图形的变换中考训练题(2).
初三数学图形变换练习题
初三数学图形变换练习题数学是一门抽象而有趣的学科,图形变换是其中一个重要的概念。
通过图形变换的练习,可以帮助学生更好地理解和掌握数学中的图形概念和变换规律。
本文将为初三学生提供一些图形变换的练习题。
1. 平移变换(1)将△ABC向右平移5个单位,得到△A'B'C',求A'、B'、C'的坐标。
(2)将⬜DEFG向上平移3个单位,得到⬜D'E'F'G',求D'、E'、F'、G'的坐标。
2. 旋转变换(1)将△PQR以点P为中心逆时针旋转90°,得到△P'Q'R',求P'、Q'、R'的坐标。
(2)将⬜ABCD以点A为中心顺时针旋转180°,得到⬜A'B'C'D',求A'、B'、C'、D'的坐标。
3. 对称变换(1)将点E关于x轴进行对称变换,得到点E',求E'的坐标。
(2)将线段AB关于y轴进行对称变换,得到线段A'B',求A'、B'的坐标。
4. 缩放变换(1)将△XYZ以点X为中心缩小到原来的一半,得到△X'Y'Z',已知点X(1,2),求X'、Y'、Z'的坐标。
(2)将⬜MNPQ以点M为中心放大2倍,得到⬜M'N'P'Q',已知点M(3,4),求M'、N'、P'、Q'的坐标。
5. 复合变换(1)将⬜ABCD先绕点A逆时针旋转90°,再向右平移3个单位,得到⬜A'B'C'D',已知点A(1,1),求A'、B'、C'、D'的坐标。
(2)将△PQR先以点Q为中心放大到原来的两倍,再以点P为中心顺时针旋转60°,得到△P'Q'R',已知点P(2,3),Q(4,5),R(6,3),求P'、Q'、R'的坐标。
中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)
中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图1,在Rt△ABC中∠C=90°,AC=BC=5,等腰直角三角形BDE的顶点点D是边BC上的一点,且α(0°≤α<360°).的值为________,直线AE,CD相交形成的较小角的度数为________;(1)【问题发现】当α=0°时,AECD(2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明;(3)【问题解决】当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.2.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.(1)如图1,判断线段AP与BQ的数量关系,并说明理由;(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ的面积等于√3,请直接4写出线段AP的长度.3.在中Rt△ABC中∠ABC=90°,AB=BC点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动;①当BE=2,BC=2√3时,则∠EAB=_________°;②猜想线段CA,CF与CE之间的数量关系为_________.(2)如图2,点E在线段CB上运动时,第(1)间中线段CA,CF与CE之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.(3)点E在射线CB上运动BC=√3,设BE=x,以A,E,C,F为顶点的四边形面积为y,请直接写出y与x之间的函数关系式(不用写出x的取值范围).4.如图1,在矩形ABCD中AB=6,AD=8把AB绕点B顺时针旋转α(0<α<180°)得到,连接,过B点作BE⊥AA′于E点,交矩形ABCD边于F点.(1)求DA′的最小值;(2)若A点所经过的路径长为2π,求点A′到直线AD的距离;(3)如图2,若CF=4,求tan∠ECB的值;(4)当∠A′CB的度数取最大值时,直接写出CF的长.5.【问题探究】(1)如图1锐角△ABC中分别以AB AC为边向外作等腰直角△ABE和等腰直角△ACD 使AE=AB AD=AC∠BAE=∠CAD=90°连接BD CE试猜想BD与CE的大小关系不需要证明.【深入探究】(2)如图2四边形ABCD中AB=5BC=2∠ABC=∠ACD=∠ADC=45°求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形将BD进行转化再计算请你准确的叙述辅助线的作法再计算;【变式思考】(3)如图3四边形ABCD中AB=BC∠ABC=60°∠ADC=30°AD=6BD =10则CD=.6.如图1所示在菱形ABCD和菱形AEFG中点A B E在同一条直线上P是线段CF的中点连接PD PG.(1)若∠BAD=∠AEF=120°请直接写出∠DPG的度数及PG的值______.PD(2)若∠BAD=∠AEF=120°将菱形ABCD绕点A顺时针旋转使菱形ABCD的对角线AC恰好与菱形AEFG的边AE在同一直线上如图2 此时(1)中的两个结论是否发生改变?写出你的猜想并加以说明.(3)若∠BAD=∠AEF=180°−2α(0°<α<90°)将菱形ABCD绕点A顺时针旋转到图3的位置求出PGPD 的值.7.如图1 在平面直角坐标系中抛物线y=ax2+bx+4与x轴交于A(﹣2 0)B两点与y轴交于点C OB=OC.连接BC点D是BC的中点.(1)求抛物线的表达式;(2)点M在x轴上连接MD将△BDM沿DM翻折得到△DMG当点G落在AC上时求点G的坐标;(3)如图2 E在第二象限的抛物线上连接DE交y轴于点N将线段DE绕点D逆时针旋转45°交ABOM直接写出点E的坐标.与点M若ON=438.[证明体验](1)如图1 在△ABC和△BDE中点A B D在同一直线上△A=△CBE=△D=90° 求证:△ABC△△DEB.(2)如图2 图3 AD=20 点B是线段AD上的点AC△AD AC=4 连结BC M为BC中点将线段BM绕点B顺时针旋转90°至BE连结DE.ME时求AB的长.[思考探究](1)如图2 当DE=√22[拓展延伸](2)如图3 点G过CA延长线上一点且AG=8 连结GE△G=△D求ED的长.9.新定义:如图1(图2图3)在△ABC中把AB边绕点A顺时针旋转把AC边绕点A逆时针旋转得到△AB′C′若∠BAC+∠BA′C′=180°我们称△AB′C′是△ABC的“旋补三角形” △AB′C′的中线AD叫做△ABC的“旋补中线” 点A叫做“旋补中心”(1)【特例感知】①若△ABC是等边三角形(如图2)BC=4则AD=________;②若∠BAC=90°(如图3)BC=6AD=_______;(2)【猜想论证】在图1中当△ABC是任意三角形时猜想AD与BC的数量关系并证明你的猜想;(提示:过点B′作B′E∥AC′且B′E=AC′连接C′E则四边形AB′EC是平行四边形.)(3)【拓展应用】如图4点A B C D都在半径为5的圆P上且AB与CD不平行AD=6△APD是△BPC的“旋补三角形” 点P是“旋补中心” 求BC的长.10.如图① 抛物线y=﹣x2+bx+c与x轴交于点A(x10) 点C(x20) 且x1x2满足x1+x2=2x1•x2=﹣3 与y轴交于点B E(m0)是x轴上一动点过点E作EP△x轴于点E交抛物线于点P.(1)求抛物线解析式.(2)如图② 直线EP交直线AB于点D连接PB.①点E在线段OA上运动若△PBD是等腰三角形时求点E的坐标;②点E在x轴的正半轴上运动若△PBD+△CBO=45° 请求出m的值.(3)如图③ 点Q是直线EP上的一动点连接CQ将线段CQ绕点Q逆时针旋转90° 得到线段QF 当m=1时请直接写出PF的最小值.11.如图△ABC与△DEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O连接BF CD.(1)如图① 当FE△AB时易证BF=CD(不需证明);(2)当△DEF绕点O旋转到如图②位置时猜想BF与CD之间的数量关系并证明;(3)当△ABC与△DEF均为等边三角形时其他条件不变如图③ 猜想BF与CD之间的数量关系直接写出你的猜想不需证明.12.已知Rt△ABC中AC=BC△C=90° D为AB边的中点△EDF=90° △EDF绕D点旋转它的两边分别交AC CB(或它们的延长线)于E F.(1)如图1 当△EDF绕D点旋转到DE△AC于E时易证S△DEF+S△CEF与S△ABC的数量关系为__________;(2)如图2 当△EDF绕D点旋转到DE和AC不垂直时上述结论是否成立?若成立请给予证明;(3)如图3 这种情况下请猜想S△DEF S△CEF S△ABC的数量关系不需证明.13.如图① 将一个直角三角形纸片ABC放置在平面直角坐标系中点A(−2,0)点B(6,0)点C在第一象限∠ACB=90°∠CAB=30°.(1)求点C的坐标;(2)以点B为中心顺时针旋转三角形ABC得到三角形BDE点A C的对应点分别为D E.①如图② 当DE∥AB时BD与y轴交于点F求点F的坐标;②如图③ 在(1)的条件下点F不变继续旋转三角形BDE当点D落在射线BC上时求证四边形FDEB为矩形;(3)点F不变记P为线段FD的中点Q为线段ED的中点求PQ的取值范围(直接写出结果即可).14.如图在Rt△ABC中∠ACB=90∘∠A=30∘点O为AB中点点P为直线BC上的动点(不与点B C重合)连接OC OP将线段OP绕点P逆时针旋转60∘得到线段P Q连接BQ.(1)如图1 当点P在线段BC上时请直接写出线段BQ与CP的数量关系;(2)如图2 当点P在CB长线上时(1)中结论是否成立?若成立请加以证明;若不成立请说明理由;(3)如图3 当点P在BC延长线上时若∠BPO=45∘AC=√6请直接写出BQ的长.15.如图在RtΔABC中∠BAC=90°AB=AC点P是AB边上一动点作PD⊥BC于点D连接AD把AD绕点A逆时针旋转90°得到AE连接CE DE PE.(1)求证:四边形PDCE是矩形;(2)如图2所示当点P运动BA的延长线上时DE与AC交于点F其他条件不变已知BD=2CD的值;求APAF(3)点P在AB边上运动的过程中线段AD上存在一点Q使QA+QB+QC的值最小当QA+QB+QC的值取得最小值时若AQ的长为2 求PD的长.16.感知:如图① △ABC和△ADE都是等腰直角三角形∠BAC=∠DAE=90°点B在线段AD上点C在线段AE上我们很容易得到BD=CE不需要证明;(1)探究:如图② 将△ADE绕点A逆时针旋转α(0<α<90°)连结BD和CE此时BD=CE是否依然成立?若成立写出证明过程;若不成立说明理由;(2)应用:如图③ 当△ADE绕点A逆时针旋转使得点D落在BC的延长线上连接CE;①探究线段BC CD CE之间的数量关系.②若AB=AC=√2CD=1求线段DE的长.17.如图抛物线C:y=ax2+6ax+9a−8与x轴相交于A B两点(点A在点B的左侧)已知点B的横坐标是2 抛物线C的顶点为D.(1)求a的值及顶点D的坐标;(2)点P是x轴正半轴上一点将抛物线C绕点P旋转180°后得到的抛物线C1记抛物线C1的顶点为E抛物线C1与x轴的交点为F G(点F在点G的右侧).当点P与点B重合时(如图1)求抛物线C1的表达式;(3)如图2 在(2)的条件下从A B D中任取一点E F G中任取两点若以取出的三点为顶点能构成直角三角形我们就称抛物线C1为抛物线C的“勾股伴随同类函数”.当抛物线C1是抛物线C的勾股伴随同类函数时求点P的坐标.18.如图点B坐标为(5 2)过点B作BA△y轴于点A作BC△x轴于点C点D在第一象限内.(1)如图1 反比例函数y1=mx (x>0)的图象经过点B点D且直线OD的表达式为y=52x求线段OD的长;(2)将线段OD从(1)中位置绕点O逆时针旋转得到OD′(如图2)反比例函数y2=nx(x>0)的图象过点D' 交AB于点E交BC于点F连接OE OF EF.①若AE+CF=EF求n的值;②若△OEF=90°时设D′的坐标为(a b)求(a+b)2的值.19.已知正方形ABCD和等腰直角三角形BEF BE=EF△BEF=90° 按图1放置使点F在BC上取DF的中点G连接EG CG.(1)探索EG CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45° 再连接DF取DF中点G(见图2)(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间)再连接DF取DF中点G(见图3)(1)中的结论是否仍然成立?证明你的结论.20.如图1 已知正方形BEFG点C在BE的延长线上点A在GB的延长线上且AB=BC过点C作AB的平行线过点A作BC的平行线两条平行线相交于点D.(1)证明:四边形ABCD是正方形;(2)当正方形BEFG绕点B顺时针(或逆时针)旋转一定角度得到图2 使得点G在射线DB上连接BD和DF点Q是线段DF的中点连接CQ和QE猜想线段CQ和线段QE的关系并说明理由;(3)将正方形BEFG绕点B旋转一周时当△CGB等于45°时直线AE交CG于点H探究线段CH EG AH的长度关系.参考答案1.(1)解:Rt△ABC中∵∠C=90°,AC=BC=5∴AB=√AC2+BC2=√52+52=5√2∵ED⊥BC BD=ED=√2∴EB=√DB2+DE2=2,∠B=45°∴AE=AB-EB=5√2−2,CD=BC−DB=5−√2∴AECD =5√2−25−√2=√2故答案为:√2,45°;(2)解:(1)中的两个结论不发生变化理由如下:如图延长AE CD交于F由旋转可得∠CBD=∠ABE∵AB=5√2,BC=5,BE=2,DB=√2∴ABBC =5√25=√2EBDB=2√2=√2∴ABBC=EBDB∴ΔAEB∽ΔCDB∴AECD =ABCB=√2∠EAB=∠DCB∵∠BAC+∠ACB=90°+45°=135°∴∠BAC+∠ACD+∠DCB=∠BAC+∠ACD+∠EAB=135°即∠FAC+∠ACD=135°∴∠F=180°−(∠FAC+∠ACD)=45°∴(1)中的两个结论不发生变化.(3)解:分情况讨论:如图当点D在线段AE上时过点C作CF⊥AD于点F在RtΔABD中AB=5√2,BD=√2∴AD=√AB2−DB2=√(5√2)2−(√2)2=4√3由(2)知ΔEAB∽ΔDCB∠ADC=45°AE=AD+DE=4√3+√2∴CDAE=CBAB∴CD4√3+√2=55√2∴CD=2√6+1在Rt△CDF中CF=CD·sin∠ADC=(2√6+1)·sin45°=2√3+√22∴S△ADC=12AD·CF=12×4√3×(2√3+√22)=12+√6;当点E在线段AD上时如图过点C作CF⊥AD于点F在RtΔADB中AB=5√2,DB=√2∴AD=√AB2−DB2=√(5√2)2−(√2)2=4√3∴AE=AD−DE=4√3−2由(2)知△CDB∽△AEB∴CDAE=BCAB∴CD4√3−2=55√2∴CD=2√6−1由(2)知∠ADC=45°∴CF=CD·sin45°=(2√6−1)×√22=2√3−√22∴SΔACD=12AD·CF=12×4√3×(2√3−√22)=12−√6综上△ADC的面积为12+√6或12−√6.2.(1)解:AP=BQ.理由如下:在等边△ABC中AC=BC△ACB=60°由旋转可得CP=CQ△PCQ=60°△△ACB=△PCQ△△ACB﹣△PCB=△PCQ﹣△PCB即△ACP=△BCQ△△ACP△△BCQ(SAS)△AP=BQ;(2)证明:在等边△ABC中AC=BC△ACB=60°由旋转可得CP=CQ△PCQ=60°△△ACB=△PCQ△△ACB﹣△PCB=△PCQ﹣△PCB即△ACP=△BCQ△△ACP△△BCQ(SAS)△AP=BQ△CBQ=△CAP=90°;△BQ=AP=AC=BC.△AP=AC△CAP=90°△△BAP=30° △ABP=△APB=75°△△CBP=△ABC+△ABP=135°△△CBD=45°△△QBD=45°△△CBD=△QBD即BD平分△CBQ△BD△CQ且点D是CQ的中点即直线PB垂直平分线段CQ;(3)解:AP 的长为:√3或√33或2√3+√212. 理由如下:①当点Q 在直线l 上方时 如图所示 延长BQ 交l 于点E 过点Q 作QF ⊥l 于点F由题意可得AC =BC PC =CQ △PCQ =△ACB =60°△△ACP =△BCQ△△APC △△BCQ (SAS )△AP =BQ △CBQ =△CAP =90°△△CAB =△ABC =60°△△BAE =△ABE =30°△AB =AC =4△AE =BE =4√33△△BEF =60°设AP =t 则BQ =t△EQ =4√23−t在Rt △EFQ 中 QF =√32EQ =√32(4√23−t ) △S △APQ =12AP •QF =√34 即12•t √32(4√23−t )=√34 解得t =√3或t =√33.即AP 的长为√3或√33.②当点Q 在直线l 下方时 如图所示 设BQ 交l 于点E 过点Q 作QF ⊥l 于点F由题意可得AC =BC PC =CQ △PCQ =△ACB =60°△△ACP =△BCQ△△APC △△BCQ (SAS )△AP =BQ △CBQ =△CAP =90°△△CAB =△ABC =60°△△BAE =△ABE =30°△△BEF =120° △QEF =60°△AB =AC =4△AE =BE =4√33设AP =m 则BQ =m△EQ =m −4√33在Rt △EFQ 中 QF =√32EQ =√32(m −4√33) △S △APQ =12AP •QF =√34 即12•m •√32(m −4√33)=√34 解得m =2√3+√213(m =2√3-√213 负值舍去).综上可得 AP 的长为:√3或√33或2√3+√213. 3.(1)解:①△AB =BC =2√3 BE =2 △ABC =90°△tan∠EAB =BE AB =22√3=√33△△EAB =30°故答案为:30;②过点F 作FD △BC 于D 如图3△△BAE + △AEB = 90° △DEF +△AEB =90°△△BAE = △DEF△AE = EF △ABE =△EDF = 90°△△АВЕ △△ЕDF△AB = ED = BC△FD = DC△CF =√2CD AC =√2AB =√2ED△AC + CF=√2CD +√2ED=√2 (CD + ED )=√2CE ;故答案为:AC +CF =√2CE ;(2)过F 作FH △BC 交BC 的延长线于H 如图4△△AEF =90° AE =EF易证△ABE △△EHF△FH =BE EH =AB =BC△△FHC 是等腰直角三角形△CH =BE =√22FC△EC =BC -BE =√22AC -√22FC 即CA -CF =√2CE ;(3)如图3 当点E在点B左侧运动时y=12×CE×(AB+FD)=12×(√3+x)×(√3+x)=1 2x2+√3x+32;如图4 当点E在点B右侧运动时连接AF 根据勾股定理得AE=√AB2+BE2=√3+x2由旋转得AE=EF△EC=EH-CH=BC-BE=√3−x△y=12×AE×EF+12×EC×FH=1 2x2+32+12(√3−x)x=√3 2x+32综上当点E在点B左侧运动时y=12x2+√3x+32;当点E在点B右侧运动时y=√32x+32.4.(1)解:连接BD DA′ 如图△四边形ABCD是矩形△△BAD=90°△AB=6 AD=8△BD=10由旋转可得BA′=BA=6△BA′+DA′≥BD△当点A′落在BD上时DA′最小最小值为10-6=4△DA′最小值为4;(2)解:由题意得απ×6180=2π解得:α=60°△AB=A′B△△ABA′是等边三角形△△BAA′=60° AB=A′B=AA′=6△△DAA′=30°过点A′作A′M△AD于M点△A′M=12AA′=3△点A′到直线AD的距离为3(3)解:△BC=8 CF=4△BF=4√5△△BAE+△ABE=90° △CBF+△ABE=90°△△BAE=△CBF△△AEB=△BCF=90°△△ABE△△BFC△BE CF =ABBF△BE=6√55过E作EH△BC于H点△EH∥CD△△BEH△△BFC△BE BF =EHCF=BHBC△EH=65BH=125△CH=285△tan∠ECB=EHCH =314;(4)解:当A′C与以B为圆心AB为半径的圆相切时△A′CB最大此时△BA′C=90°分两种情况:当A′在BC的上方时如图1△AB=A′B AE△AA′于E△△ABF=△A′BF△BF=BF△△ABF△△A′BF△△BA′F=△BAF=90°△C A′ F在一条直线上△S△BCF=12BC×AB=12A′B×CF△CF =BC =8如图2当A ′在BC 的下方时连接AF A ′F 则AF =A ′F△A ′B =6 BC =8△A′C =2√7过A ′作A ′P △CD 垂足落在DC 的延长线上△△BCA ′+△A ′CP =90° △A ′CP +△CA ′P =90°△△BCA ′=△CA ′P△△BA ′C =△A ′PC△△A ′BC △△PCA ′△A ′B PC =BC CA ′=A ′CPA ′△A′P =72 PC =32√7△AD 2+DF 2=A ′P 2+PF 2△82+(6−CF )2=(72)2+(32√7+CF)2△CF =83(4−√7).综上 CF 的长为8或83(4−√7).5.解:(1)BD =CE .理由是:△△BAE =△CAD△△BAE +△BAC =△CAD +△BAC 即△EAC =△BAD在△EAC 和△BAD 中{AE =AB∠EAC =∠BAD AC =AD△△EAC △△BAD△BD =CE ;(2)如图2 在△ABC 的外部 以A 为直角顶点作等腰直角△BAE使△BAE =90° AE =AB 连接EAEB EC .△△ACD=△ADC=45°△AC=AD△CAD=90°△△BAE+△BAC=△CAD+△BAC即△EAC=△BAD 在△EAC和△BAD中{AE=AB ∠EAC=∠BAD AC=AD△△EAC△△BAD△BD=CE.△AE=AB=5△BE=√52+52=5√2△ABE=△AEB=45°又△△ABC=45°△△ABC+△ABE=45°+45°=90°△EC2=BE2+BC2=(5√2)2+22=54△BD2=CE2=54.(3)如图△AB=BC△ABC=60°△△ABC是等边三角形把△ACD绕点C逆时针旋转60°得到△BCE连接DE 则BE=AD△CDE是等边三角形△DE=CD△CED=60°△△ADC=30°△△BED=30°+60°=90°在Rt△BDE中DE=√BD2−BE2=√102−62=8△CD=DE=8.6.解:(1)延长GP交CD于H如图1所示:∵在菱形ABCD和菱形AEFG中AB=CD=AD BE//CD AG=FG FG//BE∴FG//CD∴∠PFG=∠PCH ∵P是线段CF的中点∴PF=PC在△PFG和△PCH中{∠PFG=∠PCHPF=PC∠FPG=∠CPH ∴△PFG≅△PCH(ASA)∴FG=CH PG=PH∴AG=CH∴DG=DH∴DP⊥GH(三线合一)∴∠DPG=90°;∵∠BAD=120°∴∠ADC=60°∴∠PDG=∠PDH=12∠ADC=30°∴PGPD =tan∠PDG=tan30°=√33;(2)(1)中的两个结论不发生改变;理由如下:延长GP交CE于H连接DH DG如图2所示:∵四边形AEFG为菱形∴FG//EC∴∠GFP=∠HCP ∵P是线段CF的中点∴PF=PC在△PFG和△PCH中{∠GFP=∠HCPPF=PC∠FPG=∠CPH ∴△PFG≅△PCH(ASA)∴FG=CH PG=PH∵FG=AG∴AG=CH∵四边形ABCD是菱形∴AC=CD∵∠BAD=∠AEF=120°∴∠ACD=60°∴△ACD是等边三角形∴AD=CD∴∠EAG=∠ADC=60°∠DAC=∠DCA=60°∴∠GAD=180°−∠EAG−∠DAC=60°在△ADG和△CDH中{AD=CD∠GAD=∠DCHAG=CH ∴△ADG≅△CDH(SAS)∴DG=DH∠ADG=∠CDH∴DP⊥GH∴∠DPG=90°∠GDH=∠ADC=60°∴∠GDP=30°∴PGPD =tan30°=√33;(3)延长GP到H使得PH=GP连接CH DG DH延长DC交EA的延长线于点M如图3所示:同(2)可证△PFG≅△PCH∴∠GFC=∠HCF FG=CH∴FG//CH∵FG//AE∴CH//EM∴∠DCH=∠M∵CD//AB∴∠M=∠MAB∴∠DCH=∠MAB∵∠BAD=∠AEF=180°−2α∴∠EAG=∠ADC=2α∴∠GAM=180°−2α∴∠GAD=∠BAM∴∠GAD=∠DCH∵AG=FG∴AG=CH在△ADG和△CDH中{AD=CD∠GAD=∠DCHAG=CH ∴△ADG≅△CDH(SAS)∴∠ADG=∠CDH DG=DH∴∠GDH=∠ADC=2α∴∠DPG =90° ∠GDP =12∠GDH =α∴ PGPD =tanα.7.