO4 180°C Try & Error
060
Current (Amperes)
(a)
80
Calculation Experiment
275
2009/11
15 4.2 V 145 150 155°C 140 Qchem Qout 145~150°C 155°C 1.1 1.2 1.25 1.3 cm
155°C Qchem
0.9 145°C 1.1 cm
Heat Flow, W g-1 (exo up)
a b
(Accelerating Rate Calorimeter;
50
100
150 200 250 300 Temperature, °C
350
400
a. EC/EMC(1:2) 1M LiPF6 (1:1) 1.5M LiBF4 DSC
b. EC/GBL
Li/Binder Solvent
dT/dt, °C/min
10°C/min Scan Rate
1
NiCoO2 Mn2O4
10 1 0.1 60
100
140
180
220 T, °C
260
300
340
380
80 100 120 140 160 180 200 220 240 260 T, °C
ARC DSC
∆ H1 ∆H2 A2 DSC ARC J.R. Dahn 18650 LiMn2O4/MCMB 45 NEC Moli E1 A1 E2
z
0.16 0.14 0 2 4 6 8 Time (minutes) 10 12
(b) (d)
NEC Moli 18650 LiMn2O4/MCMB (a) (c) SEI (10) SEI
1.0
145°C
200 (a) 150 100
5.8°C Overshoot
150°C Line Moli Measurement (3.7°C Overshoot) Calculation Calculation with no chemically generated heat
Qchem
Temperature (°C)
BAJ UL (Underwriters Laboratories Inc.) 2007 SEI
UL Test)(2)
BAJ (Blunt Nail Crush
Blunt Nail Crush Test Method
0.1 mm/s
The CT-scan of the tested cell shows the short was induced at outer layer/layers
200 150 100
E-One/Moli Oven Exposure Data 4.2 Volts 140°C 145°C 150°C 155°C
z
0.25 0.00 0 20 40 Time (minutes) 60 80
50 0 0
(b)
NEC Moli 18650 LiMn2O4/MCMB 150°C (a) (c) (d) SEI (e) SEI
(e)
0.7M LiBOB EC/
100 10 1 0.1 10 1 0.1 10 1 0.1 10 1 0.1 10 1 0.1
(a) LiCoO2 (0.8 µm)
LiPF6 EC/DEC LiBOB EC/DEC
(b) LiCoO2 (2 µm)
dT/dt (°C/min)
(c) LiCoO2 (8 µm) (d) Li[Ni0.1Co0.8Mn0.1]O2 (0.1 µm)
–z ∆H1 ∆H2 A e k T xn A e k T xie z Cm f + C 1 C 2
B B 0
2
125 100 75 50 (b)
60 40 20 0
Current Profile
–E1
–E2
x i
Qele Qout Qnet
Qchem
0.60 0.40 (c)
x f
0.10 0.05 0.00 0.18 (d)
50 160 150 140 130 0.75 (c) (b)
Cooling due to pressure vent opening
250 200 150 100
Temperature (°C)
Model
xi
0.50 0.25 0.10 (d)
50 0
Oven Tests
xf
0.05 0.00 0.50 (d)
I
Short cirucit between positive electrode and negative electrode
Case Aluminum Foil Electrode Wound Core Short circuit between foil and can I
Between positive electrode and negative electrode
MCMB/SOLEF 6020 5%
100
25 20
Total Capacity = 180 mAh/g E = 800 J/g Total Capacity = 185 mAh/g E = 1200 J/g
200 Temperature (°C)
300
400
SOLEF 6020 5% DSC
(6)
200 160 Temperature (°C)
2.
