钢-混凝土组合结构的研究进展
钢-混凝土组合结构的发展现状
钢-混凝土组合结构的发展现状钢-混凝土组合结构是一种将钢结构和混凝土结构相互补充和配合的新型结构形式。
相比于传统的钢结构和混凝土结构,钢-混凝土组合结构在结构的承载性、经济性和生态性方面都有更优异的表现。
本文将介绍当前钢-混凝土组合结构的发展现状和未来发展趋势。
1. 结构强度高:钢骨架和混凝土受力表现不同,钢结构能吸收拉力,混凝土能吸收压力,在组合起来后能完美解决双向受力的问题。
2. 系统稳定性好:钢结构有较高的抗震性攻击,而混凝土能防火、耐用,在组合中,两种材料能互相补充,提高了结构的安全性和稳定性。
3. 构造灵活性高:钢-混凝土组合结构设计时,钢和混凝土可以根据根据工程的具体要求进行组合搭配,极大的提高了构造的灵活性,能适应各种建筑需求。
4. 施工周期短:相比于纯混凝土建筑,钢-混凝土组合结构的施工速度更快,可大大缩短工期,降低施工成本。
1.大跨度结构与传统的混凝土桥梁相比,钢-混凝土组合结构桥梁可以节省更多的支撑结构和缩小主跨,进而实现更大跨度。
2.高层建筑钢-混凝土组合结构可以大幅度降低结构重量,进而降低建筑物造价和安装成本,钢骨架可以用来支撑整个建筑群体,同时混凝土可以被用作隔墙或地板。
3.工业厂房钢-混凝土组合结构能够实现不透光和深减容,从而满足工业厂房建筑获得更高的效率和产能。
4.大型城市架空汽车道交通监控系统钢-混凝土组合结构可以在城市中用于建造桥梁和大型架空汽车道交通监控系统,对于保障城市建设的快速发展,实现规划和建设的推进,能够起到非常重要的作用。
1. 结构性能融合的研究在未来,随着钢-混凝土组合结构日益被应用于大型城市和高层建筑中,研究人员需要更加深入地研究钢和混凝土相互融合的方法和原理,以实现更高效的结构性能。
2. 轻型化结构的推广应用轻型化结构成为钢-混凝土组合结构未来发展趋势的又一个方向,遵循“轻量化,高性能”的设计思路,例如采用型钢作为梁和柱材料,同时在钢-混凝土组合结构中加入轻质骨料,从而实现构造的轻型化。
钢-轻骨料混凝土组合结构的研究进展
1 轻骨料 混凝 土
轻骨料混凝土 ’ Lgt i t grgt Cnrt, ( i g g a oce 简称 L C , h We h A e e e WA ) 也称轻集料7 凝土 , 昆 指用轻骨料 、 普通砂( 或轻砂 ) 水 泥和水配制 、
而 成 , 表 观 密 度 不 大 于 1 5 g m 干 0k/ 的混 凝 土 。 9
采用轻骨料混凝士代替普通混凝 土可以减轻结 构 自重 , 如采
用轻 骨料 混 凝 土 较 普 通 混 凝 土 可 以 减 轻 楼 板 自重 的 2 % 一3 % , 0 0
梁交界面相对滑移微分方程 , 得到不 同工况下 的钢 板 与轻骨 料混 凝 土 组 合 梁 滑 移 计 算公 式 , 通 过 试 验 对 其 进 行 验 证 。 并 刘寒 冰等在此研究 领域 也做 了大量 工 作 : 利用 能量 变分 法 , 建立 丁钢一轻骨料混凝土组合梁翼板有效 宽度 的计算方 法 , 并 以此 分析 了组 合粱翼 缘板有 效宽度 的变化 规律及有 效宽度 的计 算公式 ; 以对称 集中荷载 为加载方 式 , 研究 了钢一 轻骨料 混凝 土组合梁结构的承载及变形能力 , 并提 出组 合梁在集 中荷载 作用 下跨 中挠 度 的简 化计 算公 式 ; 于塑性 理 论 , 导 了预应 力 基 推
也 在进 一 步 研 究 之 中 。
算公式 , 并用试 验加 以验 证 ; 研究 影响钢 板 与轻骨 料混凝 土组
合梁抗弯 及变形性能 的主要 因素 , 并建 立其抗弯 承载力计算 公式
及 其 衙 载 一 变 形 关 系 曲线 ; 过 5块 钢 板 与轻 骨 料 混 凝 土 组 合 通 梁 的 试 验 研 究 , 用 弹 性 理 论 , 立 了 钢 板 与 轻 骨 料 混 凝 土 组 合 利 建
钢-混凝土组合结构构件工作性能的研究进展
建模 , 研究 了不 同截 面形 式 、 同加 载路径 情况 下钢 不
件 下适 用 , 参数 的具 体含义 详见 文献 [ ] 各 1. 可见 , 对钢 管 混 凝 土构 件 工作 机构件在 压 、 、 、 弯 扭 剪及 其 复 合 受 力状 态 下
的工 作机 理 , 析 了钢 管 与 核 心混 凝 土 之 间 的相 互 分 作用 , 使人 们更 加深 入 和 清 楚地 认 识 钢 管 混凝 土 构 件 的工作 机理 , 尤其 是复合 受力状 态 下 的力 学实 质. 图 1给 出了典型 的钢 管混凝 土在 弯扭 复合受 力情 况
管 混 凝 土 构件 工作 性 能 的研 究 现 状 进 行 了总 结 , 钢 一 凝 土 组 合 结 构 构 件 的研 究 方 向进 行 了展 望 . 对 混
关键 词 : 管 混 凝 土 构 件 ; 钢 一钢 管 混 凝 土 构 件 ; 管 混 凝 土 叠 合 构 件 ; 空 夹 层 钢 管混 凝 土 构件 ; 作 性 能 钢 型 钢 中 工
摘
要 : 一混 凝 土 组 合 结 构 构 件 具 有 承 载 力 高 、 性 韧 性 好 、 火 性 能 优 于 钢 结 构 等 诸 多优 点 . 了研 究 其 钢 塑 抗 为
构 件 的力 学性 能 和 l 作 机 理 , 钢 管 混 凝 土 构 件 、 钢 一钢 管 混 凝 土 构 件 、 管 混 凝 土叠 合 构 件 、 丁 对 型 钢 中空 夹 层 钢
文 章 编 号 :0 2— 6 4 2 1 ) 4— 0 6— 4 10 53 (00 0 04 0
钢 一混 凝 土 组 合 结 构 构 件 工 作 性 能 的 研 究 进 展
汤 义鹏 ,郭艳 坤
( . 南 省农 业科 学 院 , 南 郑 州 4 0 0 ; . 1河 河 5 0 2 2 中州 大 学 , 南 郑 州 4 0 4 ) 河 50 4
钢混凝土组合结构桥梁研究新进展
钢混凝土组合结构桥梁研究新进展一、本文概述随着科技的不断进步和工程需求的日益增长,钢混凝土组合结构桥梁作为一种高效、经济且具备优良性能的结构形式,在桥梁工程中得到了广泛应用。
本文旨在综述钢混凝土组合结构桥梁的最新研究进展,包括其设计理论、施工技术、性能评估以及在实际工程中的应用案例。
文章首先介绍了钢混凝土组合结构桥梁的基本概念和特点,然后重点分析了近年来国内外在该领域的研究成果和创新点,最后展望了未来的发展趋势和挑战。
通过本文的阐述,希望能够为相关领域的学者和工程师提供有价值的参考,推动钢混凝土组合结构桥梁技术的进一步发展和优化。
二、钢混凝土组合结构桥梁的设计理论与方法钢混凝土组合结构桥梁的设计理论与方法是近年来研究的热点领域。
随着材料科学、计算力学和设计理念的进步,这种结构形式的桥梁设计理论得到了极大的丰富和发展。
在设计理论方面,钢混凝土组合结构桥梁的设计需要综合考虑钢材和混凝土的受力特性,以及两者之间的相互作用。
目前,研究者们已经建立了一套相对完善的设计理论体系,包括组合梁、组合板、组合柱等多种组合构件的设计方法。
这些理论方法综合考虑了材料的非线性、构件的截面形状、荷载类型等因素,使得设计更加精细化、准确化。
在设计方法上,钢混凝土组合结构桥梁的设计通常采用极限状态设计法,即根据结构在极限状态下的受力性能和变形要求,确定结构的截面尺寸和配筋。
随着计算机技术的快速发展,有限元分析、参数优化等数值方法也被广泛应用于钢混凝土组合结构桥梁的设计中,为设计师提供了更加便捷、高效的设计工具。
随着对结构性能要求的提高,钢混凝土组合结构桥梁的设计也开始注重全寿命设计、耐久性设计等方面。
这些新的设计理念要求在设计阶段就充分考虑结构在使用过程中的性能退化、维修加固等因素,从而确保结构在整个生命周期内都能满足性能要求。
钢混凝土组合结构桥梁的设计理论与方法在不断发展和完善中。
随着新材料、新工艺、新技术的不断涌现,未来这种结构形式的桥梁设计将更加精细化、智能化、环保化。
中空夹层钢管混凝土组合结构研究进展
中空夹层钢管混凝土组合结构研究进展摘要:本文通过对一种新型的组合构件—中空夹层钢管混凝土(CFDST)的特点及研究现状进行分析,通过研究分析发现,该构件具有良好的工程应用价值,但该构件在多灾害方面的研究还有所欠缺,应加强腐蚀、火灾、撞击、地震等荷载下构件承载性能的研究。
关键词:中空夹层钢管混凝土;研究现状;CFDST1. 中空夹层钢管混凝土结构特点中空夹层钢管混凝土构件(CFDST)是在钢管混凝土构件的基础上,利用内钢管代替核心混凝土的一种新型土木工程构件,该构件与传统的钢管混凝土构件相比,质量轻、刚度大,便于施工,在工程中有良好的应用价值,本文通过对国内外专家学者对中空夹层钢管混凝土的研究进行论述,坦明了中空夹层钢管混凝土构件的发展现状和发展趋势。
