第十二章 电化学在生物和医学中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章电化学在生物和医学中的应用

第一节生物电化学的研究内容

生命现象最基本的过程是电荷运动。生物电的起因可归结为细胞膜内外两侧的电位差人和动物的代谢作用以及各种生理现象,处处都有电流和电位的变化产生。人或其它动物的肌肉运动、大脑的信息传递以及细胞膜的结构与功能机制等无不涉及电化学过程的作用。细胞的代谢作用可以借用电化学中的燃料电池的氧化和还原过程来模拟;生物电池是利用电化学方法模拟细胞功能;生物电化学是在20世纪70年代初由电生物学、生物物理学、生物化学、电生理及电化学等多门学科交叉形成的独立学科,其主要研究内容如下:

1.生物分子电化学

利用近代电化学技术模拟生物分子在生命活动过程的作用和变化。生物体内进行的化学反应绝大部分是氧化还原反应,它们本身的电子传递机理及它们所构成的物质和能量代谢链的电子传递机理,正在利用电化学理论和研究技术有效地进行研究。

2.生物电催化

生物电催化是研究酶对生物体系中电化学反应催化作用,其研究内容主要有酶的结构和性能;酶促反应机理;酶固定化方法;在电极一电解质界面酶的电化学行为和氧化还原反应机理;酶促反应同电化学反应的关联方法,尤其是酶在固定化电子递体或促进剂的电极上的电催化作用;酶电催化的应用,尤其是酶作为专一性电化学传感器一酶在能源转换和存储中的应用。

3.光合作用

光合作用实际上是所有生命过程所需能量的最初来源。光合作用敏化剂叶绿素分子的激发态,激发态的反应、能量转换过程及模型,初级电荷分离及其后的二级反应,等,都可以利用电化学方法研究,光合作用的各个步骤也可能利用电化学系统来模拟。

4.活组织电化学

利用对离子和氧化还原反应敏感的染料作指示剂可以间接测定细菌的电位和离

子浓度,以探测细胞中的离子行为。微生物电化学有重要的应用,例如微生物燃料电池,利用电化学技术杀死微生物以净化水等。

5.生物技术中的电化学技术

研制生物电极,包括微电极、酶电极和微生物电极等,研究它们在生物技术、医学和其他领域中的应用。电化学为电生理学,例如跨膜电位的测定、兴奋细胞的刺激、膜电位的控制、离子电渗疗法、脑电图、肌动电流图、心电图的研究提供了基础。通过电流流过细胞描摹来修饰细胞,利用电脉冲进行细胞膜打孔、细胞电融合和电打孔基因摄取,这些电生物学技术离不开电化学原理。

第二节生物体的电现象

一、脑波、心电和筋电

生物电化学已经涉及到不同领域的生物学问题,主要是:①在生物体内进行的绝大部分化学反应都是氧还原反应,例如为生命需要(营养、组织生长、再生、废物排泻)进行的新陈代谢。②光合作用,包括吸收分子的电子激发过程、膜上产生的电子和质子转移过程和代谢化学反应。③膜现象几乎完全控制着离子和分子等物质从活细胞外部向内部或反方向的传输,离子有方向性的运动造成了跨膜电位差,调节着一系列的物质运输。④生物体所需的信息过程几乎都是通过电信号方式发生的,出现一系列电生理现象,包括视觉、动作、痛觉、热刺激、饥饿和干渴感等等。⑤用一定周期和幅度的适当电脉冲在膜中生成微孔,使物质更容易跨膜转移,有可能实现细胞融合和基因摄取。⑥生物电化学方法对各种疾病的治疗,涉及生物传感器、燃料电池、人工器脏、电刺激和电麻醉、食品控制、环境保护等多方面的应用。现在首先了解生物体的电现象及有关的实验技术。

二、细胞膜电位和刺激传递

1.微电极

两个显著的特点:①电极响应速度相当快(RC<”s),在扫描伏安测量中,扫描速度高达2×104 V‘。~,比常规电极快3个数量级。②极化电流甚微,一般为毫微安(,甚至可低到微微安(pA)的数量级;欧姆电位降很小,故可采用双电极

体系(研究电极和参比电极一兼作辅助电极),不仅简化了实验方法及实验设备,而且提高了测量系统的信噪比。微电极技术已在生物电化学、金属电结晶、快速电极过程动力学、电分析化学、能源电化学、光谱电化学等领域中得到应用。