(1)解:△抛物线y =ax 2+bx +4与y 轴交于点C△点C 的坐标为(0 4)△OC =4△OB=OC =4△B (4 0)将A (-2 0)和B (4 0)的坐标分别代入y =ax 2+bx +4中得:{4a −2b +4=016a +4b +4=0解得:{a =−12b =1△y =−12x 2+x +4(2)解:△A (-2 0) C (0 4)设直线AC 的解析式为y =kx +4将点A (-2 0)代入y =kx +4中 得:−2k +4=0 解得:k =2△直线AC 的解析式为y =2x +4设G (x 2x +4)△点D 是BC 的中点△D(2 2)△翻折△△MDB△△MDG△DB=DG△(x−2)2+(2x+4−2)2=(2−4)2+(2−0)2△5x2+4x=0△x1=0,x2=−45△y1=4,y2=125△G(0 4)G(−45125)(3)解:E(2−2√13314−2√139)如图过点D作DP△OC于点P DQ△OB于点Q点D作DH△DN交OB于点H∵∠PDQ=∠NDM=90°∴∠PDQ−∠NDQ=∠NDM−∠NDQ∴∠PDN=∠QDH在ΔDPN和ΔDQH中{DP=DQ∠DON=∠DQH=90°∠PDN=∠QDH∴ΔDPN≅ΔDQH(ASA)∴DN=DH∠NDM=90°−∠PDN−∠QDM=90°−∠QDH−∠QDM=∠HDM 在ΔDMN和ΔDMH中{DN=DH∠NDM=∠HDMDM=DM∴△DMN≌△DMH(SAS)∴MN=MQ+PN△ON =43OM 设OM =x 则ON =43x QM =2-x PN =2-43x △MN =MQ +PN =4-73x在Rt △OMN 中 △MON=90°MN 2=ON 2+OM 2即(4−73x)2=(43x)2+(2−x )2△2x 2−x +9=0△x =1 x =92(舍) △N (0 43) △D (2 2)设直线DN 的解析式为y =k 1x +b 1将点N (0 43)和点D (2 2)代入y =k 1x +b 1中 得:{b 1=432k 1+b 1=2 解得:{b 1=43k 1=13△直线DN 的解析式为y =13x +43△y =−12x 2+x +4 △−12x 2+x +4=13x +43△x =2−2√133 x =2+2√133(舍) △y =14−2√139 △E (2−2√133 14−2√139). 8.解:(1)证明 △△A =90° △CBE =90°△△C +△CBA =90° △CBA +△DBE =90°△△C =△DBE (同角的余角相等).又△△A =△D =90°△△ABC △△DEB ;(2)①△M绕点B顺时针旋转90°至点E M为BC中点△△BME为等腰直角三角形BEBC =BMBC=12△BE=√22ME又△DE=√22ME△BE=DE.如图过点E作EF△AD垂足为F则BF=DF △△A=△CBE=△BFE=90°△由(1)得:△ABC△△FEB△BF AC =BEBC=12△AC=4△BF=2△AB=AD-BF-FD=20-2-2=16;②如图过点M作AD的垂线交AD于点H过点E作AD的垂线交AD于点F过D作DP△AD过E作NP△DP交AC的延长线于N△M为BC中点MH△AC∴MHAC =BMBC=BHAB=12△MH=12AC=2BH=AH△△MHB=△MBE=△BFE=90°由(1)得:∠HBM=∠FEB△MB=EB△△MHB△△BFE△BF=MH=2 EF=BH设EF=x则DP=x BH=AH=x EP=FD=20-2-2x=18-2x GN=x+8 NE=AF=2x+2由(1)得△NGE△△PED△PE NG =PDNE即18−2xx+8=x2x+2解得x1=6x2=−65(舍去)△FD=18-2x=6△ED=√EF2+FD2=√62+62=6√2.9.(1)解:①△△ABC是等边三角形BC=4△AB=AC=4∠BAC=60°△AB′=AC′=4∠B′AC′=120°△AD为等腰△AB′C′'的中线△AD⊥B′C′∠C′=30°△∠ADC′=90°在Rt△ADC′'中∠ADC′=90°AC′=4∠C′=30°△AD=12AC′=2;②△∠BAC=90°△∠B′AC′=90°在△ABC和△AB′C′'中{AB=AB′∠BAC=∠B′AC′AC=AC′△△ABC≌△AB′C′(SAS)△B′C′=BC=6△AD=12B′C′=3;故答案为:①2;②3(2)AD=12BC理由如下:证明:在图1中过点B′作B′E∥AC′且B′E=AC′连接C′E DE则四边形AB′EC是平行四边形.△∠BAC+∠B′AC′=180°∠B′AC′+∠AB′E=180°△∠BAC=∠AB′E又△AC=AC′△CA=EB′在△BAC和△AB′E中{BA=AB′∠BAC=∠AB′E CA=EB′△△BAC≌△AB′E(SAS)△BC=AE又△AD=12AE△AD=12BC;(3)如图过点P作PF⊥BC则BF=CF△PB=PC PF⊥BC△PF为△BC的中线△PF=12AD=3.在Rt△BPF中∠BFP=90°PB=5PF=3△BF=√PB2−PF2=4△BC=2BF=8.10.(1)解:△x 1 x 2满足x 1+x 2=2 x 1•x 2=﹣3△b =2 c =3△抛物线的解析式为y =﹣x 2+2x +3(2)解:①抛物线y =﹣x 2+2x +3与x 轴交于点A (x 1 0) 点C (x 20) 与y 轴交于点B △当y =0时 ﹣x 2+2x +3=0解得x 1=3 x 2=-1当x =0时y =3△A (3 0) C (-1 0) B (0 3)△△AOB 为等腰直角三角形△△BAO =45°又EP △x 轴△△ADE 为等腰直角三角形△△ADE =45°又△△PDB =△ADE△△PDB =45°设直线AB 的解析式为y =kx +b则{3k +b =0b =3 解得{k =−1b =3△直线AB 的解析式为y =-x +3△E (m 0) 直线EP 交直线AB 于点D△设点D 为(m -m +3) 点P 为(m ﹣m 2+2m +3)点E 在线段OA 上运动 若△PBD 是等腰三角形 则0<m <3当PD =PB 时△PBD 是以P 为直角顶点的等腰直角三角形△﹣m 2+2m +3-(-m +3)=m解得m=2或m=0(舍去)△点E为(2 0)当BD=BP时△PBD是以B为直角顶点的等腰直角三角形△2 m =﹣m2+2m+3-(-m+3)解得m=1或m=0(舍去)△点E为(1 0)当DB=DP时△PBD是以D为顶点的等腰三角形△△OBD=45°△BD=√2OE=√2m△√2m=﹣m2+2m+3-(-m+3)解得m=3-√2或m=0(舍去)△点E为(3-√20)综上可知点E为(2 0)或(1 0)或(3-√20)②当P在x轴上方时连接BC延长BP交x轴于点F△△BAO=△ABO=45°又△PBD+△CBO=45°△△CBP=90°△△OBF+△CBO=90°又△BCO+△CBO=90°△△OBF=△BCO△△BOC△△FOB△BO FO =OC OB△C(-1 0) B(0 3)△3 FO =1 3△OF=9△点F为(9 0)设直线PB 的解析式为y =mx +n则{9m +n =0n =3解得{m =−13n =3△直线PB 的解析式为y =-13x +3△P B 都在抛物线上△{y =−13x +3y =−x 2+2x +3解得{x =0y =3 (舍去){x =73y =209△点P 为(73 209)△m =73当P 在x 轴下方时连接BC 设BP 与x 轴交于点H△△PBD +△CBO =45° △OBH +△PBD =45°△△CBO =△OBH又OB =OB △COB =△BOH∴△BOH △△BOC (ASA )△OC =OH =1△点H (1 0)设直线BH 解析式为:y =kx +b△{k +b =0b =3 解得{k =−3b =3△直线BH 解析式为:y =-3x +3△联立方程组{y =−3x +3y =−x 2+2x +3解得{x =0y =3 (舍去){x =5y =−12△点P 为(5 -12)△m =5综上可知 m 的值为73或5. (3)解:当m =1 得点E (1 0) P (1 4)过点F 作FH △PE又PE △x 轴 △CQF =90°△△CQH +△FQH =90° △CQH +△QCH =90°°△QEC =△QHF =90°△△FQH =△QCH△线段CQ 绕点Q 逆时针旋转90° 得到线段QF△CQ=QF△△QCE △△FQH (AAS )△CE=QH QE=FH又E (1 0) C (-1 0)△CE=QH =2令Q 为(1 a )QE=FH=a△点F 的坐标为(1+a a -2)△PF=√(1+a −1)2+(a −2−4)2=√2a 2−12a +36△2>0△当a =-−122×2=3时 PF 有最小值 且最小值为3√2.11.解:(1)证明:如图① 连接OC∵ΔABC与ΔDEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O∴OC⊥AB OC=12AB=OB OD⊥EF OD=12EF=OF∵FE⊥AB于O∴C F O三点共线在ΔBOF与ΔCOD中{∠OB=OC∠BOF=∠COD=90°OF=OD∴ΔBOF≅ΔCOD(SAS)∴BF=CD;(2)解:猜想BF=CD理由如下:如图② 连接OC OD∵ΔABC与ΔDEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O∴OC⊥AB OC=12AB=OB OD⊥EF OD=12EF=OF∵∠BOF=∠BOC+∠COF=90°+∠COF∠COD=∠DOF+∠COF=90°+∠COF ∴∠BOF=∠COD.在ΔBOF与ΔCOD中{OB=OC∠BOF=∠COD OF=OD∴ΔBOF≅ΔCOD(SAS)∴BF=CD;(3)解:猜想BF=√33CD理由如下:如图③ 连接OC OD.∵ΔABC为等边三角形点O为边AB的中点∴∠BCO=∠ACO=30°∠BOC=90°∴tan∠BCO=OBOC=tan30°=√33∵ΔDEF为等边三角形点O为边EF的中点∴∠FDO=∠EDO=30°∠DOF=90°∴tan∠FDO=OFOD=tan30°=√33∴OBOC =OFOD=√33∵∠BOF=∠BOC+∠COF=90°+∠COF∠COD=∠DOF+∠COF=90°+∠COF∴∠BOF=∠COD∴ΔBOF∽ΔCOD∴BFCD =OBOC=√33∴BF=√33CD.12.解:(1)当△EDF 绕D 点旋转到DE △AC 时 四边形CEDF 是正方形.设△ABC 的边长AC =BC =a 则正方形CEDF 的边长为12a .△S △ABC =12a 2 S 正方形DECF =(12a )2=12a 2 即S △DEF +S △CEF =12S △ABC ;故答案为:S △DEF +S △CEF =12S △ABC ; (2)(1)中的结论成立;证明:过点D 作DM △AC DN △BC 则△DME =△DNF =△MDN =90°又△△C =90°△DM △BC DN △AC△D 为AB 边的中点由中位线定理可知:DN =12AC MD =12BC △AC =BC△MD =ND△△EDF =90°△△MDE +△EDN =90° △NDF +△EDN =90°△△MDE=△NDF在△DME 与△DNF 中{∠DME =∠DNFMD =ND ∠MDE =∠NDF△△DME △△DNF (ASA )△S △DME =S △DNF△S 四边形DMCN =S 四边形DECF =S △DEF +S △CEF由以上可知S 四边形DMCN =12S △ABC △S △DEF +S △CEF =12S △ABC .(3)连接DC证明:同(2)得:△DEC △△DBF △DCE =△DBF =135°△S △DEF =S 五边形DBFEC=S △CFE +S △DBC=S △CFE +S ΔABC2△S △DEF -S △CFE =S ΔABC2.故S △DEF S △CEF S △ABC 的关系是:S △DEF -S △CEF =12S △ABC .13.(1)解:如图 过点C 作C G ⊥x 轴∵点A(−2,0)点B(6,0)△AB=8 又∵∠ACB=90°∠CAB=30°△在Rt△ABC中BC=4 在Rt△GBC中BG=2 CG=2√3.又∵点C在第一象限△C(4,2√3);(2)①∵以点B为中心顺时针旋转三角形ABC得到三角形BDE点A C的对应点分别为D E 且DE//AB△∠FBA=∠EDB=∠CAB=30°.△在Rt△FOB中∵OB=6△OF=2√3.△F(0,2√3);②△点D落在射线BC上△∠ABD=60°.由①知∠FBA=30°△∠FBD=30°.△∠FBD=∠BDE△DE//FB.又DE=FB=4√3△四边形FDEB是平行四边形.又∠BED=90°△四边形FDEB是矩形.(3)如图连接PQ,FE∵P,Q分别为FD,DE的中点∴PQ=1EF2∵FB=4√3BE=4∵旋转则点E在以B为圆心BE为半径的圆上运动∴FB−BE≤EF≤FB+BE 即4√3−4≤EF≤4√3+4∴2√3−2≤PQ≤2√3+2 14.(1)解:CP=BQ理由:如图1 连接OQ由旋转知PQ=OP△OPQ=60°△△POQ是等边三角形△OP=OQ△POQ=60°在Rt△ABC中O是AB中点△OC=OA=OB△△BOC=2△A=60°=△POQ△△COP=△BOQ在△COP和△BOQ中{OC=OB∠COP=∠BOQOP=OQ△△COP△△BOQ(SAS);(2)解:CP=BQ理由:如图2 连接OQ由旋转知PQ=OP△OPQ=60°△△POQ是等边三角形△OP=OQ△POQ=60°在Rt△ABC中O是AB中点△OC=OA=OB△△BOC=2△A=60°=△POQ△△COP=△BOQ在△COP和△BOQ中{OC=OB∠COP=∠BOQOP=OQ△△COP△△BOQ(SAS)△CP=BQ;(3)解:BQ=√6−√22.在Rt△ABC中△A=30° AC=√6△BC=AC·tan A=√2如图③ 过点O作OH△BC于点H△△OHB=90°=△BCA△OH △AC△O 是AB 中点△CH =12BC =√22 OH =12AC =√62△△BPO =45° △OHP =90°△△BPO =△POH△PH =OH =√62△CP =PH -CH =√62-√22=√6−√22连接OQ 同(1)的方法得 BQ =CP =√6−√22. 15.(1)证明:△AB =AC △BAC =90°△△B =△ACB =45°△△DAE =△BAC =90° AD =AE△△BAD =△CAE在△BAD 和△CAE 中 {AB =AC∠BAD =∠CAE AD =AE△△BAD △△CAE (SAS )△△B =△ACE =45° BD =CE△△ECD =△ACE +△ACB =90°△PD △BC△△BDP =△ECD =90°△PD △CE△△B =△BPD =45°△PD =BD△PD =EC△四边形PDCE 是平行四边形△△PDC =90°△四边形PDCE 是矩形;(2)解△如图 过点A 作AM △BC 于点M 过点F 作FN △BC 于点N设CD =2m 则BD =2CD =4m BC =6m△AB =AC △BAC =90° AM △BC△BM =MC =3m△AM =BM =3m AB =AC =3√2m DM =CM -CD =m△BD =PD =4m△PB =4√2m△P A =√2m△△ABD △△ACE△BD =EC =4m设CN =FN =x△FN △CE△△DFN △△DEC△FN EC =DN DC△FNDN =EC DC=4m2m =2 △DN =12x△12x +x =2m△x =43m △CF =4√23 m△AF =AC -CF =3√2m -4√23m =5√23m △AP AF =√2m 5√23m=35;(3)即:如图 将△BQC 绕点B 顺时针旋转60°得到△BNM 连接QN△BQ=BN QC=NM△QBN=60°△△BQN是等边三角形△BQ=QN△QA+QB+QC=AQ+QN+MN△当点A点Q点N点M共线时QA+QB+QC值最小如图连接MC△将△BQC绕点B顺时针旋转60°得到△BNM△BQ=BN BC=BM△QBN=60°=△CBM△△BQN是等边三角形△CBM是等边三角形△△BQN=△BNQ=60° BM=CM又△AB=AC△AM垂直平分BC△AD△BC△BQD=60°△△DBQ=30°BQ△QD=12△BD=√3QD△AB=AC△BAC=90° AD△BC△AD=BD此时P与A重合设PD=x则DQ=x-2△x=√3(x-2)△x=3+√3△PD=3+√3.16.(1)解:成立理由是:△△ABC和△ADE都是等腰直角三角形△AB=AC AD=AE△将△ADE绕点A逆时针旋转α(0<α<90°)连结BD和CE△∠BAD=∠CAE△△ABD≌△ACE(SAS)△BD=CE;(2)解:①△AB=AC∠BAD=∠CAE AD=AE△△ACE≌△ABD(SAS)△BD=CE△BC+CD=BD=CE.②△△ACE≌△ABD△∠ACE=∠ABD=45°又△∠ACB=45°△∠BCE=∠ACB+∠ACE=90°在Rt△BAC中△AB=AC=√2△BC=√AB2+AC2=2又△CD=1CE=BC+CD=3△在Rt△CDE中17.(1)解:△抛物线C:y=ax2+6ax+9a−8与x轴相交于A B两点点B的横坐标是2△B (2,0)△a ×22+6a ×2+9a −8=0解得a =825△抛物线C 的解析式为:y =825x 2+4825x −12825 对称轴:x =−48252×825=−3△当x =−3时 y =825×(−3)2+4825×(−3)−12825=−8 △顶点D 的坐标为(−3,−8).△a =825 D (−3,−8).(2)△抛物线C 与x 轴相交于A B 两点△当y =0时 得:825x 2+4825x −12825=0 即(x +8)(x −2)=0解得:x 1=−8 x 2=2△A (−8,0)△点P 与点B 重合△点P 的坐标为(2,0)当抛物线C 绕点P 旋转180°后得到的抛物线C 1 且点P 与点B 重合时△在抛物线C 1中 点B 的坐标仍为(2,0)△点F 与点A 关于点P 对称△点F 的坐标为(12,0)同理点E 与点D 关于点P 对称 设E (m,n ) 则△点P 的坐标为(m−32,n−82) △{m−32=2n−82=0△{m =7n =8△点E 的坐标为(7,8)设抛物线C 1的表达式为:y =a 1(x −12)(x −2)△(7−12)×(7−2)a 1=8△a 1=−825 △y =−825(x −12)(x −2)=−825x 2+11225x −19225 △抛物线C 1的表达式为:y =−825x 2+11225x −19225.(3)根据题意可知 在构成的直角三角形三个顶点中 有两个顶点是从点E F G 中选取 有一个点是从A B D 中任取.由图可知 当点为E G 或F G 时 与A B D 中任意一点构成的三角形是钝角三角形 故只有点E F 为直角三角形其中的两个顶点.设P (m,0)又△抛物线C 绕点P 旋转180°后得到的抛物线C 1 A (−8,0) B (2,0) D (−3,−8)△E (2m +3,8) F (2m +8,0)①当A 为顶点时△在抛物线C 1中 ∠EFO 是一个锐角 点A 在点P 的左侧△∠AEF =90°△AE 2+EF 2=AF 2△(√(2m +11)2+82)2+(√52+(−8)2)2=(2m +16)2解得:m =910;②当B 为顶点时同理可得∠BEF =90°△BE 2+EF 2=BF 2△[√(2m +1)2+82)2+(√52+(−8)2)2=(2m +6)2 解得:m =5910;③当D 为顶点时分两种情况:第一种:∠DEF =90°△DE 2+EF 2=DF 2△(√(2m +6)2+(8+8)2)2+(√52+(−8)2)2=(√(2m +11)2+82)2解得:m =495第二种:∠DFE =90°△DF 2+EF 2=DE 2△(√(2m +11)2+82)2+(√52+(−8)2)2=(√(2m +6)2+(8+8)2)2 解得:m =910.△点P 的坐标为(910,0)或(5910,0)或(495,0). 18.(1)解:∵D 在直线y =52x 上 ∴设D(t,52t)∵y 1=m x 经过点B (5,2). ∴m =10.∵D(t,52t)在反比例函数的图象上∴52t 2=10 ∴t =2(负值已舍去).∴由两点间的距离公式可知:OD =√22+52=√29.(2)解:①∵函数y 2=n x 的图象经过点E ∴OA ⋅AE =OC ⋅CF =n .∵OC =5 OA =2∴AE =52CF .∴可设:AE =52t∴EF =AE +CF =72t EB =5−52t在Rt △EBF 由勾股定理得:EF 2=BF 2+BE 2 ∴494t 2=(5−52t)2+(2−t)2. 解得t =7√29−2910∴n =5t =7√29−292. ②∵∠OEF =90°∴∠AEO +∠BEF =90°∵BA ⊥y 轴 BC ⊥x 轴∴∠ABC=90°∴∠BEF+∠BFE=90°∴∠AEE=∠BFE∴△AOE∽△BEF∴OA:AE=BE:BF∵CF=n5,AE=n2,BE=5−n2,BF=2−n5∴2:n2=(5−n2):(2−n5)解得:n=85或n=10(舍)∵D′(a,b)∴ab=8 5由(1)得OD=√29∴OD′=√29∴a2+b2=29∴(a+b)2=29+2×85=1615故(a+b)2的值为1615.19.解:(1)EG=CG且EG△CG.证明如下:如图① 连接BD.△正方形ABCD和等腰Rt△BEF△△EBF=△DBC=45°.△B E D三点共线.△△DEF=90° G为DF的中点△DCB=90°△EG=DG=GF=CG.△△EGF=2△EDG△CGF=2△CDG.△△EGF+△CGF=2△EDC=90°即△EGC=90°△EG△CG.(2)仍然成立证明如下:如图② 延长EG交CD于点H.。
中考数学复习同步练习16 图形变换2及答案