2. 空夹层钢管混凝土研究现状黄宏等[1]对中空夹层钢管混凝土试件进行了轴心及偏心受压试验,提出了中空夹层钢管混凝土偏心受压构件轴心、偏心受压承载力计算公式;Zhao Xiao-Ling[2]对轴向荷载作用下中空夹层钢管混凝土构件进行了大变形试验研究,研究结果表明:该构件能有效的减少构件的能量耗散、位移变形、承载能力等性能,在循环加载下,轴向荷载下降较弱,介于20%-30%之间,由此得出,该构件有较好的抗震性能;Li Wei[3]提出了组合框架中采用锥形中空夹层钢管混凝土试件,利用有限元软件对试验进行了验证,试验表明:该构件对组合框架结构有利。
黄宏[4]对圆中空夹层钢管混凝土构件进行了受扭试验,利用有限元进行模拟,数值模拟结果表明,破坏全过程分为弹性、弹塑性、塑性强化三个阶段,试验表明:在加载过程中,当轴压小时,伴随着轴压比的增大,极限扭矩增大;当轴压比较大时,随着轴压比的增大,极限扭矩减小。
S. Aghdamy[5]对兰州理工大学大量的中空夹层钢管混凝土实验结果进模拟分析,验证了数值模型并预测柱的破坏模式的能力。
通过参数分析,研究了几种载荷相关参数对CFDST的影响,为CFDST柱的冲击响应及其影响提供了新的信息控制参数以形成广泛的数据库,用来建立适当的方程并给出了CFDST柱在横向冲击荷载作用下的设计计算方法。
钢-混凝土组合结构的发展现状
钢-混凝土组合结构的发展现状1. 引言1.1 钢-混凝土组合结构的定义钢-混凝土组合结构是一种由钢材和混凝土材料组合而成的结构体系,通过将钢材和混凝土的优势相结合,实现了两种材料的互补作用,充分发挥了各自的优点。
钢材具有良好的延展性和抗拉性能,能够承受较大的拉力,而混凝土则具有良好的抗压性能,能够承受较大的压力。
钢-混凝土组合结构既具有钢材的强度和韧性,又具有混凝土的耐久性和耐腐蚀性,结构性能更为优越。
钢-混凝土组合结构的定义包括以下几个方面:首先是将钢材和混凝土材料通过一定的方式组合在一起,形成一个整体结构体系;其次是在结构设计和施工中充分考虑两种材料的特性和优势,发挥它们的互补作用;最后是通过科学的设计和合理的施工,确保结构具有良好的承载能力、变形性能和耐久性,满足工程使用的要求。
钢-混凝土组合结构在建筑结构领域具有广泛的应用前景,可以应用于桥梁、高层建筑、厂房等各种场所,为建筑工程的发展提供了新的可能性。
1.2 发展背景钢结构在建筑工程中具有高强度、刚度好、抗震性能强等优点,而混凝土结构则具有耐火性好、隔音性好、施工方便等特点。
将钢结构和混凝土结构结合起来形成钢-混凝土组合结构,不仅可以充分发挥两者各自的优势,还能弥补彼此的不足之处,从而实现结构性能的最优化。
在国内外相关研究领域,钢-混凝土组合结构已经取得了一系列的研究成果,包括结构设计理论、结构材料性能、施工工艺以及工程应用等方面。
这些研究成果为钢-混凝土组合结构的发展提供了坚实的理论基础和技术支持。
随着建筑结构工程的不断发展和完善,钢-混凝土组合结构将会有更加广阔的应用前景和发展空间。
2. 正文2.1 组合结构的优势钢-混凝土组合结构在建筑工程中具有诸多优势。
钢材和混凝土各自的特性得以最大程度地发挥,相互补充,构成了一种新型的结构形式。
钢材具有高强度、良好的延展性和可塑性,能够承受较大的拉力和压力,而混凝土则具有良好的抗压性能和耐久性。
钢-混凝土组合结构的发展现状
钢-混凝土组合结构的发展现状钢-混凝土组合结构是指利用钢材和混凝土两种材料相互配合,合理分工,充分发挥各自优势的一种建筑结构形式。
它是综合利用两种材料的力学特性,通过无缝衔接、紧密协作实现结构的整体协同工作。
钢-混凝土组合结构具有较好的抗震、刚度、耐火性、耐久性和施工性能等特点,在工程实践中得到了广泛应用。
目前,在我国建筑领域,钢-混凝土组合结构已经广泛应用于桥梁、高层建筑、厂房和特殊结构等领域。
桥梁是钢-混凝土组合结构应用最为成熟、最为广泛的领域之一。
钢-混凝土组合桥梁的优点是结构自重轻、强度高、刚度大、抗震性好、施工周期短等,可以满足大跨度、高强度要求,是大型桥梁建设的重要选择。
在高层建筑领域,钢-混凝土组合结构也得到了广泛应用。
相比传统的钢结构和混凝土结构,钢-混凝土组合结构能够充分发挥两种材料的优势,既能满足高层建筑对刚度和抗震性的要求,又能满足建筑外观和空间形态的设计要求。
钢-混凝土组合结构还具有优良的消防性能,能够提高建筑的耐火性能,降低火灾风险。
在厂房建设领域,钢-混凝土组合结构广泛应用于大型厂房、仓库、体育馆等建筑。
由于钢-混凝土组合结构的轻型化特点,相比传统的砖混结构和钢结构,具有自重轻、抗震性好、安全可靠、使用寿命长等优势。
钢-混凝土组合结构还具有较好的空间利用率和灵活性,可以满足不同厂房功能和使用要求。
除了桥梁、高层建筑和厂房等传统应用领域,钢-混凝土组合结构还在特殊结构领域得到了广泛应用。
核电站、地铁隧道、高速铁路桥梁等工程,由于对结构强度和耐久性要求较高,特别需要混凝土的抗压性能和钢材的抗拉性能,钢-混凝土组合结构成为了首选的结构形式。
目前,国内钢-混凝土组合结构的设计规范和施工技术已经相对成熟,并形成了一整套完善的理论体系和实践经验。
随着建筑领域对于高性能、高效益、可持续发展的要求越来越高,在未来,钢-混凝土组合结构将会进一步推广和应用。
还需要进一步研发和掌握新的设计方法和施工技术,提高结构的安全性、经济性和施工效率。
钢-混凝土组合结构的发展现状
钢-混凝土组合结构的发展现状钢-混凝土组合结构是近年来建筑领域的一种重要发展趋势,它将钢结构和混凝土结构的优势结合起来,充分发挥各自的优势,同时避免了各自的劣势,成为了建筑结构中的一种重要形式。
本文将从钢-混凝土组合结构的定义、特点、发展趋势等方面进行探讨,以期对该领域的研究和发展做出一定的贡献。
一、钢-混凝土组合结构的定义钢-混凝土组合结构是指在工程中将钢材和混凝土材料以一定的方式结合起来,使其具有整体性和协同工作性的一种结构形式。
其主要特点是钢材提供了足够的抗拉刚度和强度,而混凝土提供了良好的抗压性能,两种材料协同工作,相辅相成,形成了一种新型的结构形式。
1. 优异的抗震性能钢-混凝土组合结构由于钢材的使用,在结构中形成了具有一定弹性变形能力的梁柱节点,进而提高了结构的整体刚性和抗震性能。
在地震作用下具有较好的抗震性能,可以有效保护人员生命财产的安全。
在大风作用下,钢-混凝土组合结构的整体性和刚性可以有效抵抗风力作用,减小结构的变形和破坏,提高了结构的整体稳定性。
3. 构造简单、施工方便钢-混凝土组合结构的构造简单,加工工艺成熟,可以实现工厂化生产,大幅度降低了工程周期和成本。
施工方便,可以减少工地施工过程中的不良因素,提高施工效率。
4. 良好的经济性由于钢-混凝土组合结构在材料的使用上可以充分发挥各自的优势,因此具有较好的经济性。
相对于传统的建筑结构,钢-混凝土组合结构可以降低建筑材料的使用量,提高结构的自重和自重比,降低了结构的成本。
5. 环保节能钢-混凝土组合结构在使用过程中,不仅可以降低建筑结构的自重,减小土地占用,还可以实现建筑材料的回收再利用,减少了建筑垃圾和废弃物的排放,对环境的保护起到了良好的作用。
钢-混凝土组合结构的发展已经迅猛,已经广泛应用于建筑领域的各个方面,特别是在高层建筑、桥梁和工业厂房等领域。
具体来说,它在以下几个方面有着广泛的应用。
1. 高层建筑近年来,随着城市化进程的加快和人们对生活品质要求的提高,高层建筑的需求在不断增加,而钢-混凝土组合结构正是在这种需求下应运而生。
钢-混凝土组合结构抗震性能研究进展
