自动控制原理6.1 系统校正的基本概念

合集下载

控制工程基础- 第6章 控制系统校正

控制工程基础- 第6章 控制系统校正

arctan 1 2
tr
n 1 2
tp
n
1 2
ts
3
n
或4
n
% exp( ) 100%
1 2
控制工程基础
控制系统校正的基本概念
二阶系统的频域性能指标
c n 1 4 4 2 2
arctan
2
1 4 4 2 2
p n 1 2 2
1
Mp
2
1 2
b n 1 2 2 2 4 2 2 4
控制工程基础
控制系统校正的基本概念
(2) 滞后校正装置 校正装置输出信号在相位上落后于输入信号,即
校正装置具有负的相角特性,这种校正装置称为滞后 校正装置,对系统的校正称为滞后校正(积分校正)。 主要改善系统的静态性能。 (3) 滞后-超前校正装置
若校正装置在某一频率范围内具有负的相角特性, 而在另一频率范围内却具有正的相角特性,这种校正 装置称滞后-超前校正装置,对系统的校正称为滞后超前校正(积分-微分校正)。
2. 频域性能指标
(1) 开环频域指标
开环截止频率ωc (rad/s) ; 相角裕度γ;
幅值裕度Lg 。 (2) 闭环频域指标
谐振频率ωp ; 谐振峰值 Mp ;
频带宽度ωb。
控制工程基础
控制系统校正的基本概念
3. 各类性能指标之间的关系 各类性能指标是从不同的角度表示系统的性能,它们之间
存在必然的内在联系。对于二阶系统,时域指标和频域指标之 间能用准确的数学式子表示出来。它们可统一采用阻尼比ζ和 无阻尼自然振荡频率ωn来描述。 二阶系统的时域性能指标
经变换后接入系统,形成一条附加的、对干扰的影响进 行补偿的通道。
控制工程基础

自动控制原理6-1串联校正

自动控制原理6-1串联校正

可见, 的几何中点。 可见,ωm出现在ω1 =1/aT 和ω2 =1/T 的几何中点。
1 + sin ϕ m a= 1 − sin ϕ m
上式表明, 仅与a有关 有关。 值选得越大 值选得越大, 上式表明,ϕm仅与 有关。a值选得越大,则超前网络的 微分作用越强。但为了保持较高的系统信噪比, 微分作用越强。但为了保持较高的系统信噪比,实际选用 值一般不大于20。此外, 的a值一般不大于 。此外,ωm处的对数幅频值为 值一般不大于
前馈 校正 控制 器 对 象
ห้องสมุดไป่ตู้
7
前馈校正
控制器
对象
前馈校正可以单独作用于开环控制系统, 前馈校正可以单独作用于开环控制系统,也可以作为 反馈控制系统的附加校正而组成复合控制系统。 反馈控制系统的附加校正而组成复合控制系统。 复合校正方式是在反馈控制回路中, 复合校正方式是在反馈控制回路中,加入前馈校 正通路,组成一个有机整体, 正通路,组成一个有机整体,有按扰动补偿的复合控 制形式和按输入补偿的复合控制形式。 制形式和按输入补偿的复合控制形式。
1 + aTs Gc ( s ) = 1 + Ts
σ
(1)零极点分布图: 零极点分布图: ∵a >1
−1/T
−1/aT
0
∴零点总是位于极点之右, ∴零点总是位于极点之右,二者的距离由常 零点总是位于极点之右
14
决定。 数a决定。零点的作用大于极点,故为超前网络。 决定 零点的作用大于极点,故为超前网络。
2.性能指标 2.性能指标 自动控制系统是根据它所完成的具体任务设计的。 自动控制系统是根据它所完成的具体任务设计的 。 任务不同,对自动控制系统性能的要求也不同。 任务不同,对自动控制系统性能的要求也不同。 常见的时域指标有: 常见的时域指标有: 系统的无差度N ess σp% tr ts 系统的无差度 等; 常见的频域指标有: 常见的频域指标有: ωc h γ 20lgh 和 ωr ωb Mr等。 性能指标不应当比完成所需要的指标更高。 性能指标不应当比完成所需要的指标更高 。 如调速 系统对平稳性和稳态精度要求严格,而随动系统则对快 系统对平稳性和稳态精度要求严格, 速性期望更高。 速性期望更高。 3.改善系统性能的方法 在进行系统设计时, 在进行系统设计时,常常遇到初步设计出来的系统 3 不能满足已给出的所有性能指标的要求。 不能满足已给出的所有性能指标的要求。