第2题图-4(-1,4)2-1-24123xOy(1,1)(-4,-1) -11-2-3中考数学复习同步练习(18)(图形变换)2一、选择题:1.如图,若图1中点P的坐标为823⎛⎫⎪⎝⎭,,则它在图2中的对应点1P的坐标为()A、923⎛⎫⎪⎝⎭,B、813⎛⎫⎪⎝⎭,C、1113⎛⎫⎪⎝⎭,D、1113⎛⎫⎪⎝⎭,2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A、(1,7),(2,2-),(3, 3)B、(1,7),(2-, 2),(4, 3)C、(1,7), (2,2),(3, 4)D、(1,7),(2-, 2),(3, 4)3.下列图象中,以方程的解为坐标的点组成的图象是()A B C D4.如图3,直线12xy=与23y x=-+相交于点A,若12y y<,那么()A、2x>B、2x<C、1x>D、1x<5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A、203210x yx y+-=⎧⎨--=⎩,B、2103210x yx y--=⎧⎨--=⎩,C、2103250x yx y--=⎧⎨+-=⎩,D、20210x yx y+-=⎧⎨--=⎩,6.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A、)(),,(3-1.-3-1NM220y x--=yxO2112yxO2112yxO2112yxO2112图3xO12yA·P(1,1)112233-1-1O(第5题)l 1l 2xyD O 3BC A(4,0) 图11 7题Oyx22l 1l 2O (第9题)xy 1 P y=x+by=ax+3 B 、)(),,( 1.3-3-1-N M C 、)(),,(3-1.3-1-N M D 、)(),,(3-1.31-N M 7.如图4,直线l 1和l 2的交点坐标为 ( )A 、(4,2-)B 、(2,4-、(4-,2) D 、(3,1-)8.一次函数的图象如图所示,当时,的取值范围是 ( ) A 、 B 、C 、D 、二、填空题:9.如图,已知函数y x b =+和3y ax =+的图象交点为P , 则不等式3x b ax +>+的解集为 ; 10.如图, 在已建立直角坐标系的4×4正方形方 格纸中, ABC 是格点三角形(三角形的三个顶 点都是小正方形的顶点), 若以格点P 、A 、B为顶点的三角形与 ABC 面积相等,则格点P 的坐标有 种可能; 三、解答题:11.如图11,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点. (1)求点的坐标; (2)求直线的解析表达式; (3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接..写出点的坐标.y kx b =+0y <x 0x >0x <2x >2x <1l 33y x =-+1l x D 2l A B ,1l 2l C D 2l ADC △2l C P ADP △ADC △P 23第8题y x O(第6题)ONM Ay x参考答案一、1.D ;2.D ;3.C ;4.B ;5.D;6.C ;7.A ;8.C ; 二、 9.1>x ; 10.9;11.(1)当0=y 时,有330+-=x , 1=x ∴D (1,0); (2)设直线的解析式为b kx y +=过A (4,0),B (3,23-); ∴⎪⎩⎪⎨⎧+=-+=bk b k 32340,∴⎪⎩⎪⎨⎧-==623b k ∴直线的解析式为623-=x y ;(3)∵314=-=AD ,又∵⎪⎩⎪⎨⎧-=+-=62333x y x y ,解这个方程组得:⎩⎨⎧-==32y x ; 329332121=-⨯⨯=⨯⨯=∆y AD S AOC ;(4)(6,3)(在y 轴上的点不可以)⑴点(0,1)向下平移2个单位后的坐标是 ,直线21y x =+向下平移2个单位后的解析式是 ;⑵直线21y x =+向右平移2个单位后的解析式是 ;⑶如图,已知点C 为直线y x =上在第一象限内一点,直线21y x =+交y 轴于点A ,交x 轴于B ,将直线AB 沿射线OC 方向平移32个单位,求平移后的直线的解析式.2l 2l OCBA21.⑴(0,-1),21y x =-;⑵23y x =-;⑶22y x =-;三、解答题: 如图6,已知: (1) AC 的长等于_______.(2)若将向右平移2个单位得到,则点的对应点的坐标是______; (3) 若将绕点按顺时针方向旋转后得到A 1B 1C 1,则A 点对应点A 1的坐标是_________.ABC △ABC △A B C '''△A A 'ABC △C 90∆。
2020初中数学中考专题复习——图形变换旋转综合题填空题专项训练2(附答案详解)
2020初中数学中考专题复习——图形变换旋转综合题填空题专项训练2(附答案详解)1.如图,把△ABC纸片沿DE折叠,点A落在四边形BCDE的外部,用∠1和∠2表示出∠A,则关系式是______.2.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=4,∠BAC=30°,则线段PM的最大值是___.3.如图,△ABC是边长为6的等边三角形,点D在边AB上,AD=2,点E是BC上一点连结DE,将DE绕点D逆时针旋转60°得DF,连结CF,则CF的最小值是_____.4.如图,已知在平面直角坐标系中,点A(0,3),点B为x轴上一动点,连接AB,线段AB绕着点B按顺时针方向旋转90°至线段CB,过点C作直线l∥y轴,在直线l上有一点D位于点C下方,满足CD=BO,则当点B从(﹣3,0)平移到(3,0)的过程中,点D的运动路径长为_____.5.如图,点P为∠MON平分线OC上一点,以点P为顶点的∠APB两边分别与射线OM、ON相交于点A、B,如果∠APB在绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的关联角.如果∠MON=50°,∠APB是∠MON的关联角,那么∠APB的度数为_____.6.如图,已知在△ABC中,AB=3,AC=2,∠A=45o,将这个三角形绕点B旋转,使点A落在射线AC上的点A1处,点C落在点C1处,那么AC1=_____.7.如图,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,连接AE,若BC=DE=4,将正方形DEFG绕点D逆时针方向旋转,在旋转过程中,当AE为最大值时,则AF的值_____.8.如图,将△ABC绕点A顺时针旋转60°得到△AED,若AB=5,AC=4,BC=2,则BE的长为_____.9.如图,在等腰直角三角形ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB'C',则∠BAC'等于_______.10.若把一次函数y kx b =+的图像先绕着原点旋转180︒,再向左平移2个单位长度后,恰好经过点40A -(,)和点02B (,),则原一次函数的表达式是____. 11.如图,将边长为3cm 的正方形ABCD 绕顶点B 逆时针旋转30°得到正方形EBCF ,则两个图形重叠部分(阴影部分)的面积为______cm 2.12.如图,正方形OABC 的边长为6,以O 为圆心,EF 为直径的半圆经过点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,交点P 运动的路径长是______.13.如图,已知Rt △ABC 中,∠ACB=90°,AC=8,BC=6.将△ABC 绕点B 旋转得到△DBE ,点A 的对应点D 落在射线BC 上.直线AC 交DE 于点F ,那么CF 的长为______.14.如图,在等腰ABC ∆中,AB AC =,030B ∠=.以点B 为旋转中心,旋转030,点,A C 分别落在点','A C 处,直线,'AC AC 交于点D ,那么AD AC的值为_______.15.如图,在Rt△ABC中,∠ACB=90°,AB=2,点D为线段AB的中点,将线段BC绕点B顺时针旋转90°,得到线段BE,连接DE,则DE最大值是______.\16.如图,点A的坐标为(﹣1,0),AB⊥x轴,∠AOB=60°,点B在双曲线l上,将△AOB绕点B顺时针旋转90°得到△CDB,则点D_____双曲线l上(填“在”或“不在”).17.如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.18.如图,△AOB的边OB在x轴上,AC⊥x轴于C,D为AC上一点,将△CBD沿BD翻折,使点C落在AB边上的E点.已知∠AOB=60°,AO=43,点B的坐标为(8+23,0),则点D的坐标为_____.19.如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向旋转90°得到点F,则线段AF的长的最小值_____.20.四边形ABCD 是边长为4的正方形,点P 是平面内一点.且满足BP ⊥PC ,现将点P 绕点D 顺时针旋转90度,则CQ 的最大值=___________.21.如图,直线l 1,l 2,l 3相交于点A 、B 、C ,得到△ABC ,其中∠ACB=90°,AC=6,BC=8,点O 在线段AC 上,且OA=2OC ,将△ABC 绕点O 旋转得到△A 1B 1C 1,当点A 1落在这三条直线上时,线段AA 1长是_______.22.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.(写出所有可能情况)23.如图,两块相同的三角板完全重合在一起,A 30∠=o ,AC 10=,把上面一块绕直角顶点B 逆时针旋转到A'BC'V 的位置,点C'在AC 上,A'C'与AB 相交于点D ,则BC'=______.24.已知ABC V 中,AC 2=,C 30∠=o ,点M 为边AC 中点,把BCM V 沿中线BM 125.如图,点O 是等边△ABC 内一点,∠AOB =110°.将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .当α为______度时,△AOD 是等腰三角形?26.定义:在平面直角坐标系中,一个图形先向右平移a 个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的()Y a,θ变换.如图,等边ABC V 的边长为1,点A 在第一象限,点B 与原点0重合,点C 在x 轴的正半轴上111.A B C V 就是ABC V 经()Y 1,180o 变换后所得的图形,则点1A 的坐标是______.27.如图,AOB V 中,AOB 90∠=o ,AO 3=,BO 6=,AOB V 绕顶点O 逆时针旋转到A'OB'V 处,此时线段A'B'与BO 的交点E 为BO 的中点,则线段B'E 的长度为______.28.如图,在正方形ABCD 中,点M 在CD 的边上,且DM=2,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,已知线段EF 34ABCD 的边长为_____29.Rt ABC ∆中,8AB =,6BC =,将它绕着斜边AC 中点O 逆时针旋转一定角度后得到'''A B C ∆,恰好使''//A B AC ,同时''A B 与,AB BC 分别交于点,E F ,则EF 的长为__________.30.如图,在△ABC 中,AC=BC=8,∠C=90°,点D 为BC 中点,将△ABC 绕点D 逆时针旋转45°,得到△A′B′C′,B′C′与AB 交于点E ,则S 四边形ACDE = .参考答案1.∠A=12(∠1-∠2)【解析】∵△A′ED是△AED翻折变换而成,∴∠A=∠A′,∵∠AFE是△A′DF的外角,∴∠AFE=∠A′+∠2,∵∠1是△AEF的外角,∴∠1=∠A+∠AFE,即∠1=∠A+∠A′+∠2=2∠A′+∠2,即∠A=12(∠1-∠2);故答案是∠A=12(∠1-∠2)。
中考数学《图形的变换》总复习训练含答案解析
图形的变换一、选择题1.以下几何图形中,必定是轴对称图形的有()A.2个B.3个C.4个D.5个2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下地点的两个字牌对换,同时将位于左右位置的两个字牌对换,再将转盘顺时针旋转90°,则达成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则达成第9次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()第1页(共19页)A.110°B.115°C.120°D.130°6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()A.1个B.2个C.3个D.4个10.以下图形中,是轴对称图形的是()A.B.C.D.11.下边的图形中,是中心对称图形的是()第2页(共19页)A.B.C.D.二、填空题12.如图,点G是△ABC的重心,CG的延伸线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°获得△BDE,则DE=cm,△ABC的面积=cm2.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为.14.将线段AB平移1cm,获得线段A′,B′则点A到点A′的距离是cm.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)察看图1、2中所画的“L型”图形,而后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是否是正方体的表面睁开图?(填“是”或“不是”)16.如图,在平面直角坐标系中,△ABC和△A1B1C1对于点E成中心对称.1)画出对称中心E,并写出点E、A、C的坐标;2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P(2a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;第3页(共19页)(3)判断△A2B2C2和△A1B1C1的地点关系.(直接写出结果)17.在一平直河岸l同侧有A,B两个乡村,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的表示图,设该方案中管道长度为d1,且d1=PB+BA(km)(此中BP⊥l于点p);图2是方案二的表示图,设该方案中管道长度为d2,且d2=PA+PB(km)(此中点A'与点A对于I对称,A′B与l交于点P.察看计算:(1)在方案一中,d1= km(用含a的式子表示);2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的协助线,请你按小宇同学的思路计算,d2= km(用含a的式子表示).研究概括(1)①当a=4时,比较大小:d1()d2(填“>”、“=或”“<”);②当a=6时,比较大小:d1()d2(填“>”、“=或”“<”);(2)请你参照右侧方框中的方法指导,就a(当a>1时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?第4页(共19页)第5页(共19页)图形的变换参照答案与试题分析一、选择题1.以下几何图形中,必定是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【剖析】对于某条直线对称的图形叫轴对称图形.【解答】解:全部图形沿某条直线折叠后直线两旁的部分能够完整重合,那么必定是轴对称图形的有5个,应选D.【评论】轴对称图形的判断方法:假如一个图形沿一条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形.2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下地点的两个字牌对换,同时将位于左右位置的两个字牌对换,再将转盘顺时针旋转90°,则达成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则达成第9次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右【考点】旋转的性质.【专题】压轴题;操作型;规律型.第6页(共19页)【剖析】依据题意可知每一次变换后相当于逆时针旋转了90°,经过4次变换后会回到原始地点,因此按上述规则达成第9次变换后,相当于第一次变化后的位置关系,剖析比较可得答案.【解答】解:依据题意可知每一次变换后相当于逆时针旋转了90度,经过4次变换后会回到原始地点,因此按上述规则达成第9次变换后,“众”字位于转盘的地点是应当是第一次变换后的地点即在左侧,比较可得C切合要求.应选C.【评论】本题考察旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三因素:①定点为旋转中心;②旋转方向;③旋转角度.重点是找到旋转的方向和角度.3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和等腰梯形、平行四边形、正三角形、矩形的性质解答.【解答】解:A、是轴对称图形,不是中心对称图形,不切合题意;B、不是轴对称图形,是中心对称图形,不切合题意;C、是轴对称图形,不是中心对称图形,不切合题意;D、是轴对称图形,也是中心对称图形,切合题意.应选D.【评论】掌握中心对称图形与轴对称图形的观点.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.假如一个图形绕某一点旋转180°后能够与自己重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.第7页(共19页)4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和各图的特色求解.【解答】解:①、是轴对称图形,不是中心对称图形;②、是轴对称图形,也是中心对称图形;③、是轴对称图形,不是中心对称图形;④、是轴对称图形,也是中心对称图形.知足条件的是①③,应选A.【评论】掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【剖析】依据折叠的性质,对折前后角相等.【解答】解:依据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,第8页(共19页)AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.应选B.【评论】本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.【考点】中心对称图形;生活中的旋转现象.【剖析】依照中心对称图形的定义即可求解.【解答】解:此中A选项、C选项及D选项旋转180度后新图形中间的桃心向下,原图形中间的桃心向上,因此不是中心对称图形.应选B.【评论】本题考察中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完整重合.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.第9页(共19页)【考点】中心对称图形;轴对称图形.【专题】惯例题型.【剖析】依据轴对称图形与中心对称图形的观点求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.应选:C.【评论】本题考察了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.【考点】生活中的旋转现象.【剖析】依据旋转的意义,找出图中眼,眉毛,嘴 5个重点处按顺时针方向旋转90°后的形状即可选择答案.【解答】解:依据旋转的意义,图片按顺时针方向旋转90°,即正立状态转为顺时针的横向状态,从而可确立为A图,应选A.【评论】本题考察了图形的旋转变化,学生主要要看清是顺时针仍是逆时针旋转,旋转多少度,难度不大,但易错.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()第10页(共19页)A.1个B.2个C.3个D.4个【考点】中心对称图形.【剖析】依据中心对称图形的观点求解.【解答】解:依据中心对称图形的观点可知,图案O、I是中心对称图形;而图案L、Y、M、P、C都不是中心对称图形.应选B.【评论】解答本题要掌握中心对称图形的观点:在同一平面内,假如把一个图形绕某一点旋转180度,旋转后的图形能和原图形完整重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.10..以下图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【剖析】依据轴对称图形的定义:假如一个图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也能够说这个图形对于这条直线(成轴)对称,从而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.应选:B.【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.11.下边的图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.第11页(共19页)【剖析】依据中心对称图形的观点求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;应选B.【评论】本题考察了中心对称图形的知识,中心对称图形是要找寻对称中心,旋转180度后与原图重合.二、填空题12.如图,点G是△ABC的重心,CG的延伸线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°获得△BDE,则DE= 2 cm,△ABC的面积18cm2.【考点】旋转的性质.【专题】压轴题.【剖析】三角形的重心是三条中线的交点,依据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.【解答】解:∵点G是△ABC的重心,DE=GD=GC=2,CD=3GD=6,GB=3,EG=GC=4,BE=GA=5,BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,S△ACD=S△BCD,∴S△ABC△ACDS△BCD△BCD2.填:2,18.=S+=2S=2××BG×CD=18cm第12页(共19页)【评论】本题考察旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所组成的旋转角相等.要注意旋转的三因素:①定点﹣旋转中心;②旋转方向;③旋转角度.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 4 .【考点】等腰三角形的性质;勾股定理.【剖析】依据等腰三角形三线合一的性质及勾股定理不难求得底边上的高.【解答】解:依据等腰三角形的三线合一,知:等腰三角形底边上的高也是底边上的中线.即底边的一半是3,再依据勾股定理得:底边上的高为4.故答案为:4【评论】考察等腰三角形的三线合一及勾股定理的运用.14.将线段AB平移1cm,获得线段A′,B′则点A到点A′的距离是 1 cm.【考点】平移的性质.【专题】压轴题.【剖析】依据题意,画出图形,由平移的性质直接求得结果.【解答】解:在平移的过程中各点的运动状态是同样的,此刻将线段平移1cm,则每一点都平移1cm,即AA′=1cm,∴点A到点A′的距离是1cm.【评论】本题考察了平移的性质:由平移知识可得对应点间线段即为平移距离.学生在学习中应当借助图形,理解掌握平移的性质.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)察看图1、2中所画的“L型”图形,而后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是否是正方体的表面睁开图?(填“是”或“不是”)第13页(共19页)【考点】利用旋转设计图案;利用轴对称设计图案.【专题】网格型.【剖析】(1)依据轴对称图形与中心对称的定义即可作出,第一确立对称轴,即可作出所要作的正方形;2)利用折叠的方法进行考证即可.【解答】解:(1)如图(画对一个得3分).2)图1(不是)或图2(是),图3(是).【评论】掌握轴对称的性质:沿着向来线折叠后重合.中心对称的性质:绕某一点旋转180°此后重合.16.如图,在平面直角坐标系中,△ABC和△A1B1C1对于点E成中心对称.1)画出对称中心E,并写出点E、A、C的坐标;2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P(2a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的地点关系.