㊃综㊀述㊃钢结构(中英文),38(12),1-26(2023)DOI :10.13206/j.gjgS 23062902ISSN 2096-6865CN 10-1609/TF㊀㊀编者按:当前我国第五代GB 18306 2015‘中国地震动参数区划图“明确了基本㊁多遇㊁罕遇和极罕遇等四级作用的地震动参数确定方法并提高了工程结构抗震设防标准㊂组合结构适应国家新型城镇化建设重大需要,在城市人口密集区域和抗震设防高烈度区域具有广泛应用价值㊂由于钢管混凝土柱存在间接约束以及界面滑移等特性,其抗震能力可进一步挖掘,以提升强震下重要工程结构的安全性,或者在维持相同性能时节约材料用量㊂学者们通过模型试验㊁理论研究以及关键技术研发,所形成的系列成果在工程结构中得到了成功应用㊂为此,‘钢结构(中英文)“杂志特邀丁发兴教授为主编,系统组织了两期(本期及2024年第1期) 组合结构抗震性能与韧性提升 专栏,向读者介绍国内针对钢管混凝土柱㊁钢管混凝土柱-组合梁节点㊁组合框架以及组合框架-筒体结构等方面的最新研究成果,探讨各有效措施对抗震性能的影响规律,以期推动组合结构技术的完善与升级㊂钢-混凝土组合结构抗震性能研究进展∗丁发兴1,2㊀许云龙1㊀王莉萍1,2㊀吕㊀飞1,2㊀段林利1,2㊀余志武1,2(1.中南大学土木工程学院,长沙㊀410075;2.湖南省装配式建筑工程技术研究中心,长沙㊀410075)摘㊀要:钢-混凝土组合结构因具有抗弯刚度大㊁承载力高㊁延性好和施工便捷等优点,适应国家新型城镇化建设重大需要,在城市人口密集区域和抗震设防高烈度区域应用广泛㊂在提高工程结构抗震设防标准的背景下,研究钢-混凝土组合结构的抗震性能,进一步提升其抗震韧性,建立具有更高韧性的钢-混凝土组合结构抗震设计方法对促进建筑结构实现 双碳 战略目标具有重要意义㊂为此,归纳总结了钢-混凝土组合结构抗震性能的研究进展,包括钢-混凝土组合梁㊁钢管混凝土柱及钢管混凝土柱-组合梁节点的滞回性能试验研究,以及钢-混凝土组合结构体系的拟静力㊁拟动力及振动台试验研究,讨论并比较了各种抗震分析模型及其方法,提出了当前研究存在的一些问题和尚需深入研究的方向㊂基于现有研究成果总结得到:1)组合梁主要依靠钢梁耗能,可采取增大钢梁截面尺寸的措施提高耗能能力㊂钢管混凝土柱主要依靠钢管和混凝土耗能,可采取拉筋增强约束措施直接约束混凝土,使其由脆性向塑性转变从而提高框架柱的耗能能力㊂与其他类型组合节点相比,刚性连接组合节点具有更好的耗能能力㊂2)罕遇地震下框架结构以梁耗能为主,而在超罕遇地震下仍以梁作为主要耗能部件将使工程成本大幅增加㊂由于超罕遇地震发生概率极低,若采取适当的增强约束措施使柱也具备耗能能力并参与耗能,则可在适当增加工程建设成本的同时使结构具有抵抗超罕遇地震的能力,此时组合结构抗震设计理念可由罕遇地震时的 强柱弱梁,梁耗能为主 向超罕遇地震时的 梁柱共同耗能 推进㊂3)基于平截面假定的杆系纤维模型计算软件通常适用于弹性和弹塑性小变形阶段分析,而当组合结构处于塑性大变形阶段时,结构杆件便不再符合平截面假设㊂对强震下组合结构体系的动力响应仿真模拟需要克服弹塑性小变形阶段的假定条件,采用适用于塑性大变形阶段结构分析的混凝土三轴弹塑性本构模型及相应的体-壳元模型是一种有效的途径㊂4)剪力墙结构具有整体性好㊁侧向刚度大等优点,但传统构造下其抗震能力较弱,可通过提升连梁和墙肢等耗能构件的耗能能力以增强结构整体耗能能力,如采用钢-混凝土组合连梁㊁型钢混凝土连梁或合理构造钢板连梁,以及型钢-约束混凝土或钢管混凝土墙肢等㊂5)工程结构在使用阶段面临着诸多灾害考验,传统方法根据不同外荷载进行独立抵抗设计,忽视了多灾害耦合作用机制,使结构综合抗灾性能难以满足使用需求,故建立安全可靠的抗多灾害设计方法和结构体系是结构工程师在防灾减灾领域的一项重大课题㊂关键词:钢-混凝土组合梁;钢管混凝土柱;钢-混凝土组合结构;抗震性能;试验研究∗国家自然科学基金项目(51978664)㊂第一作者:丁发兴,男,1979年出生,博士,教授㊂通信作者:王莉萍,女,1987年出生,博士,副教授,wlp2016@㊂收稿日期:2023-06-290㊀引㊀言中国是世界上地震灾害最严重的国家之一,地震灾害给人类社会活动造成了不可估量的损失㊂大量建筑结构因抗震能力不足而倒塌,造成的人员伤1丁发兴,等/钢结构(中英文),38(12),1-26,2023亡和经济损失使得抗震减灾技术成为结构工程师们面临的主要考验㊂为提高建筑结构的抗震性能,研究者们在结构布置和局部构造等方面展开了大量的研究工作㊂钢-混凝土组合结构因充分发挥了两种材料的力学性能优势,提升了结构的刚度㊁承载力和耗能能力而在高层及超高层建筑结构中得到了广泛应用[1]㊂随着经济社会的发展,工程结构抗震设防标准也在不断提升,研究钢-混凝土组合结构的抗震性能,进一步提升其抗震韧性,建立具有更高韧性的钢-混凝土组合结构抗震设计方法,对促进建筑结构实现 双碳 战略目标具有重要意义㊂组合结构中,钢-混凝土组合梁和钢管混凝土柱的材料利用效率最高,其抗震性能提升明显㊂为此,笔者对国内外相关钢-混凝土组合结构的主要研究成果进行归纳总结,对组合结构抗震性能方面需要进一步深入研究的工作进行展望,以期为后续研究工作提供一些参考和建议㊂1㊀钢-混凝土组合构件及节点抗震性能1.1㊀钢-混凝土组合梁钢-混凝土组合梁由钢梁和混凝土板通过栓钉连接而成,发挥了混凝土的抗压性能和钢材的抗拉性能优势㊂Daniels等[2]对组合框架中的组合梁进行了抗震性能研究,并给出了组合梁的弹塑性分析方法㊂文献[3-5]先后对组合梁进行了低周往复试验研究,结果表明组合梁具有良好的耗能能力和延性,增设腹板加劲肋或增加腹板厚度能明显提高组合梁的极限承载力,改善构件延性㊂Gattesco 等[6-7]㊁Taplin等[8]和Bursi等[9-10]着重研究了剪力连接件对组合梁抗震性能的影响,指出剪力连接件的布置方式直接影响界面滑移量,进而影响组合梁极限承载力㊂国内聂建国等[11]首先进行了6组钢-混凝土叠合板组合梁低周往复荷载试验研究,结果表明钢-混凝土叠合板组合梁的滞回曲线饱满,且存在界面滑移,其剪力连接度直接影响构件正向极限抗弯承载力,而反向极限抗弯承载力则可依据简化塑性方法计算得出㊂此后,蒋丽忠等[12-16]和Ding等[17]先后对低周往复荷载下钢-混凝土组合梁的抗震性能进行了系列试验研究,分别探讨了剪力连接度㊁力比㊁栓钉直径㊁腹板厚度㊁纵向和横向配箍率对组合梁抗震性能的影响规律,并建立了恢复力模型[13]㊂Liu等[18]建立了三维实体-壳元模型,其中钢梁采用壳单元,混凝土采用实体单元,栓钉采用梁单元或弹簧单元,分析结果表明组合梁的抗震能力主要依靠钢梁翼缘,增大钢梁尺寸有利于提高抗震能力,而增大栓钉剪力连接度也有利于提高钢梁的耗能㊂1.2㊀钢管混凝土柱钢管混凝土柱由外钢管内部填充混凝土而成㊂自1965年日本九州大学学者Sasaksi和Wakaba-yashi对方钢管配筋混凝土柱进行拟静力试验后[19],Tomii等[20]也开展了圆钢管混凝土柱拟静力试验研究,表明钢管混凝土柱比钢筋混凝土柱具有更大的极限承载力,更好的延性和耗能能力,以及更小的刚度退化等特点㊂Elremaily等[21]最早根据试验结果和理论分析指出钢管约束作用提升了柱承载力和抗震性能㊂随后有关钢管混凝土柱抗震性能研究越来越丰富,研究者们分别从材料强度㊁轴压比㊁宽(径)厚比和长细比等方面探讨了钢管混凝土柱抗震性能规律㊂在材料强度方面,吕西林等[22]㊁韩林海等[23]和Liu等[24]先后研究了混凝土强度对钢管混凝土柱抗震性能的影响规律,结果显示随着混凝土强度的提升,试件初始刚度略有增大,极限承载力也有所提高,但其延性和耗能能力均下降,且刚度退化加快㊂游经团等[25]和Yadav等[26]的试验结果表明:增大钢管屈服强度能够明显提升极限承载力,但对初始抗弯刚度几乎无影响㊂Varma等[27-28]探讨了钢材强度对柱抗震性能的影响规律,低轴压比下柱的延性系数随钢材强度的增大而降低,而当轴压比较大时,该规律并不明显㊂在轴压比方面,吕西林等[22]㊁Liu等[24]㊁游经团等[25]㊁Varma等[27-28]㊁张春梅等[29]㊁李学平等[30]㊁李斌等[31]㊁聂瑞锋等[32]和Cai等[33]通过试验研究发现,轴压比是影响柱抗震能力的直接因素,增大轴压比导致水平承载力㊁延性和耗能能力下降,刚度退化明显㊂在宽(径)厚比方面,吕西林等[22]㊁Liu等[24]㊁Yadav等[26]和李学平等[30]的试验表明,试件水平极限承载力随着宽(径)厚比增大而降低㊂Varma 等[27-28]㊁李斌等[31]和余志武等[34]指出,提高宽(径)厚比可使其延性系数下降㊂聂瑞锋等[32]和Matsui等[35]指出,宽(径)厚比越大,耗能能力越弱㊂在长细比方面,李斌等[31]㊁聂瑞锋等[32]和邱增美等[36]通过试验研究表明,随着长细比的增加,钢管混凝土柱初始刚度明显降低,刚度退化加快,水平2钢-混凝土组合结构抗震性能研究进展承载力和耗能能力变弱,延性系数也明显下降,当长细比达到一定值时延性系数下降更快㊂为加强大宽(径)厚比钢管对混凝土的约束作用而提升其抗震性能,学者们陆续提出了诸多约束措施,如在柱端部焊接钢板或角钢[37],包裹纤维复合材料[38],设置约束拉杆[39]㊁栓钉[40]㊁加劲肋[41]或斜拉肋[42]等局部加强措施,如图1a ~1g 所示,这些局部加强构造一定程度上延缓了柱端塑性铰的形成与发展㊂a 钢板约束;b 角钢约束;c 纤维复合材料约束;d 拉杆约束;e 栓钉约束;f 加劲肋约束;g 斜拉肋约束;h 内拉筋约束㊂图1㊀各种约束方式下的钢管混凝土柱由于钢管对混凝土的约束作用为间接被动约束,丁发兴[43]在比较各种约束方式后提出了内拉筋约束钢管混凝土柱技术,如图1h 