同济大学考研 结构动力学ppt
合集下载
高等结构动力学
![高等结构动力学](https://img.taocdn.com/s3/m/2c08a308bb68a98271fefaf2.png)
ED、FD和M — 地震谱密度水平,通常可以忽略
SC — 地基土对地震谱影响
ξ — 阻尼比
T — 周期
同济大学土木工程防灾国家重点实验室、桥梁工程系
3.1确定合适的地震输入(续) ¾响应谱简化 S = S (SC ,ξ , T )
结论:地震土越硬,卓越周期越小,带宽越小
同济大学土木工程防灾国家重点实验室、桥梁工程系
&& }+ [C ]{∆δ & }+ [K ]{∆δ } = {∆p(t )}+ {p T (t )} [M ss ]{∆δ vs ss vs ss vs
&& }− ([C ]{∆δ& }+ [C ]{∆δ& }) {∆p(t )} = −[M ss ]{∆δ ps ss ps sg g
&& (t )}− [C ]{∆δ& (t )}− {F (t )} {p (t )} = {p(t )}− [M ]{∆δ
概率性线性地震反应分析 各态平稳随机过程 自相关函数、功率谱密度、概率分布 概率性非线性地震反应分析
同济大学土木工程防灾国家重点实验室、桥梁工程系
小结
桥梁地震反应分析
实际地震波输入 确定合适的地震输入 模拟地震波输入 分步计算增量方程 建立系统的数学模型 静力平衡解耦方程 非线性地震时程分析 选择有效的求解方法 逐步积分法求解
同济大学土木工程防灾国家重点实验室、桥梁工程系
1. 桥梁抗震设计现状(续)
1.3 引起震害原因
¾地震问题 砂土液化、地基下沉、岸坡滑移或开裂 ¾结构问题 形式、构造或连接措施不当引起的落梁 ¾地震力分布问题 桥梁各支承点的地面运动不一致 ¾设计问题 墩柱本身抗震能力不足造成的破坏
SC — 地基土对地震谱影响
ξ — 阻尼比
T — 周期
同济大学土木工程防灾国家重点实验室、桥梁工程系
3.1确定合适的地震输入(续) ¾响应谱简化 S = S (SC ,ξ , T )
结论:地震土越硬,卓越周期越小,带宽越小
同济大学土木工程防灾国家重点实验室、桥梁工程系
&& }+ [C ]{∆δ & }+ [K ]{∆δ } = {∆p(t )}+ {p T (t )} [M ss ]{∆δ vs ss vs ss vs
&& }− ([C ]{∆δ& }+ [C ]{∆δ& }) {∆p(t )} = −[M ss ]{∆δ ps ss ps sg g
&& (t )}− [C ]{∆δ& (t )}− {F (t )} {p (t )} = {p(t )}− [M ]{∆δ
概率性线性地震反应分析 各态平稳随机过程 自相关函数、功率谱密度、概率分布 概率性非线性地震反应分析
同济大学土木工程防灾国家重点实验室、桥梁工程系
小结
桥梁地震反应分析
实际地震波输入 确定合适的地震输入 模拟地震波输入 分步计算增量方程 建立系统的数学模型 静力平衡解耦方程 非线性地震时程分析 选择有效的求解方法 逐步积分法求解
同济大学土木工程防灾国家重点实验室、桥梁工程系
1. 桥梁抗震设计现状(续)
1.3 引起震害原因
¾地震问题 砂土液化、地基下沉、岸坡滑移或开裂 ¾结构问题 形式、构造或连接措施不当引起的落梁 ¾地震力分布问题 桥梁各支承点的地面运动不一致 ¾设计问题 墩柱本身抗震能力不足造成的破坏
《结构动力学》PPT课件
![《结构动力学》PPT课件](https://img.taocdn.com/s3/m/cb7b8a06b90d6c85ec3ac6a7.png)
0
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
结构动力学-4节.ppt
![结构动力学-4节.ppt](https://img.taocdn.com/s3/m/34f7bac4aeaad1f346933f4a.png)
fs ky (t) fd c y ( t) m y c y ky m u g
u g (t )
二、隔振设计 基底振动的隔离(对象是m,如地震) 力的传递与隔振(对象是地基,如 轻轨影响地基) 1.基底振动的隔离 设质量相对于地面的位移为yr
y ( t ) y ( t ) u ( t ) r g
y P i i y y cos t sin t ( 1 cos t ) i 1 i k
i 1 / y i sin t y i y cos t
P (t )
Pi
Pi 1
P i sin t k
2 2
3 2 tan 1 2 4 22
A 1 4 22 B ( 1 2)2 4 22
传导比