(直接写出结果)第14页(共19页)【考点】作图﹣旋转变换;作图﹣平移变换.【专题】作图题;压轴题.【剖析】(1)连结对应点,对应点的中点即为对称中心,在网格中可直接得出点E、A、C的坐标;2)依据“(a+6,b+2)”的规律求出对应点的坐标A2(3,4),C2(4,2),按序连结即可;(3)由△A2B2C2和△A1B1C1的地点关系直接看出是对于原点O成中心对称.【解答】解:(1)如图,E(﹣3,﹣1),A(﹣3,2),C(﹣2,0);(4分)2)如图,A2(3,4),C2(4,2);(8分)3)△A2B2C2与△A1B1C1对于原点O成中心对称.(10分)【评论】本题考察的是平移变换与旋转变换作图.作平移图形时,找重点点的对应点也是重点的一步.平移作图的一般步骤为:①确立平移的方向和距离,先确立一组对应点;②确立图形中的重点点;③利用第一组对应点和平移的性质确立图中所相重点点的对应点;④按原图形次序挨次连结对应点,所获得的图形即为平移后的图形.第15页(共19页)作旋转后的图形的依照是旋转的性质,基本作法是①先确立图形的重点点;②利用旋转性质作出重点点的对应点;③按原图形中的方式按序连结对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特别状况.17.在一平直河岸l同侧有A,B两个乡村,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的表示图,设该方案中管道长度为d1,且d1=PB+BA(km)(此中BP⊥l于点p);图2是方案二的表示图,设该方案中管道长度为d2,且d2=PA+PB(km)(此中点A'与点A对于I对称,A′B与l交于点P.察看计算:1)在方案一中,d1=a+2km(用含a的式子表示);2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的协助线,请你按小宇同学的思路计算,d2= km(用含a的式子表示).研究概括(1)①当a=4时,比较大小:d1()d2(填“>”、“=或”“<”);②当a=6时,比较大小:d1()d2(填“>”、“=或”“<”);(2)请你参照右侧方框中的方法指导,就a(当a>1时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?第16页(共19页)【考点】作图—应用与设计作图.【专题】压轴题;阅读型;方案型.【剖析】运用勾股定理和轴对称求出d2,依据方法指导,先求d12﹣d22,再依据差进行分类议论选用合理方案.【解答】解:(1)∵A和A'对于直线l对称,PA=PA',d1=PB+BA=PB+PA'=a+2;故答案为:a+2;2)由于BK2=a2﹣1,A'B2=BK2+A'K2=a2﹣1+52=a2+24因此d2= .研究概括:(1)①当a=4时,d1=6,d2= ,d1<d2;②当a=6时,d1=8,d2= ,d1>d2;∴(2)=4a﹣20.①当4a﹣20>0,即a>5时,d12﹣d22>0,d1﹣d2>0,d1>d2;第17页(共19页)②当4a﹣20=0,即a=5时,d12﹣d22=0,d1﹣d2=0,d1=d2③当4a﹣20<0,即a<5时,d12﹣d22<0,d1﹣d2<0,d1<d2综上可知:当a>5时,选方案二;当a=5时,选方案一或方案二;当1<a<5(缺a>1不扣分)时,选方案一.【评论】本题为方案设计题,综合考察了学生的作图能力,运用数学知识解决实际问题的能力,以及察看研究和分类议论的数学思想方法.第18页(共19页)中考数学《图形的变换》总复习训练含答案解析第19页(共19页)21 / 2121。
【备战2023中考】中考数学一轮复习基础练——图形的变换(含答案)
【备战2023中考】中考数学一轮复习基础练——图形的变换时间:45分钟满分:80分一、选择题(每题4分,共32分)1.下列图形中,既是中心对称图形又是轴对称图形的是()2.如图,将△ABC沿BC方向平移1 cm得到对应的△A′B′C′.若B′C=2 cm,则BC′的长是()A.2 cm B.3 cm C.4 cm D.5 cm(第2题)(第3题)3.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32°B.45°C.60°D.64°4.几何体的三视图如图所示,这个几何体是()(第4题)(第5题)5.如图,△ABC与△DEF位似,点O为位似中心,已知OA∶OD=1∶2,则△ABC与△DEF的周长比为()A.1∶2 B.1∶3 C.1∶4 D.1∶56.如图,在等腰直角三角形ABC中,∠ACB=90°,点D为△ABC内一点,将线段CD绕点C 逆时针旋转90°后得到CE ,连接BE ,若∠DAB =15°,则∠ABE =( ) A .75° B .78° C .80°D .92°(第6题) (第7题)7.如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 边上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的点F 处,则CE 的长是( ) A .1 B.43 C.32D.538.如图,在平面直角坐标系中,点A ,B 的坐标分别为(0,2),(-1,0),将△ABO 绕点O 顺时针旋转得到△A 1B 1O ,若AB ⊥OB 1,则点A 1的坐标为( )(第8题)A.⎝ ⎛⎭⎪⎫255,455B.⎝ ⎛⎭⎪⎫455,255 C.⎝ ⎛⎭⎪⎫23,43 D.⎝ ⎛⎭⎪⎫45,85 二、填空题(每题4分,共16分)9.若点A 与点B (2,-3)关于y 轴对称,则点A 的坐标为________.10.如图,这个图案绕着它的中心旋转α(0°<α<360°)后能够与它本身重合,则α可以为________.(写出一个即可)(第10题)11.利用尺规作图,如图,作△ABC 边BC 上的高正确的是________.(第11题)12.在平面直角坐标系中,有A(3,-3),B(5,3)两点,现另取一点C(1,n),当AC+BC的值最小时,n的值为________.三、解答题(共32分)13.(14分)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1,使它与△ABC位似,且相似比为21,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.(1)画出△A1B1C1,并直接写出点A1的坐标;(2)画出△A2B2C2,并求出在旋转过程中,点A到点A2所经过的路径长.(第13题)14.(18分)如图,在△ABC中,∠ABC=135°,AC=3,现将△ABC绕点A顺时针旋转90°得到△ADE,再将线段ED绕点E顺时针旋转90°得到线段EF,连接BD,BF,DF.(第14题)(1)求证:B,D,E三点共线;(2)求BF的长.答案一、1.A 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.(-2,-3) 10.60°(答案不唯一) 11.② 12.-1三、13.解:(1)如图所示,△A 1B 1C 1即为所求,点A 1的坐标为(-2,-4).(第13题)(2)如图所示,△A 2B 2C 2即为所求.∵点A 的坐标为(1,2),故由勾股定理得OA =12+22=5, ∴点A 到点A 2所经过的路径长为90×π×5180=5π2.14.(1)证明:由旋转性质可知△ABC ≌△ADE ,AB =AD ,BC =DE =FE ,∠BAD =∠DEF=90°, ∴∠ADB =45°.∵∠ADE =∠ABC =135°,∴∠ADB +∠ADE =45°+135°=180°, 即B ,D ,E 三点共线.(2)解:由(1)易得△ABD 和△EDF 都是等腰直角三角形, ∴BD AB =DFDE = 2.∵DE =BC ,∴BD AB =DFBC= 2.由(1)可知B ,D ,E 三点共线,∠EDF =45°, ∴∠BDF =180°-∠EDF =180°-45°=135°, ∴∠BDF =∠ABC , ∴△ABC ∽△BDF , ∴BF AC =BDAB = 2. ∵AC =3,∴BF =3 2.。
中考数学探究性试题之图形的变换训练
中考数学探究性试题之图形的变换训练1.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是.(2)问题探究:如图②,将图①中的△AOB绕点A按顺时针方向旋转45°得到△AO′E,连接CE,点P,Q分别为CE,BO′的中点,连接PQ,PB.试判断PQ与BQ之间的数量关系,并证明;(3)拓展延伸:如图③,将图①中的△AOB绕点A按逆时针方向旋转45°得到△AO′E,连接BO′,点P,Q分别为CE,BO′的中点,连接PQ,PB.若正方形ABCD的边长为1,求线段PQ的长.2.如图,已知△ABC,BC边的中点M,(1)分别以AB和AC为腰,向△ABC的外侧作等腰三角形,其中AD=AB,AC=AE,且∠BAE=∠DAC=90°,如图1所示.①若∠BAC=70°,求∠DAE的度数;②求证:DE=2AM;(2)分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,其中∠ADB=∠AEC =90°,如图2所示,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程.3.如图,二次函数y =ax 2+bx +4的图象过点A (3,0)和B (﹣1,0),与y 轴交于点C .(1)求该二次函数的解析式;(2)若在该二次函数的对称轴上有一点M ,使BM +CM 的长度最短,求出M 的坐标.(3)动点D ,E 同时从点O 出发,其中点D 以每秒32个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C →A 的路线运动,当D ,E 两点相遇时,它们都停止运动.设D ,E 同时从点O 出发t 秒时,△ODE 的面积为S .请直接写出S 关于t 的函数关系式,并写出自变量t 的取值范围.4.我们定义:如图1,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB ',把AC 绕点A 逆时针旋转β得到AC ′,连接B 'C ',当a +β=180°时,我们称△AB 'C '是△ABC 的“旋补三角形”,△AB 'C 边B 'C '上的中线AD 叫做△ABC 的“旋补中线”.[特例感知](1)在图2,图3中,△AB 'C ′是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形,且BC =6时,则AD 长为 .②如图3,当∠BAC =90°,且BC =7时,则AD 长为 .[猜想论证](2)在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.(如果你没有找到证明思路,可以考虑延长AD 或延长B 'A ,…)[拓展应用](3)如图4,在四边形ABCD中,∠BCD=150°,AB=12,CD=6,以CD为边在四边形ABCD内部作等边△PCD,连接AP,BP.若△P AD是△PBC的“旋补三角形”,请直接写出△PBC的“旋补中线”长及四边形ABCD的边AD长.5.小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12√3,CD=6,DA =6√3,在四边形内部是否存在点P,使△PDC与△P AB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC 的边DC上的中线PQ的长度;若不存在,说明理由.6.我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC 的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.7.在Rt△ABC中,∠ACB=90°,tan∠BAC=12.点D在边AC上(不与A,C重合),连接BD,F为BD中点.(1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1.设CF=kEF,则k=;(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2.求证:BE﹣DE=2CF;(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD 中点,求线段CF长度的取值范围.8.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)并缩短一半得到AB',把AC绕点A逆时针旋转β并缩短一半得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋半三角形”,△AB'C'边B'C'上的中线AD叫做△ABC 的“旋半中线”,点A叫做“旋半中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=4时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用:(3)如图4,在平面直角坐标系中,△ABC的坐标分别是A(4,3),B(1,0),C(5,0),△AB′C′是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”,连接OD,求OD的最大值是多少?并请直接写出当OD最大时点D的坐标.9.已知,△ABC中,AB=6,AC=4,M是BC的中点,分别以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG,MA的延长线交EG于点N,(1)如图1,若∠BAC=90°,求证:AM=12EG,AM⊥EG;(2)将正方形ACFG绕点A顺时针旋转至如图2,(1)中结论是否仍然成立?请说明理由;(3)将正方形ACFG绕点A顺时针旋转至B,C,F三点在一条直线上,请画出图形,并直接写出AN的长.10.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD 与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2√2,直接写出线段BF的范围.11.定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180°时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△ABC与△DAE互为“顶补三角形”,AM,AN是“顶心距”.①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM=DE;②如图3,当∠BAC=120°,BC=6时,AN的长为.猜想论证:(2)在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四边形ABCD的内部是否存在点P,使得△P AD与△PBC互为“顶补等腰三角形”?若存在,请给予证明,并求△PBC的“顶心距”的长;若不存在,请说明理由.12.我们定义:在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'叫△ABC 的“旋补三角形”,△AB'C'的边B'C'上的中线AD叫做△ABC的“旋补中线”.下面各图中,△AB'C'均是△ABC的“旋补三角形”,AD均是△ABC的“旋补中线”.(1)如图1,若△ABC为等边三角形,BC=8,则AD的长等于;(2)如图2,若∠BAC=90°,求证:AD=12BC;(3)如图3,若△ABC为任意三角形,(2)中结论还成立吗?如果成立,给予证明;如果不成立,说明理由.13.将△ABC的边AB绕点A顺时针旋转α得到AB′,边AC绕点A逆时针旋转β得到AC′,α+β=180°,连接B′C′,作△AB′C′的中线AD.【初步感知】(1)如图①,当∠BAC=90°,BC=4时,AD的长为;【探究运用】(2)如图②,△ABC为任意三角形时,猜想AD与BC的数量关系,并证明.【应用延伸】(3)如图③,已知等腰△ACB,AC=BC=m,延长AC到D,延长CB到E,使CD=CE=n,将△CED绕点C顺时针旋转一周得到△CE′D′,连接BE′、AD′,若∠CBE′=90°,求AD′的长度(用含m、n的代数式表示).14.(1)问题发现在等腰三角形ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME.填空:线段AF,AG,AB之间的数量关系是;线段MD,ME之间的数量关系是.(2)拓展探究在任意三角形ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量关系和位置关系?并说明理由;(3)解决问题在任意三角形ABC中,分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,若MD=2,请直接写出线段DE的长.15.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2√3,AB=2√39.在四边形内部是否存在点P,使△PDC是△P AB的“旋补三角形”?若存在,给予证明,并求△P AB的“旋补中线”长;若不存在,说明理由.。
九年级中考数学图形变换压轴题专题练习
九年级中考数学图形变换压轴题专题练习1、在图1-3中,四边形ABCD和CGEF都是正方形,M是AE的中点.(1)如图1,点F在BC延长线上,求证:DM=MG;(2)在图1的基础上,将正方形CGEF绕点C顺时针旋转到图2位置,此时点E在BC延长线上.求证:DM=MG;(3)在图2的基础上,将正方形CGEF绕点C在任一旋转一个角度到如图3位置,此时DM和MG还相等吗?请证明。
2、已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB 为边向线段AB的同一侧作正△APC和正△PBD.(1)连结AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;(2)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?3、已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)4、如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.5、如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE =2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.6、如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.7、如图(1),在△ABC中,∠ACB=90°,AC=BC=2,点D在AC上,点E在BC上,且CD=CE,连接DE.(1)线段BE与AD的数量关系是________,位置关系是________.(2)如图(2),当△CDE绕点C顺时针旋转一定角度α后,(1)中的结论是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.(3)绕点C继续顺时针旋转△CDE,当90°<α<180°时,延长DC交AB于点F,请在图(3)时,旋转角α的度数.中补全图形,并求出当AF=1+338、已知菱形ABCD的边长为5,∠DAB=60°.将菱形ABCD绕着A逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90°,连接DG、BE、CE、CF.(1)如图(1),求证:△AGD≌△AEB;(2)当α=60°时,在图(2)中画出图形并求出线段CF的长;(3)若∠CEF=90°,在图(3)中画出图形并求出△CEF的面积.(1)(2)9、已知,点O为矩形ABCD的对称中心,过O点的直线L交直线AD于M,ON⊥OM交直线DC于N,连MN,现将直线L绕点O顺时针旋转。
中考数学总复习《图形变换综合压轴题》专题测试卷(附答案)