《自动控制原理》第6章_自动控制系统的校正

《自动控制原理》第6章_自动控制系统的校正
频率法校正的基本原理: 利用校正网络的特性来增大系统的相位裕度,
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012

自动控制原理_吴怀宇_第六章控制系统的校正与设计

自动控制原理_吴怀宇_第六章控制系统的校正与设计

扰动补偿 输入补偿
自动控制原理
按扰动补偿的复合控制系统如图6-3所示。
N(s)
+
Gn (s)
R(s) + E(s)
+
G1 (s)
G2 (s)
C(s)
-
图6-3 按扰动补偿的复合控制系统
自动控制原理
按给定补偿的复合控制系统如图6-4所示。
Gr ( s)
R( s) E( s)
+
G( s )
+
C( s)
自动控制原理
6.4.1 超前校正
基本原理:利用超前校正网络的相角超前特性去增大系 统的相角裕度,以改善系统的暂态响应。 用频率特性法设计串联超前校正装置的步骤:
(1)根据给定的系统稳态性能指标,确定系统的开环增益 ;
K)绘制在确定的 值下系统的伯德图,并计算其相角裕 (2 度 ; K 0
(3)根据给定的相角裕度 ,计算所需要的相角超前量 0
m
60º
40º
20º
1
0 4 8 12 14 20

图6-16 最大超前相角 m 与 的关系
自动控制原理
6.3.2 滞后校正装置 相位滞后校正装置可用图6-17所示的RC无源网络实现, 假设输入信号源的内阻为零,输出负载阻抗为无穷大,可 求得其传递函数为:
G c ( s) s zc s 1 1 s 1 ( ) s pc s 1 ( ) s 1
自动控制原理
与相位超前网络类似,相位滞后网络的最大滞后角位于
1 与 1 的几何中心处。
图6-21还表明相位滞后校正网络实际是一低通滤波器, 值 它对低频信号基本没有衰减作用,但能削弱高频噪声, 10 较为适宜。 愈大,抑制噪声的能力愈强。通常选择 一般可取

精品课件-自动控制原理-第六章 系统校正

精品课件-自动控制原理-第六章 系统校正

20lg 10 0.456c cc
0 10 0.456
c
1 c
4.56(rad/s)
=180° (c) Gc ( j)G( j)
180° 90°- arctanc arctan0.456c arctan0.114c | c 4.56 49.8°
(6) 选择无源相位超前网络元件值。(省略)
R2 R1 R2
1 R1Cs 1 R1R2 Cs
R1 R2
Gc
s
1 a
1 aTs 1 Ts
T R1R2 C R1 R2
a R1 R2 1 R1 1
R2
R2
Gc
s
1 aTs 1 Ts
Gc
j
1 1
jaT jT
c () arctan aT arctanT
m
T
1 a
1 2
(lg
1
G1(s)G2 (s)
G1(s)
1 T1s
1 T1s
G2
(s)
1 1
T2 T2
s s
Gc
(
j)
1 jT1 1 jT1
1 jT2 1 jT2
G1( j)G2 ( j)
2.有源相位滞后-超前网络
Gc
(s)
G0
(1 T2s) (1 T1s
(1 T3s) 1 T4s)
式中,
G0
-
R2 R3 R1
【例6-2】 某控制系统的结构如图所示。其中
G1(s)
(0.1s
k 1)(0.001s
1)
要求设计串联校正装置,使系统满足在单位斜坡信号作用下稳
态误差ess≤0.1%及 ≥45º的性能指标。
解:先用图示的无源相位超前网络进行校正。