m y c y ky kB sin t cB cos t
A/ B
0
1/ 5
2
m
k
y (t )
c
1/ 4
1/ 3 1/ 3
k
y y d y yy k 1 k 1 y k 1 k 1 y ( ) k t d tk t t t 2 t k 1 k 1
t k 的加速度为: y y y y k 1 k 1 k k y 2 y y t t k 1 k k 1 y k 2 t ( t )
0
1 t y ( t ) p () s i n( t ) d 0 m
t
1 t ( p r ) s i n( t ) d 0 0 m
结构动力学课件PPT
![结构动力学课件PPT](https://img.taocdn.com/s3/m/9cfa3e99b8f3f90f76c66137ee06eff9aff84917.png)
my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。
同济大学高等结构动力学课件(全)
![同济大学高等结构动力学课件(全)](https://img.taocdn.com/s3/m/5a844903bed5b9f3f90f1ca4.png)
车辆振动作用 地震振动作用 风致振动作用
同济大学土木工程防灾国家重点实验室、 同济大学土木工程防灾国家重点实验室、桥梁工程系
主要内容
第一讲 单自由度系统自由振动 第二讲 单自由度系统强迫振动 第三讲 广义单自由度叠加方法 第四讲 广义单自由度分步方法 第五讲 多自由度系统动力问题 第六讲 特征值问题求解方法 第七讲 随机振动基础 第八讲 结构随机振动分析 第九讲 结构动力可靠性分析 第十讲 桥梁车辆振动作用 第十一讲 桥梁地震振动作用 第十二讲 桥梁风致振动作用
阻尼比计算:
2πξω vn = exp vn +1 ωD
Hale Waihona Puke 两边取对数: δ ≡ ln vn = 2πξ ≈ 2πξ = c
ξ≈
vn +1 1−ξ v n − v n +1
2mf
2πv n +1
ξ≈
vn − vn+m 2mπv n + m
振幅衰减值:振幅减小50%的振动次数
1. 1结构重力影响(续)
&&(t ) + cv &(t ) + k∆ st + kv (t ) = p (t ) + W mv
∵ k∆ st = W ∴ ∵ ∴
&&(t ) + cv &(t ) + kv (t ) = p (t ) mv
&&(t ) , v & (t ) &&(t ) = v ν &(t ) = v
A = 0,
B=− p0 β k 1 1 − β 2
无阻尼系统通解:
p v(t ) = 0 k 1 1 − β 2 (sin ω t − β sin ωt )
第12章结构动力学 ppt课件
![第12章结构动力学 ppt课件](https://img.taocdn.com/s3/m/94a4f2a16bd97f192379e96d.png)
§14-1 概 述
一、结构动力计算的特点 动力荷载作用下,结构将发生振动,各种量值均随时间而变化。
1、内容: (1)研究动力荷载作用下,结构的内力、位移等计算原理和计算方法。 求出它们的最大值并作为结构设计的依据。
(2)研究单自由度及多自由度的自由振动、强迫振动。 2、静荷载和动荷载 (1)静荷载:荷载的大小和方向不随时间变化(如梁板自重)。 (2)动荷载:荷载的大小和方向随时间变化,需要考虑惯性力。 3、特点 (1)必须考虑惯性力。 (2)内力与荷载不能构成静平衡。必须考据惯性力。依达朗伯原理, 加惯性力后,将动力问题转化为静力问题。
动力自由度的确定方法:加附加链杆约束质点位移,最少链杆数即为自 由度
图刚架上有四个集中质点,但只需要加三根链杆 便可限制全部质点的位置。如图e。
自由度=3 或
图示梁,其分布质量集度为m,可看作有无穷多 个mdx的集中质量,是无限自由度结构。
自由度的数目与结构是否静定或超静定无关
§14-2 结构振动的自由度
2、运动方程的解:
方程
y2y0
为一常系数线性齐次微分方程,其通解为
y (t) A 1 co t s A 2sitn
A1和A2为任意常数,可有初始条件来确定。
振动的初始条件为 t 0 时 y y , 0 , y y 0
式中y0—初位移, y0—初速度。则有Fra bibliotekA1y0,A2
y0
可得
yy0cots y0si nt
第十四章 结构动力学
§14-1 概 述 §14-2 结构振动的自由度 §14-3 单自由度结构的自由振动 §14-4 单自由度结构在简谐荷载作用下的强迫振动 §14-5 单自由度结构在任意荷载作用下的强迫振动 §14-6 多自由度结构的自由振动 §14-7 多自由度结构在简谐荷载作用下的强迫振动 §14-8 振型分解法 §14-9 无限自由度结构的振动 §14-10 计算频率的近似法