中考数学总复习《图形变换综合压轴题》专题测试卷(附答案)1.线段AB与CD的位置关系如图1所示AB=CD=m,AB与CD的交点为O,且∠AOC=60°,分别将AB和AC平移到CE,BE的位置(如图2).(1)求CE的长和∠DCE的度数;(2)在图2中求证:AC+BD>m.2.如图,在Rt△ABC中∠ACB=90°,∠B=30°将Rt△ABC绕点C顺时针旋转得到Rt△A′B′C,且点B′、A′、B在同一直线上.请仅用无刻度的直尺完成以下作图.(1)在图1中,作出一个以AB为边的等边三角形;(2)在图2中,作出一个菱形.3.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别A(1,4),B(2,0),C(3,2)(1)画出将△ABC沿AC翻折得到的△AB1C1;(2)画出将△ABC沿x轴翻折得到的△A2BC2;(3)观察发现:△A2BC2可由△AB1C绕点(填写坐标)旋转得到(4)在旋转过程中,点B1经过的路径长为.∠ABC.以点B为旋转中心,4.如图1,在△ABC中BA=BC,D、E是AC边上的两点,且满足∠DBE=12将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.5.如图,将矩形ABCD绕着点B逆时针旋转得到矩形GBEF,使点C恰好落到线段AD上的E点处,连接CE,连接CG交BE于点H.(1)求证:CE平分∠BED;(2)取BC的中点M,连接MH,求证:MH∥BG;(3)若BC=2AB=4,求CG的长.6.已知,△ABC为等边三角形,点D,E为直线BC上两动点,且BD=CE.点F,点E关于直线AC成轴对称,连接AE,顺次连接A,D,F.(1)如图1,若点D,点E在边BC上,试判断△ADF的形状并说明理由;(2)如图2,若点D,点E在边BC外,求证:∠BAD=∠FDC.7.如图,正方形ABCD中∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交BC、DC(或它们的延长线)于点M、N.(1)如图1,求证:MN=BM+DN;(2)当AB=6,MN=5时,求△CMN的面积;(3)当∠MAN绕点A旋转到如图2位置时线段BM、DN和MN之间有怎样的数量关系?请写出你的猜想并证明.8.如图1 在△ABC中AB=AC点DE、分别在边AB、AC上AD=AE连接DC点P、Q、M分别为DE、BC、DC的中点连接MQ、PM.(1)求证:PM=MQ;(2)当∠A=50°时求 PMQ的度数;(3)将△ADE绕点A沿逆时针方向旋转到图2的位置若∠PMQ=120°判断△ADE的形状并说明理由.9.已知△ABC∠ACB=90°AC=BC=4D是射线CB上一点连接AD将AD绕点A逆时针旋转90°点D落在点E处连接BE交射线AC于点F.(1)如图1当点D与点C重合时求AF的长;(2)如图2当点D在线段BC上时连接CE在点D的运动过程中请问△AEC的面积是否会发生变化?如果不会求出它的面积;如果会请说明理由;(3)当BD=1时求AF的长.10.在等边△BCD中DF⊥BC于点F点A为直线DF上一动点以点B为旋转中心把BA顺时针旋转60°至BE.(1)如图1 点A在线段DF上连接CE求证:CE=DA;(2)如图2 点A在线段FD的延长线上请在图中画出BE并连接CE当∠DEC=45°时连接AC求出∠BAC的度数;(3)在点A的运动过程中若BD=6求EF的最小值11.如图一个含60°角的纸片顶点与等边△ABC的点B重合将该纸片绕点B旋转使纸片60°角的一边交直线AC于点D在另一边上截取点E使BE=BD连接AE.(1)当点D在边AC上时如图① 求证:AC=AD+AE;(2)当点D在边AC所在直线上如图②、如图③时线段AD,AC,AE之间又有怎样的数量关系?请直接写出结论.(3)在图③中AD、BE交于点K若AE=4,BC=6则AD=_______ DK=______.12.已知四边形ABCD中AB⊥AD,BC⊥CD AB=BC,∠ABC=120°∠MBN=60°,∠MBN绕B点旋转它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1)求证:AE+CF=EF.(2)当∠MBN绕B点旋转到AE≠CF时在图2种情况下求证:AE+CF=EF.(3)当∠MBN绕B点旋转到AE≠CF时在图3种情况下上述结论是否成立?若成立请给予证明;若不成立线段AE,CF EF又有怎样的数量关系?请写出你的猜想不需证明.13.如图在平行四边形ABCD中AC是对角线AB=AC点E是BC边上一点连接AE将AE绕着点A 顺时针旋转α得到线段AF.(1)如图1 若α=∠BAC=90°连接BF BF=3BC=8求△ABE的面积;(2)如图2 若α=2∠BAC=120°连接CF交AB于H求证:2AH+CE=AD;(3)若在(2)的条件下3CE=BC=9点P为AB边上一动点连接EP将线段EP绕着点E顺时针旋转60°得到线段EQ连接CQ当线段CQ取得最小值时直接写出四边形BHQE的面积.14.已知:正方形ABCD以A为旋转中心旋转AD至AP连接BP、DP.(1)若将AD顺时针旋转30°至AP如图1所示求∠BPD的度数?(2)若将AD顺时针旋转α度(0°<α<90°)至AP求∠BPD的度数?(3)若将AD逆时针旋转α度(0°<α<180°)至AP请分别求出0°<α<90°、α=90°、90°<α<180°三种情况下的∠BPD的度数(图2、图3、图4).15.已知如图1正方形ABCD的边长为5点E、F分别在边AB、AD的延长线上且BE=DF连接EF.(1)证明:EF⊥AC;(2)将△AEF绕点A顺时针方向旋转当旋转角α满足0°<α<45°时设EF与射线AB交于点G与AC交于点H如图所示试判断线段FH、HG、GE的数量关系并说明理由.(3)若将△AEF绕点A旋转一周连接DF、BE并延长EB交直线DF于点P连接PC试说明点P的运动路径并求线段PC的取值范围.16.【问题思考】如图1 点E是正方形ABCD内的一点过点E的直线AQ以DE为边向右侧作正方形DEFG 连接GC直线GC与直线AQ交于点P则线段AE与GC之间的关系为______.【问题类比】如图2 当点E是正方形ABCD外的一点时【问题思考】中的结论还成立吗?若成立请证明你的结论;若不成立请说明理由;【拓展延伸】如图3 点E是边长为6的正方形ABCD所在平面内一动点【问题思考】中其他条件不变则动点P到边AD的最大距离为______(直接写出结果).17.(1)【问题发现】如图1 在Rt△ABC中AB=AC∠BAC=90°点D为BC的中点以BD为一边作正方形BDFE点F恰好与点A重合则线段CF与AE的数量关系为_______;(2)【拓展探究】在(1)的条件下如果正方形BDFE绕点B顺时针旋转连接CF AE BF线段CF与AE 的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题解决】当AB=AC=6且(2)中的正方形BDFE绕点B顺时针旋转到E F C三点共线时求出线段AE的长.18.综合与实践:问题情景:如图1、正方形ABCD与正方形AEFG的边AB AE(AB<AE)在一条直线上正方形AEFG以点A为旋转中心逆时针旋转设旋转角为α在旋转过程中两个正方形只有点A重合其它顶点均不重合连接BE DG.(1)操作发现:当正方形AEFG旋转至如图2所示的位置时求证:BE=DG;(2)操作发现:如图3 当点E在BC延长线上时连接FC求∠FCE的度数;(3)问题解决:如图4 如果α=45°AB=2AE=4√2请直接写出点G到BE的距离.19.如图①在正方形ABCD中连接BD点E是边AB上的一点EF⊥AB交BD于点F点P是FD的中点连接EP、CP.(1)如图① 探究EP与CP有何关系并说明理由;(2)若将△BEF绕点B顺时针旋转90° 得到图② 连接FD取FD的中点P连接EP、CP请问在该条件下①中的结论是否成立并说明理由;(3)如果把△BEF绕点B顺时针旋转180° 得到图③ 同样连接FD取FD的中点P连接EP、CP请你直接写出EP与CP的关系.20.综合与实践问题情境:数学活动课上老师向大家展示了一个图形变换的问题.如图1.将正方形纸片ABCD折叠使边AB AD都落在对角线AC上展开得折痕AE AF连接EF.试判断△AEF的形状.独立思考:(1)请解答问题情境提出的问题并写出证明过程.实践探究:(2)如图2.将图1中的∠EAF绕点A旋转使它的两边分别交边BC CD于点P Q连接PQ.请猜想线段BP PQ DQ之间的数量关系并加以证明.问题解决:(3)如图3.连接正方形对角线BD若图2中的∠PAQ的边AP AQ分别交对角线BD于点M N将图3中的正方形纸片沿对角线BD剪开如图4所示.若BM=7DN=24求MN的长.参考答案1.(1)解:∵将AB和AC平移到CE,BE的位置∵AB=CE,AB∥CE∵∠AOC=∠DCE∵∠AOC=60°AB=CD=m∵∠DCE=60°CE=AB=m;(2)证明:如图连接DE由(1)得:∠DCE=60°CE=AB=m∵AB=CD=m∵CD=CE∵△CDE是等边三角形∵DE=CD=m∵将AB和AC平移到CE,BE的位置∵AC=BE在△BDE中BD+BE>DE即AC+BD>m.2.(1)解:△ADB是等边三角形即为所求理由如下:如图延长AC交BB′于一点D∵∠ACB=90°∠CBA=30°将Rt△ABC绕点C顺时针旋转得到Rt△A′B′C ∵∠A=60°,∠B′=30°,BC=B′C∵∠B′BC=30°,∠ABD=60°∵∠BDA=180°−60°−60°=60°∵△ADB是等边三角形;(2)解:四边形ABDE是菱形即为所求理由如下:过点D作DE平行于AB交BC的延长线于一点即为点E连接AE如图:由(1)知△ADB是等边三角形且∠ACB=90°∵BC⊥AD∵DC=AC∵∠DEB =∠ABC∵∠DCE =∠ACB∵△DCE ≌△ACB∵BC =EC∵四边形ABDE 是菱形.3.解:(1)如图:(2)如图:(3)(5 0)(4)B 1经过的路径是以(5 0)为圆心 BB 1为半径的圆弧∵C =14×2×π×3=32π;4.(1)证明:∵∠DBE =12∠ABC∵∠ABD +∠CBE =∠DBE =12∠ABC∵△ABF 由△CBE 旋转而成∵BE =BF ∠ABF =∠CBE∵∠DBF =∠DBE在△DBE 与△DBF 中{BE =BF ∠DBE =∠DBF BD =BD∵△DBE ≌△DBF (SAS )(2)证明:∵将△CBE按逆时针方向旋转得到△ABF∵BA=BC∠ABC=90°∵∠BAC=∠BCE=45°∵图形旋转后点C与点A重合CE与AF重合∵AF=EC∵∠FAB=∠BCE=45°∵∠DAF=90°在Rt△ADF中DF2=AF2+AD2∵AF=EC∵DF2=EC2+AD2同(1)可得DE=DF∵DE2=AD2+EC2.5.(1)证明:∵将矩形ABCD绕着点B逆时针旋转得到矩形GBEF使点C恰好落到线段AD上的E点处∴BE=BC∴∠BEC=∠BCE∵AD∥BC∴∠BCE=∠DEC∴∠BEC=∠DEC∴CE平分∠BED;(2)证明:过点C作CN⊥BE于N如图:∵CE平分∠BED CD⊥DE CN⊥BE∴CD=CN∴BG=AB=CD=CN∵∠BHG=∠NHC∠GBH=∠CNH=90°BG=CN∴△BHG≌△NHC(AAS)∴GH=CH即点H是CG中点∵点M是BC中点∴MH是△BCG的中位线∵MH∥BG;(3)解:过点C作CN⊥BE于N过G作GR⊥BC于R如图:∵BC=2AB=4∴BG=AB=CD=CN=2∴CN=12 BC∴∠NBC=30°∵∠GBE=90°∴∠GBR=60°∴BR=12BG=1GR=√3BR=√3在Rt△GRC中CG=√GR2+CR2=√(√3)2+(1+4)2=2√7∴CG的长为2√7.6.解:(1)△ADF为等边三角形理由如下:∵△ABC为等边三角形∵AB=AC,∠ABC=∠ACB=60°.在△ABD和△ACE中{AB=AC∠ABC=∠ACBBD=CE∴△ABD≅△ACE(SAS)∴AD=AE,∠BAD=∠CAE.∵点F 点E关于直线AC成轴对称∴AF=AE,∠CAF=∠CAE ∴AD=AF,∠CAF=∠BAD.∵∠BAD+∠DAC=60°∴∠CAF+∠DAC=60°即∠DAF=60°,∵△ADF为等边三角形.(2)∵△ABC为等边三角形∵AB=AC,∠ABC=∠ACB=60°.在△ABD和△ACE中{AB=AC∠ABC=∠ACBBD=CE∴△ABD≅△ACE(SAS)∴AD=AE,∠BAD=∠CAE.∵点F 点E关于直线AC成轴对称∴AF=AE,∠CAF=∠CAE ∴AD=AF,∠CAF=∠BAD.∵∠BAD+∠DAC=60°∴∠CAF+∠DAC=60°∵△ADF为等边三角形.∴∠ADF=∠FDC+∠ADC=60°∵∠BAD+∠ADC=∠ABC=60°∵∠BAD=∠FDC7.(1)解:如图将△ABM绕点A逆时针旋转90°得到△ADM′则:△ABM≌△ADM′∵AM=AM′,BM=DM′,∠BAM=∠DAM′∵四边形ABCD为正方形∵∠BAD=90°∵∠MAN=45°∵∠MAB+∠NAD=45°∵∠M′AD+∠NAD=∠M′AN=45°∵∠MAN=∠M′AN又∵AM=AM′,AN=AN∵△AMN≌△AM′N(SAS)∵MN=M′N=M′D+DN=BM+DN;(2)解:∵四边形ABCD为正方形∵AD=AB=6S正方形=62=36∵△AMN≌△AM′N∵MN′=MN=5∵S△AMN=S△AM′N=12M′N⋅AD=12×5×6=15∵△ABM≌△ADM′∵S△ABM+S△ADN=S△ABM′+S△ADN=S△AM′N=15∵S△CMN=S正方形−S△AMN−S△ADN−S△AMB=36−15−15=6;(3)解:DN=BM+MN理由如下:如图将△ABM绕点A逆时针旋转90°得到△ADM′连接MN 则:∠MAM′=90°△ABM≌△ADM′∵AM=AM′,BM=DM′,∠BAM=∠DAM′∵∠MAN=45°∵∠M′AN=∠M′AM−∠MAN=90°−45°=45°∵∠MAN=∠M′AN又∵AM=AM′,AN=AN∵△AMN≌△AM′N(SAS)∵MN=M′N∵DN=M′D+M′N=BM+MN.8.(1)证明:∵AB=AC AD=AE∵BD=CE∵P M分别为DE DC的中点∵PM=12CE PM∥CE∵M Q分别为DC CB的中点∵MQ=12DB MQ∥OB∵PM=MQ;(2)解:∵点P、Q、M分别为DE、BC、DC的中点∵MQ∥DB PM∥AC∵∠MQC=∠B∵∠PMQ=∠DMP+∠DMQ=∠ACD+∠BCD+∠MQC=∠ACD+∠BCD+∠B =180°−50°=130°;(3)解:∵ADE是等边三角形理由如下:由旋转的性质可知∠BAC=∠DAE∵∠BAD=∠CAE在△BAD和△CAE中{AB=AC ∠BAD=∠CAE AD=AE∵∵BAD∵∵CAE(SAS)∵BD=CE∠ABD=∠ACE ∵P M为DE DC的中点∵PM∥EC∵∠PMD=∠ECD∵M Q为DC BC的中点∵MQ∥DB∵∠MQC=∠DBC∵∠MPQ=∠DMP+∠DMQ=∠DCE+∠MQC+∠MCQ=∠ACD+∠ACE+∠DBC+∠MCQ=∠ACD+∠MCQ+∠DBC+∠ABD=∠ACB+∠ABC=120°∵∠BAC=180°−120°=60°∵∠DAE=∠BAC=60°又∵AD=AE∵∵ADE是等边三角形.9.(1)解:∵将AD绕点A逆时针旋转90°∵AD=AE,∠DAE=90°∵点D与点C重合∵AC=AE∵BC=AC=AE又∵∠AFE=∠BFC∠EAF=∠BCF=90°∵△BCF≌△EAF(AAS)∵AF=CF∵AC=BC=4∵AF=CF=2;(2)解:△AEC的面积不会变化理由如下:如图过点E作EH⊥AC于H∵将AD绕点A逆时针旋转90°∵AD=AE,∠DAE=90°=∠ACB∵∠DAC+∠CAE=90°=∠DAC+∠ADC∵∠ADC=∠CAE∵△ADC≌△EAH(AAS)∵EH =AC =4∵S △ACE =12×AC ⋅EH =8;(3)解:当点D 在线段BC 上时∵BD =1,BC =4∵CD =3∵△ADC ≌△EAH∵CD =AH =3∵CH =1∵∠EHF =∠ACB =90° ∠AFE =∠BFC ,AC =EH =BC∵△EFH ≌△BFC(AAS)∵FH =FC =12 ∵AF =AF +FH =72;当点D 在线段CB 的延长线时 过点E 作EH ⊥直线AC 于H∵BD =1,BC =4∵CD =5同理可证△ACD ≌△EHA∵CD =AH =5∵CH =1同理可证:△BCF ≌△EHF∵FH =FC =12 ∵AF =AC +FC =92综上所述:AF 的长为72或92.10.(1)解:由旋转得 BA =BE ∠ABE =60°∵△BCD 是等边三角形∵BD=BC∠DBC=60°∵∠ABE=∠DBC∵∠DBA+∠ABC=∠ABC+∠CBE ∵∠DBA=∠CBE在△DBA与△CBE中{BD=BC ∠DBA=∠CBE BA=BE∵△DBA≌△CBE(SAS)∵DA=CE.(2)解:如图3由(1)可知△DBA≌△CBE∵DA=CE∠BDA=∠BCE又∵△BCD是等边三角形∵∠BDC=∠BCD=60°DB=DC∵DB=DC∵∵BCD是等腰三角形∵DF⊥BC∵∠BDF=12∠BDC=30°∵∠BDA=180°−∠BDF=150°∵∠BCE=150°∠CDA=360°−∠BDA−∠BDC=150°∵∠DCE=∠BCE−∠BCD=90°∵∠DEC=45°∵∠EDC=45°∵∠DEC=∠EDC ∵CE=CD∵DB=DC=DA∵∠BAD=180°−∠BDA2=15°∠CAD=180°−∠CDA2=15°∵∠BAC=∠BAD+∠CAD=30°.(3)解:∵由图1可知当点A在线段DF上时∠BCE=∠BDA=30°;由图3可知当点A在线段FD的延长线上时∠BCE=∠BDA=150°;由图4可知当点A在线段DF的延长线上时∠BCE=∠BDA=30°;∵综上所述当点A在直线DF上运动时直线CE与直线BC的夹角始终为30°即点E的运动轨迹为一条直线过点F作FE′⊥EC于点E′则当点E运动到点E′时此时EF的长度最短∵BD=CD=BC=6DF⊥BC∵CF=12BC=3又∵FE′⊥EC∠BCE=30°∵FE′=12CF=32∵EF的最小值为32.11.((1)证明:∵△ABC是等边三角形∵AB=BC∠ABC=60°.∵∠EBD=60°∵∠EBA+∠ABD=∠CBD+∠ABD即:∠ABE=∠CBD∵BD=BE∵△ABE≌△CBD(SAS)∵AE=CD.∵AC=AD+CD∵AC=AD+AE.(2)如图2 当点D在CA的延长线时∵∵DBE=∵ABC=60°∵∵DBE+∵ABD=∵ABC+∵ABD即∵ABE=∵CBD∵AB=BC BE=BD∵∵ABE∵△CBD(SAS)∵AE=CD=AC+AD∵AD=AE-AC;如图3 当点D在AC的延长线上时∵∵ABC=∵DBE=60°∵∵ABC-∵CBE=∵DBE-∵CBE即∵ABE=∵CBD∵AB=BC BD=BE∵△ABE∵△CBD(SAS)∵AE=CD=AD-AC∵AC=AD-AE;综上当点D在CA延长线时AD=AE-AC;当点D在AC的延长线上时AC=AC-AE;(3)解:由(2)得∵ABE∵∵CBD∵CD=AE=4 ∵BAE=∵BCD=180°-∵ACB=120°∵AD=AC+CD=6+4=10 ∵CAE=∵BAE-∵BAC=60°∵∵CAE=∵ACB∵AE∵BC∵∵AKE∵∵CKB∵AK CK =AEBC=46∵AK =23CK又∵AK +CK =AC =BC =6∵53 CK =6∵CK =185∵DK =CK +CD =185+4=385.12.解:(1)∵AB ⊥AD,BC ⊥CD,∵∠A =∠C ,在△ABE 与△CBF 中{AB =BC ∠A =∠C AE =CF ∵△ABE ≅△CBF(SAS),∵∠ABE =∠CBF,BE =BF,∵∠ABC =120°,∠MBN =60°,∵∠ABE =∠CBF =30°,∵AE =12BE,CF =12BF,∵∠MBN =60°,BE =BF∵△BEF 为等边三角形∵BE =BF =EF,∵AE =CF =12EF,∵AE +CF =EF;(2)如图 将Rt △ABE 顺时针旋转120°得△BCG∵BE=BG,AE=CG,∠A=∠BCG,∵AB=BC,∠ABC=120°,∵点A与点C重合∵∠A=∠BCF=90°,∵∠BCG+∠BCF=180°,∵点G、C、F三点共线∵∠ABC=120°,∠MBN=60°,∠ABE=∠CBG,∵∠GBF=60°,在△GBF与△EBF中{BG=BE∠GBF=∠EBFBF=BF∵△GBF≅△EBF(SAS),∵FG=EF,∵EF=AE+CF;(3)不成立EF=AE−CF理由如下:如图将RtΔABE顺时针旋转120° 得ΔBCG∵AE=CG由(2)同理得点C、F、G三点共线∵AB=BC,∠ABC=120°,∵点A与点C重合∵BG=BE,∵∠ABC=∠ABE+∠CBE=120°,∵∠CBG+∠CBE=∠GBE=120°,∵∠MBN=60°,∵∠GBF=60°,在ΔBFG与ΔBFE中{BG=BE∠GBF=∠EBFBF=BF∵△BFG≅△BFE(SAS)∵GF=EF,∵EF=AE−CF.13.(1)解:如图:过点A作BC的垂线交BC于点M∵α=∠BAC=90°∴∠FAB=∠EAC在△FAB和△EAC{FA=EA ∠FAB=∠EAC BA=CA∴△FAB≅△EAC(SAS)∴FB=CE又∵BF=3BC=8∴BE=BC−CE=8−3=5又∵∠BAC=90°AB=AC ∴AM=12BC=4∴S△ABE=12BE×AM=12×5×4=10.(2)解:在BH上截取BP=CE连接CP∵α=2∠BAC=120°∵∠BAC=60°∵AB=AC∵△ABC是等边三角形∵∠B=∠ACB=60°BC=AC 在△CBP和△ACE中{BP=CE∠B=∠ACB=60°BC=AC∴△CBP≅△ACE∴CP=AE=AF∠BPC=∠AEC=60°+∠BAE ∴∠APC=180°−(∠BAE+60°)∵∠FAB=120°−∠BAE∴∠APC=∠FAB在△AHF和△CPH中{∠APC=∠FAB ∠AHF=∠PHC CP=AF∵△AHF≅△PHC(AAS)∴AH=PH∵BP=CE∴AB=BC=AD=AH+PH+CE=2AH+CE.(3)解:如图:∵3CE=BC=9∵CE=3BE=BC−CE=6,连接EH由(2)可知∠BAC=∠ABC=60°∵△BHE是等边三角形∵∠BEH=60°,BE=HE∵将线段EP绕着点E顺时针旋转60°得到线段EP1∵PE=P1E∠PEP1=60°即∠HEP1=∠BEP,在△BPE和△HEP1中{PE=P1E∠HEP1=∠BEPBE=HE,∵△BEP≅△HEP1(SAS),∵∠B=∠EHP1=60°,∵∠BEH=60°∵∠BEH=∠EHP1=60°,∵HP1∥BC点P1的轨迹为过点H且平行BC的直线过H作HP1∥BC其延长线角CD于M过C作CQ⊥BP1于Q由点到直线的距离垂线段最短可知:当CQ⊥MH时即CQ有最小值∵BH∥CM,BC∥HM∵四边形BHMC是平行四边形∵CM=BH=6∠HMC=∠B=60°∵∠QCM=30°∵MQ=12CM=3∵CQ=√CM2−MQ2=3√3∵边形BHQE的面积为BE⋅CQ=6×3√3=18√3.14.(1)解:∵AD顺时针旋转30°至AP∵AD=AP∠PAD=30°∵∠APD=12(180°−30°)=75°∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°−30°=60°∵∠BPA=12(180°−60°)=60°∵∠BPD=60°+75°=135°.(2)∵AD顺时针旋转α至AP ∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°−α∵∠BPA=12[180°−(90−α)]=45°+α2∵∠BPD=(90°−α2)+(45°+α2)=135°.(3)①当0°<α<90°时∵AD逆时针旋转α至AP∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°+α∵∠BPA=12[180°−(90+α)]=45°−α2∵∠BPD=(90°−α2)−(45°−α2)=45°.②当α=90°时∵AD逆时针旋转90°至AP∵AD=AP∠PAD=90°∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°+90°=180°即点P、A、B三点共线∵∠BPD=∠APD=12(180°−90°)=45°.③当90°<α<180°时∵AD逆时针旋转α至AP∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=360°−90°+α=270°−α∵∠BPA=12[180°−(270°−α)]=α2−45°∵∠BPD=(90°−α2)+(α2−45°)=45°.15.(1)证明:如图1:∵四边形ABCD是正方形∴AD=AB∠DAC=∠BAC∵BE=DF ∴AD+DF=AB+BE即AF=AE∴AC⊥EF.(2)解:FH2+GE2=HG2理由如下:如图2过A作AK⊥AC截取AK=AH连接GK、EK∵∠CAB=45°∴∠CAB=∠KAB=45°∵AG=AG∴△AGH≅△AGK(SAS)∴GH=GK由旋转得:∠FAE=90°AF=AE∵∠HAK=90°∴∠FAH=∠KAE∴△AFH≅△AEK(SAS)∴∠AEK=∠AFH=45°FH=EK∵∠AEH=45°∴∠KEG=45°+45°=90°Rt△GKE中KG2=EG2+EK2即:FH2+GE2=HG2.(3)解:如图3∵AD=AB∠DAF=∠BAE AE=AF∴△DAF≅△BAE(SAS)∴∠DFA=∠BEA∵∠PNF=∠ANE∴∠FPE=∠FAE=90°∴将△AEF绕点A旋转一周总存在直线EB与直线DF垂直∴点P的运动路径是:以BD为直径的圆如图4当P与C重合时PC最小PC=0当P与A重合时PC最大为5√2.∴线段PC的取值范围是:0≤PC≤5√2.16.解:问题思考:设AQ和BC交于点H∵四边形ABCD和四边形DEFG都为正方形∵∠ADC=∠EDG=90°DA=DC,DE=DG ∵∠ADC−∠EDC=∠EDG−∠EDC即∠ADE=∠CDG∵△DAE≌△DCG(SAS)∵AE=CG∠DAE=∠DCG∵∠DAB=∠DCB=90°∵∠DAE+∠HAB=∠DCG+∠PCH即∠BAH=∠PCH∵∠AHB=∠CHP∵∠B=∠CPA=90°即AE⊥CG故答案为:AE=GC AE⊥GC;问题类比:问题思考中的结论仍然成立理由如下:设AQ和BC交于点H∵四边形ABCD和四边形DEFG都为正方形∵∠ADC=∠EDG=90°DA=DC,DE=DG ∵∠ADC−∠EDC=∠EDG−∠EDC即∠ADE=∠CDG∵△DAE≌△DCG(SAS)∵AE=CG∠DAE=∠DCG∵∠DAB=∠DCB=90°∵∠DAE+∠HAB=∠DCG+∠PCH即∠BAH=∠PCH∵∠AHB=∠CHP∵∠B=∠CPA=90°即AE⊥CG故答案为:AE=GC AE⊥GC;拓展应用:∵∠CPA=90°∵点P的运用轨迹即为以AC为直径的⊙O上如图:当点P位于AD右侧PH⊥AD且经过圆心O时动点P到边AD的距离最大∵正方形的边长为6∵AC=6√2OH=3∵OP=OC=12AC=3√2∵PH=OH+OP=3+3√2即动点P到边AD的最大距离为3+3√2故答案为:3+3√2.17.