自动控制原理--第6章 线性控制系统的校正

自动控制原理--第6章 线性控制系统的校正

自动控制原理
4
6.2 校正装置及其特性 6.2.1 无源校正装置
1. 无源超前网络
复阻抗:
Z1
1
R1 R1Cs
Z2 R2
所以超前网络的传递函数为:
Gc
(s)
Uo (s) Ui (s)
Z2 Z1 Z2
R2 1 R1Cs R1 R2 1 R1R2 Cs
1 1 aTs a 1 Ts
式中:
T R1R2 C R1 R2

g g 0 (c ) c (c )
(6-23)
(4)根据下述关系式确定滞后网络参数b和T
20 lg b L0 (c ) 0
1 bT
(1 5
~
1 10
)
c
(6-24) (6-25)
(5)验算已校正系统相角裕度和幅值裕度。
自动控制原理
25
例6-2 设一控制系统如图所示。要求校正后系统的静态速度误差 系数等于30s-1,相角裕度不低于40°,幅值裕度不小于10 dB,
系统剪切频率c4.4rad/s,相角裕度g 45°,幅值裕度
Kg (dB) 10dB。试选择串联无源超前网络的参数。
解 首先调整开环增益K。未校正系统为Ⅰ型系统,所以有
ess
1 K
0.1
故K值取为10时,可以满足稳态误差要求,则
Go (s)
10 s(s 1)
(6-22)
自动控制原理
21
画出其对数幅频渐近特性,由图中得出未校正系统剪切
串联校正
G(s)为系统不可变部分传递函数 Gc(s)为校正装置的传递函数
自动控制原理
2
并联校正
G(s)为系统不可变部分传递函数 Gc(s)为反馈通道中安置传递函数

自动控制原理习题答案6

自动控制原理习题答案6
j =1 i =1
n
m
n−m
=
(0 − 0.001 − 4 − 5) − (−0.03) ≈ −2.99 4−3
渐近线与实轴的夹角
θ=
± (2k + 1)π ± (2k + 1)π = = ±60o ,180o n−m 4 −1 (k = 0,1)
系统的根轨迹如图 6.2(b)所示。
引入开环偶极子的滞后校正对根轨迹不产生显著影响,既能保证系统瞬态特性又 满足了稳态性能指标。 K 题 6.5 单位负反馈系统的对象传递函数为 G p ( s) = ,设计相位超前校正, s ( s + 4) 使校正后系统的超调量不大于10% ,上升时间不大于 2 秒,单位斜坡函数的稳态误差 不大于 0.5 。 解:采用根轨迹校正方法。 (1) 根据期望动态性能指标确定闭环主导极点的位置。为使 δ % ≤ 10% 并留有余 2 地(以确保在其他极点的作用下性能指标仍能得到满足) ,选阻尼比 ξ = 。由于 2 ξ = cos θ , 主导极点应位于如图 6.3 所示的θ = 45o 的射线上。 再运用二阶系统调节时 3 间的近似公式 ts = ,可选择ωn = 3 ,以保证 ts ≤ 2s 并留有余地。因此主导极点为
ww
w. 课后 kh 答案 da 网 w. co m
p1 p3
× ×
Im
×
×
Re
p2
图 6.2 题 6.4 用图
ξωn
3 2 3 2 ±j 。 2 2 (2) 画出未校正系统的根轨迹图,如图 6.3 中的实线所示。由图可见,根轨迹不 通过期望主导极点,因此不能通过调节开环放大系数来满足动态性能指标。 − p1,2 = −ξωn ± jωn 1 − ξ 2 = −

6.1校正 自动控制原理

6.1校正 自动控制原理
ur 传递函数为: Gc (s)= 1+aTs 2)Cs] R3[1+(R1+R Gc (s) = R 1+Ts Cs) (1+R
1 2
R2 C
R3 ∞ +
R1
uc
+
R3 1+τs =Kc1+Ts 式中: Kc= R 1 令: aT=τ Kc=1 τ=(R1+R2)C aT R1+R2 T=R2C 则: a= T = >1 R2
Δ
第一节 系统校正的一般方法
2.超前校正装置的设计
超前校正是利用相位超前特性来增 加系统的相角稳定裕量,利用幅频特性 曲线的正斜率段增加系统的穿越频率。 从而改善系统的平稳性和快速性。为此, 要求校正装置的最大超前角出现在系统 校正后的穿越频率处。
第一节 系统校正的一般方法
二 、串联滞后校正
1.滞后校正装置

g k g
10 0.456s+1 求γ和 kg。 , ② 若 GH = s(s +1) 0.114s+1
Байду номын сангаас
49.2o g k g 10 k GH ③若开环传递函数改为, = s(s +1)
4.4 c