120 80 40 0
Effect of Cell Radius 0.9 cm 1.0 cm 1.1 cm 1.2 cm 1.25 cm 1.3 cm
(10)
40
80 120 Time (min)
160
200
E-One Moli 18650 LiCoO2/Graphite (11) 140~155°C
061
275
百度文库
2009/11
10 Ah 0.5 C 10°C 1.0 C 10 Ah 10 Ah LiCoO2 100 Ah
100 Ah 100 Ah 15°C 3C
Trigger
110 150 180 240 350
Temperature (°C)
E
E
(4)
056
275
2009/11
SEI
SEI
Trigger − − −
(5) (6) (6) (7)
12
Heat Flow (W/g)
STOBA
10 8 6 4 2 0 -2 0
SL1025/SOLEF 6020 5% SFG15/SOLEF 6020 5% SFG6/SOLEF 6020 5%
(b) DSC SEI
(c) SEI z
ARC
J.R. Dahn (Qele) (Qchem)
Qnet = Qele + Qchem – Qout
(10)
2001
J.R. Dahn E-One Moli 18650 LiCoO2/Graphite
(Qout)
150
Temperature (°C)
Qele = i R Qchem =
(9)
LiCoO2 Co0.8Mn0.1]O2 LiFePO4
1995 ARC
NEC Moli Energy
J.R. Dahn
059
275
2009/11
J.R. Dahn 1999 2001
(10,11)
Qele
Qchem xi xf 150°C Qele Qchem xi xf z (d)
130°C
(Battery Management and Monitoring Systems; BMS) Try & Error
(e) LiFePO4
1 (f) LiPF6 EC/DEC Only 0.1 0.01 120 160 200 240 Temperature (°C)
280
320
1.
Li[Ni0.1
(7)
160°C
1000 100
q, W/g
SEI Decomp. NiCoO2 Decomp. LiC6/Binder
Li/Solvent Li/Binder Mn2O4 Decomp.
LiC6/Solvent Solvent Decomp.
10 SEI Li/Solvent LiC6/Solvent 0.1 LiC6/Binder 0.01 60
2006
Sony Sony
055
275
2009/11
Oven Test
Hot-box Test
(Overcharge Test) (External Short-circuit Test) (Nail Penetration Test) BAJ (Internal Short-Circuit Test) UL
Current is going throuth aluminum foil
LixMO2/Decomposition + Reaction with Electrolyte, M = Ni, Co, Mn (450~1400J/g) Solvent + LiPF6 (250J/g) Anode SEI Decomposition (350J/g) 1 Separator Fusion (PE) (-190J/g)
300
400
DSC
(5)
MCMB
(6)
DSC
057
275
2009/11
R. Spotnitz
J. Franklin
2003
SEI 70°C
70°C SEI
(8)
85°C
SEI
(Self-heating Rate) (Differential Scanning Calorimeter; DSC) ARC) (dT/dt, °C/min)
8 6 4 2 0 -2 0
SOLEF 21216/5% MCMB SOLEF 31515/5% MCMB SBR_CMC/5% MCMB PTFE/5% MCMB
SOLEF 6020/5% MCMB
LiCoO2
100
200
300
400
Temperature (°C)
100
200 Temperature (°C)
CT
UL
(3)
Forced Internal Short-circuit Test
Current is concentrated on the point
Nail Test
LixC6/binder + Electrolyte (1500J/g)
Thermal Runaway
Heat Generation
Sony Sony 1991
PDA
(Thermal Runaway) (Nail Test) 18650 1200 mAh 2800 mAh 2006 (Forced Internal Short Circuit Test)
(1)
(Battery Association of Japan; BAJ)
275
2009/11
The Application of Modeling Uses in Lithium-ion Batteries Thermal Runaway Mechanism
C. C. Chang
(MCL/ITRI)
This article introduces several lithium-ion batteries safety and thermal runaway simulation and analysis literatures, and investigates the battery thermal runaway mechanisms from materials and battery by experiment and modeling. /Key Words (Lithium-ion Battery) (Thermal Runaway) (Multiphysics Modeling)
DSC (mW/mg)