(1)解:如图1 ∵四边形BDFE是正方形∵FE=BE∠E=90°∵BF=√BE2+FE2=√2FE2=√2FE∵点F与点A重合AB=AC∵CF=AC=AB=BF FE=AE∵CF=√2AE故答案为:CF=√2AE;(2)无变化理由如下:证:如图2 ∵EB=EF∠BEF=90°∵∠EBF=∠EFB=45°BF=√EB2+EF2=√2EB2=√2EB∵AB=AC∠BAC=90°∵∠ABC=∠ACB=45°BC=√AB2+AC2=√2AB2=√2AB∵BF EB =BCAB=√2∠CBF=∠ABE=45°−∠ABF∵△CBF∽△ABE∵CF AE =BCAB=√2∵CF=√2AE;(3)如图2 E F C三点共线且点F在线段CE上∵BC=√2AB AB=AC=6∵BC=√2×6=6√2由(1)得BD=12BC∵BE=EF=BD=12×6√2=3√2∵∠BEC=90°∵CE=√BC2−BE2=√(6√2)2−(3√2)2=3√6∵CF=CE−EF=3√6−3√2∵CF=√2AE∵AE=√22CF=√22×(3√6−3√2)=3√3−3;如图3 E F C三点共线且点F在线段CE的延长线上∵BF EB =BCAB=√2∠CBF=∠ABE=45°+∠CBE∵△CBF∽△ABE∵CF AE =BCAB=√2∵CF=√2AE∵∠BEF=90°∵∠BEC=180°−∠BEF=90°∵CE=√BC2−BE2=√(6√2)2−(3√2)2=3√6∵CF=CE+EF=3√6+3√2∵AE=√22CF=√22×(3√6+3√2)=3√3+3综上所述线段AE的长为3√3−3或3√3+3.18.(1)证明:∵四边形ABCD是正方形∵AB =AD ∠BAE +∠EAD =90°又∵四边形AEFG 是正方形∵AE =AG ∠EAD +∠DAG =90°∵∠BAE =∠DAG .在△ABE 与△ADG 中{AB =AD,∠BAE =∠DAG AE =AG,∵△ABE ≅△ADG (SAS )∵BE =DG ;(2)解;过F 作FH ⊥BE 垂足为H∵∠AEF =∠ABE =∠EHF =90°∵∠AEB +∠FEH =90° ∠FEH +∠EFH =90°∵∠AEB =∠EFH∵四边形AEFG 是正方形∵AE =EF在△ABE 与△EHF 中{∠ABE =∠EHF ∠AEB =EFH AE =EF∵△ABE≌△EHF (AAS )∵AB =EH BE =FH∵AB =BC =EH∵BC +EC =EH +EC∵BE =CH =FH又∵∠EHF =90°∵∠FCE=45°(3)解:如图连接GB GE过点B作BH⊥AE于点H ∵GE是正方形AEFG的对角线∵∠AEG=45°∵∠EAB=45°∵AB∥GE∵S△BEG=S△AEG=12S正方形AEFG=12×4√2×4√2=16∵AB=2∵BH=AH=√2∵HE=4√2−√2=3√2在Rt△BHE中BE=√(√2)2+(3√2)2=2√5设点G到BE的距离为h∵S△BEG=12×BE×ℎ∵1 2×2√5×ℎ=16解得:ℎ=16√55∵点G到BE的距离为16√55.19.解:(1)EP=CP且EP⊥CP.证明:过PH⊥AB于点H延长HP交CD于点I作PK⊥AD于点K.则四边形PIDK是正方形四边形AKPH是矩形∴AK=HP KD=DI=PI=AH∵AD=CD∴IC=HP ∵AD∥PH∥EF P是DF的中点∴HA=HE∴HE=PI 在Rt△HPE和Rt△ICP中{HE=PI ∠PHE=∠CIP HP=IC∴Rt△HPE≌Rt△ICP(SAS)∴EP=CP∠HPE=∠PCI∠HEP=∠CPI∴∠HPE+∠CPI=90°∴∠EPC=90°∴EP⊥CP;(2)成立.证明:图2中作PH⊥BC则EF∥PH∥CD又∵P是DF的中点∴EH=CH 则PH是EC的中垂线∴PE=CP∵EF=EB∴EF+CD=EC ∵P是DF的中点EH=CH则PH=12(EF+CD)∴PH=12 EC∴△EPC是等腰直角三角形∴EP=CP且EP⊥CP;(3)图3中延长FE交DC延长线于M连MP.∵∠AEM=90°∠EBC=90°∠BCM=90°∴四边形BEMC是矩形.∴BE=CM∠EMC=90°由图(2)可知∵BD平分∠ABC∠ABC=90°∴∠EBF=45°又∵EF⊥AB∴△BEF为等腰直角三角形∴BE=EF∠F=45°.∴EF=CM.∵∠EMC=90°∴MP=12FD=FP.∵BC=EM BC=CD∴EM=CD.∵EF=CM∴EF+EM=CM+DC 即FM=DM又∵FP=DP∠CMP=12∠EMC=45°∴∠F=∠PMC.在△PFE和△PMC中{FP=MP ∠F=∠PMC EF=CM∴△PFE≌△PMC(SAS).∴EP=CP∠FPE=∠MPC.∵∠FMC=90°MF=MD FP=DP∴MP⊥FD∴∠FPE+∠EPM=90°∴∠MPC+∠EPM=90°即∠EPC=90°∴EP⊥CP.20.(1)解∵ ∵AEF是等腰三角形理由如下∵∵四边形ABCD是正方形∵AB=AD=BC=CD∵BAD=∵B=∵D=90°∵∵ABC∵ADC都是等腰三角形∵∵BAC=∵DAC=45°根据题意得∵∵BAE=∵CAE=22.5° ∵DAF=∵CAF=22.5°(∠BAC+∠DAC)=45°∵BAE=∵DAF=22.5°∵∠EAF=12∵∵B=∵D=90° AB=AD∵∵BAE∵∵DAF(ASA)∵AE=AF∵∵AEF是等腰三角形;(2)解∵ PQ=BP+DQ理由如下∵如图延长CB到T使得BT=DQ.∵AD=AB∵ADQ=∵ABT=90° DQ=BT∵∵ADQ∵∵ABT(SAS)∵AT=AQ∵DAQ=∵BAT由(1)得∵∵P AQ=45°∵∵P AT=∵BAP+∵BAT=∵BAP+∵DAQ=45°∵∵P AT=∵P AQ=45°∵AP=AP∵∵P AT∵∵P AQ(SAS)∵PQ=PT∵PT=PB+BT=PB+DQ∵PQ=BP+DQ;(3)解:如图将∵ADN绕点A顺时针旋转90°得到∵ABR连接RM.∵∵BAD=90° ∵MAN=45°∵∵DAN+∵BAM=45°∵∵DAN=∵BAR∵∵BAM+∵BAR=45°∵∵MAR=∵MAN=45°∵AR=AN AM=AM∵∵AMR∵∵AMN(SAS)∵ RM=MN∵∵D=∵ABR=∵ABD=45°∵∵RBM=90°∵RM2=BR2+BM2∵ DN=BR MN=RM∵BM2+DN2=MN2.∵BM=7DN=24∵MN=√72+242=25.。
2019年、2020年山东省中考试题分类数学(12)——图形的变换(含答案)
2019年、2020年山东省数学中考试题分类(12)——图形的变换一.轴对称图形(共2小题)1.(2020•淄博)下列图形中,不是轴对称图形的是()A.B.C.D.2.(2019•东营)下列图形中,是轴对称图形的是()A.B.C.D.二.关于x轴、y轴对称的点的坐标(共1小题)3.(2020•菏泽)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)三.轴对称-最短路线问题(共1小题)4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A .12B .34C .1D .32 四.翻折变换(折叠问题)(共5小题)5.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 6.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE =5,BF =3,则AO 的长为( )A .√5B .32√5C .2√5D .4√57.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .68.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√39.(2020•威海)如图,四边形ABCD 是一张正方形纸片,其面积为25cm 2.分别在边AB ,BC ,CD ,DA 上顺次截取AE =BF =CG =DH =acm (AE >BE ),连接EF ,FG ,GH ,HE .分别以EF ,FG ,GH ,HE 为轴将纸片向内翻折,得到四边形A 1B 1C 1D 1.若四边形A 1B 1C 1D 1的面积为9cm 2,则a = .五.图形的剪拼(共1小题)10.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm 的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm 2的是( )A .B .C .D .六.旋转的性质(共1小题)11.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .α2B .23αC .αD .180°﹣α七.中心对称图形(共7小题)12.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .13.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是() A . B . C . D .14.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C.D.15.(2020•临沂)下列交通标志中,是中心对称图形的是()A.B.C.D.16.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.17.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1B.2C.3D.4 18.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.八.坐标与图形变化-旋转(共3小题)19.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)20.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)21.(2020•烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为.九.利用旋转设计图案(共1小题)22.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.一十.几何变换综合题(共1小题)23.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP 的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.一十一.相似三角形的判定与性质(共5小题)24.(2020•东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD 、BC 于点M 、N .下列结论:①△APE ≌△AME ;②PM +PN =AC ;③PE 2+PF 2=PO 2;④△POF ∽△BNF ;⑤点O 在M 、N 两点的连线上.其中正确的是( )A .①②③④B .①②③⑤C .①②③④⑤D .③④⑤ 25.(2020•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .4226.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;②△OGE ∽△FGC ;③四边形CEOF 的面积为正方形ABCD 面积的14;④DF 2+BE 2=OG •OC .其中正确的是( )A.①②③④B.①②③C.①②④D.③④27.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF 与DG的交点.若AC=6,则DH=.28.(2020•济宁)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2√2.则BO的长是.一十二.位似变换(共1小题)29.(2020•德州)在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为.一十三.相似形综合题(共1小题)30.(2020•枣庄)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE =CF ,求证:DE =DF ;(2)如图2,在∠EDF 绕点D 旋转的过程中,试证明CD 2=CE •CF 恒成立;(3)若CD =2,CF =√2,求DN 的长.一十四.计算器—三角函数(共1小题)31.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是( )A .B .C .D . 一十五.解直角三角形(共2小题)32.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .3√55B .√175C .35D .45 33.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点D 为AB 边的中点,连接CD ,若BC =4,CD =3,则cos ∠DCB 的值为 .一十六.解直角三角形的应用-仰角俯角问题(共6小题)34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15√3)米C.15√3米D.(36﹣10√3)米35.(2020•济宁)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:√3,则斜坡AB的长是米.36.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.37.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)38.(2020•德州)如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A的俯角为60°,求楼房的高度.39.(2020•聊城)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).一十七.解直角三角形的应用-方向角问题(共2小题)40.(2020•济宁)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里41.(2019•济南)某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈3 4,tan53°≈4 3)A.225m B.275m C.300m D.315m 一十八.简单几何体的三视图(共1小题)42.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.一十九.简单组合体的三视图(共4小题)43.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.44.(2020•青岛)如图所示的几何体,其俯视图是()A.B.C.D.45.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图46.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图二十.由三视图判断几何体(共4小题)47.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.48.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为()A.B.C.D.49.(2020•临沂)根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱50.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.2019年、2020年山东省数学中考试题分类(12)——图形的变换参考答案与试题解析一.轴对称图形(共2小题)1.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.2.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.二.关于x轴、y轴对称的点的坐标(共1小题)3.【解答】解:∵将点P(﹣3,2)向右平移3个单位得到点P',∴点P'的坐标是(0,2),∴点P'关于x轴的对称点的坐标是(0,﹣2).故选:A.三.轴对称-最短路线问题(共1小题)4.【解答】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB =∠AOB ,∴CD ∥AO∴BC BO =CD AO∵OC =2,OB =4,∴BC =2,∴24=CD 3,解得,CD =32; ∵CD ∥AO ,∴EO EC =PO DC ,即24=PO 32,解得,PO =34 故选:B .四.翻折变换(折叠问题)(共5小题)5.【解答】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF =√AF 2−AB 2=√25−9=4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x在Rt △ECF 中,∵CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43,∴DE =EF =3﹣x =53,∴tan ∠DAE =DE AD =535=13, 故选:D .6.【解答】解:∵矩形ABCD ,∴AD ∥BC ,AD =BC ,AB =CD ,∴∠EFC =∠AEF ,由折叠得,∠EFC =∠AFE ,∴∠AFE =∠AEF ,∴AE =AF =5,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA=OC=2√5,故选:C.7.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.8.【解答】解一:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG=√22−12=√3,∴BE=DF=MG=√3,∴OF:BE=2:3,解得OF=2√3 3,∴OD=√3−2√33=√33.故选:B.解二:连接AA'.∵EN=1,∴由中位线定理得AM=2,∵对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,∴A'A=A'B,∵把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,∴A'B=AB,∠ABM=∠A'BM,∴△ABA'为等边三角形,∴∠ABA′=∠BA′A=∠A′AB=60°,又∵∠ABC=∠BAM=90°,∴∠ABM=∠A'BM=∠A'BC=30°,∴BM=2AM=4,AB=√3AM=2√3=CD.在直角△OBC中,∵∠C=90°,∠OBC=30°,∴OC=BC•tan∠OBC=5×√33=5√33,∴OD=CD﹣OC=2√3−5√33=√33.故选:B.9.【解答】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=AH=(5﹣a)cm,又∠A=∠B=90°,∴△AHE≌△BEF(SAS),同理可得△AHE≌△BEF≌△DGH≌CFG,由折叠的性质可知,图中的八个小三角形全等.∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),12a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.五.图形的剪拼(共1小题)10.【解答】解:最小的等腰直角三角形的面积=18×12×42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.六.旋转的性质(共1小题)11.【解答】解:∵∠ABC=∠ADE,∠ABC+∠ABE=180°,∴∠ABE+∠ADE=180°,∴∠BAD+∠BED=180°,∵∠BAD=α,∴∠BED=180°﹣α.故选:D.七.中心对称图形(共7小题)12.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.13.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不符合题意;C、既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、既是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A.14.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.15.【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.16.【解答】解:A、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B、是中心对称图形但不是轴对称图形.故此选项符合题意;C、既是轴对称图形,又是中心对称图形.故此选项不合题意;D、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B.17.【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.18.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、既是中心对称图形又是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、是中心对称图形,不是轴对称图形,故本选项错误.故选:B.八.坐标与图形变化-旋转(共3小题)19.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.20.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.21.【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).九.利用旋转设计图案(共1小题)22.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折得到.故选:B.一十.几何变换综合题(共1小题)23.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=12BD,PN=12CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN =12BD ,PN =12CE ,MN ∥BD ,PN ∥CE ,∴MN =PN ,∠ENM =∠EBD ,∠BPN =∠BCE ,∴∠ENP =∠NBP +∠NPB =∠NBP +∠ECB ,∵∠EBD =∠ABD +∠ABE =∠ACE +∠ABE ,∴∠MNP =∠MNE +∠ENP =∠ACE +∠ABE +∠EBC +∠EBC +∠ECB =180°﹣∠BAC =60°,∴△MNP 是等边三角形;(3)根据题意得,BD ≤AB +AD ,即BD ≤4,∴MN ≤2,∴△MNP 的面积=12MN ⋅√32MN =√34MN 2,∴△MNP 的面积的最大值为√3.一十一.相似三角形的判定与性质(共5小题)24.【解答】解:∵四边形ABCD 是正方形∴∠BAC =∠DAC =45°.∵在△APE 和△AME 中,{∠PAE =∠MAE AE =AE ∠AEP =∠AEM,∴△APE ≌△AME (SAS ),故①正确;∴PE =EM =12PM ,同理,FP =FN =12NP .∵正方形ABCD 中AC ⊥BD ,又∵PE ⊥AC ,PF ⊥BD ,∴∠PEO =∠EOF =∠PFO =90°,且△APE 中AE =PE∴四边形PEOF 是矩形.