《勾股定理》导学案 (2)

合集下载

§1. 探索勾股定理(第2课时)导学案

§1. 探索勾股定理(第2课时)导学案

子洲三中 “双主”高效课堂 导学案2014-2015学年第一学期 姓名: 组名: 使用时间2014年 月 日年 级 科 目 课 题主 备 人 备 课 方 式负责人(签字) 审核领导(签字) 序号 八年级数学§1. 探索勾股定理(第2课时)乔 智一、教学目标1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点. 二、教学过程第一环节: 复习设疑,激趣引入提出问题:(1)勾股定理的内容是什么?(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.完成验证一.学生通过自主探究,小组讨论得到两个图形:图2 在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(2)你能由此得到勾股定理吗?为什么?自主探究,完成验证二.小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?图1第三环节 延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a 2+b 2=c 22.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。

第四环节: 例题讲解 初步应用内容:例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?批改日期 月 日_b_a_a _c _b_c。

18.3勾股定理导学案(2)

18.3勾股定理导学案(2)
导学案设计
题目
勾股定理复习(2)
总课时
1
学校
星火一中
教者
杨玉杰
年级
八年
学科
数学
设计来源
自我设计
教学时间




知识技能
掌握直角三角形的边、角之间所存在的关系,熟练应用直角三角形的勾股定理和逆定理来解决实际问题.
ቤተ መጻሕፍቲ ባይዱ过程方法
经历反思本单元知识结构的过程,理解和领会勾股定理和逆定理.
情感态度价值观
熟悉勾股定理的历史,进一步了解我国古代数学的伟大成就,激发爱国主义思想,培养良好的学习态度
求①AD的长;②ΔABC的面积
A
D
E
B
C
考点二、利用列方程求线段的长
1.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?
2.如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离.
考点三、判别一个三角形是否是直角三角形
1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17
(4)4、5、6,其中能够成直角三角形的有
2.若三角形的三别是a2+b2,2ab,a2-b2(a>b>0),则这个三角形是.
3.如图1,在△ABC中,AD是高,且 ,求证:△ABC为直角三角形。
求证:AB2-AC2=BC(BD-DC).

八年级上册数学第一章勾股定理导学案

八年级上册数学第一章勾股定理导学案

本章课标要求:探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

探索勾股定理(1)学习目标:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

了解我国古代在勾股定理研究方面所取得的成就。

学习重点:勾股定理的内容及证明。

学习难点:勾股定理的证明。

自助探究1、2002年北京召开了被誉为数学界“奥运会”的国际数学家大会,这就是当时采用的会徽. 你知道这个图案的名字吗?你知道它的背景吗?你知道为什么会用它作为会徽吗?2、相传2500年前,古希腊的数学家毕达哥拉斯在朋友家做客时,发现朋友家用地砖铺成的地面中反映了直角三角形三边的某种数量关系. 请同学们也观察一下,看看能发现什么?(1) 引导学生观察三个正方形之间的面积的关系;(2) 引导学生把面积的关系转化为边的关系.结论:等腰直角三角形三边的特殊关系:斜边的平方等于两直角边的平方和.3、等腰直角三角形有上述性质,其它直角4、猜想:5动手操作、验证猜想:(二)动手在纸上作出几个直角三角形,分别测量它们的三条边,填写好下表.观察三条边的平方有什么关系?(其中a、b是两直角边长,c是斜边长)结论.我们古代把直角三角形中较短的直角边称为,较长的直角边称为,斜边称为.从而得到著名的勾股定理:.如果用a、b和c分别表示直角三角形的两直角边和斜边,那么.课题检测1. 求出下列直角三角形中未知边的长度。

2、求斜边长17厘米、一条直角边长15厘米的直角三角形的面积巩固练习1.在△ABC中,∠C=90°,(l)若 a=5,b=12,则 c=(2)若c=5,a=3,则b=2.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为。

3.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为。

4.一个抽斗的长为24cm,宽为7cm,在抽斗里放铁条,铁条最长能是多少?总结评价:今天的学习,我学会了:我在方面的表现很好,在方面表现不够,以后要注意的是:总体表现(优、良、差),愉悦指数(高兴、一般、痛苦)。