LiNi1-x-yCoxM2yO2
15 10 5 0 0
LiNi1-x-yCoxM1yO2
12 10
Heat Flow (W/g)
LiNi1-xCoxO2
Total Capacity = 180 mAh/g E = 1950 J/g Total Capacity = 150 mAh/g E = 640 J/g
(8)
058
275
2009/11
240°C LiCoO2 LiFePO4 LiFePO4 LiFePO4 ARC J.R. Dahn LiCoO2
(9)
LiFePO4 LiPF6 EC/DEC Li
[Ni0.1Co0.8Mn0.1]O2 LiFePO4 LiBOB EC/DEC
ARC
LiFPO4 ARC
Li[Ni0.1Co0.8Mn0.1]O2 1M LiPF6 EC/DEC
0.7M LiBOB EC/DEC (a~c) LiCoO2 LiCoO2
LiFPO4 Mn0.1]O2 LiCoO2 1M LiPF6 EC/DEC DEC
Li[Ni0.1Co0.8 LiFePO4 180°C Try & Error
060
Current (Amperes)
(a)
80
Calculation Experiment
275
2009/11
15 4.2 V 145 150 155°C 140 Qchem Qout 145~150°C 155°C 1.1 1.2 1.25 1.3 cm
155°C Qchem
0.9 145°C 1.1 cm
Heat Flow, W g-1 (exo up)
a b
(Accelerating Rate Calorimeter;
50
100
150 200 250 300 Temperature, °C
350
400
a. EC/EMC(1:2) 1M LiPF6 (1:1) 1.5M LiBF4 DSC
b. EC/GBL
Li/Binder Solvent
dT/dt, °C/min
10°C/min Scan Rate
1
NiCoO2 Mn2O4
10 1 0.1 60
100
140
180
220 T, °C
260
300
340
380
80 100 120 140 160 180 200 220 240 260 T, °C
ARC DSC
∆ H1 ∆H2 A2 DSC ARC J.R. Dahn 18650 LiMn2O4/MCMB 45 NEC Moli E1 A1 E2
z
0.16 0.14 0 2 4 6 8 Time (minutes) 10 12
(b) (d)
NEC Moli 18650 LiMn2O4/MCMB (a) (c) SEI (10) SEI
1.0
145°C
200 (a) 150 100
5.8°C Overshoot
150°C Line Moli Measurement (3.7°C Overshoot) Calculation Calculation with no chemically generated heat
Qchem
Temperature (°C)
BAJ UL (Underwriters Laboratories Inc.) 2007 SEI
UL Test)(2)
BAJ (Blunt Nail Crush
Blunt Nail Crush Test Method
0.1 mm/s
The CT-scan of the tested cell shows the short was induced at outer layer/layers
200 150 100
E-One/Moli Oven Exposure Data 4.2 Volts 140°C 145°C 150°C 155°C
z
0.25 0.00 0 20 40 Time (minutes) 60 80
50 0 0
(b)
NEC Moli 18650 LiMn2O4/MCMB 150°C (a) (c) (d) SEI (e) SEI
(e)
0.7M LiBOB EC/
100 10 1 0.1 10 1 0.1 10 1 0.1 10 1 0.1 10 1 0.1
(a) LiCoO2 (0.8 µm)
LiPF6 EC/DEC LiBOB EC/DEC
(b) LiCoO2 (2 µm)
dT/dt (°C/min)
(c) LiCoO2 (8 µm) (d) Li[Ni0.1Co0.8Mn0.1]O2 (0.1 µm)
–z ∆H1 ∆H2 A e k T xn A e k T xie z Cm f + C 1 C 2
B B 0
2
125 100 75 50 (b)
60 40 20 0
Current Profile
–E1
–E2
x i
Qele Qout Qnet
Qchem
0.60 0.40 (c)
x f
0.10 0.05 0.00 0.18 (d)
50 160 150 140 130 0.75 (c) (b)
Cooling due to pressure vent opening
250 200 150 100
Temperature (°C)
Model
xi
0.50 0.25 0.10 (d)
50 0
Oven Tests
xf
0.05 0.00 0.50 (d)
I
Short cirucit between positive electrode and negative electrode
Case Aluminum Foil Electrode Wound Core Short circuit between foil and can I
Between positive electrode and negative electrode
MCMB/SOLEF 6020 5%
100
25 20
Total Capacity = 180 mAh/g E = 800 J/g Total Capacity = 185 mAh/g E = 1200 J/g
200 Temperature (°C)
300
400
SOLEF 6020 5% DSC
(6)
200 160 Temperature (°C)
2.