∴PF =OE ,∴PE +PF =OA ,又∵PE =EM =12PM ,FP =FN =12NP ,OA =12AC ,∴PM +PN =AC ,故②正确;∵四边形PEOF 是矩形,∴PE =OF ,在直角△OPF 中,OF 2+PF 2=PO 2,∴PE 2+PF 2=PO 2,故③正确.∵△BNF 是等腰直角三角形,而△POF 不一定是等腰直角三角形,故④错误; 连接OM ,ON ,∵OA 垂直平分线段PM .OB 垂直平分线段PN ,∴OM =OP ,ON =OP ,∴OM =OP =ON ,∴点O 是△PMN 的外接圆的圆心,∵∠MPN =90°,∴MN 是直径,∴M ,O ,N 共线,故⑤正确.故选:B .25.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴DE AE =FD AB =12, ∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .26.【解答】解:①∵四边形ABCD 是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵△COE≌△DOF,∴OE=OF,∵∠MON=90°,∴∠OEG=45°=∠FCG,∵∠OGE=∠FGC,∴△OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴S四边形CEOF =S△OCD=14S正方形ABCD,故③正确;④∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=45°=∠OCE,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=12AC,OE=√22EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt △CEF 中,CF 2+CE 2=EF 2,∴BE 2+DF 2=EF 2,∴OG •AC =BE 2+DF 2,故④错误,故选:B .27.【解答】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF AC =BE AB ,即EF 6=BE 3BE ,解得:EF =2,∴DH =12EF =12×2=1,故答案为:1.28.【解答】解:连结OC ,如图,∵CD 2=CE •CA ,∴CD CE =CA DC ,而∠ACD =∠DCE ,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠P AD,∠CPB=∠APD,∴△PCB∽△P AD,∴PCPA =PBPD,即4√23r=6√2,∴r=4(负根已经舍弃),∴OB=4,故答案为4.一十二.位似变换(共1小题)29.【解答】解:∵点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′,∴A′坐标为:(﹣4,2)或(4,﹣2),∵A'恰在某一反比例函数图象上,∴该反比例函数解析式为:y=−8 x.故答案为:y=−8 x.一十三.相似形综合题(共1小题)30.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF =∠DCE =135°, 在△DCF 和△DCE 中,{CF =CE ∠DCF =∠DCE DC =DC,∴△DCF ≌△DCE (SAS )∴DE =DF ;(2)证明:∵∠DCF =135°, ∴∠F +∠CDF =45°,∵∠FDE =45°,∴∠CDE +∠CDF =45°,∴∠F =∠CDE ,∵∠DCF =∠DCE ,∠F =∠CDE , ∴△FCD ∽△DCE ,∴CF CD =CD CE ,∴CD 2=CE •CF ;(3)解:过点D 作DG ⊥BC 于G , ∵∠DCB =45°,∴GC =GD =√22CD =√2,由(2)可知,CD 2=CE •CF ,∴CE =CD 2CF =2√2,∵∠ECN =∠DGN ,∠ENC =∠DNG , ∴△ENC ∽△DNG ,∴CN NG =CE DG ,即√2−NG NG =√2√2, 解得,NG =√23,由勾股定理得,DN =√DG 2+NG 2=2√53.一十四.计算器—三角函数(共1小题)31.【解答】解:∵已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0.9816,∴按下的第一个键是2ndF.故选:D.一十五.解直角三角形(共2小题)32.【解答】解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC=√AH2+CH2=√42+32=5,∴sin∠ACH=AHAC=45,故选:D.33.【解答】解:过点D作DE⊥BC,垂足为E,∵∠ACB=90°,DE⊥BC,∴DE∥AC,又∵点D为AB边的中点,∴E是BC的中点,∴BE=EC=12BC=2,在Rt△DCE中,cos∠DCB=ECCD=23,故答案为:23.一十六.解直角三角形的应用-仰角俯角问题(共6小题)34.【解答】解:过点A 作AE ⊥BD ,交BD 于点E ,在Rt △ABE 中,AE =30米,∠BAE =30°,∴BE =30×tan30°=10√3(米),∴AC =ED =BD ﹣BE =(36﹣10√3)(米).∴甲楼高为(36﹣10√3)米.故选:D .35.【解答】解:如图所示:过点A 作AF ⊥BC 于点F ,∵斜面坡度为1:√3,∴tan ∠ABF =AF BF =1√3=√33, ∴∠ABF =30°,∵在P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°, ∴∠HPB =30°,∠APB =45°,∴∠HBP =60°,∴∠PBA =90°,∠BAP =45°,∴PB =AB ,∵PH =30m ,sin60°=PH PB =30PB =√32,解得:PB =20√3,故AB=20√3(m),故答案为:20√3.36.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120(米),在Rt△ACD中,AD=CDtan60°=√3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.37.【解答】解:过点A作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD=HD AH,∴AH=HDtan∠HAD=31.6tan38°=31.60.78≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6=72.11≈72.1(m),答:该大楼的高度约为72.1m.38.【解答】解:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,在Rt△ACD中,tan∠CAD=tan60°=CDAD=√3,∴AD=60√3=20√3,∵∠BED=∠BAD=∠ADE=90°,∴四边形ADEB是矩形,∴BE=AD=20√3,在Rt△BCE中,tan∠CBE=tan30°=CEBE=√33,∴CE=20√3×√33=20,∴ED=CD﹣CE=60﹣20=40,∴AB=ED=40(米),答:楼房的高度为40米.39.【解答】解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=DC﹣CF=16.6﹣1.6=15,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15,∴EN=EF﹣NF=35﹣15=20,在Rt△BEN中,∵tan∠BNE=BE EN,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43=28.6,∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30米.一十七.解直角三角形的应用-方向角问题(共2小题)40.【解答】解:如图.根据题意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD﹣∠CAB=42°=∠CAB,∴BC=AB,∵AB=15×2=30(海里),∴BC=30(海里),即海岛B到灯塔C的距离是30海里.故选:C.41.【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=ECEB,即43=xy,在Rt△AEC中,tan37°=ECAE,即34=x105+y,解得x=180,y=135,∴AC=√EC2+AE2=√1802+2402=300(m),故选:C.一十八.简单几何体的三视图(共1小题)42.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.一十九.简单组合体的三视图(共4小题)43.【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.44.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.45.【解答】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D.46.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.二十.由三视图判断几何体(共4小题)47.【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B.48.【解答】解:从正面看所得到的图形为.故选:A.49.【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.50.【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.。
中考数学专项复习、中考真题分类解析:专题04 图形的变换(第02期)(原卷版)
个单位,那么所得新抛物线的表达式是( )
x
北京市)如图是某个几何体的三视图,该几何体是( )
. . . .
. . . .
′C
四川省凉山州)如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正. . . .
. . . .
. . . .四川省广安市)下列图形中既是轴对称图形又是中心对称图形的是( )
. .
. .
A. . . .
14
四川省攀枝花市)下列图形中,既是轴对称图形又是中心对称图形的是( )
. . . .
四川省泸州市)下
. . . .
. . . .
四川省自贡市)如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的. . . .
山东省临沂市)如图,一个空心圆柱体,其主视图正确的是( )
. . . .
. . . .
BN﹣
. . . .
. .
. .
. . C. .
ABCD
. . . .
得△
. . . .
江西省)有两个完全相同的正方体,按下面如图方式摆放,其主视图是( ). . . .
湖北省黄冈市)如
. . . .. . . .
. . . .
. . . .福建省福州市)如图是
. . . .
....
四川省凉山州)
= 0≤
BC上的处
GH,之间满足的等量关系,并说明理由.
四川省攀枝花市)如图,在平面直角坐标系中,直角△
抛物
)
中选择其中一个证明:AOP)是等边三角形;
=∠
”
2016
3。
图形变换专项训练-2023年九年级中考数学复习
图形变换专项训练题(满分100分)一、单选题(每题2分,共24分)1.下列现象中,属于平移的是()①小朋友在荡秋千;①打气筒打气时,活塞的运动;①钟摆的摆动;①瓶装饮料在传送带上移动.A.①①B.①①C.①①D.①①2.以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称图形的有().A.4个B.5个C.6个D.3个3.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A.(-2,6)B.(1,2)C.(2,6)D.(1,3)4.如图,将边长为2的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是().A.2B.12C.1D.145.如图,将△AOB绕点O按顺时针方向旋转45°后得到△COD,若①AOB=27°,则①BOC的度数是()A.18°B.27°C.45°D.72°6.如图,在ABC中,∠CAB=70°,现将ABC绕点A顺时针旋转一定角度后得到AB′C′,连接BB′,若BB′∠AC′,则∠CAB′的度数为()A.20°B.25°C.30°D.40°(4题图)(5题图)(6题图)7.在平面直角坐标系中,把直线y=2x+4绕着原点O顺时针旋转90°后,所得的直线l一定经过下列各点中的()A .(2,0)B .(4,2)C .(6,−1)D .(8,−1) 8.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为 ( )A .(2.8,3.6)B . 2.8,6()3.--C .(3.8,2.6)D .( 3.8, 2.6)-- 9.如图,将边长为3的正方形绕点B 逆时针旋转30︒,那么图中阴影部分的面积为( ) A .3 B .3 C .33- D .332- 10.如图,①ABO 是由①A′B′O 经过位似变换得到的,若点P′(m ,n)在①A′B′O 上,则点P′经过位似变换后的对应点P 的坐标为 ( )A .(2m ,n)B .(m ,n)C .(m ,2n)D .(2m ,2n)(8题图) (9题图) (10题图)11.如图,将含30°角的直角三角尺ABC 绕点B 顺时针旋转150°后得到∠EBD ,连接CD .若AB=4cm .则∠BCD 的面积为( )A .43B .23C .3D .2 12将抛物线y =x 2﹣4x +1向左平移至顶点落在y 轴上,如图所示,则两条抛物线.直线y =3和x 轴围成的图形的面积S (图中阴影部分)是( )A .5B .6C .7D .8(11题图) (12题图)二、填空题(每题3分,共30分)13.已知点()(),23,A a B b -、关于x 轴对称,则a b + = ________ .14.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.15.如图,把Rt①ABC (①ABC =90°)沿着射线BC 方向平移得到Rt①DEF ,AB =8,BE =5,则四边形ACFD 的面积是________.16.如图,Rt △AOB 的斜边OA 在y 轴上,且OA=5,OB=4.将Rt △AOB 绕原点O 逆时针旋转一定的角度,使直角边OB 落在x 轴的负半轴上得到相应的Rt △A′OB′,则A′点的坐标是_____.(14题图) (15题图) (16题图) 17.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且43OE EA =,则FG BC =______. 18.已知:如图A'B'//AB ,B'C'//BC ,且OA':A'A 4:3=,则ABC 与________是位似图形,位似比为________.19.如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .(17题图) (18题图) (19题图)20如图,矩形ABOC 的顶点O 在坐标原点,顶点B 、C 分别在x 轴、y 轴的正半轴上,顶点A 在反比例函数k y x=(k 为常数,0,0k x >>)的图像上,将矩形ABOC 绕点A 按逆时针方向旋转90°得到矩形'''AB O C ,若点O 的对应点'O 恰好落在此反比例函数的图像上,则OB OC的值是_______. 21.如图,在①ABC 中,①ACB =90°,AC =BC =2,将①ABC 绕AC 的中点D 逆时针旋转90°得到①A 'B ′C ',其中点B 的运动路径为BB ',则图中阴影部分的面积为_____.22.将一副三角板的两个直角顶点叠放在一起拼成如下的图形.若∠EAB=40°,则∠CAD=____;将∠ABC 绕直角顶点A 旋转时,保持AD 在∠BAC 的内部,设∠EAC=x°,∠BAD=y°,则x 与y 的关系是_______.(20题图) (21题图) (22题图)三、解答题(23--25每题6分,26题8分,27--28每题10分)23.如图1,是由2个白色和2个黑色全等正方形组成的“L ”型图案,请你分别在图2,图3,图4上按下列要求画图:()1在图案中,添1个白色或黑色正方形,使它成轴对称图案;()2在图案中,添1个白色或黑色正方形,使它成中心对称图案;()3在图案中,先改变1个正方形的位置,再添1个白色或黑色正方形,使它既成中心对称图案,又成轴对称图案.24.如图所示,每个小正方形的边长为1个单位长度.(1)作出△ABC 关于原点对称的△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.(2)y 轴上有一点Q ,使AQ +CQ 的值最小,求点Q 的坐标.25.如图(1),已知①ABC的面积为3,且AB=AC,现将①ABC沿CA方向平移CA长度得到①EF A.(1)求①ABC所扫过的图形面积;(2)试判断,AF与BE的位置关系,并说明理由;(3)若①BEC=15°,求AC的长.26.已知矩形纸片ABCD,AB=2,AD=1.将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD,AB交于点F,G(如图(1)),AF=23求DE的长.(2)如果折痕FG分别与CD,AB交于点F,G(如图(2)),①AED的外接圆与直线BC 相切,求折痕FG的长.27.四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转2α(0°<α<45°),得到线段CE ,连接DE ,过点B 作BF ①DE 交DE 的延长线于F ,连接BE .(1)依题意补全图1;(2)直接写出①FBE 的度数;(3)连接AF ,用等式表示线段AF 与DE 的数量关系,并证明.28.如图1,在Rt ABC △中,90,4,2B AB BC ∠=︒==,点,D E 分别是边,BC AC 的中点,连接DE .将CDE 绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现①当0α=︒时,AE BD =______;①当180α=︒时,AE BD =______; (2)拓展探究试判断当0360α︒<<︒时,AE BD的大小有无变化?请仅就图2的情形给出证明; (3)问题解决当CDE 绕点C 逆时针旋转至,,A B E 三点在同一条直线上时,求线段BD 的长。
山西省中考数学真题汇编 图形的变换
山西省中考数学真题汇编图形的变换一、单选题1.(2021·山西)为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】【解答】解:A、文字上方的图案既不是轴对称图形也不是中心对称图形,故不符合题意;B、文字上方的图案既是轴对称图形也是中心对称图形,故符合题意;C、文字上方的图案是轴对称图形但不是中心对称图形,故不符合题意;D、文字上方的图案是轴对称图形,不是中心对称图形,故不符合题意;故答案为:B.【分析】根据轴对称图形和中心对称图形的定义逐项判定即可。
2.(2020·山西)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。
金字塔的影长,推算出金字塔的高度。
这种测量原理,就是我们所学的()A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似【答案】D【解析】【解答】根据题意画出如下图形:可以得到△ABE∼△CDE,则ABBE=CDDEAB即为金字塔的高度,CD 即为标杆的高度,通过测量影长即可求出金字塔的高度故答案为:D.【分析】根据在同一时刻的太阳光下物体的影长和物体的实际高度成比例即可判断;3.(2020·山西)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A.B.C.D.【答案】D【解析】【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故答案为:D.【分析】根据轴对称图形的概念判断即可.4.(2020·山西)下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A.B.C.D.【答案】B【解析】【解答】A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故答案为:B.【分析】分别画出四个选项中简单组合体的三视图即可.5.(2018·山西)如图,在Rt△ABC中,△ACB=90°,△A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12B.6C.6 √2D.6√3【答案】D【解析】【解答】连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,△A=△CA'B'=60°,∴△AA'C是等边三角形,∴△AA'C=60°,∴△B'A'B=180°-60°-60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴△ACA'=△BCB'=60°,BC=B'C,△CB'A'=△CBA=90°-60°=30°,∴△BCB'是等边三角形,∴△CB'B=60°,∵△CB'A'=30°,∴△A'B'B=30°,∴△B'BA'=180°-60°-30°=90°,∵△ACB=90°,△A=60°,AC=6,∴AB=12,∴A'B=AB-AA'=AB-AC=6,∴B'B=6 √3,故答案为:D.【分析】连接B'B,根据旋转的性质得出AC=A'C,AB=A'B,△A=△CA'B'=60°,从而判断出△AA'C 是等边三角形,根据等边三角形的性质得出△AA'C=60°,根据平角的定义得出△B'A'B=180°-60°-60°=60°,根据旋转的性质得出△ACA'=△BCB'=60°,BC=B'C,△CB'A'=△CBA=90°-60°=30°,故△BCB'是等边三角形,从而得出△B'BA'=90°,根据含30°角的直角三角形的边之间的关系得出AB=12,根据线段的和差得出A'B,由勾股定理即可算出B'B,6.(2021·太原模拟)如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处.点B恰好落在边CD上的点B′处,A′B交AD于点G,若CB′=3,则四边形EFB′G的面积等于()A.353B.553C.352D.1456【答案】D【解析】【解答】解:∵四边形ABCD是矩形,且AD=9,AB=7∴BC=AD=9,CD=AB=7∵CB′=3∴DB′=4设BF=x∴CF=9−x∵BF=B′F且B′F2=FC2+B′C2∴x2=(9−x)2+32∴x=5∴BF=5,CF=4∵△ FB′A′=∠D=90°∴△ ∠FB′C+∠GB′D=90°,∠GB′D+∠DGB=90°,∴∠FB′C=∠DGB′∵∠D=∠C,FC=B′D=4∴ΔFCB′≅ΔB′DG∴GD=CB′=3∴GB′2=√DG2+DB′2=√32+42=5∵A′B′=AB=7∴A′G=2设AE=A′E=y.∴EG=9−3−y=6−y又EG2=A′E2+A′G2∴(6−y)2=y2+22解得,y=8 3∴AE=A′E=83∵S梯形AB′FE =S梯形ABFE=12(AE+BF)×AB=12×(83+5)×7=1616,SΔA′EG=12A′E×A′G=1 2×83×2=83∴四边形EFB′G的面积S=S梯形A′B′FE−SΔA′EG=1616−83=1456故答案为:D【分析】根据矩形的性质得DB′=4,设BF=x,由勾股定理得BF=5,CF=4,再证明ΔFCB′≅ΔB′DG得GD=CB′=3,由勾股定理得GB′2=5,可得,设A′G=2AE=A′E=y.由勾股定理求出AE=A′E=83,最后由四边形EFB′G的面积S=S梯形A′B′FE−SΔA′EG求出结论即可.二、填空题7.(2021·山西)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通.如图是该地铁某站扶梯的示意图,扶梯 AB 的坡度 i =5:12 ( i 为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端 A 以0.5米/秒的速度用时40秒到达扶梯顶端 B ,则王老师上升的铅直高度 BC 为 米.【答案】10013【解析】【解答】解:∵AB 的坡度 i =5:12 ,.∴BC AB =513, ∵AB =0.5×40=20 米, ∴BC 20=513 , 解得: BC =10013, 故答案为:10013.【分析】根据坡度比,列出比例式求解即可。