第十八章勾股定理全章导学案

第十八章勾股定理全章导学案

第十八章勾股定理勾股定理(1)主备人:初审人:终审人:【导学目标】1.能用几何图形的性质和代数的计算方法探索勾股定理.2.知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.3.能运用勾股定理理解用关直角三角形的问题.【导学重点】知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.【导学难点】用拼图的方法验证勾股定理.【学法指导】探究、发现.【课前准备】查阅有关勾股定理的文化背景资料.【导学流程】一、呈现目标、明确任务1.了解勾股定理的文化背景,体验勾股定理的探索过程.2.了解利用拼图验证勾股定理的方法.3.利用勾股定理,已知直角三角形的两边求第三边的长.二、检查预习、自主学习1.动手画画、动手算算、动脑想想.在纸上作出边长分别为:(1)3、4、5(2)6、8、10的直角三角形,且动笔算一下,三条边长的平方有什么样的关系,你能猜想一下吗?2.借图说明(1)观察课本P64页图,思考:等腰直角三角形有什么性质吗?你是怎样得到的?它们满足上面的结论吗?(2)在P65页图中的三个直角三角形中,是否仍满足这样的关系?若能,试说明你是如何求出正方形的面积?3.有什么结论?三、问题导学、展示交流阅读P65页用拼图法证明勾股定理的内容,弄懂面积关系.四、点拨升华、当堂达标1.探究P66页“探究1”.在Rt△ABC中,根据勾股定理AC2 = 2+ 2因为AC=5≈2.236,因此AC木板宽,所以木板从门框内通过.2.讨论《配套练习》P24页选择填空题.五、布置预习预习“探究2”,完成P68页的练习.【教后反思】勾股定理(2)主备人:初审人:终审人:【导学目标】1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数轴的知识【导学流程】一、呈现目标、明确任务1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.二、检查预习、自主学习1.展示P66页“探究2”,完成填空.2.探究P68页“探究3”.提示:两直角边为1的等腰直角三角形,斜边长为多少?三、问题导学、展示交流1.展示上面的探究成果.2.研究P68页的课文,弄懂无理数在数轴上的表示方法.四、点拨升华、当堂达标1.完成练习题.2.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= .⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= .⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 .3.完成《配套练习》P25页选择填空题.六、布置预习预习习题18.1中1—5题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.继续运用勾股定理的数学模型解决实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数的开方运算.【导学流程】一、呈现目标、明确任务继续运用勾股定理的数学模型解决实际问题.二、检查预习、自主学习分小组展示预习成果.三、教师引导讲解习题18.1中10题.1.一个剖面图,怎样抽象成一个几何图形?2.直角三角形在什么地方?3.在直角三角形中,已知哪些边长?4.若设芦苇的长为x,还可以表示哪些线段?5.在这个直角三角形中利用勾股定理可以列一个怎样的式子?四、问题导学、展示交流1.展示上面的讨论结果.2.讨论完成7,8题.五、点拨升华、当堂达标讨论9题.六、布置预习预习下一节,阅读例1前面的课文,完成练习1.【教后反思】勾股定理的逆定理(1)主备人:初审人:终审人:【导学目标】1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系.【导学重点】掌握勾股定理的逆定理及证明.【导学难点】勾股定理的逆定理的证明.【学法指导】发现法、练习法、合作法【课前准备】三角形全等.【导学流程】一、呈现目标、明确任务1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系. 二、检查预习、自主学习下面的三组数分别是一个三角形的三边长a ,b ,c .5、12、13 7、24、25 8、15、17 (1)这三组数满足222c b a =+吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形.问题二:命题1: ,命题2: .命题1和命题2的 和 正好相反,把像这样的两个命题叫做 命题,如果把其中一个叫做 ,那么另一个叫做 .三、教师引导1.说出下列命题的逆命题,这些命题的逆命题成立吗? ⑴同旁内角互补,两条直线平行.⑵如果两个实数的平方相等,那么两个实数平方相等. ⑶线段垂直平分线上的点到线段两端点的距离相等. ⑷直角三角形中30°角所对的直角边等于斜边的一半. 四、问题导学、展示交流 自学P74页例1.五、点拨升华、当堂达标 1.完成习题18.2中1—3题.2.下列三条线段不能组成直角三角形的是( )A . 8, 15, 17B . 9, 12,15C .5,3,2 D .a :b :c =2:3:43.完成练习2. 六、布置预习1.完成《配套练习》P29页选择填空题.2.预习下一节,弄懂方位角的表示.3.完成练习3. 【教后反思】勾股定理的逆定理(2)主备人: 初审人: 终审人:【导学目标】1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识.【导学重点】灵活应用勾股定理及逆定理解决实际问题. 【导学难点】灵活应用勾股定理及逆定理解决实际问题. 【学法指导】抽象、迁移. 【课前准备】勾股定理的逆定理. 【导学流程】一、呈现目标、明确任务1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识. 二、检查预习、自主学习2.边长分别是c b a ,,的△ABC ,下列命题是假命题的是( ).A 、在△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形; B 、若()()c b c b a -+=2,则△ABC 是直角三角形;C 、若∠A ︰∠B ︰∠C =5︰4︰3,则△ABC 是直角三角形;D 、若3:4:5::=c b a ,则△ABC 是直角三角形.3.在△ABC 中,∠C =90°,已知4:3:=b a , 15=c ,求b 的值.4.展示练习3. 三、教师引导 例1(P75例2) 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形;⑶依题意可得PR =12×1.5=18,PQ =16×1.5=24,QR =30;⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR =90°; ⑸∠PRS =∠QPR -∠QPS =45°. 四、问题导学、展示交流一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形. 五、点拨升华、当堂达标1.如图,AB ⊥BC 于点B ,DC ⊥BC 于点C ,点E 是BC 上的点,∠BAE =∠CED =60o,AB =3,CE =4.求:①AE 的长. ②DE 的长. ③AD 的长(提示:先证△____是直角三角形).2.完成《配套练习》P30页选择填空题. 六、布置预习预习这两节的《配套练习》中大题.AB D C【教后反思】练习课主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】抽象、迁移.【课前准备】勾股定理的逆定理.【导学流程】一、呈现目标、明确任务1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.二、检查预习、自主学习分小组展示预习成果.三、教师引导如图,在四边形ABCD中,∠D=90°,AB=12,CD=3,DA=4,BC=13, 求S四边形ABCD.分析:因为∠D=90°,可连接AC构成直角形,由勾股定理求出AC,这样在△ABC中,三边均知道大小,利用勾股定理可以判断三角形的形状,再用两个三角形的面积求出S四边形ABCD.四、问题导学、展示交流讨论上面的问题,再展示交流.五、点拨升华、当堂达标讨论《配套练习》P29页5—7题和P31页6,7题.六、布置预习DB1.讨论《配套练习》剩余题目.2.预习复习题十八,1—3题.【教后反思】小结(1)主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并能解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】转化和数形结合.【课前准备】复习本章内容.【导学流程】一、呈现目标、明确任务1.用勾股定理及其逆定理解决简单问题;2.了解逆命题、逆定理的概念.二、检查预习、自主学习展示预习成果.三、教师引导本章知识结构:四、问题导学、展示交流1.直角三角形三边的长有什么关系?2.已知一个三角形的三边,能否判定它是直角三角形?举例说明.3.如果一个命题成立,那么它的逆命题一定成立吗?举例说明.4.如图,已知P是等边三角形ABC内上点,PA=5,PB=4,PC=3,求∠PBC.四、问题导学、展示交流提示:如果三角形的三条边分别是三、四、五,那么这个三角形一定是直角三角形.但本题长为3,4,5的三条线段不在同一个三角形中,联想到等边三角形的性质,可以将△APC绕点C旋转得到△BCP′.五、点拨升华、当堂达标1.讨论完成“复习题18”中4—7题.4题,可先设每份为k,再用勾股定理的逆定理.5题,不成立的需举反例.6题,可以数单位面积的正方形个数.7题,直接用勾股定理.2.讨论8,9题.六、布置预习预习下一章.B CP'。