第十章结构动力学1 56页PPT文档
![第十章结构动力学1 56页PPT文档](https://img.taocdn.com/s3/m/4d16aa4f9b6648d7c1c746f7.png)
5.与其它课程之间的关系
结构动力学以结构力学和数学为基础。 要求熟练掌握已学过的结构力学知识和数学知识(微分方程的求解)。
结构动力学作为结构抗震、抗风设计计算的基础。
2019/9/6
结构力学
§10-2 体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。
世界上采用被动式TMD的其它代表性建筑有:加拿大多伦多 的CN Tower、日本大阪的Crystal Tower、澳洲悉尼的 Centerpoint Tower、美国纽约的Citicorp Center、日本的明石 海峡大桥 Akashi Kaikyo Bridge ,等等。
§10-1 概述
结构振动控制的工程应用实例
冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。
随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。
第10章 结构动力学
Structural dynamics
§10-1 概述 §10-2 体系的动力自由度 §10-3 单自由度体系运动方程的建立 §10-4 单自由度体系的自由振动 §10-5 单自由度体系的强迫振动 §10-6 多自由度体系的自由振动 §10-7 振型的正交型 §10-8 多自由度体系的强迫振动 §10-9 无限自由度体系的自由振动 §10-10 自振频率的近似计算
结构动力学以结构力学和数学为基础。 要求熟练掌握已学过的结构力学知识和数学知识(微分方程的求解)。
结构动力学作为结构抗震、抗风设计计算的基础。
2019/9/6
结构力学
§10-2 体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。
世界上采用被动式TMD的其它代表性建筑有:加拿大多伦多 的CN Tower、日本大阪的Crystal Tower、澳洲悉尼的 Centerpoint Tower、美国纽约的Citicorp Center、日本的明石 海峡大桥 Akashi Kaikyo Bridge ,等等。
§10-1 概述
结构振动控制的工程应用实例
冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。
随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。
第10章 结构动力学
Structural dynamics
§10-1 概述 §10-2 体系的动力自由度 §10-3 单自由度体系运动方程的建立 §10-4 单自由度体系的自由振动 §10-5 单自由度体系的强迫振动 §10-6 多自由度体系的自由振动 §10-7 振型的正交型 §10-8 多自由度体系的强迫振动 §10-9 无限自由度体系的自由振动 §10-10 自振频率的近似计算
(同济大学)结构动力学教程 第六章 结构动力学中常用的数值方法
![(同济大学)结构动力学教程 第六章 结构动力学中常用的数值方法](https://img.taocdn.com/s3/m/8738e533ce2f0066f4332223.png)
(2) 求解位移向量: [K ]{x}t+θ∆t = {R}t+∆t
{x}t+∆t = a4 ({x}t+θ∆t − {x}t ) + a5{x}t + a6{
(3) 求解加速度、速度、位移向量:{x}t+∆t = {x}t + a7 ({x}t+∆t + {x}t ) {x}t+∆t = {x}t + ∆t{x}t + a8 ({x}t+∆t + 2{x}
({Q}t+θ∆t = {Q}t +θ ({Q}t+∆t −{Q}t )) 以位移 {x}t+θ∆t 为未知量建立求解方程,即:
[K ]{x}t+θ∆t = {R}t+θ∆t
式中,
[K ] = [K ] + 1 [M ] + 3 [C]
(θ∆t ) 2
θ∆t
{R }t +θ∆t
= {Q}t
+ θ ({Q}t+∆t
x
xt+∆
t + ∆t
用同样方法处理位移
泰勒展开:{x}t+∆t
= {x}t
+ {x}t ∆t +
1 {~x}∆t 2 2