初中图形变换试题及答案
初中图形变换试题及答案一、选择题1. 下列关于图形变换的描述中,不正确的是()。
A. 平移变换不改变图形的形状和大小B. 旋转变换不改变图形的形状和大小C. 反射变换不改变图形的形状和大小D. 缩放变换会改变图形的大小2. 如果一个图形绕着某一点旋转180度后与原图形重合,那么这个旋转点是()。
A. 任意一点B. 图形的中心点C. 图形的顶点D. 图形的任意一点3. 在平面直角坐标系中,将点(2,3)向上平移3个单位,再向右平移2个单位后,新的坐标是()。
A. (4,6)B. (0,0)C. (5,0)D. (-1,0)二、填空题4. 一个图形经过反射变换后,其形状和大小都不变,只是位置发生了变化。
请填写反射变换的特点:______。
5. 一个图形经过旋转变换后,其形状和大小都不变,只是______发生了变化。
三、解答题6. 已知一个正方形的顶点坐标分别为A(1,1),B(1,3),C(3,3),D(3,1)。
请通过平移变换将正方形移动到新的坐标系中,使得顶点A的新坐标为(2,2)。
7. 一个矩形的长为6cm,宽为4cm,它绕着其中心点旋转90度后,新的长和宽分别是多少?四、综合题8. 给定一个三角形ABC,其中A(2,3),B(4,1),C(6,5)。
请分别求出: (1) 将三角形ABC绕点A顺时针旋转90度后,顶点B和C的新坐标。
(2) 将三角形ABC沿y轴反射变换后,顶点A、B、C的新坐标。
答案:一、选择题1. D2. B3. A二、填空题4. 位置5. 方向三、解答题6. 顶点B的新坐标为(2,1),顶点C的新坐标为(4,1),顶点D的新坐标为(4,3)。
7. 矩形旋转90度后,新的长为4cm,新的宽为6cm。
四、综合题8. (1) 顶点B的新坐标为(-2,5),顶点C的新坐标为(0,7)。
(2) 顶点A的新坐标为(-2,3),顶点B的新坐标为(-4,1),顶点C 的新坐标为(-6,5)。
初中数学中考复习:47图形的变化(含答案)
中考总复习:图形的变换--巩固练习(提高)【巩固练习】一、选择题1.有下列四个说法,其中正确说法的个数是( )①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A. 1个B.2个C. 3个D.4个2.在旋转过程中,确定一个三角形旋转的位置所需的条件是().①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④B.①②③C.②③④D.①③④3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为().A B C D4.如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数为().A、30°B、60°C、120°D、180°5.如图,把矩形纸条沿同时折叠,两点恰好落在边的点处,若,,,则矩形的边长为( ).A.20B.22C.24D.30第4题第5题6.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下图的一座“小别墅”,则图中阴影部分的面积是().A.2 B.4 C.8 D.10;二、填空题AD是落在点的位置,则与Rt ABC将ACM在中,为边上的点,连结(如图所示)沿直线翻折后,点恰好落在边的中点处,那么点到的距离是如图,在ABC将ABC分割成面积相等的两部分,将BMN第9题第10题的等边三角形纸片,点在边上,点在边上,沿着折痕,落在边上的点的位置,且则的长是第11题第12题12.如图,在计算机屏幕上有一个矩形画刷ABCD,它的边AB=l,.把ABCD以点B为中心按顺时针方向旋转60°,则被这个画刷着色的面积为________.三、解答题13. 如图(1)所示,一张三角形纸片,.沿斜边AB的中线CD把这线纸片剪成和两个三角形如图(2)所示.将纸片沿直线(AB)方向平移(点始终在同一条直线上),当点与点B重合时,停止平移,在平移的过程中,与交于点E,与分别交于点F,P.(1)当平移到如图(3)所示的位置时,猜想图中与的数量关系,并证明你的猜想.(2)设平移距离为,与重叠部分的面积为,请写出与的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的,使得重叠部分面积等于原纸片面积的?若存在,请求出的值;若不存在,请说明理由.14.如图(1),在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴的负半轴上,∠CAO=30°,OA=4.(1)求点C的坐标;(2)如图(2),将△ABC绕点C旋转到△A′CB′的位置,其中A′C交直线OA于点E,A′B′分别交直线OA、CA于点F、G,则除△A′B′C≌△AOC外,还有哪几对全等的三角形?请直接写出答案;(3)在(2)的基础上将△A′CB′绕点C按顺时针方向继续旋转,当△COE的面积为时,求直线 CE的函数表达式.15.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E. (1)记△ODE的面积为S,求S与的函数关系式; (2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.16.已知抛物线经过点A(0,4)、B(1,4)、C(3,2),与x轴正半轴交于点D. (1)求此抛物线的解析式及点D的坐标; (2)在x轴上求一点E,使得△BCE是以BC为底边的等腰三角形; (3)在(2)的条件下,过线段ED上动点P作直线PF//BC,与BE、CE分别交于点F、G,将△EFG沿FG 翻折得到△E′FG.设P(x,0),△E′FG与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x的取值范围.【答案与解析】一.选择题1.【答案】C.2.【答案】A.3.【答案】B.4.【答案】B.【解析】正六边形被平分成六部分,因而每部分被分成的圆心角是60°,因而旋转60度的整数倍,就可以与自身重合.则α最小值为60度.故选B.5.【答案】C.【解析】Rt△PHF中,有FH=10,则矩形ABCD的边BC长为PF+FH+HC=8+10+6=24,故选C.6.【答案】B.二.填空题7.【答案】.8.【答案】30°.9.【答案】2.10.【答案】:1.【解析】利用翻折变换的性质得出BE⊥MN,BE⊥AC,进而利用相似三角形的判定与性质得出对应边之间的比值与高之间关系,即可得出答案.11.【答案】20-10.【解析】∵AE=ED,在Rt△EDC中,∠C=60°,ED⊥BC∴ED=EC,∴CE+ED=(1+)EC=5,∴CE=20-10.12.【答案】.【解析】首先理解题干条件可知这个画刷所着色的面积=2S△ABD+S扇形,扇形的圆心角为60°,半径为2,求出扇形面积和三角形的面积即可.三.综合题13.【解析】(1)D1E=D2F.∵C1D1∥C2D2,∴∠C1=∠AFD2.又∵∠ACB=90°,CD是斜边上的中线,∴DC=DA=DB,即C1D1=C2D2=BD2=AD1∴∠C1=∠A,∴∠AFD2=∠A∴AD2=D2F.同理:BD1=D1E.又∵AD1=BD2,∴AD2=BD1.∴D1E=D2F.(2)∵在Rt△ABC中,AC=8,BC=6,∴由勾股定理,得AB=10.即AD1=BD2=C1D1=C2D2=5又∵D2D1=x,∴D1E=BD1=D2F=AD2=5-x.∴C2F=C1E=x在△BC2D2中,C2到BD2的距离就是△ABC的AB边上的高,为.设△BED1的BD1边上的高为h,由探究,得△BC2D2∽△BED1,∴.∴h=.S△BED1=×BD1×h=(5-x)2又∵∠C1+∠C2=90°,∴∠FPC2=90°.又∵∠C2=∠B,sinB=,cosB=.∴PC2=x,PF=x,S△FC2P=PC2×PF=x2而y=S△BC2D2-S△BED1-S△FC2P=S△ABC-(5-x)2-x2∴y=-x2+x(0≤x≤5).(3)存在.当y=S△ABC时,即-x2+x=6,整理得3x2-20x+25=0.解得,x1=,x2=5.即当x=或x=5时,重叠部分的面积等于原△ABC面积的.14.【解析】(1)∵在Rt△ACO中,∠CAO=30°,OA=4,∴OC=2,∴C点的坐标为(-2,0).(2)△A′EF≌△AGF或△B′GC≌△CEO或△A′GC≌△AEC.(3)如图1,过点E1作E1M⊥OC于点M.∵S△COE1=CO•E1M=,∴E1M=.∵在Rt△E1MO中,∠E1OM=60°,则,∴tan60°=∴OM=,∴点E1的坐标为(-,).设直线CE1的函数表达式为y=k1x+b1,解得.∴y=x+.同理,如图2所示,点E2的坐标为(,-).设直线CE2的函数表达式为y=k2x+b2,则,解得.∴y=-x-.15.【解析】(1)∵四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),∴B(3,1),若直线经过点A(3,0)时,则b=,若直线经过点B(3,1)时,则b=,若直线经过点C(0,1)时,则b=1,①若直线与折线OAB的交点在OA上时,即1<b≤,如图1,此时E(2b,0)∴S=OE•CO=×2b×1=b;②若直线与折线OAB的交点在BA上时,即<b<,如图2此时E(3,b-),D(2b-2,1),∴S=S矩-(S△OCD+S△OAE+S△DBE)=3-[(2b-2)×1+×(5-2b)•(-b)+×3(b-)]=b-b2;(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形根据轴对称知,∠MED=∠NED又∵∠MDE=∠NED,∴∠MED=∠MDE,∴MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题意知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHN中,由勾股定理知:a2=(2-a)2+12,∴a=,∴S四边形DNEM=NE•DH=.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.16.【解析】(1)抛物线的解析式为,点D(4,0). (2)点E(,0). (3)可求得直线BC的解析式为. 从而直线BC与x轴的交点为H(5,0). 如图1,根据轴对称性可知S△E ′FG=S△EFG, 当点E′在BC上时,点F是BE的中点. ∵FG//BC, ∴△EFP∽△EBH. 可证EP=PH. ∵E(-1,0),H(5,0), ∴P(2,0). (i) 如图2,分别过点B、C作BK⊥ED于K,CJ⊥ED于J, 则. 当-1<x≤2时, ∵PF//BC, ∴△EGP∽△ECH,△EFG∽△EBC. ∴, ∵P(x,0),E(-1,0),H(5,0), ∴EP=x+1,EH=6. ∴. 图2 图3 (ii) 如图3,当2<x ≤4时,在x轴上截取一点Q,使得PQ=HP, 过点Q作QM//FG,分别交EB、EC于M、N. 可证S=S四边形MNGF,△ENQ∽△ECH,△EMN∽△EBC. ∴,. ∵P(x,0),E(-1,0),H(5,0), ∴EH=6,PQ=PH=5-x,EP=x+1, EQ=6-2(5-x)=2x-4. ∴. 同(i)可得, ∴. 综上,。
中考热点图形的变换(含答案)
热点11 图形的变换(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.在图形的平移中,下列说法中错误的是()A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同C.图形上可能存在不动点; D.图形上任意对应点的连线长相等2.如图所示图形中,是由一个矩形沿顺时针方向旋转90•°后所形成的图形的是()A.(1)(4) B.(2)(3) C.(1)(2) D.(2)(4)3.在旋转过程中,确定一个三角形旋转的位置所需的条件是()①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④ B.①②③ C.②③④ D.①③④4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是(• )A.△COD B.△OAB C.△OAF D.△OEF5.下列说法正确的是()A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,•则△ADE•是△ABC放大后的图形;B.两个位似图形的面积比等于位似比;C.位似多边形中对应对角线之比等于位似比;D.位似图形的周长之比等于位似比的平方6.下面选项中既是中心对称图形又是轴对称图形的是()A.等边三角形 B.等腰梯形 C.五角星 D.菱形7.下列图形中对称轴的条数多于两条的是()A.等腰三角形 B.矩形 C.菱形 D.等边三角形8.在如图所示的四个图案中既包含图形的旋转,•又有图形的轴对称设计的是()9.钟表上2时15分,时针与分针的夹角是()A.30° B.45° C.22.5° D.15°10.如图1,已知正方形ABCD的边长是2,如果将线段BD绕点B旋转后,点D•落在CB 的延长线上的D′处,那么tan∠BAD′等于()D.A.1 B.2(1) (2) (3)二、填空题(本大题共8小题,每小题3分,共24分)11.一个正三角形至少绕其中心旋转________度,就能与本身重合,•一个正六边形至少绕其中心旋转________度,就能与其自身重合.12.如图2中图案,可以看作是由一个三角形通过_______次旋转得到的,每次分别旋转了__________.13.如图3,在梯形ABCD中,将AB平移至DE处,则四边形ABED是_______四边形.14.已知等边△ABC,以点A为旋转中心,将△ABC旋转60°,•这时得到的图形应是一个_______,且它的最大内角是______度.15.•如果两个位似图形的对应线段长分别为3cm•和5cm,•且较小图形的周长为30cm,则较大图形周长为________.16.将如左图所示,放置的一个Rt△ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是右图所示四个图形中的_______(只填序号).17.如图4,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________.(4) (5)18.如图5,有一腰长为5cm,底边长为4cm的等腰三角形纸片,•沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_______个不同的四边形.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图,平移图中的平行四边形ABCD使点A移动至E点,作出平移后的图形.20.如图,作出Rt△ABC绕点C顺时针旋转90°、180°、270°后的图案,•看看得到的图案是什么?21.如图,P是正方形内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.22.如图所示,四边形ABCD是正方形,E点在边DE上,F点在线段CB•的延长线上,且∠EAF=90°.(1)试证明:△ADE≌△ABF.(2)△ADE可以通过平移、翻转、旋转中的哪种方法到△ABF的位置.(3)指出线段AE与AF之间的关系.23.如图,魔术师把4张扑克牌放在桌子上,如图(1),然后蒙住眼睛,请一位观众上台把某一张牌旋转180°,魔术师解开蒙具后,看到四张牌如图(2)所示,•他很快确定了哪一张牌被旋转过,你能说明其中的奥妙吗?24.如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点,将直角梯形ABCD 沿对角线BD折叠,使△ABD与△EBD重合(如图中的阴影部分).若∠A=120°,•AB=4cm,求梯形ABCD的高CD.25.如图,正方形ABCD内一点P,使得PA:PB:PC=1:2:3,请利用旋转知识,•证明∠APB=135°.(提示:将△ABP绕点B顺时针旋转90°至△BCP′,连结PP′)答案:一、选择题1.C 2.B 3.A 4.C 5.C 6.D 7.D 8.D 9.C 10.B二、填空题11.120 50 12.4,72°,144°,216°,288° 13.平行 14.菱形,120 15.•50cm 16.(2) 17.对角线平分内角的矩形是正方形 18.4三、解答题19.解:略 20.解:略.21.解:由放置的性质可知PBP′=∠ABC=90°,BP′=BP=3,在Rt△PBP′中,PP′22.解:(1)90909090EAF BAF BAEBAD DAE BAE∠=︒⇒∠+∠=︒⎫⇒⎬∠=︒⇒∠+∠=︒⎭∠EAF=∠EAD,而AD=AB,∠D=∠ABF=90°,故△ADE≌△ABF.(2)可以通过旋转,将△ADE绕点A顺时针旋转90°就可以到△ABF的位置.(3)由△ADE≌△ABF可知AE=AF.23.解:图(1)与图(2)中扑克牌完全一样,说明被旋转过的牌是中心对称图形,而图中只有方块4是中心对称图形,故方块4被旋转过.24.解:由题意可知△ABD≌△EBD,∴∠ADB=∠EDB,由于AD∥BC,∴∠ADB=∠DBE.∴∠EDB=∠DBE,∴ED=EB,∴DE=AB=4cm.∵∠CDE=30°,∴CD=DE·cos30°=4×225.证明:旋转后图形如图,设AP=x,PB=2x,PC=3x,则由旋转的性质可知CP′=x,BP′=2x,∠PBP′=90°,∴PP′,所以∠BP′P=45°.在△PP′C中,P′P2+P′C2=8x2+x2=9x2,又∵PC2=9x2,∴P′P2+P′C2=PC2.∴∠PP′C=90°,∴∠BP′C=90°+45°=135°.∴∠APB=135°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的变换中考复习练习题
1.下列图形中,既是轴对称图形,又是中心对称图形的是().
2把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()
(A) 70°(B) 65°
(C) 50°(D) 25°
3.点(35)
p,关于x轴对称的点的坐标为()
A.(3,5) B.(5,3) C.(3,5) D.(3,5)
4.如图,ABC
△与A B C
'''
△关于直线l对称,且7848
A C'
∠=∠=
°,°,则∠B 的度数为()
A.48° B.54° C.74° D.78°
B'
A
B
C
A'
C'
5.在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为( )
A .9.5
B .10.5
C .11
D .15.5
6、在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )
A .22y x x =--+
B .
2
2y x x =-+- C .22y x x =-++ D .2
2y x x =++
7、如图2,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分的周长为 cm .
C B
D
A
E F C
B
A
A
图2
8:如图,P 是正△ABC 内一点,若将△PBC 绕点B 旋转到△P ′BA ,则∠PBP ′的度数是()
A .45°
B .60°
C .90°
D .120°
9.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,
使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( ) A .40° B .30° C .20° D .10°
10.将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( )
A.560
B.680
C.1240
D.1800
A '
B D
A
C
1
C
A
11、如图,9030
AOB B
∠=∠=
°,°,A OB
''
△可以看作是由AOB
△绕点O顺时针旋转α角度得到的.若点A'在AB上,则旋转角α的大小可以是().
A.30° B.45° C.60° D.90°
12、如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转900得到月牙②,则点A的对应点A’的坐标为()
(A)(2,2)(B)(2,4) (C)(4,2) (D)(1,2)
13、在平面直角坐标系中,将二次函数2
2x
y=的图象向上平移2个单位,所得图象的解析式为()
A.2
22-
=x
y B.2
22+
=x
y C.2)2
(2-
=x
y D.2)2
(2+
=x
y
A O
B
A'B'
14、如图,已知Rt ABC △
中,9030ABC BAC AB ∠=∠==°,°,,将ABC △绕
顶点C 顺时针旋转至A B C '''△的位置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( )cm .
A .8 B
.
C .32π3
D .8π3
15、如图,点D E F ,,分别是()ABC AB AC >△各边的中点,下列说法中,错误..
的是( ) A .
AD 平分BAC ∠ B . 1
2
EF BC =
C . EF 与A
D 互相平分 D . DF
E △是ABC △的位似图形
16、在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )
A .先向下平移3格,再向右平移1格
B .先向下平移2格,再向右平移1格
C .先向下平移2格,再向右平移2格
D .先向下平移3格,再向右平移2格
A
A '
'
A
B
E
F
C
图②
图①
17、如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A 、B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( )
A.4π-8
B. 8π-16
C.16π-16
D. 16π-32
18、如图,ABC △和的DEF △是等腰直角三角形,90C F ∠=∠=,24AB DE ==,.
点B 与点D 重合,点A B D E ,(),在同一条直线上,
将ABC △沿D E →方向平移,至点A 与点E 重合时停止.设点B D ,之间的距离为x ,
ABC △与DEF △重叠部分的面积为y ,则准确反映y 与x 之间对应关系的
图象是( )。