所示,并揭示了内拉筋直接约束混凝土的工作原理㊂此后,丁发兴课题组开展了端部拉筋钢管混凝土柱抗震性能试验研究,截面形式包括矩形[44]㊁圆形[45]㊁椭圆形[46]㊁圆端形[47]等,探讨了拉筋与钢管内表面接触方式的影响[48],试验结果表明,实际轴压比高达0.8的超高轴压比钢管混凝土柱仍呈现延性破坏,且钢管混凝土柱塑性铰展现出小偏压和大偏压两个阶段,其韧性得到进一步提升㊂同时,课题组基于体-壳元模型进行了有限元模拟,其中混凝土采用实体单元,钢管采用壳单元,拉筋采用杆单元,分析结果表明,压弯荷载下拉筋具有降低界面滑移㊁直接约束混凝土以及促进钢管抗弯等效果,从而提高抗弯刚度㊁承载力和耗能能力,其中拉筋大幅度提高了混凝土的耗能能力[49]㊂1.3㊀钢管混凝土柱-组合梁节点作为钢-混凝土组合结构的关键传力部位,组合节点的剪力主要通过钢梁腹板传递,其次通过节点区混凝土和钢管壁间的黏结力和摩擦力传递,而弯矩则主要由加强环板㊁内隔板等构件传递[50]㊂现有节点试验不少是以钢管混凝土柱和纯钢梁的连接为研究对象,而相关组合框架及组合节点的试验研究结果表明,钢梁与楼板在进入弹塑性阶段之后仍能发挥明显的组合效应[51],这种组合效应能显著提高结构的刚度㊁强度及耗能能力,抑制钢梁上翼缘屈曲,增强钢梁的稳定性[52]㊂另外,当节点区域受正向弯矩作用时,楼板与钢梁的组合效应更为显著[53-54],楼板的存在将使中性轴上移,导致钢梁下翼缘应变明显增大,从而促使下翼缘更易发生屈服及破坏,降低组合梁的转动能力[55]㊂鉴于钢筋混凝土楼板对节点区域及结构体系具有重要影响,笔者仅对考虑楼板的组合节点抗震性能试验进行梳理㊂组合梁节点及框架试验表明负弯矩区钢梁下翼缘由于受压易过早出现局部屈曲和失稳的问题,李杨等[56]在普通组合梁负弯矩区下翼缘增设一块混凝土板,开展了钢-混凝土双面组合梁节点的抗震性能试验,与普通组合梁节点相比,双面组合梁节点具有更高的刚度和承载力,但在刚度退化㊁延性系数和耗能能力等方面无明显优势㊂在削弱式节点方面,Xiao 等[57]和Li 等[58]对带楼板的狗骨式节点进行了拟静力试验,结果表明,减小梁截面可促进削弱区域塑性铰的形成,有效避免节点核心区焊缝撕裂㊂在传统刚性节点方面,聂建国课题组先后完成了内隔板式节点[59]㊁栓钉内锚固式节点㊁外隔板式节点[60]和内隔板贯通式节点[61]的拟静力试验研究㊂研究发现:内隔板式节点表现出较强的极限承载能力,但其位移延性系数低;而栓钉内锚固式节点具有较强的变形能力,但极限承载力较低;相比之下,外隔板式节点和内隔板贯通式节点在极限承载能力㊁位移延性系数和耗能能力等方面均具有良好的性能[60-61]㊂此外,聂建国等[62]建立了组合节点剪力-剪切变形曲线的恢复力模型,提出了组合节点屈服抗剪承载力和极限抗剪承载力计算公式㊂韩林海课题组[63-64]采用外环板式节点对圆钢管混凝土柱-组合梁节点进行拟静力试验研究,提出了节点的抗剪承载力公式和核心区剪力-剪切变形恢复力模型㊂周期石等[65]提出了楼板钢筋和钢梁翼缘削弱穿入钢管混凝土柱的刚接节点,发现楼板钢筋的穿入增强了节点区域钢梁抗弯刚度和楼板的组合效应,而钢梁翼缘削弱的穿入降低了穿入钢梁对浇筑柱中混凝土的影响㊂研究表明,对于钢梁翼缘削弱穿入钢管混凝土柱的刚接节点,当削弱程度不大时,节点具有良好的抗震性能,但仍将降低节点的刚3丁发兴,等/钢结构(中英文),38(12),1-26,2023度㊁承载力和耗能能力㊂在半刚性节点方面,Mirza等[66]分别对半刚性单边螺栓节点进行了静力和拟静力试验,并根据有限元分析结果给出了构造设计方法㊂王静峰等[67-69]进行了半刚性单边螺栓节点试验,包含圆㊁方钢管和带纵向加劲肋钢管的拟静力试验以及带纵向加劲肋钢管混凝土柱的拟动力试验㊂试验结果表明,圆钢管混凝土柱-组合梁节点的承载力和弹性刚度要大于方截面[67];外伸端板连接节点的承载力和弹性刚度要大于平齐端板连接,而其转动能力和延性性能要低于平齐端板连接[68-69]㊂Yu等[70]提出了上焊下栓式的节点连接方式,即钢梁上翼缘与柱隔板焊接,下翼缘与柱隔板通过螺栓连接,螺栓连接处板件的滑移有利于降低钢梁下翼缘应力,避免出现过早断裂的现象㊂欧洲规范[71]中,根据初始转动刚度大小,将节点分为铰接㊁半刚性连接和刚性连接;根据抗弯承载力大小,将节点分为铰接㊁部分强度和全强度㊂Ding 等[72]认为该分类标准对于半刚性连接节点的定义较为宽泛,难以准确判定试件的类型,应根据节点的初始转动刚度㊁抗弯承载力和耗能能力等性能指标综合定义,并将其细化为半刚接㊁准刚接㊁Ⅰ类刚接和Ⅱ类刚接四类㊂据此,丁发兴等[73]完成了端板螺栓连接和加强环连接组合梁节点的拟静力试验,利用柱内拉筋 强柱 构造和加劲肋 强梁 构造技术实现了节点核心区强连接,显著提升了螺栓连接节点的初始转动刚度㊁抗弯承载力和耗能能力,使栓连节点达到了刚性节点的性能要求㊂同时,内拉筋 强柱 构造技术实现了轴压比高达0.8时,组合节点梁端发生弯曲破坏的失效模式㊂除了以上相关平面框架组合节点抗震性能试验研究外,樊健生等[74-75]从加载路径㊁混凝土楼板㊁柱类型及节点位置等方面对空间组合内隔板贯通式节点进行了拟静力试验,结果表明空间受力的节点在承载力和延性性能等方面均有明显下降,因此平面荷载作用不能完全反映其抗震性能,在节点设计中应考虑空间荷载的耦合作用㊂2㊀钢-混凝土组合结构体系抗震性能组合梁㊁柱及其组合节点等构件的研究最终以在结构体系中的应用为落脚点,因而各类组合构件集成后的体系响应是工程实践重要的关注点之一㊂笔者以钢-混凝土组合框架结构为主要对象,根据不同试验方法分别梳理了研究者在有关结构体系抗震方面的研究成果㊂2.1㊀试验研究2.1.1㊀拟静力试验Matsui[76]㊁Kawaguchi等[77-78]㊁马万福[79]㊁钟善桐等[80]㊁李斌等[81]㊁王来等[82]㊁李忠献等[83]和王先铁等[84]对钢-混凝土组合框架模型进行了系列抗震性能试验研究,指出钢-混凝土组合框架结构的抗震性能要优于钢筋混凝土框架和钢框架结构㊂为研究混凝土楼板在框架结构中的组合效应,聂建国等[85]完成了4层单跨纯钢框架和组合框架结构的拟静力试验㊂结果表明:与整体性较差的纯钢框架相比,组合框架的抗侧刚度因混凝土楼板空间作用而大幅提升㊂Tagawa等[86]㊁Nakashima 等[87]和聂建国等[52,88]分别进行了足尺框架子结构拟静力试验,探讨了混凝土楼板对结构刚度㊁强度㊁耗能及变形能力的影响规律,确定了在结构设计中楼板组合效应的有效计算宽度㊂王文达等[89]㊁王先铁等[90]和余志武等[91]以柱截面形状㊁材料强度㊁含钢率㊁轴压比和梁柱线刚度比等为研究对象,对组合框架结构开展了往复荷载作用下的试验研究,探讨了各参数对组合框架结构抗震性能的影响规律,提出了钢管混凝土框架荷载-侧移实用恢复力模型及位移延性系数简化计算方法㊂王静峰等[92-94]和王冬花等[95]研究了往复荷载作用下半刚性单边高强螺栓连接组合框架的抗震性能和破坏机理,分析了滞回及骨架曲线㊁强度和刚度退化规律㊁延性及耗能能力等力学性能指标,并建立了半刚性钢管混凝土框架的弹塑性地震反应分析模型,提出了一种适用于半刚性钢管混凝土框架的P-Δ关系曲线的简化二阶方程和弹塑性层间位移的简化计算方法㊂此外,赵均海等[96]提出了装配式复式钢管混凝土框架结构及其极限承载力简化计算方法,阐述了柱-柱拼接节点和加强块梁柱节点在此类结构中的应用效果㊂Ren等[97]和王波等[98]在钢管混凝土框架中增设屈曲约束支撑装置,研究水平反复荷载作用下耗能减震部件对结构抗震性能的影响㊂结果表明:增设屈曲支撑不仅对结构的刚度和承载力有提升作用,还能延缓塑性铰的形成,增强结构延性和耗能能力㊂丁发兴等[99]完成了2层2跨组合框架对比试验研究,结果表明:内拉筋强柱构造措施提升了框架结构的刚度和承载力,延缓了柱端塑性铰的形成,增强了结构延性和耗能能力㊂由此可见,内拉筋提升框架柱的刚度㊁承载力和耗能能力,其效果相当于增4钢-混凝土组合结构抗震性能研究进展设屈曲支撑㊂2.1.2㊀拟动力试验宗周红等[100]通过对缩尺比例为1/3的半刚性两层空间组合框架的拟动力试验,从层间刚度㊁自振频率㊁加速度反应㊁位移反应和滞回曲线等方面评估了该结构的动力响应和耗能性能,研究了峰值加速度㊁频谱特性和强震持续时间对结构动力响应和力学性能的影响,建立了组合框架结构动力分析模型㊂Herrera等[101]按照3/5的比例对一幢节点采用T型连接方式的4层组合框架进行了拟动力试验,结果表明此类节点的组合框架满足美国相关设计标准㊂在半刚性节点组合框架方面,He等[