类似地设 t → t + ∆t 时间间隔内:{x} = {x}t + 2δ ({x}t+∆t − {x}t )
(0 ≤ δ ≤ 0.5)
{x}t+∆t = {x}t + {x}t ∆t + (0.5 − δ ){x}t ∆t 2 + δ {x}t+∆t ∆t 2
与原矩阵a相关联的矩阵设矩阵a的特征值为对应的特征向量为的特征值为对应的特征向量为的特征值为对应的特征向量为的特征值为对应的特征向量仍为非奇异则的逆矩阵存在为其特征值相似即有可逆矩阵存在使的特征值也为特征向量为特征值的和与积设矩阵的特征值为则有供校核用特征向量规范化设矩阵的特征向量为的特征向量
结构动力学2PPT课件
![结构动力学2PPT课件](https://img.taocdn.com/s3/m/5ea688bc804d2b160a4ec074.png)
可见质量 mi 的惯性力幅值为
Ii mi Ai 2 (i 1,2,n)
3.动内力幅值计算
位移、惯性力、动荷载频率相同,对于无阻尼体系三者同时达到幅值。故,可 将荷载幅值和惯性力幅值加在结构上,按静力学方法体系的最大动内力和最大 动位移。
例1 试求图示体系质量的最大动位移,并绘制结构的最大动力弯矩图。已知=
3
EI 。 m l3
A m1 m
l2
EI
q sin t
B
C m2 2m EI
l2
l2
2021/5/25
第10页/共32页
10
解 本例静定结构,选择柔度法求解。
1 A m1 m
l2
EI
q sin t
B
C m2 2m EI
l/2
l2
l2
M1图
M图21源自l/4M图
P
q
ql2/8
用图乘法求得,11
l3 8E
小到大排列,称为频率谱。
➢将求得的 1 2 回代入(2),由于系数行列式等于零,n个方程是相关的,只
能由其中的n-1个方程解得各自由度动位移之间的比值。可见,体系按某一频
率振动的形状是不变的,称之为振型。
✓ 振型向量 Ai A1i A2i
Ani T
✓ 振型向量常用表述方法一:令某自由度位移为1,例 Ai 1 2i
k 是对称矩阵,k k T
M 也是对称矩阵,同理,有 A jT M Ai AiT M A j
(3)-(4),有
i2
2 j
AiT M A j 0
因为 i j ,所以 AiT M A j 0 i j
振型第一正交性:多自由度体系任意两个不同振型关于质量矩阵正交。
Ii mi Ai 2 (i 1,2,n)
3.动内力幅值计算
位移、惯性力、动荷载频率相同,对于无阻尼体系三者同时达到幅值。故,可 将荷载幅值和惯性力幅值加在结构上,按静力学方法体系的最大动内力和最大 动位移。
例1 试求图示体系质量的最大动位移,并绘制结构的最大动力弯矩图。已知=
3
EI 。 m l3
A m1 m
l2
EI
q sin t
B
C m2 2m EI
l2
l2
2021/5/25
第10页/共32页
10
解 本例静定结构,选择柔度法求解。
1 A m1 m
l2
EI
q sin t
B
C m2 2m EI
l/2
l2
l2
M1图
M图21源自l/4M图
P
q
ql2/8
用图乘法求得,11
l3 8E
小到大排列,称为频率谱。
➢将求得的 1 2 回代入(2),由于系数行列式等于零,n个方程是相关的,只
能由其中的n-1个方程解得各自由度动位移之间的比值。可见,体系按某一频
率振动的形状是不变的,称之为振型。
✓ 振型向量 Ai A1i A2i
Ani T
✓ 振型向量常用表述方法一:令某自由度位移为1,例 Ai 1 2i
k 是对称矩阵,k k T
M 也是对称矩阵,同理,有 A jT M Ai AiT M A j
(3)-(4),有
i2
2 j
AiT M A j 0
因为 i j ,所以 AiT M A j 0 i j
振型第一正交性:多自由度体系任意两个不同振型关于质量矩阵正交。
结构动力学课件—1dyanmics of structures-ch1 ch2
![结构动力学课件—1dyanmics of structures-ch1 ch2](https://img.taocdn.com/s3/m/7abd33e78762caaedd33d492.png)
1.4.3 Hamilton's principle
CHAPTER 1. OVERVIEW OF STRUCTURAL DYNAMICS
1.5 ORGANIZATION OF THE TEXT
Part I-SDOF
Basic Conceptions Basic Methods
Part II- Discrete MDOF
(a) 2019年台湾集集地震集鹿大桥破坏状态
FIGURE 1-5 Typical finite-element beam coordinates.