求 = 49.2 的k值。
o
K=0.863时: 0.863 c
(1) 无源超前校正装置 同理: φm= sin-1 β – 1 β+1 传递函数为: 1 ωm = T = 1 · 1 1+βTsβT Gc (s) = T β 1+Ts
0
+滞后校正装置+ R2 的伯德图 L(ω) c1 - ω1= 1 ω2=βT T φ(ω)

自动控制原理自动控制系统的校正

自动控制原理自动控制系统的校正

2021/8/5
3
举一个例子说明校正的作用。 上一章的例5-7:系统的开环传递函数为
G (s)H (s)
10
s(10.0s2 )1(0.2s)
首先分析一下,未校正系统的性能
稳态误差:有一个积分环节,是I型系统.
开环增益
,稳态速度误差系数
K10 而 Kp,Ka0
Kv10
2021/8/5
4
L()
40 20dB / dec
2021/8/5
1
概述
前面介绍了分析控制系统的三种基本方法: 时域分析法、根轨迹法和频域分析法。利用这些 方法能够在系统结构和参数已经确定的情况下, 计算或估算系统的性能指标:稳态性能指标和暂 态性能指标 。这类问题是系统的分析问题。
系统分析:已知结构、参数→数学模型→动、 静态性能分析→性能指标与参数的关系
1、稳态性能指标
系统的稳态性能与开环系统的型别v与开环传递系数K有关,常用静态误差系 数衡量,误差系数越大(等效于K越大),稳态误差ess就越小。
2021/8/5
8
2、动态性能指标
1)时域指标:最大超调量Mp(反映平稳性)、调节时间ts(反映快速性)。 2)频域指标:
(1)开环频域指标: 稳定性指标:相位裕量、幅值裕量GM、中频段宽度; 快速性指标:幅值穿越频率c。 (2)闭环频域指标:Mr、ωr、ωb 3)复域指标:
2021/8/5
10
二、校正的基本方式
1. 串联校正
R(s)
-
校正装置 Gc(s)
控制器
被控对象 C(s) Go(s)
校正装置和未校正系统的前向通道的环节相串联,这
种方式叫做串联校正。
优点:结构较简单,通常将串联校正装置安置在前向通

第6章自动控制系统的综合与校正PPT资料49页

第6章自动控制系统的综合与校正PPT资料49页
因此,控制系统的校正,就是按给定的固有部分的特性和对系统提出的性 能指标要求,选择与设计校正装置。而校正装置的选择及其参数整定的过 程,就称为自动控制系统的校正问题。
6.1.2 控制系统的校正方法 用频率校正有以下特点。
(1)用频率法校正控制系统,主要是改变频率特性形状,使之具有合适的高频、 中频、低频特性和稳定裕量,以得到满意的闭环品质。
d
图6-5 相位超前网络
d
R1 R2 R1
1
频率特性为
Wc (j)
1
d
jT jT
1 1
校正电路的伯德图如图6-6所示。
d
图6-6 超前校正电路的伯德图
图中
2 = d1
max 12
max
arcsind d
1 1
2.用频率法设计超前校正网络
利用频率法进行超前校正的设计步骤大致如下。
(1)根据稳态性能指标确定系统的开环增益K。 (2)绘制在确定K值下的伯德图,计算出未校正系统的相位裕量。
(2)在初步设计时,常采用伯德(Bode)图来校正系统。
(3)用频率法校正控制系统时,通常是以频率指标来衡量和调整系统的暂态性 能,因而是一种间接的方法。
需要校正的几种基本类型如图6-1所示。
6.1.3 控制系统的性能指标
应根据系统工作的控制系统的性能指标实际需要来确定,对不同系统有所侧重, 如调速系统对平稳性和稳定性精度要求较高,而随动系统则侧重于快速性要求。
0 = − 0 + = 5°~ 20°
(3)根据给定相位裕量,估计需要的附加相角位移,求出超前网络必须提 供的相位超前量。
(4)计算校正网络系数。
m0
d1 1 ssiin n m m