102]对缩尺比例为4/7的端板螺栓连接组合框架子结构模型先后进行了拟动力㊁拟静力和静力推覆试验,从层间位移及剪力㊁应变㊁转角和耗能等方面分析结构在多遇地震㊁设防地震㊁罕遇地震和超罕遇地震水准下的动力响应㊂完海鹰等[103]对节点采用长螺栓式双腹板顶底角钢半刚性连接的钢管混凝土框架进行拟动力试验研究,探讨不同峰值加速度下结构的受力特征㊁刚度退化㊁动力响应及耗能能力㊂王静峰等[104-105]通过两组拟动力试验分别研究了钢管混凝土柱-组合梁框架和钢管混凝土柱-钢梁框架的动力性能和破坏特征,探讨了柱截面形式和端板类型对结构性能的影响㊂试验结果表明,圆形柱组合框架的最大位移响应和累积耗能均大于方形柱组合框架,但其初始刚度和承载力则弱于方形柱组合框架㊂此外,王静峰等[106]还采用混合试验方法对装配式中空夹层钢管混凝土组合框架开展了拟动力试验研究,分析了该组合框架结构在峰值加速度为0.62g和1.24g时的动力响应和破坏机理㊂在屈曲约束支撑组合框架方面,Tsai等[107-108]完成了多级地震作用下3层3跨足尺钢管混凝土柱屈曲约束支撑框架拟动力试验研究,探讨了屈曲约束支撑对结构整体抗震性能的影响,并从有效刚度㊁耗能和位移延性系数等方面评估了支撑构件连接方式的有效性㊂郭玉荣等[109]完成了防屈曲支撑组合框架子结构拟动力试验,提出了防屈曲支撑可增强结构的抗侧刚度和变形恢复能力㊂2.1.3㊀振动台试验黄襄云等[110-111]利用振动台试验对5层2跨2开间钢管混凝土空间框架结构的动力特性㊁加速度反应和位移反应进行了分析,并分别按等强度㊁刚度㊁截面积的原则将钢管混凝土柱换算成钢筋混凝土柱进行试算,综合评定了该结构的抗震性能㊂杜国锋等[112]采用单输入㊁单输出方式对8层单跨2开间钢管混凝土柱-钢梁框架进行动力特性试验,并通过3种不同地震波作用分析了结构的最大地震作用力㊁层间剪力㊁位移和应变反应㊂邹万山等[113]通过振动台试验得出,不同频谱特性的地震波对模型结构的加速度和位移反应分布曲线形状影响较小,且模型各层绝对加速度主要由前两阶振型决定,其他高阶振型的影响可以忽略㊂罗美芳[114]研究了不同工况下4层钢-混凝土组合框架结构的动力响应及破坏模式,评价了该结构的抗震性能㊂童菊仙等[115-116]设计并制作了有㊁无侧向耗能支撑的5层单跨2开间的方钢管混凝土柱框架模型,利用振动台试验对两种框架的动力特性和地震响应进行分析,得到了结构的振型㊁周期和阻尼比等基本属性,以及地震波作用下的位移㊁加速度和应力响应㊂结果表明:即使没有楼板的组合作用,结构仍具有较好的抗震性能;侧向支撑可承担部分水平地震作用,减小了结构的动力反应㊂陈建斌[117]和吕西林等[118]完成了国内首个方钢管混凝土高层组合框架-支撑结构振动台试验㊂试验中发现结构支撑体系的破坏较为严重,试验结果表明:该结构的动力性能介于钢筋混凝土结构和钢结构之间且更倾向于钢结构,其塑性㊁韧性和抗震性能表现良好,并通过计算结果显示阻尼器对加快结构峰值反应后的振动衰减具有较大作用㊂为研究地震作用下半刚性连接组合梁框架的动力特性以及破坏模式,李国强等[119]进行了1个足尺半刚性连接组合梁框架结构模型振动台试验研究㊂结果显示:当峰值加速度高达1.2g时,结构整体仍未发生明显损坏,表明该结构形式可满足高烈度区域的抗震设防要求㊂Han等[120]对两个由组合框架结构和钢筋混凝土剪力墙混合形成的高层建筑模型进行了振动台试验,对比分析了圆钢管混凝土柱和方钢管混凝土柱对该混合结构体系整体性能的影响,验证了组合框架结构与核心剪力墙结构在地震作用下优良的复合效应和抗震性能㊂2.2㊀理论分析静力弹塑性分析法是以反应谱为基础,首先依据抗震需求谱和结构能力谱得到地震作用下建筑结构所产生的目标位移,随后在建筑结构上施加稳定的竖向荷载,同时施加单调递增的水平荷载直至达到目标位移,最后评估结构最终状态下的抗震性能㊂通过该方法可以评估地震作用下结构的内力和变形5。
钢-混凝土组合结构的发展现状
钢-混凝土组合结构的发展现状
钢-混凝土组合结构是一种综合利用钢和混凝土的新型结构形式,具有较高的承载能力、良好的耐久性和施工性能,因此在工程领域得到广泛应用。
钢-混凝土组合结构的发
展现状可以从结构形式、设计理论和工程应用三个方面进行探讨。
钢-混凝土组合结构的结构形式丰富多样。
在柱、梁、墙板等构件上,一般采用钢骨
架与混凝土核心组成,以形成刚性连接,提高整体的受力性能。
在大跨度建筑中,常采用
钢桁架与混凝土构件组合,以实现较大跨度的结构设计。
还有一些特殊结构形式,如钢管
混凝土柱、钢筋混凝土墙、钢筋混凝土梁等,这些形式都能提升结构的整体性能。
钢-混凝土组合结构的设计理论日趋完善。
近年来,随着国内外研究的深入,钢-混凝
土组合结构的设计理论也不断改进和完善。
在设计方法上,有力学模型的建立、受力性能
的分析、构件连接方式和剪力传递机制的探讨等,使得设计工程师能够更加准确地预测结
构的受力性能,提高结构的安全性和经济性。
相关设计规范也得到了修订和完善,为钢-
混凝土组合结构的设计提供了指导和规范。
钢-混凝土组合结构在工程应用上取得了显著进展。
在桥梁、高层建筑、厂房等项目中,钢-混凝土组合结构得到了广泛应用。
在大跨度桥梁方面,采用钢箱梁加混凝土板组
合形成的钢-混凝土组合梁,既能满足大跨度的需求,又能充分利用钢的高强度和混凝土
的抗裂性能。
在高层建筑中,采用钢骨架加混凝土核心筒组合形成的钢-混凝土组合结构,既能满足建筑的刚度和稳定性要求,又能充分利用钢的抗弯承载能力和混凝土的抗压承载
能力。
钢-混凝土组合结构的发展现状
钢-混凝土组合结构的发展现状
钢-混凝土组合结构是一种将钢材和混凝土组合使用的结构形式,既继承了钢结构的优点,又借鉴了混凝土结构的特点,具有结构刚度高、承载能力强、耐久性好等优点。
近年来,钢-混凝土组合结构在建筑结构领域得到了广泛应用,其发展现状如下:
1. 研究领域的拓展
钢-混凝土组合结构在建筑领域的应用范围逐步扩大,不仅局限于高层建筑、桥梁等大型工程领域,也逐渐进入到屋顶、墙体、门窗、结构短肢等小型建筑领域。
近年来,在消防安全、地震防震、环保节能等方面的研究也取得了显著进展。
2. 技术手段的创新
磨光不锈钢和彩色涂层钢的使用,为钢-混凝土组合结构的颜色和外观提供了更多选择,美化了建筑物外观,丰富了建筑风格。
虚拟设计技术的应用使得建筑设计更加精确和高效,提高了施工质量和效率。
而超高层建筑的建造则促进了大型结构、制造和安装技术的发展。
3. 先进技术的应用
先进的连续支撑系统为钢-混凝土组合结构提供了更好的灵活度和可靠性。
同时,预制化技术的应用降低了建筑物的施工时间和成本,提高了建筑物的整体质量。
基于BIM技术的钢-混凝土组合结构急需模拟设计和施工实例方案,有助于提高钢-混凝土组合结构的设计和建造水平。
4. 建筑节能和环保的实现
利用钢-混凝土组合结构可以大大降低建筑物的能耗,并减少建筑物在生命周期内的环境影响。
同时,钢-混凝土组合结构的不可再生材料比例也得到了有效控制,使得建筑结构更加环保和可持续。
钢-混凝土组合结构的抗火性能研究进展
f ue ntef rma a so o p ses c rsclm sf o s msjit a dtew oes utrs F r e- o sso u i pr f m oi t t e:ou n ,ors t , ns n hl t cue. ut r c h o n t c t r u u l ye o h r h
mo e t e f tr e e r h o r -e itn e o o o i t cu e ss g e t d r ,h u u e r s a c n f e r ss c fc mp s esr t r s i u g se . i a t u
Ke r s f er ssa c p o rs n r s a c se lc n r t o o i t cu e ; o c ee f ld t b l r o u s c m- y wo d : r e i n e; r ge si e e r h;te ・ o c ee c mp s e sr t r s c n rt ・ l u u a l mn ; o - i t - t u - e i c
De eo m e tAd a c so h s a c n FieRe it n e o v lp n v n e ft e Re e r h o r - ssa c f S e lCo c e e Co t e- n r t mp st tu t r s o i S r cu e e
11 钢 管 混 凝 土 柱 的 抗 火研 究 .