CHAPTER 1. OVERVIEW OF STRUCTURAL DYNAMICS
1.4 FORMULATION OF THE EQUATIONS OF MOTION
CHAPTER 1. OVERVIEW OF STRUCTURAL DYNAMICS
FEM Athird method of expressing the displacements of any given structure in terms of a nite number of discrete displacement coordinates, which combines certain features of both the lumped-mass and the generalized-coordinate procedures
Structural Properties (Mass, Damping, Stiffness) Modal Superposition Eigen Problem Selection of Dynamic DOF Step by Step Methods
DYNAMICS
CHAPTER 1. OVERVIEW OF STRUCTURAL DYNAMICS
1.5 ORGANIZATION OF THE TEXT
Part I-SDOF
Basic Conceptions Basic Methods
Part II- Discrete MDOF
(a) 2019年台湾集集地震集鹿大桥破坏状态
FIGURE 1-5 Typical finite-element beam coordinates.
CHAPTER 1. OVERVIEW OF STRUCTURAL DYNAMICS
1.4 FORMULATION OF THE EQUATIONS OF MOTION
CHAPTER 1. OVERVIEW OF STRUCTURAL DYNAMICS
FEM Athird method of expressing the displacements of any given structure in terms of a nite number of discrete displacement coordinates, which combines certain features of both the lumped-mass and the generalized-coordinate procedures
Structural Properties (Mass, Damping, Stiffness) Modal Superposition Eigen Problem Selection of Dynamic DOF Step by Step Methods
DYNAMICS
同济大学朱慈勉-结构力学第10章-结构动力学
![同济大学朱慈勉-结构力学第10章-结构动力学](https://img.taocdn.com/s3/m/eae624fda76e58fafbb00304.png)
机动力荷载).
分析过程:
第1阶段:位移时间历史 y y(x)
第2阶段: 应力、应变及内力 (如何求?)
已知荷载的类型
周期荷载: 简谐荷载
复杂荷载
F
t
F
t
建筑物上的偏心电机
内燃机连杆
任意复杂周期荷载可以用傅里叶级数展开为简谐荷载
非周期荷载:
F
t
F
t
爆破
地震
§10-2 体系振动的自由度
(动力)自由度:确定体系上全部质量位置所需的独立参 数的数目
确定体系阻尼比的一种方法
▪ 阻尼体系动力反应:
y(t) et sin(dt )
▪ 体系的阻尼比可以通过测试体 系运动的衰减规律得到:
▪ 体系从任一时刻经几个周期后 的振幅比为:
y (t)
e tk
e (tk nT )
t
0 tk
t k + nT
e t
T 2/d
y e tk
tk
n T
2nπ d
my cy ky 0
(3-2)
▪ 特征方程:
s c
c
2
2
2m 2m
▪ 如果体系的阻尼比临界阻尼小,则显然有c/2m< ,这时,特 征方程根式中的值必然为负值,则s 值成为:
s c i 2 c 2
2m
2m
▪ 引入符号: c c cc 2m
c 2m
▪ 其中 表示体系阻尼与临界阻尼的比值,称为阻尼比,则:
y3 y2
y1
忽略楼板变形
3个自由度
y1 y2
2个自由度
1个自由度
y1
忽略杆件轴向变形
4个自由度
y1
分析过程:
第1阶段:位移时间历史 y y(x)
第2阶段: 应力、应变及内力 (如何求?)
已知荷载的类型
周期荷载: 简谐荷载
复杂荷载
F
t
F
t
建筑物上的偏心电机
内燃机连杆
任意复杂周期荷载可以用傅里叶级数展开为简谐荷载
非周期荷载:
F
t
F
t
爆破
地震
§10-2 体系振动的自由度
(动力)自由度:确定体系上全部质量位置所需的独立参 数的数目
确定体系阻尼比的一种方法
▪ 阻尼体系动力反应:
y(t) et sin(dt )
▪ 体系的阻尼比可以通过测试体 系运动的衰减规律得到:
▪ 体系从任一时刻经几个周期后 的振幅比为:
y (t)
e tk
e (tk nT )
t
0 tk
t k + nT
e t
T 2/d
y e tk
tk
n T
2nπ d
my cy ky 0
(3-2)
▪ 特征方程:
s c
c
2
2
2m 2m
▪ 如果体系的阻尼比临界阻尼小,则显然有c/2m< ,这时,特 征方程根式中的值必然为负值,则s 值成为:
s c i 2 c 2
2m
2m
▪ 引入符号: c c cc 2m
c 2m
▪ 其中 表示体系阻尼与临界阻尼的比值,称为阻尼比,则:
y3 y2
y1
忽略楼板变形
3个自由度
y1 y2
2个自由度
1个自由度
y1
忽略杆件轴向变形
4个自由度
y1
结构力学——结构动力学PPT课件
![结构力学——结构动力学PPT课件](https://img.taocdn.com/s3/m/59b93f1cf705cc175427094e.png)
由静止状态考虑一个瞬时冲量的影响。dS FE( )d
FE(t)
dS=FE()d
mdy
dy( ) FE ( )d
m
d
t
dy( ) FE ( ) (d )2
2m
0
瞬时激振作用效果就在于使质点在τ时
t
刻产生一个初速度,而初位移为零。质
点作以此初始条件引起的自由振动。
dy(t) dy0 sin(t )
y 0
2
A0
A1
A2
arctan
y0
y 0
A0 ——振幅(amplitude of vibration)
——初始相位角。
总动力位移
第4页/共65页
4 / 67
第三节 单自由体系自由振动
1、无阻尼的自由振动 ( = 0 )
T
2
f1 T
称周期(振动一次所需的时间) 称工程频率(单位时间内振动次数)
23 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法
y
Ae
y
t
s
i
n
(dt
)
发现
1/
衰减性振动;
Ae t
2/ 非周期性振动; 3/ 质点两次通过平衡位
o
t
置的时间间隔相等
2
Td d 准周期
第24页/共65页
24 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法 ① 阻尼对自振频率的影响.