勾股定理导学案

勾股定理导学案

导学案(模板)勾股定理(2)学习目标:1 .会用勾股定理解决简单的实际问题。

2.树立数形结合的思想。

3,经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法重点:勾股定理的应用难点:实际问题向数学问题的转化1,直角三角形有那些特征?(1)有一个角是 ______ 的三角形。

(2)两个锐角 ___________ 的三角形(3)如果直角三角形的三边长a、b、c有关系式______________________(4)在含30°角的直角三角形中,_________________________1,阅读探究1,探究2体会勾股定理在实际问题中的应用2,数轴上的点能表示有理数,你能在数轴上表示无理数吗?如何表示?利用什么定理?1.小明和爸爸妈妈^一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是____________ 米。

2.如图,山坡上两株树木之间的坡面距离是 4.3米,则这两株树之间的垂直距离是_______ 米,水平距离是B2题图 3. 如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离是 _________________(一一)基础知识探究探究点一例1:在长方形 ABCDK 宽AB 为1m 长BC 为2m ,求AC 长. 问题(1)在长方形 ABC 呼AB BC AC 大小关系?题图探究( 2)一个门框的尺寸如图 1 所示.①若有一块长 3 米,宽米的薄木板,问怎样从门框通过?【分析】1,在(1)(2) 的基础上将(3) 的实际问题转化为数学模型:木板的宽米大于 1 米,不能横着过,,木板的宽米大于 2 米,不能竖着过;只能试斜着过②若薄木板长 3 米,宽米呢?③若薄木板长 3 米,宽米呢?为什么?2 ,要斜着过,应求什么?,要求AC,根据什么定理?例2: (4)如图2, —个3米长的梯子AB斜着靠在竖直的墙A0上,这时A0的距离为米.①球梯子的底端B距墙角0多少米?②如果梯的顶端A沿墙下滑米至C,请同学们猜一猜,底端也将滑动米吗?③算一算,底端滑动的距离近似值(结果保留两位小数)分析】(1)在Rt△ OAB中,由图得AB= ______ , A0=则根据勾股定理求B0= _________(2)由AO-AC得至U C0的长,在Rt?△ 0CD中运用勾股定理求出0D的长,再由0D-0B得出BD的长例3•问题:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出2的点吗?13的点呢?分析:我们只能找到数轴上的表示有理数的点,而对于象2和,13这样的无理数却找不到如果能画出长为..2和..13的线段,就能在数轴上画出表示2和-13的点。

勾股定理导学案(同名13074)

勾股定理导学案(同名13074)

第一章勾股定理导学案第1课时探索勾股定理(1)学习目标:1、经历探索勾股定理的过程,发展学生的合情推理意识,体会数形结合的思想。

2 、会初步利用勾股定理解决实际问题。

学习过程:一、课前预习:1、三角形按角的大小可分为:、、。

2、三角形的三边关系:三角形的任意两边之和;任意两边之差。

3、直角三角形的两个锐角;4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。

二、自主学习:探索直角三角形三边的特殊关系:(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;(2)猜想:直角三角形的三边满足什么关系?(3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。