挥 了钢 和混凝 土两 种材料 的性能 而广泛应 用 于 高层 、 超高层 建筑和一些 工业建筑 。随着建筑高
psefo s m; it oi or yt j n tl s e o s
钢-混凝土组合结构抗震及稳定性研究取得新进展
内对三聚氰胺类外加剂的需求增长。 近期成功研制开发的新型三聚氰胺减水剂较现有的
萘系高效减水剂性能优 良 ,而成本 却相 当低。新型三聚 氰胺高效减水剂的原材料成本可 以进一 步降低 , 市场 竟
争力进—步增强 ,可作为萘系外加剂的替代产品。 20 0 9年 ,我 国 城水剂 市场 价 值 2 0亿 0 0 D亿元 。
应用推广工作组” ,把聚氨酯硬质泡沫材料作为传统建
筑保温材料的替代晶进行推广 。建设部制 定建筑节 能 目 标 :到 2 l 0 O年全 国 城镇 新 建建 筑 实现 节 能 5 %,到 0
水剂如能占到 1%的减水剂市场,其价值就将是诱人的 0
3 0亿元 。 ( 来源 :中国混凝土与水泥制品网)
材 约0 几 我 建 节 每 需P硬 保 定性研 究取得新进展 料算 , 年 国 筑 能 年 u 泡 温 一 … 。… … … ’ 一 2 0万吨。 一
国务院近年 来除通过政 策规定建筑环保指标 , 持 扶 环保材料 运用外 。还 在 《 可再生 能源 中长 期发展规划》 中明确规定 , 对节禽建材生产企业减免增值税 。这无疑 甚 也给聚氨酯节能建材生产企业以更大的信心 。预计我 国
制 了其应用 。我 国三聚氰胺 减水剂企业 不到 2 。三 0家
20 年全 国外墙 保温 面积有 4亿平方 米 ,其 中使 09 用聚氨酯面积仅有 20 万 平方米 ,而国外 ,硬 质聚氨 00 酯作为建筑保温材料得到了广泛的应用 ,欧美发达国家 在 建筑保温材料 中约 4%为聚氨酯材料 ,硬质聚氨酯泡 9 沫聚醚 在建筑保温领域已经占据主 导地位 。 建设部于 20 年 l 05 0月就成 立了 “ 酯建筑节能 聚氨
多学者多 年来一直致力于 钢一 混凝土组合 结构 的静力性
钢筋混凝土柱-钢梁组合结构的研究
钢筋混凝土柱-钢梁组合结构的研究一、前言钢筋混凝土柱-钢梁组合结构是一种新型的结构形式,其具有承载能力强、刚度高、抗震性能好等特点,因此得到了广泛的应用和研究。
本文旨在对钢筋混凝土柱-钢梁组合结构进行全面的研究,包括结构形式、设计方法、施工工艺、应用领域等方面。
二、结构形式钢筋混凝土柱-钢梁组合结构是由钢筋混凝土柱和钢梁组成的一种结构形式。
其优点在于:钢筋混凝土柱能够承受拉压力和弯曲力,而钢梁则能够承受剪力和弯曲力,二者相互配合,能够形成一个更加强大的结构体系。
此外,钢筋混凝土柱-钢梁组合结构还具有重量轻、占地面积小等优点,适用于高层建筑和大跨度结构。
三、设计方法1.结构形式的选择在设计钢筋混凝土柱-钢梁组合结构时,需要根据具体的工程要求和实际情况来选择结构形式。
常见的结构形式有:框架结构、筒体结构、桥梁结构等。
框架结构适用于高层建筑,筒体结构适用于输送管道等,桥梁结构适用于大跨度结构。
2.材料的选择在设计钢筋混凝土柱-钢梁组合结构时,需要选择合适的材料,以保证结构的承载能力和安全性。
钢筋混凝土柱一般采用C30以上的混凝土,钢梁一般采用Q345B钢材。
3.截面的设计在设计钢筋混凝土柱-钢梁组合结构时,需要考虑截面的设计。
一般来说,截面的设计应根据结构的受力情况来进行,以保证结构的承载能力和安全性。
此外,还需要考虑节约材料和施工方便等因素。
4.构造的设计在设计钢筋混凝土柱-钢梁组合结构时,需要考虑构造的设计。
一般来说,构造的设计应根据结构的受力情况和施工方便等因素来进行。
此外,还需要考虑施工中的安全和经济性等因素。
四、施工工艺1.预制构件的制作钢筋混凝土柱-钢梁组合结构的预制构件制作一般分为两个阶段:钢筋混凝土柱的制作和钢梁的制作。
其中,钢筋混凝土柱的制作包括混凝土的配制、模板的制作和钢筋的布置等工序;钢梁的制作包括钢材的加工、焊接和防腐处理等工序。
2.现场施工钢筋混凝土柱-钢梁组合结构的现场施工一般分为两个阶段:柱梁的安装和连接。
钢-混凝土组合结构的发展现状
钢-混凝土组合结构的发展现状钢-混凝土组合结构是指在建筑或桥梁中结构中同时使用钢材和混凝土这两种材料,以发挥各自的优势和互补作用,从而形成一种新型的结构形式。
在现代建筑领域中,钢-混凝土组合结构具有结构强度高、抗震性能好、施工周期短、使用寿命长等优点,因此得到了广泛的应用和推广。
本文将从发展现状、应用领域、技术挑战和未来发展趋势等方面对钢-混凝土组合结构进行探讨。
一、发展现状目前,钢-混凝土组合结构已经在建筑领域中得到了广泛的应用。
在桥梁工程中,钢-混凝土组合梁桥、钢-混凝土组合箱梁桥等结构形式已经成为了常见的桥梁类型。
在建筑工程中,大跨度空间结构、高层建筑等也开始采用钢-混凝土组合结构,例如一些地标性建筑,如上海中心大厦和广州塔等。
钢-混凝土组合结构也被应用到了工业厂房、体育场馆等多个领域。
二、应用领域钢-混凝土组合结构的应用领域非常广泛。
在建筑领域中,钢-混凝土组合结构不仅可以用于桥梁工程,还可以应用于高层建筑、大跨度空间结构、工业厂房等多个领域。
在高层建筑中,由于钢材的高强度和混凝土的良好抗压性能,采用钢-混凝土组合结构可以实现更大的跨度和更高的承载能力,从而满足了高层建筑对结构性能的要求。
在桥梁工程中,钢-混凝土组合结构可以实现更大跨度的桥梁结构,从而提高了桥梁的通行能力和安全性。
在工业厂房中,钢-混凝土组合结构可以实现更大空间的悬挑和跨度,从而满足了工业厂房对空间利用和结构稳定性的要求。
三、技术挑战虽然钢-混凝土组合结构具有诸多优点,但是在实际应用中还面临着一些技术挑战。
首先是材料的兼容性。
由于钢材和混凝土的物理性质和工程特性有很大差异,两者之间的界面问题一直是研究的难点。
其次是结构的耐久性问题。
由于钢材容易受到腐蚀和变形,而混凝土容易受到裂缝和渗漏的影响,因此钢-混凝土组合结构的耐久性一直是研究的重点方向。
由于钢-混凝土组合结构的施工过程复杂,因此如何确保施工质量和工期进度也是一个亟待解决的技术难题。
钢-混凝土组合梁建造及管养关键技术研究及工程示范
钢-混凝土组合梁建造及管养关键技术研究及工程示范摘要钢-混凝土组合梁是一种结构性能良好的组合梁,具有抗弯承载能力强、耐久性好、施工方便等优点,被广泛应用于桥梁、建筑等工程中。
本文主要围绕钢-混凝土组合梁的建造及管养关键技术展开研究,并通过工程示范,验证钢-混凝土组合梁的可行性和优势。
通过系统的理论分析和实验研究,总结出了一系列可行的技术方案,为相关工程的建造和管养提供了有力的技术支撑。
关键词:钢-混凝土组合梁,建造,管养,关键技术,工程示范1. 引言钢-混凝土组合梁是一种由钢材和混凝土组合构成的梁,具有良好的结构性能和经济性,被广泛应用于桥梁、建筑等工程中。
钢-混凝土组合梁能充分发挥钢材和混凝土各自的优点,结合了钢材的高强度和刚度以及混凝土的良好的耐久性和防火性能,因此在工程中具有较好的应用前景。
本文旨在对钢-混凝土组合梁的建造及管养关键技术展开研究,通过实际工程示范,验证钢-混凝土组合梁在工程中的可行性和优势。
通过分析目前钢-混凝土组合梁建造及管养过程中存在的问题,总结出了一系列技术方案,为相关工程的建造和管养提供了有力的技术支撑。
2. 钢-混凝土组合梁的建造关键技术研究2.1 材料选择和梁型设计钢-混凝土组合梁的建造首先需要选择合适的钢材和混凝土材料。
钢材应具有良好的强度和耐腐蚀性能,混凝土应具有良好的抗压和抗剪性能。
在材料选择的基础上,还需要进行合理的梁型设计,确定梁的截面尺寸和钢材与混凝土的配筋等参数,以确保梁具有良好的受力性能。
2.2 梁的制作和施工工艺钢-混凝土组合梁的制作和施工是关键的环节,需要保证梁的质量和施工工艺。
首先,需要对钢材进行加工和焊接,保证梁的钢材连接牢固、结构稳定。
其次,需要对混凝土进行配制和浇筑,保证混凝土的密实性和均匀性。
最后,进行梁的拼装和安装,确保梁的整体性和稳定性。
2.3 梁的预应力和防腐蚀处理为了提高梁的承载能力和耐久性,通常需要对梁进行预应力处理。
通过对梁进行预应力,可以有效提高梁的受力性能,减小梁的挠度和裂缝,延长梁的使用寿命。
钢-混凝土组合结构的发展现状
钢-混凝土组合结构的发展现状1. 引言1.1 钢-混凝土组合结构的发展现状钢-混凝土组合结构是指利用钢材和混凝土相互配合的结构形式,充分发挥两者各自的优势,从而达到更优异的力学性能和经济效益的一种新型结构形式。
随着建筑技术的不断进步和人们对建筑安全性和节能性要求的提高,钢-混凝土组合结构逐渐成为建筑领域的一种重要发展趋势。
在过去的几十年里,钢-混凝土组合结构经历了不断的发展和完善。
通过不断的研究和实践,人们逐渐认识到钢-混凝土组合结构的优势和特点,如承载力强、抗震性好、施工速度快等。
这些优势使得钢-混凝土组合结构在建筑领域得到了广泛的应用,尤其是在高层建筑、桥梁、大跨度结构等领域。
目前,钢-混凝土组合结构的研究热点主要集中在优化设计、新型材料的应用、结构耐久性等方面。
人们希望通过不断的研究和实践,进一步提高钢-混凝土组合结构的性能,使其更加适应复杂多变的建筑环境。
未来,钢-混凝土组合结构将继续发展壮大,其在建筑领域的应用将更加广泛。
钢-混凝土组合结构不仅具有重要的经济和社会意义,同时也具备巨大的发展潜力。
钢-混凝土组合结构的发展前景十分广阔,对于建筑行业的发展也将起到积极的推动作用。
2. 正文2.1 钢-混凝土组合结构的发展历史钢-混凝土组合结构的发展历史可以追溯到19世纪末20世纪初,当时在欧洲和美国开始出现了第一批使用钢结构和混凝土结构相结合的建筑。
这种组合结构的出现主要是为了克服单一结构的局限性,同时充分发挥钢和混凝土各自的优势,提高整体结构的承载能力和耐久性。
随着工程技术的不断发展和完善,钢-混凝土组合结构得到了广泛的应用和推广。