第31页/共65页
31 / 67
第四节 单自由体系受迫振动
1、单自由体系受迫振动的一般解
整个加载过程可以考虑成是由一系列瞬时冲量对同一时
(同济大学)结构动力学教程 第五章 连续弹性构件的振动
![(同济大学)结构动力学教程 第五章 连续弹性构件的振动](https://img.taocdn.com/s3/m/7a1e2a54f121dd36a22d8223.png)
x) sin( mπ 2l
x)dx
=
l
0 /2
m≠n m=n
∫ 求得:
A'n
=
2 l
ε
l o
x sin( mπ x)dx = 2 ε ⋅ 4l 2 sin( nπ ) =
8l
n−1
ε (−1) 2
2l
l n2π 2
2 n2π 2
∑ u( x, t )
=
8l n2π 2
ε
∞
(−1)
n−1 2
sin(
=
G ρ
∂ 2θ ∂x 2
⇒a=
G ρ
⇒
∂ 2θ ∂t 2
= a2
∂ 2θ ∂x 2
→a 为剪切波传播速度。
波动方程 ∂2u = a2 ∂2u 与直杆纵向振动相同
通解: ∂t 2
∂x 2
θ
(
x,
t
)
=
ω A'sin(
x)
+
B'
ω cos(
x)
sin(ωt
+
ϕபைடு நூலகம்
)
a
a
4 个常数 A', B',ω,ϕ 由边界条件及初始条件确定
∂x 2
T (t) + ω 2T (t) = 0
U (x)T (t) = a2T (t)U ''(x) ⇒ T (t) = a2 U ''(x) = −ω 2 T (t) U (x)
U ''(x) + ω 2 U (x) = 0 a2
T (t) + ω 2T (t) = 0 解:T ω 为振动固有频率、ϕ
结构动力学教学课件(共10章)第10章 结构动力学专题
![结构动力学教学课件(共10章)第10章 结构动力学专题](https://img.taocdn.com/s3/m/9b6eb3f04a7302768f993993.png)
··
∑ () + ∑
··
·
+2ζnωn + qn=-=
∑
=
=+
··
()
()
(10-19)
上式可简记为
··
·
··
··
+2ζnωn + qn=- + (10-20)
力位移。
由于[Kg]表示因支承单位位移在自由节点上产生的力,而[K]表示自由节点单位位移所产生的
力,因此{us}和{ug}满足条件
[K]{us}+[Kg]{ug}={0}(10-4)
由此可得到{us}和{ug}的关系为
{us}=-[K]-1[Kg]{ug}(10-5)
10.1
10.1.1
结构地震反应分析中的多点输入问题
点地震动输入下结构总的反应为
{ua}={us
}+{u}=-[K]-1[K
g]{ug}+
∑ {ϕ}nqn(t)
=
= ∑ [Egl]ugl+∑{ϕ}nqn(t)(10-15)
=
10.2
10.2.1
结构地震反应分析中的多维输入问题
非对称结构在多维地震输入时的振型叠加法
计算非对称结构在多维地震动作用下的反应时,在刚性楼板假定前提下通常每层考虑三个自
式(10-7)右端第二项表示结构与支座的阻尼耦联,由于比较小,通常可忽略。同时,根据式(10-4)和
式(10-5),则式(10-7)可简化为
··
{Peff(t)}=([M][K]-1[Kg]-[Mg]){ }(10-8)