猜想:三、合作探究::如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?AB CACB 图1-1图1-2ABCACB图1-3图1-4问题1、你能用三角形的边长表示正方形的面积吗?问题2、你能发现直角三角形三边长度之间存在什么关系吗?与同伴进行交流。

问题3、分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。

问题(2)中的规律对这个三角形仍然成立吗?图形 A 的面积 B 的面积 C 的面积A 、B 、C 面积的关系 图1-1图1-2图1-3图1-4思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。

勾股定理:直角三角形 等于 ;几何语言表述:如图1.1-1,在Rt ΔABC 中, C = 90°, 则: ;若BC=a ,AC=b ,AB=c ,则上面的定理可以表示为: 。

四、课堂练习:1、求下图中字母所代表的正方形的面积如图示:A 代表的正方形面积为它的边长为B 代表的正方形面积为它的边长为64225AB169144AB蚂蚁沿图中所示的折线由A 点爬到B 点,蚂蚁一共爬行了多少厘米?(图中小方格的边长1、2、2、求出下列各图中x 的值。

八年级数学上册1_1探索勾股定理导学案2无答案新版北师大版

八年级数学上册1_1探索勾股定理导学案2无答案新版北师大版

第1节探索勾股定理【学习目标】1、会用勾股定理进行简单的计算。

2、树立数形结合的思想、分类讨论思想。

3、培养思维意识,发展数学理念,理会勾股定理的应用价值。

【学习方法】引导——探究——应用.【学习重难点】重点:勾股定理的简单计算。

难点:勾股定理的灵活运用。

【学习过程】模块一预习反馈一、知识回顾1、勾股定理:直角三角形两直角边的等于斜边的.即:2、勾股定理有以下应用:(1)已知直角三角形的两边,求;(2)已知直角三角形的一边,求另两边的。

3、应用勾股定理时该注意些什么? 。

二、自主学习1、观察下面图形:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?S解:正方形的面积的第一种表示方法:=1S正方形的面积的第二种表示方法:=2(2)你能由此得到勾股定理吗?为什么?解:(3)你还能利用图2验证勾股定理吗?解:正方形的面积的第一种表示方法:=1S正方形的面积的第二种表示方法:=2S实践练习:利用右图验证勾股定理:解:正方形的面积的第一种表示方法:=1S正方形的面积的第二种表示方法:=2S 因为:1S 2S2、 一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?解:模块二 合作探究1、如图,在海上观察所A,我边防海警发现正北6km 的B 处有一可疑船只正在向东方向8km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为40km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?模块三小结评价一、本课知识:1、勾股定理的验证方法:利用图形面积相等(用不同方法表示同一图形面积)。

2、将实际问题转化为直角三角形问题,利用勾股定理解决.模块四形成提升1、锐角△ABC中,A B=15,AC=13,高AD=12,则△ABC的周长为。

2、如图,一棵大树在离地面9米处断裂,树顶部落在离树底12米处,则树断裂之前的高度为( )A.9米B.15米C.24米D.无法确定3、小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.【拓展延伸】一轮船在大海中航行,它先向正北方向航行8千米,接着它又掉头向正东方向航行15千米.(1)此时轮船离出点多少千米?(2)若轮船每航行1千米需耗油0.4升,那么在此过程中轮船共耗油多少升?组长评价:你认为该成员这一节课的表现:(A)很棒 ( B)一般 (C) 没发挥出来 (D)还需努力.家长签名:。

八年级数学上册17特殊三角形17.3勾股定理2导学案新版冀教版

八年级数学上册17特殊三角形17.3勾股定理2导学案新版冀教版

17.3 勾股定理(2)【学习目标】1.初步运用勾股定理解决简单的实际问题;2.运用勾股定理解决有关直角三角形的问题. 【学习重点】运用勾股定理解决简单的实际问题. 【学习难点】运用勾股定理解决简单的实际问题. 【预习自测】 一.知识链接1.如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2= c 2直角三角形两直角边的平方和等于斜边的平方. 2.运用方法因为 ∠C =90°所以 a 2+ b 2= c 2或AC 2+ BC 2= AB2勾股定理同时也是数学中应用最广泛的定理之一.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线.正因为这样,人们对这个定理的备加推崇便不足为奇了。

尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理.现在让我们一起走进“勾股定理的应用”. 【合作探究】自学:阅读课本,试着做一做本节练习,提出在自学中发现的问题,同时解决以下问题: 例:如图是一只圆柱形的封闭易拉罐,它的底面半径为4cm , 高为15cm ,问易拉罐内可放的搅拌棒(直线型)最长可以是多长? 分析:搅拌棒在易拉罐中的位置可以有多种情形,如图中的1A B 、2A B ,但它们都不是最长的,根据实际经验,当搅拌棒的一个端点在B 点,另一个端点在A 点时最长,此时可以把BACbac线段AB 放在Rt△ABC 中,其中BC 为底面直径. 【解难答疑】1. 一棵大树被风刮断后折倒在地面上,如图,如果量得AC =6m ,CB =8m .则树在刮断之前有________高.2. 如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.3. 要从电线杆离地面5米处向地面拉一条13米的拉线,求地面拉线固定点A 到电线杆底部B 的距离.4.有两根木棒,它们的长度分别是40cm 和50cm ,若要钉成一个三角形木架,其中必须有一个角是直角,则所需最短的木棒长度是多少?5.一段长为10m 的梯子斜靠在墙上,梯子顶端距地面6m ,现将梯顶沿墙面下滑1m ,则梯子底端与墙面距离是否也增长1m ?说明理由.【拓展延伸】1.是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC ,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图-2所示的“数学风车”,则这个风车的外围周长是 .2.如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a b c ,,;A B N E F ,,,,五点在同一直线上,则c = (用含有a b ,的代数式表示).3.把一根长为160 cm 的细铁丝剪成三段,作成一个等腰三角形风筝的边ABC (如图), 已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?4. 如图,南北向MN 为我国的领海线,即MN 以西为我国领海,以东为公海.上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以每小时13海里的速度偷偷向我领海开来,便立即通知正在线上巡逻的我国反走私艇B 密切注意.反走私艇A 通知反走私艇B :A 和C 两艇的距离是13海里,ABC图-1图-2a DC BcNEFb G HA、B两艇的距离是5海里.反走私艇B测得距离C艇是12 海里,若走私艇C的速度不变,最早会在什么时间进入我国领海?【总结反思】1.本节课我学会了:还有些疑惑:2.做错的题目有:原因:。

勾股定理导学案

勾股定理导学案

人 教 版 八 年 级(下)数 学 导 学 案学校:凤凰一中 授课教师:班 组 学生姓名课题:§18.1 勾股定理(1)1、 了解毕达哥拉斯及《勾股定理》的内容,学会用多种拼图方法验证勾股定理,感受解决同一个问题方法的多样性。

2、 通过实例进一步了解勾股定理,能应用勾股定理进行简单的计算,感受勾股定理的应用价值。

1、 准备四个全等的直角三角形纸片(标出两直角边a 、b 和斜边c ),并专心阅读课本P62——P66内容.2、 利用所准备的三角形纸片进行拼图,从面积相等的角度列出等式,对该等式进行变形得出一个最简结果,尝试对该结果用语言进行表述.3、 看看自已的同伴有哪些拼图?有哪些可以借鉴的地方?三、知识导航与回顾:(用学过的知识完成下列填空)①含有一个 的三角形叫做直角三角形. ②已知R t △ABC 中的两条直角边长分别为a 、b ,则S △ABC = . ③已知梯形上下两底分别为a 和b ,高为(a +b ),则该梯形的面积为 . ④完全平方公式:(a ±b )2= .⑤在R t △ABC 中,已知∠A =30°,∠C =90°,直角边BC =1,则斜边AB = . 四、体验学习、课本导学(请认真阅读课本P 62~P 66的内容,围绕学案中的问题互学、群学,讨论、 探究吧!记住:知识不会施舍给懒汉哦!)★思考与探究1、右边这个人是 (公元前572—前492年),他是古希腊著名的 .2、我国古代所讲的“勾、股、弦”分别指的是 R t △的. 3、2002年在北京召开的国际数学家大会的会徽形如以下三个图中的 ,它是由四个 的 所围成的正方形图案﹝赵爽弦图....﹞.显然4个 的面积+中间小正方形的面积=该图案的面积. 即4×21× +﹝ ﹞2=c 2,化简后得到 . 这一结果用文字表达为 . 二、怎样学习?一、今天学什么? 1B 30° □A C4、利用图2,图3或其它拼图仿上述推导,能否得到相同的结果?和同学一起动手试试看!★回顾与归纳1、勾股定理的内容是: .2、勾股定理的作用是: .3、证明勾股定理的主要方法是: . ★尝试与练习1、 如图一,求出斜边AB 的长度= ;如图二,求出斜边AB 的长度= ;直角边B C 的长度= .2、 在Rt △ABC 中,∠ACB=90°,A C =3k ,B C =4 k ,求出A B = .3、 已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长。

勾股定理2导学案

勾股定理2导学案

勾股定理(2)教学案教学目标1.会用勾股定理解决简单的实际问题。

2.树立数形结合的思想。

3.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。

4.培养思维意识,发展数学理念,体会勾股定理的应用价值。

重点:勾股定理的应用。

难点:实际问题向数学问题的转化。

教学过程:1、复习勾股定理:欣赏图片,激发兴趣数一数、算一算(1)你能发现图中三个正方形A,B,C的面积之间有什么关系吗?(2)你能用三角形的边长表示正方形的面积吗?(3)你能发现直角三角形三边长度之间存在什么关系吗?与同伴进行交流。

勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方如果直角三角形两直角边分别为a、b,斜边为c,那么学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.2、定理的证明方法方法一:将四个全等的直角三角形拼成如图1所示的正方形.方法二:将四个全等的直角三角形拼成如图2所示的正方形,方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明3、定理的应用例1:一个2.5m长的梯子AB斜靠在一竖直的墙AC上,这时AC的距离为2.4m.如果梯子顶端A沿墙下滑0.4m,那么梯子底端B也外移0.4m吗?练习:如图,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米.例2:如图,铁路上A,B两点相距25km,C,D为两庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A 站多少km处例3:在我国古代数学著作《九章算术》中记载了一道有趣的问题这个问题意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度和这根芦苇的长度各是多少?(2)Rt△ABC的两边长分别是3和4,则第三边长的平方为多少?(3)已知等边三角形ABC的边长是6cm.求:(1)高AD的长;(2)△ABC的面积。

勾股定理的逆定理(二)导学案

勾股定理的逆定理(二)导学案

图18.2-3 勾股定理逆定理(二)导学案班级: 姓名: 学号:学习目标:1.进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。

2.培养逻辑推理能力,体会“形”与“数”的结合。

重点:勾股定理的逆定理难点:勾股定理的逆定理的应用一.预习新知已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。

求:四边形ABCD 的面积。

归纳:求不规则图形的面积时,要把不规则图形二.课堂展示1.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?2.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。

小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。

三.随堂练习1..一个三角形三边之比为3:4:5,则这个三角形三边上的高值比为A 3:4:5B 5:4:3C 20:15:12D 10:8:22.如果△ABC 的三边a,b,c 满足关系式182-+b a +(b-18)2+30-c =0则△ABC 是 _______三角形。

四.课堂检测1.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( )ABD EA BA .等腰三角形;B .直角三角形;C .等腰三角形或直角三角形;D .等腰直角三角形。

2.若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状。

3.已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。

第14单元《勾股定理》导学案2

第14单元《勾股定理》导学案2

14.1.直角三角形三边的关系教学目标:1、知识与技能:(1)、指导学生探索直角三角形的三边关系(勾股定理)。

(2)、指导学生勾股定理解决简单实际问题。

2、过程与方法:从动手操作到猜想再验证的方法体会直角三角形的三边关系(勾股定理)正确性。

并通过简单实际问题的解决进一步理解和运用勾股定理。

体会割补法的运用。

3、情感态度与价值观:培养学生勇于探索和合作学习的精神与品质。

学习目标:1、经历勾股定理的探索(验证),理解直角三角形的三边关系。

2、会初步运用勾股定理解决简单实际问题。

3、加强和学会合作学习。

教学重点:勾股定理的理解和运用。

教学难点:运用割补法验证和探索勾股定理。

一、课前预习1、直角三角形的两锐角的关系 ,直角三角形中最长的边是 。

2、三角形具有 性,因此生活中常用三角形的这一特性来加固物件。

3、∆ABC 中,如果AB=3,BA=4,AC=x ,则x 的取值范围是 。

4、根据以下条件画出三角形。

①C ∠=900,AC=3cm ,BC=4cm ②AB=2cm ,BC=3cm ,AC=4cm ③AC=1.5cm ,BC=2cm ,AB=2.5cm 二、情景创设,导入新课1、观察生活中的实例,了解三角形在生活中的运用。

2、讲故事引入新课。

三、探究新知 1、试一试根据图形填空: 左图是一个4×4的网格图,其中=p s ,=Q s ,=R S∴ Q P S S + R S ,即22BC AB + 2AB 。

这说明,在等腰直角三角形中,两直角边的平方和等于2、做一做请观察书第49页图14.1.2,分小组讨论并填空。

(1)正方形P 的面积= ,正方形Q 的面积= 。

(2)正方形R 的面积= ,你是怎么得出来的?和同伴交流一下。

(3)正方形P 、Q 、R 的面积之间有什么关系?与之相关的直角三角形的边又有说明关系? 3归纳: 。

4、变一变:22b a c += =b =a三、应用新知5m13m第5题(一)、牛刀小试1、在====∠∆b ,10,8,900则中,c a C ABC Rt 。

勾股定理导学教案2

勾股定理导学教案2
合作小组讨论上述三个例题,明确解法,理解解题要点,找到解题难点和易错之处。
例题1:⑴已知两直角边,求斜边直接用勾股定理。⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的变形式。⑷⑸已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。
例题3:分析:勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做
课代表导入、点评
已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。
教师巡视关注“学困生”
四、交流展示,体验成功:
学生活动:揭示解法;归纳解法,揭示问题的思考过程和解答过程。
小组间进行交流。
归纳:
①解题的要点
②如何运用勾股定理来解题
法。欲求高CD,可将其置身于Rt△ADC或Rt△BDC中,
但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD= AB=3cm,则此题可解。
3
分钟
15分钟
10分钟
学生能做好图形,标好图,理清边之间关系。
后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。
八年级数学科导学案设计宁洪波
备课时间
月日
上课时间
月日星期第节
课题
勾股定理(二)
第课时
累计课时
教学目标
知识与技能:1.会用勾股定理进行简单的计算。
过程与方法:经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法
情感态度与价值观:培养学生思维意识,发展数学理念,体会勾股定理的应用价值。
教学重点