2. 细胞膜的静电位和电刺激时的电位变化

可兴奋的细胞膜是被一层原生质膜所包围着的,这层膜的主要功能是控制物质进入或排出细胞,膜厚约7.5衄。原生质膜中的一种重要组分是类脂体,当蛋白质嵌入膜内后形成通道,允许细胞内外的离子交换。

第三节伏安法在生物和医学中的应用

一、伏安法研究生物体物质的电极反应

伏安法在生物电化学中有许多应用,例如对有生物学意义的有机物质和生物多聚体的分析和物理化学表征,研究药物代谢及效果,研究酶氧化还原反应和光氧化还原反应,对药物和食品的监控等等。

1.有关核酸的电化学

在生物体系中控制遗传信息的物质是核酸,核酸的基本组成单位是核苷酸。含氮的杂环化合物嘌呤或嘧啶衍生物的碱基物质(如腺嘌呤、胞嘧啶)同糖结合而成核苷,再经磷酸脂化就得到核苷酸。腺嘌呤磷酸脂(—a岣)对于糖类细胞代谢和器官的伴随功能非常重要,例如肌肉收缩、心血管系统、肾上腺皮质中激素的产生等。因此研究核苷酸中电活性部分,即碱基腺嘌呤还原的电极过程是极其重要的。碱基腺嘌呤在汞电极上还原时,必须预先质子化,因此溶液的pH必须低于7。电极过程的第一步是其嘧啶环中的双键获得2个电子和l个质子,这一步是控制步骤;随后再得到2个电子和2个质子。以后的脱氨基很慢,只有在相当长的电解时间内,脱氨基才能充分进行,再取得2个电子和质子。

2.金属蛋白质的电极反应

在生物体内含有金属离子的蛋白质种类很多,以铁络合物为氧化还原中心的血红(素)蛋白质就是其中一类。已知在血液中有输送氧的血色蛋白,贮存氧的肌红蛋白,以及在呼吸过程中起到电子传递作用的细胞色素C。这些金属蛋白质因其氧化还原的活性中心被大蛋白质包围,故在电极上很少有直接的电化学响应。

但近年来采用功能性电极,容易测量循环伏安曲线。例如,在生物体细胞内线粒体膜上的呼吸链产生能量过程(从氧化的二磷酸腺苷(ADP)转变成三磷酸腺苷(ATP))中,传递电子的细胞色素c在修饰了PySSPy电极上,在中性磷酸溶液中的循环伏安曲线基本上是可逆的。从溶液中共存离子的种类、pH值、温度对E"的影响还可获得有关金属蛋白质构造变化的信息和热力学数据。

二、溶出伏安法在医学中的应用

三、溶出伏安法在食品中的应用

第四节生物电化学传感器

一、电化学传感器简介

电化学传感器是把非电参数变为电参数的装置,根据检测方法可分为电位传感器、安培/库仑传感器、伏安传感器和电导传感器。

二、生物电化学传感器的原理和器件

生物电化学传感器的出现不仅为临床检验、环境分析以及食品、医药等工业生产过程的监控提供了新的工具,而且促进了生物电催化和生物燃料电池研究的开展生物电化学传感器的构造分为两部分:①感受器,由具有分子识别本领的生物物质,如酶、微生物、动植物组织切片、抗体或抗原等组成。②信号转换部分,称为基础电极或内敏感器,这是一个电化学检测元件。例如葡萄糖电极就是由固定化的葡萄糖氧化酶膜贴在铂电极上而构成的。由固定化的生物材料与适当的换能器密切接触而构成的分析工具称为生物传感器,换能器可将生物信号转换成定量的电信号或光信号;如果换成电信号,则是生物电化学传感器。

生物物质的分子识别与下列两种反应密切相关。①酶促反应:酶是生化反应的高效催化剂,具有高度的专一性。在反应过程中酶与底物形成了酶一底物复合物,此时酶的构象对底物分子显示识别本领。②免疫反应:此乃抗体(Ab)与相应抗原(Ag)的反应,Ag+ Ab=AgAb。抗原是由外界入侵到体内的异物,而抗体是该异物入侵后体内生成的一种蛋白质。抗体与抗原形成复合物,起着控制抗原的作用,即显示出对抗原的分子识别。通常酶只对低分子量物质有识别能力,而抗体

相关文档
最新文档