20世纪中叶以后,这种结构形式逐渐成为了建筑领域中常见的一种设计方案。
在发展过程中,钢-混凝土组合结构不断优化和改良,逐渐形成了一套完整的设计理论和施工技术,为建筑工程的发展打开了新的可能性。
目前,钢-混凝土组合结构已经成为了建筑领域中的重要技术和设计手段。
它在高层建筑、大跨度桥梁、特殊结构等领域具有广泛的应用前景。
钢-混凝土组合结构的发展现状
钢-混凝土组合结构的发展现状钢-混凝土组合结构是指将钢结构和混凝土结构相结合,通过受力特点的互补,形成一种新型的结构体系。
他们的结合可以充分发挥钢材和混凝土的优点,提高结构的承载能力和抗震能力,广泛应用于大型建筑和工程领域。
本文将对钢-混凝土组合结构的发展现状进行综述。
钢-混凝土组合结构的发展历史可以追溯到20世纪初,但直到20世纪50年代,随着钢材强度和混凝土工艺的发展,钢-混凝土组合结构才开始得到广泛应用。
在早期的发展阶段,主要应用于桥梁和地下工程中,以克服混凝土脆性和钢材易腐蚀的缺点。
随着理论研究的深入和结构设计方法的不断完善,钢-混凝土组合结构逐渐应用于建筑领域,为高层建筑和超高层建筑提供了更好的设计选择。
1. 结构系统的多样化。
钢-混凝土组合结构的结构系统包括钢筋混凝土框架结构、钢筋混凝土剪力墙结构、钢筋混凝土核心筒结构等多种形式。
每种结构形式都有其适用的范围和特点,为不同类型的建筑提供了灵活的设计选择。
2. 施工技术的进步。
随着建筑施工技术的不断进步,钢-混凝土组合结构的施工质量和效率得到显著提高。
采用现代化的施工设备和施工工艺,能够实现组合结构的精确拼装和高质量施工,大大缩短了工期,降低了施工成本。
3. 结构优化设计的应用。
钢-混凝土组合结构的优化设计是提高结构性能和经济性的重要手段。
通过对结构的静力分析和动力分析,结合现代设计理论和计算方法,可以实现结构的优化设计,减小结构自重,提高结构承载能力和抗震能力。
4. 高性能材料的应用。
为提高钢-混凝土组合结构的性能,现代建筑材料和技术得到广泛应用。
高性能混凝土可以提高混凝土的抗压强度和耐久性;高强度钢材可以提高结构的抗弯承载能力;预应力技术可以提高结构的抗裂性能和整体稳定性。
5. 绿色建筑理念的融入。
随着绿色建筑理念的推广,钢-混凝土组合结构也在不断关注环境保护和可持续发展。
通过选用环保材料和节能技术,减少二氧化碳排放和能源消耗,可以实现建筑的绿色化和可持续发展。
钢-混凝土组合结构应用研究
钢-混凝土组合结构应用研究一、研究背景钢-混凝土组合结构是一种采用钢结构和混凝土结构相结合的建筑结构形式,具有优异的力学性能和施工效率。
它将钢结构的高强度和抗拉性能与混凝土结构的高刚性和抗压性能相结合,可实现结构体系的优化设计,并提高建筑物的安全性和耐久性。
近年来,随着我国经济的快速发展和城市化进程的加速,钢-混凝土组合结构逐渐成为建筑领域的重要发展方向。
二、应用领域1.高层建筑钢-混凝土组合结构在高层建筑中的应用较为广泛。
由于高层建筑所受的重力和风荷载较大,需要具备较高的抗震性能和刚度。
钢-混凝土组合结构具有良好的抗震性能和刚度,可以满足高层建筑的结构要求。
此外,在高层建筑中使用钢-混凝土组合结构还可以提高建筑物的使用面积和经济效益。
2.大跨度建筑钢-混凝土组合结构在大跨度建筑中的应用也很广泛。
大跨度建筑主要受到自重和风荷载的影响,需要具备较高的刚度和强度。
钢-混凝土组合结构具有较高的刚度和强度,可以满足大跨度建筑的结构要求。
此外,钢-混凝土组合结构还可以减少建筑物的自重,提高建筑物的经济效益。
3.桥梁钢-混凝土组合结构在桥梁中的应用也很广泛。
桥梁受到车辆和行人的重复荷载影响,需要具备较高的强度和耐久性。
钢-混凝土组合结构具有较高的强度和耐久性,可以满足桥梁的结构要求。
此外,在桥梁中使用钢-混凝土组合结构还可以减少桥梁的自重,降低施工难度。
三、设计原则1.合理分配受力钢-混凝土组合结构的设计应该根据不同部位的受力情况合理分配受力,使结构体系的受力均衡,降低应力集中现象。
2.优化设计构件钢-混凝土组合结构的构件应该根据受力情况进行优化设计,使结构构件的刚度和强度得到充分利用,提高结构体系的整体性能。
3.考虑施工难度钢-混凝土组合结构的设计应该考虑施工难度,合理设计结构构件的尺寸和形状,降低施工难度和成本。
四、施工技术1.预制构件钢-混凝土组合结构的预制构件可以在工厂内进行加工和制造,降低现场施工难度和成本。
国内外钢混组合结构发展现状
国内外钢混组合结构发展现状一、引言随着城市化进程的加快,建筑行业对新型、高效、可持续的建筑结构的需求日益增长。
钢混组合结构因其具有较高的强度和刚度、良好的抗震性能及可塑性等优点,成为现代建筑领域的重要发展方向。
本文将从国内外的角度出发,全面探讨钢混组合结构的发展现状,并分析其挑战与前景。
二、国内钢混组合结构发展现状2.1 国内钢混组合结构的起步和发展•2000年以前,国内钢混组合结构的应用较为有限。
钢筋混凝土结构仍然是主流。
•2000年至2010年,国内开始大规模探索钢混组合结构的应用,提出了一系列设计规范和技术标准。
•2010年至今,国内钢混组合结构在高层建筑、桥梁和特殊结构等领域取得了显著进展。
2.2 国内钢混组合结构的应用领域•高层建筑:钢混组合结构在高层建筑领域具有广阔的应用前景,可以降低建筑自重、提高抗震性能。
•桥梁:钢混组合结构在桥梁工程中广泛应用,可以提高桥梁的跨越能力和承载能力。
2.3 国内钢混组合结构的技术挑战•耐久性:钢材与混凝土之间的界面存在耐久性问题,长期使用后可能出现锈蚀、剥落等现象。
•工程实施:钢混组合结构在施工过程中需要控制好钢与混凝土的配合,确保结构的性能。
•技术人才培养:钢混组合结构需要专业的设计和施工人才,目前国内人才短缺问题较为突出。
2.4 国内钢混组合结构的发展前景•技术创新:随着科技的进步,钢混组合结构的设计与施工技术将不断创新,解决现有技术难题。
•政策支持:国家对环境保护和节能降耗的政策支持将促进钢混组合结构的发展与推广。
•市场需求:城市化进程加快,建筑行业对高效建筑结构的需求将不断增长,钢混组合结构将迎来更广阔的市场。
三、国外钢混组合结构发展现状3.1 国外钢混组合结构的典型案例•哥伦比亚达纳塔楼:采用钢筋混凝土核芯和钢框架筋维护楼板的组合结构。
•日本东京银座大厦:采用钢-混凝土组合结构,在抗震性能上表现出色。
3.2 国外钢混组合结构技术的发展方向•新型材料应用:国外开始探索使用新型材料,如高强度钢材和高性能混凝土,提高结构的抗震性能和耐久性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第30卷第2期2009年4月华 北 水 利 水 电 学 院 学 报Journa l of Nort h China Institut e of W ate r Conservancy and Hydroe l ec tric Powe rVol 130No 12Ap r 12009收稿日期6作者简介胡 利(—),女,湖北公安人,在读硕士研究生,主要从事钢混凝土组合结构方面的研究文章编号:1002-5634(2009)02-0051-03钢-混凝土组合结构的研究进展胡 利1,王春磊2,李锋宁3(1.西安建筑科技大学,陕西西安710055;2.九冶建设有限公司,陕西咸阳710086;3.陕西红柠铁路有限责任公司,陕西神木719300)摘 要:阐述了钢-混凝土组合结构在国内外的研究发展,分析了钢-混凝土组合结构需要进一步研究的问题.并通过工程实例说明了该类结构具有良好的安全性、美观性和经济性,值得推广.关键词:钢-混凝土组合结构;发展应用;研究问题中图分类号:T U398;T U375 文献标识码:A 由几种不同受力性质的建筑材料组成,在荷载作用下具有整体作用的结构称为组合结构.随着建筑结构的发展,钢-混凝土组合结构得到越来越广泛的应用,成为与传统混凝土结构、砌体结构、钢结构和木结构相并列的新结构类型.钢-混凝土组合结构充分发挥了混凝土和钢材各自的优良性能,具有材料利用更充分、抗震性能好以及施工方便等优点,目前在欧美及日本等国应用广泛.我国对组合结构的研究与应用虽然起步较晚,但近年来取得了不少成果,各项力学性能试验也在进一步研究之中.1 组合结构的研究发展和工程应用钢-混凝土组合构件目前的主要形式有钢-混凝土组合梁、压型钢板混凝土组合楼板、型钢混凝土结构、钢管混凝土组合结构及外包钢混凝土结构等.1.1 钢-混凝土组合梁钢-混凝土组合梁是通过剪力连接件将钢梁与混凝土板连接起来而共同受力、变形协调的一种梁,该梁充分利用钢的优越抗拉性能和混凝土的优越抗压性能,显著提高了梁的刚度和稳定性.20世纪20年代初,加拿大首次对钢-混凝土组合结构进行了研究,他们进行了T 形简支组合梁的实验研究,同时,美国也进行了相应研究,并故意将工字钢翼缘两边剪成齿条状或将梁上翼缘表面凿得凹凸不平以增加粘结力[1].20世纪30年代末,欧洲多国也对其进行了实验研究.随后,这些技术先进的国家都制定了有关组合梁的设计规范或规程,组合梁设计理论逐渐得到完善.我国对钢-混凝土组合梁的研究相对国外较晚,约20世纪80年代初期,主要以试验研究和理论分析为主,包括研究简支组合梁的抗弯承载力、刚度、滑移效应等;研究栓钉、槽钢、弯筋及方钢剪力连接件在混凝土中的工作性能,探讨了其破坏形态、极限承载力、荷载与滑移关系等;研究了钢-混凝土连续组合梁的性能,探讨了塑性内力重分布规律、负弯区的承载力和裂缝宽度及钢梁局部稳定性等问题[2-3].最早的组合结构规范大多应用于桥梁结构,国外在很多大跨度桥梁中采用了钢-混凝土组合梁.我国从20世纪60年代初以来,便将钢-混凝土组合梁应用于工业与民用建筑及桥梁中.