勾股定理逆定理导学2

勾股定理逆定理导学2

F
D E
B
C
盘点 收获
E 是 CD 的中点. 求证:BE⊥EF 思路:(1)要证 BE⊥EF,可证∠BEF 是 Rt∠. (2)由勾股逆定理想到:只要证 BE 2 EF 2 BF 2 即 可. (3)因此可在 Rt△ABF,Rt△DEF,Rt△BCE 中分别 计算出 BF , EF 2 , BE 2 .
2
1 4
A



师生合作完成本部分的内容,学生讨论,教师点拨 1、例 1、某港口位于东西方向的海岸线上.“远航”号、“海天” 号轮船同时离开港口, 各自沿一固定方向航行, “远航”号 每小时航行 16 海里, “海天”号每小时航行 12 海里, 它们 离开港口一个半小时后相距 30 海里. 如果知道“远航”号 沿东北方向航行,能知道“海天”号沿哪个方向航行吗? 分析: “远航”号航行方向已知, 只要求出“海天”号与它 的航向的夹角就可以知道“海天”号的航行方向.
海军甲、乙两艘巡逻艇立即从相距 13 海里的 A、B 两个基地前去 拦截,六分钟后同时到达 C 地将其拦截。已知甲巡逻艇每小时航 行 120 海里,乙巡逻艇每小时航行 50 海里,航向为北偏西 n°, 问:甲巡逻艇的航向?
C
N
D
巩固 提升
A
13
B
E
4、 已知: 如图, 在正方形 ABCD 中, F 为 AD 上一点, 且 DF= AD,




定理;它的逆定理是直角三 组 、 不 同 的 . 勾 股
师生笔记
学生自主完成下列内容: 1、勾股定理是直角三角形的 角形的 定理. 2 、 请 写 出 三 数: 、
自主 学习
3、测得一块三角形麦田三边长分别为 9m,12m,15m,则这块

初中数学八下 《勾股定理》导学案

初中数学八下 《勾股定理》导学案

数学八年级下册《勾股定理》导学案学习目标知识:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

能力:培养在实际生活中发现问题总结规律的意识和能力。

情感:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

学习重点:1. 勾股定理的内容及证明。

学习难点:1. 勾股定理的证明。

教学流程 【导课】目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗? 【阅读质疑 自主探究】例1已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正4×21ab +(b -a )2=c 2,化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。

第十七章勾股定理复习导学案

第十七章勾股定理复习导学案

一、第十七章: 《勾股定理》复习学案勾股定理:如果直角三角形的两直角边长分别为, 斜边为, 那么。

直角三角形 b c a2+b2=c2 (数)(形) aa1、变形为: a= ;b= 。

设直角三角形的斜边为c, 两直角边为a和b, 求:(1)已知a=6, b=8, 则c= ;(2) 已知a=3, c=8, 则b= ;(3)已知b=4, c=8, 则a= ;二、勾股定理的逆定理:如果三角形的三边长a, b, c满足 , 那么这个三角形是 . 2(1)已知三条线段长分别是8, 15, 17, 那么这三条线段能围成一个()A.直角三角形 B、锐角三角形 C、钝角三角形 D、无法确定(2)下列各组数不是股数的是()A.5.12.13B.3.4.5C.8、6.17D.15.20、25三、勾股定理与正方形面积3.已知图中所有四边形都是正方形, 且A与C.B与D所成的角都是直角, 其最大正方形的边长为5, 则A, B, C, D四个小正方形的面积之和为4、是一株美丽勾股树, 其四边形正方形, .若正方形A, B, C, D边长分别是3, 5, 2, 3, 则最大正方形E面积是5.在直线l上依次摆放着七个正方形(如上图所示). 已知斜放置的三个正方形的面积分别是1.2.3, 正放置的四个正方形的面积依次是S1.S2.S3.S4, 则S1+S2+S3+S4=_______.四、木板能否通过门框6, 如图, 长4m, 宽3m薄木板(能或不能)从门内通过.7、门高2米, 宽1米, 现有为3米, 宽为2.2米薄木板能否从门框内通过?为什么?五、梯子移动问题8、一个5米长的梯子AB斜靠在一竖直的墙AO上, 这时OB=3米, 如果底端B沿直线OB向右滑动1米到点D, 同时顶端A沿直线向下滑动到点C(如图所示). 求AC.9、如图, 一个2.5米长的梯子AB斜靠在一竖直的墙AO上, 这时梯子顶端A距离墙角O的高度为2米.①求底端B距墙角O多少米?②如果顶端A沿角下滑0.5米至C, 底端也滑动0.5米吗?六、折断问题10、如图, 一棵大树在离地面3m处折断, 树顶端离树底部4m, 则这棵树折断之前的高度是.11.如图, 一木杆在离地某处断裂, 木杆顶部落在离木杆底部8米处, 已知木杆原长16米, 求木杆断裂处离地面多少米?七、飞鸟问题12.如图, 有两棵树, 一棵高10m, 另一棵高4m, 两树相距8m. 一只小鸟从一棵树的树尖飞到另一棵树的树尖, 那么这只小鸟至少要飞行m13.有两棵树, 如图, 一颗高13米, 另一颗高8米, 两树相距12米, 一只小鸟从一棵树的树梢飞到另一颗树的树梢, 至少飞了米。