系统校正的概念

系统校正的概念

(s) G0 (s)
1 G0 (s)H (s)
采用串联校正后,系统的闭环传递函数为
c
(s)
1
Gc (s)G0 (s) Gc (s)G0 (s)H
(s)
(6-1) (6-2)
系统校正的概念
2. 校正方案
并联校正,如图6-2所示。
采用并联校正后,系统的闭环传递函数为
c
(s)
1
G1(s)G2 (s) Gc (s)G3(s) G1(s)G2 (s) Gc (s)G3 (s)H
(s)
(6-4)2. 校正方案
反馈校正,如图6-3所示。校正装置可以构成一个反馈通道。
采用反馈校正后,系统的闭环传递函数为
c
(
s)
1
1
G2 (s) G2 (s)Gc
(s)
G1
(s)G3
(s)
1
G2 (s) G2 (s)Gc
(s)
G1
(s
)G3
(s
)
H
(s)
G1(s)G2 (s)G3 (s)
(2)如果固有系统稳定且有较满意的稳态误差,但其动态性能较差,则应改变系 统的中频段和高频段,以调整系统的截止频率和相位裕度。
(3)如果固有系统的稳态和动态性能均不能令人满意,就必须增加低频增益,并 改变中频段和高频段。
系统校正的概念
2. 校正方案
在固有系统基础上引入校正环节的形式及其在系统中的位置称为系统的校正方案, 它主要有以下几种形式。
自动控制工程基础与应用
系统校正的概念
1. 校正
一般来说,系统中的测量、放大和执行元件是构成控制系统的基本元件,这些装置 都有其固定的特性,通常被称为固有系统。

自动控制原理6 第一节超前校正

自动控制原理6 第一节超前校正

Gc (s)
1 Ts,
1 Ts
1
L() 20lg
1 (T)2
20lg 1 (T)2
() tg1T tg1T
m
1
T
频率特性的主要特点是:
所有频率下相频特
性为正值,且在频率
m处相频特性()存 在最大相位超前量m。
m发生在对数刻度的
坐标中1/T与1/( T )
的几何中点。
① 求m
令 d() 0,可得 d
20 lg 1 2T 2 20 lg 1 T 2
T 2
T 2
20 lg (1 ) 1
20 lg 10 lg
-90
1
m
1
T
T
19
三、基于伯德图的相位超前校正
R - Gc
C
G
图中,Gc为校正装置,G为 对象。
基于伯德图设计超前校正装置的步骤如下:
① 求出满足稳态性能指标的开环增益K值;
1
二、校正方式
按照校正装置在系统中的连接方式,控制系统校正方式可 分为串联校正、并联校正、前馈校正和复合校正四种。
⒈串联校正装置一般串联于系统前向通道之中系统误差检 测点之后和放大器之前。
R(s) E(s) Gc (s)
-
GP (s) C(s)
B(s)
H (s)
2
⒉并联校正装置接在系统局部反馈通道之中,并联校正也 称为反馈校正。
这里主要介绍基于伯德图的单输入-单输出的线性 定常控制系统的设计和校正的方法和步骤。
6
第一节 用频率法设计串联校 正器的基本概念
9
Im
-1
Re
K2
K1
10
第二节 相位超前校正