由于组合梁具有抗疲劳性能好、承载力可靠、节约钢材、降低梁高和增强梁的刚度的优点,目前已被广泛应用于多层工业厂房、高层建筑、桥梁结构、结构的加固与修复[4].1.2 压型钢板混凝土组合楼板压型钢板混凝土组合楼板是通过剪力连接件与钢梁连接起来,形成整体共同受力和协调变形的一:2008-12-1:1982-.种新型组合楼板体系.它能充分利用钢材优越的抗拉性能和抗压性能,具有自重轻、塑性和抗震性能好、施工简便和经济效果显著等突出优点.国外自20世纪60年代就开始对压型钢板混凝土组合楼板进行研究,研究了压型钢板混凝土组合楼盖的抗弯、抗剪及耐火等工作性能,研究成果已被许多国家纳入设计规范或规程[5],如美国A IS C规范(1978)、加拿大CS A(1978)规范、澳大利亚AS2327-Pa rt2-1980规范及欧洲组合结构规程EC -4[6]等都设有压型钢板混凝土组合楼板的条文,并且已建成一批压型钢板混凝土组合楼板体系,取得了良好的经济效益和社会效益.我国对压型钢板混凝土组合楼板研究较晚,主要是因为过去我国钢材产量较低,薄卷板材尤为紧缺,成型的压型钢板与连接件等配套技术未得到开发所致.20世纪80年代,我国对压型钢板混凝土组合楼板的基本性能进行了研究,如冶金建筑研究总院、哈尔滨建筑大学、北京市建筑设计研究院分别对组合效应、耐火性能进行了研究,给出了组合楼板的挠曲变形计算公式和楼板在一定时间内耐火时限中的变温和变形发展规律,并应用有限元法分析了组合板的温度场,分析影响组合板耐火极限的参数等.目前已建成一批采用组合楼板的大跨结构、高耸建筑等,如上海锦江饭店、深圳发展中心大厦、北京香格里拉饭店、沈阳市汽车城等.1.3 型钢混凝土结构型钢混凝土是在钢筋混凝土内部埋置型钢形成的构件,它的突出优点是承载力高、构件截面较小、可降低结构层高;可以利用型钢的承载力减少模板工程量、缩短工期;结构延性好、抗震性能优良;耐火性和防火性明显优于钢结构.日本是强震多发国,对型钢混凝土的理论研究和试验工作比较深入,应用最广.1905年日本建造了第一个采用型钢混凝土柱的结构;1921年建成的日本兴业银行采用型钢混凝土的结构,在1923年东京大地震中几乎完整无损.1968年十胜冲发生大地震,震害调查反映了结构变形能力对结构抗震性能的重要意义,从此更注重结构的延性研究.1987年,文献[7]第5次修订出版.英美和其他西欧国家、加拿大、前苏联都有大量的型钢混凝土的结构研究成果和应用实践.欧洲统一规范文献[6]中也包括型钢混凝土结构的设计规范.我国从世纪5年代开始应用型钢混凝土,年代中期以后进行了大量的实验研究,分析其抗弯、抗剪的极限承载力,研究其破坏形态,以及粘结滑移对结构承载力影响,并做振动台试验以测试其抗震能力.目前已制定了文献[8-10]等标准.型钢混凝土结构的典型应用有北京香格里拉饭店、上海金茂大厦、深圳地王大厦等.1.4 钢管混凝土组合结构钢管混凝土结构是用水泥混凝土填入薄壁钢管内形成的组合结构,它能充分发挥混凝土和钢材各自优势,受力合理,节省材料.其基本原理为:借助核心混凝土增强钢管壁的稳定性;借助钢管对核心混凝土的约束作用,使混凝土处于3项受压状态,提高混凝土的强度和变形能力.20世纪60年代后,钢管混凝土结构得到深入的研究并被广泛应用,但往往采用壁厚较厚的热轧管,且混凝土浇筑工艺未得到很好地解决,经济效果不明显,推广应用受到一定的影响.前苏联在五六十年代进行了大量的研究,并在工业厂房和拱桥结构中采用;美、英、德和法等国主要研究核心混凝土为素混凝土、配筋或型钢混凝土的钢管混凝土.1923年日本关西地震后,发现钢管混凝土结构的破坏并不明显,故在以后的建筑,尤其是多、高层建筑中大量地采用.1995年阪神地震后,更显示了其优越的抗震性能,对其研究越来越热门.我国主要集中研究在钢管中灌素混凝土的内填型钢管混凝土,最早开展研究的是原中国科学院哈尔滨土建研究所(现国家地震局工程力学研究所). 1968年以后,原建筑材料研究院、原哈尔滨建筑工程学院和中国建筑科学院等单位都先后对基本构件的工作性能、设计方法、节点构造和施工技术等开展了比较系统的研究,20世纪60年代中期开始在厂房和地铁工程中采用,70年代后期在冶金、造船、电力等行业的工业厂房得到进一步的推广应用.现广泛应用于高层和超高层建筑、桥梁结构、空间结构和单层和多层工业厂房柱.1.5 外包钢混凝土组合结构外包钢混凝土是外部配型钢的混凝土结构,是在克服装配式钢筋混凝土结构某些缺点的基础上发展起来的,仿效钢结构的构造方式,是钢与混凝土组合结构的一种新形式.1987年,水利电力部华北电力设计院和电力建设研究所的有关工程技术人员首先在电厂的结构体系改革中提出采用外包钢结构,并结合实际工程,做了大量的试验研究.80年代以来进行了外包钢杆件的剪切和偏压剪强度、延性以及框架节点的试验研究,并对计算理论进行了探讨外包钢结构与钢筋混凝土结构相比具有节省模板、降低造价和缩短工期25 华 北 水 利 水 电 学 院 学 报 2009年4月20080.的优点,与钢结构相比具有刚度好、耐火性能好和减小防锈面积等优点.外包钢结构构造简单,连接方便,使用灵活,适用于一般工业厂房框架和排架结构,目前在电力和石油工业部门的应用较多.除了外包钢混凝土结构多用于工业厂房外,前述3类钢-混凝土组合结构也可根据需要在同一结构中采用.例如,日本东京区高层住宅,采用钢管混凝土柱、型钢混凝土梁.2 需进一步研究的问题钢-混凝土组合结构在实际工程应用中存在很多钢筋混凝土结构或者钢结构无法体现的优点,但也存在如下缺点:压型钢板组合板的连接性能不好,焊接质量不易保证,且还存在焊接栓钉、镀锌可焊性很差等施工问题;组合梁耐火性能较差;钢管混凝土柱与梁的节点连接方式是设计与施工时的难点;外包钢结构由于外包外露,容易腐蚀,需要专门的防腐蚀措施等.目前,钢-混凝土组合结构已被列入国家科技成果重点推广项目,为更好地推广组合结构,笔者认为,需要进一步对以下问题进行研究:组合结构在复杂受力状态下的性能及设计方法,温度、徐变和收缩效应及残余应力的影响,组合结构的整体性能和施工力学问题研究,开发新的组合结构形式,开展梁柱节点构造、构件及其节点制造的标准化和组合结构体系的性能研究、防火研究等.此外,还需推广采用高强高性能材料,以充分地发挥2种材料的组合作用等.3 结 语钢-混凝土组合结构具有广阔的应用前景.工程实践表明,推广该类结构符合我国国情,符合建筑结构技术发展方向.对钢-混凝土组合结构的研究,国内外都投入了一定的人力、物力和财力,并取得了一定成果,但是,还应加大对组合结构研究的投入使其更好地发挥在工程结构中的优势,且有必要尽快制定一部完整的钢-混凝土组合结构设计规范.参 考 文 献[1]王连广.钢与混凝土组合结构计算与理论[M ].北京:科学出版社,2005.[2]林宗凡.钢-混凝土组合结构[M ].上海:同济大学出版社,2004.[3]傅传国,娄宇.预应力型钢混凝土结构试验研究及工程应用[M ].北京:科学出版社,2007.[4]聂建国,余志武.钢-混凝土组合梁在我国的研究及应用[J ].土木工程学报,1999(2):3-7.[5]蒋首超,李国强,周宏宇,等.钢-混凝土组合楼盖抗火性能的试验研究[J ].建筑结构学报,2004(3):45-50.[6]欧洲标准化委员会.E C -4.De sign of Co mpo site Steeland Conc rete Structure s [S ].出版地及出版社不详,1994.[7]日本建筑学会.钢-钢筋混凝土结构计算标准[S ].出版地及出版社不详,1987.[8]中华人民共和国行业标准.JG J138-2001型钢混凝土组合结构技术规程[S ].北京:中国建筑工业出版社,2002.[9]中华人民共和国行业标准.T B 9058-97钢骨混凝土结构设计规程[S].北京:冶金工业出版社,1998.[10]中华人民共和国行业标准.DL /T5085-1999钢-混凝土组合结构设计规程[S ].北京:中国电力出版社,1999.Resear ch of the Steel 2con cr ete C om posite S tr uc tur esHU L i 1,WANG Chun 2lei 2,L I Feng 2ning3(1.Xi ′an Uni ve rsity of Architecture &Technol ogy,Xi ′an 710055,China;2.No .9M eta llurgica l Construction Li m ited Corporati on,Xianyang 710086,China;3.Shanxi Hong n i ng R ailroad L i m ited L iability Company,Shen m u 719300,China)Ab stra ct:A s for the steel 2conc re t e co mposite struc tures ′develo pm en t and applica ti on at h ome and abroad are de tailed,and t he prob 2l em s of t he stee l 2conc rete co mposit e struc t ures in furt her re s ea rch a re analyzed .The p rojec t practi ce indi ca tes tha t this kind of struc tures have the g ood secur ity,the a rtistry and the effi c iency,a re worth pro moting .Key wor ds:steel 2conc rete co mposite struc t u res;develop m ent and app licati on;re search p r oble m s35第30卷第2期胡 利等: 钢-混凝土组合结构的研究进展 。