勾股定理导学案—优质课教学设计

勾股定理导学案—优质课教学设计




学生活动
教师活动
二、一起探究
(2)以AC,BC,AB为边的三个正方形的面积各分别为:____________
(3)这三个正方形面积之间的等量关系可以表示为:___________
(4)如果这个直角三角形的三边长分别为a,b,c,那么____________用a,b,c表示这三个正方形面积之间的关系为__
即直角三角形两直角边的平方和等于斜边的平方。
做一做:利用拼图来验证勾股定理
1、准备四个全等的直角三角形(设直角三角形的两条直角边分别为a,b,斜边为c);
2、你能用这四个直角三角形拼成“赵爽弦图”吗?拼一拼试试看?
3.借助你所拼图形的面积之间的关系验证勾股定理。
教师对学困生进行辅导
三、小试牛刀
2、利用勾股定理求图中各直角三角形中未知的边长。
如图是用大小相同的两种颜色的正方形瓷砖铺成的地面。
重点
勾股定理
难点
勾股定理的推导过程
个案补充




学生活动
教师活动
一、知识回顾
如图:在Rt△ABC中,∠C=90°
(1)∠A+∠B=_____
(2)∠C所对的边AB称为___
∠A所对的边BC称为____
∠B所对的边AC称为____
问题:在直角三角形中,
XX中学数学学科导学案
备课组长签字:主管领导签字:编号:
课题
16、1勾股定理
主备人
备课时间
201X、6、7
授课时间
学习目标
知识与技能目标:掌握勾股定理,并会用勾股定理进行计算。
过程与方法目标:经历勾股定理的探索和验证过程,提高学生认知能力,体会拼图验证的合理性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时
1.会利用勾股定理证明“HL”.
2.能利用勾股定理作出长度为无理数的线段.
3.经历在数轴上画出表示无理数的点的过程,体会数形结合的数学思想方法.
4.重点:在数轴上画出表示无理数的点.
问题探究一
阅读本节教材中的第二个“思考”,回答下列问题.
1.写出命题“斜边和一条直角边对应相等的两个直角三角形全等”的条件和结论.
条件:两个直角三角形中的斜边和一条直角边对应相等;结论:这两个三角形全等.
2.若用“SSS”证明上面的命题,需先证另一条直角边相等,可利用勾股定理证明.
3.你还有其它方法证明上面“题”中的命题吗?还可以利用SAS证明.
【归纳总结】若两个直角三角形中的斜边和一条直角边对应相等,利用勾股定理可以证
问题探究二
阅读本节教材中的第二个“探究”
1.长为的线段能是直角边为整数的直角三角形的斜边吗?若能,请说出两直角边的长.
能.直角边的长为2,3.
2.请在右面数轴上作出表示的点.
如图,点C即为表示的点.
3.请仿照以上作法,在右面数轴上作出表示的点.
如图,点D即为表示的点.
【归纳总结】要在数轴上找表示无理数的点,常常通过构造直角三角形,借助于勾股定理来完成.
【预习自测】在数轴上作出表示-的点.
如图,点A即为表示-的点.
互动探究1:如图,正方形网格中,每个小正方形的边长都为1,则在网格上的三角形ABC中,边长为无理数的边是AB、BC .
互动探究2:已知在4×4的正方形网格中,每个小正方形的边长都为1.
(1)计算图①中正方形ABCD的边长与面积.
(2)利用图②中正方形网格,画出两条线段,使它们的长分别为和5,
要求在所画的线段旁标明长度.
解:(1)正方形ABCD的边长为=;面积为()2=10.(2)如图.
互动探究3:在数轴上作出表示-2的点.
解:如图,点A即为表示-2的点.
【方法归纳交流】在数轴上确定表示无理数的点时,通常先作出两条直角边为整数,且斜边等于这个无理数的直角三角形.
[变式训练]如图,数轴上点A表示的数为a,则a的值为(C)
A.+1
B.-+1
C.-1
D.
互动探究4:图中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③…,则第n个
等腰直角三角形的斜边为.
互动探究5:如图,A,B两村在河边CD的同侧,A,B两村到河的距离分别为AC=1 km,BD=3 km,又CD=3 km,现要在河边CD上建一水厂向A,B两村输送自来水,铺设水管时工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用.
解:如图,作点A关于CD的对称点A',连接A'B交CD于点O,则点O即为所求.过点A'作A'E⊥BD交BD的延长线于点E,
则A'E=CD=3 km,DE=A'C=AC=1 km,
BE=BD+DE=3+1=4(km).
在Rt△A'EB中,A'B===5(km).
∴OA+OB=A'B=5(km).
∴总费用为5×20000=100000(元).
答:铺设水管的总费用为100000元.
见《导学测评》P10。

相关文档
最新文档