自动控制原理与系统第6章 自动控制系统的校正

自动控制原理与系统第6章 自动控制系统的校正
③ 在信号输入处由电容器 构成C0的微分环节很小。 高频很容易进入,而很多干扰信号都是高频信号,因 此比例微分校正容易引入高频干扰,这是它的缺点。
④ 比例微分校正对系统的稳态误差不产生直接的
结论:
比例微分校正将使系统的稳定性和快 速性改善,但抗高频干扰能力明显下降。
由于PD校正使系统的相位前移,所 以又称它为相位超前校正。
Integral Derivative Compensation ) (相位滞后-超前校正)
Tm 为伺服电动机的机电时间常数,设 Tm 0.2s ;Tx 为检测滤波时间常数,设 Tx 10ms 0.01s ;k1 为系
统的总增益,设 K1 35
随动系统固有部分的传递函数为:
G1
s
降低增益,将使系统的稳定性改善,但使系统的稳
态精度变差。若增加增益,系统性能变化与上述相反。
•应用:
调节系统的增益,在系统的相对稳定性和稳态精度
之间作某种折衷的选择,以满足(或兼顾)实际系统的要
求,是最常用的调整方法之一。
3、比例-微分(PD)校正(Proportional-Derivative) (相位超前校正)
串联校正是将校正装置串联在系统的前向通路中,来
改变系统结构,以达到改善系统性能的方法。
2、比例(P)校正(Proportion Compensation) 举例分析:
图6-1为一随动系统框图,图中G1 s 为随动系统的固
有部分的传递函数。
若G1 s 中,K1=100,T1=0.2s,T2=0.01s;则系统固
s T1s 1 s 0.1s 1 s 0.1s 1
图6-6 比例积分校正对系统性能的影响
增设PI ① 系统由0型系统变为Ⅰ型系统,从而实现了无
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本章引言(续)
闭环、复合控制等;第四步是分析系统性能——时 域、复域、频域均可,若满足要求,皆大欢喜,但 概率很小,一般不满足要求,这时可在允许范围内
调整K,K增大ess减小,但稳定性降低,若仍不满
足使要 求 0,,只不能稳设,法若改K进。如:,按但eessss设增计大的又K不可满能足。 所以K不能减小,只能引入附加装置——校正装置。
校正类型(续)
串联校正
控制器 对象 反馈校正
3、复合控制:在第三章减小ess的措施中已经讨 论过,有按给定补偿和扰动补偿两种方式。
§6—1 系统校正的基本概念
三、校正中使用的性能指标:
1、二阶系统频域指标与时域指标的关系:
Mr 2
1 0 0.707
1 2
r n 1 2 0 0.707
tg1
2 1 4 4 2 2
§6—1 系统校正的基本概念
性能指标(续)
b n 2 4 2 4 4 1 2 2
c n
tg1
1 4 4 2 2
2 1 4 4 2 2
§6—1 系统校正的基本概念
性能指标(续)
§6—1 系统校正的基本概念
一、定义: 给系统附加一些具有某些典型环节的电网络,
模拟运算部件及测量元件等,靠他们的配置有效的 改进系统性能,称为系统校正。
二、类型:
1、串联校正:一般接在系统测量点之后和放大器 之前,串接于系统前向通道之中。
2、反馈校正:一般接于系统局部反馈通道中。
§6—1 系统校正的基本概念
重点与难点
重点
• 1、常用校正装置及其特性 • 2、串联综合校正—超前、滞后、
滞后—超前、希望特性法 • 3、并联综合校正
难点
校正方法与步骤
本章引言
设计控制系统时首先根据实际生产的要求选 择受控对象,如温控系统选温箱,调速系统选电 机等等;然后确定控制器,完成测量,放大,比 较,执行等任务。但实际生产会对系统各方面的 性能提出要求:时域— %,ts , Kv , K p , Ka 等,频 域— M0, Mr ,b,c , , Kg 等。当把受控对象和控 制器组合起来以后,除了K可作适当调整外,其 它都有自身的静、动态特性——称为不可变部分; 设计的第三步是确定控制方式——开环、
四、基本控制规律:
ቤተ መጻሕፍቲ ባይዱ
一般采用比例、微分、积分等基本控制规律或采 用这些基本控制规律的某些组合,如PD、PI、PID等, 利用它们相位超前或滞后、幅值增加等作用以实现对 被控对象的有效控制。


% e 1 2 100%
ts

4,
n
cts

8
tg

2、高阶系统频域指标与时域指标的关系:
1
Mr sin
% 0.16 0.4Mr 1100% 1 Mr 1.8
§6—1 系统校正的基本概念
性能指标(续)
ts

k c
,
其中,k 2 1.5Mr 1 2.5Mr 121 Mr 1.8
第六章 控制系统的校正
§6—1 系统校正的基本概念 §6—2 常用校正装置及其特性 §6—3 串联校正 §6—4 反馈校正 §6—5 复合控制
主要内容
• 1、校正的概念及类型 • 2、常用校正装置及其特性 • 3、串联综合校正—超前、滞后、滞后—超
前、希望特性法 • 4、并联综合校正 • 5、复合控制校正
相关文档
最新文档