120 80 40 0
Effect of Cell Radius 0.9 cm 1.0 cm 1.1 cm 1.2 cm 1.25 cm 1.3 cm
(10)
40
80 120 Time (min)
160
200
E-One Moli 18650 LiCoO2/Graphite (11) 140~155°C
061
275
百度文库
2009/11
10 Ah 0.5 C 10°C 1.0 C 10 Ah 10 Ah LiCoO2 100 Ah
100 Ah 100 Ah 15°C 3C
Trigger
110 150 180 240 350
Temperature (°C)
E
E
(4)
056
275
2009/11
SEI
SEI
Trigger − − −
(5) (6) (6) (7)
12
Heat Flow (W/g)
STOBA
10 8 6 4 2 0 -2 0
SL1025/SOLEF 6020 5% SFG15/SOLEF 6020 5% SFG6/SOLEF 6020 5%
(b) DSC SEI
(c) SEI z
ARC
J.R. Dahn (Qele) (Qchem)
Qnet = Qele + Qchem – Qout
(10)
2001
J.R. Dahn E-One Moli 18650 LiCoO2/Graphite
(Qout)
150
Temperature (°C)
Qele = i R Qchem =
(9)
LiCoO2 Co0.8Mn0.1]O2 LiFePO4
1995 ARC
NEC Moli Energy
J.R. Dahn
059
275
2009/11
J.R. Dahn 1999 2001
(10,11)
Qele
Qchem xi xf 150°C Qele Qchem xi xf z (d)
130°C
(Battery Management and Monitoring Systems; BMS) Try & Error
(e) LiFePO4
1 (f) LiPF6 EC/DEC Only 0.1 0.01 120 160 200 240 Temperature (°C)
280
320
1.
Li[Ni0.1
(7)
160°C
1000 100
q, W/g
SEI Decomp. NiCoO2 Decomp. LiC6/Binder
Li/Solvent Li/Binder Mn2O4 Decomp.
LiC6/Solvent Solvent Decomp.
10 SEI Li/Solvent LiC6/Solvent 0.1 LiC6/Binder 0.01 60
2006
Sony Sony
055
275
2009/11
Oven Test
Hot-box Test
(Overcharge Test) (External Short-circuit Test) (Nail Penetration Test) BAJ (Internal Short-Circuit Test) UL
Current is going throuth aluminum foil
LixMO2/Decomposition + Reaction with Electrolyte, M = Ni, Co, Mn (450~1400J/g) Solvent + LiPF6 (250J/g) Anode SEI Decomposition (350J/g) 1 Separator Fusion (PE) (-190J/g)
300
400
DSC
(5)
MCMB
(6)
DSC
057
275
2009/11
R. Spotnitz
J. Franklin
2003
SEI 70°C
70°C SEI
(8)
85°C
SEI
(Self-heating Rate) (Differential Scanning Calorimeter; DSC) ARC) (dT/dt, °C/min)
8 6 4 2 0 -2 0
SOLEF 21216/5% MCMB SOLEF 31515/5% MCMB SBR_CMC/5% MCMB PTFE/5% MCMB
SOLEF 6020/5% MCMB
LiCoO2
100
200
300
400
Temperature (°C)
100
200 Temperature (°C)
CT
UL
(3)
Forced Internal Short-circuit Test
Current is concentrated on the point
Nail Test
LixC6/binder + Electrolyte (1500J/g)
Thermal Runaway
Heat Generation
Sony Sony 1991
PDA
(Thermal Runaway) (Nail Test) 18650 1200 mAh 2800 mAh 2006 (Forced Internal Short Circuit Test)
(1)
(Battery Association of Japan; BAJ)
275
2009/11
The Application of Modeling Uses in Lithium-ion Batteries Thermal Runaway Mechanism
C. C. Chang
(MCL/ITRI)
This article introduces several lithium-ion batteries safety and thermal runaway simulation and analysis literatures, and investigates the battery thermal runaway mechanisms from materials and battery by experiment and modeling. /Key Words (Lithium-ion Battery) (Thermal Runaway) (Multiphysics Modeling)
DSC (mW/mg)
LiNi1-x-yCoxM2yO2
15 10 5 0 0
LiNi1-x-yCoxM1yO2
12 10
Heat Flow (W/g)
LiNi1-xCoxO2
Total Capacity = 180 mAh/g E = 1950 J/g Total Capacity = 150 mAh/g E = 640 J/g