高中物理复合场问题分析
高中物理复合场解题模型论文
![高中物理复合场解题模型论文](https://img.taocdn.com/s3/m/d7ecb018ba1aa8114431d94b.png)
高中物理复合场解题模型论文摘要:科学技术的飞速发展以基本物理原理为理论依据,复合场物理模型在社会生产中的应用极为常见,譬如常见的粒子选择器、回旋加速器、质谱仪以及电磁流量计等都采用了复合场的物理规律。
实际解题中常见的类型有粒子选择器原理以及回旋加速器的考察,粒子选择器的基本原理是根据入射进入复合场带电粒子的速度大小,决定了所受电场力和洛伦兹力相对大小的比例,进而产生不同方向的运动轨迹,达到选择粒子的目的,其他几种应用器件的工作原理基本类似,其根本是对复合场中电场力、洛伦兹力以及重力的合理分析,也是正确解题的先决条件。
一.高中物理复合场基本元素分析1.1平衡元素人类对事物规律的探究以挖掘特殊信息为切入点,高中物理解题也不例外,复合场问题的求解涉及到整合物理内容的核心元素,在该类问题的探究中寻找平衡条件无疑成为求解问题的先决条件,因此力学平衡条件是复合场问题中的首要元素,复杂问题的求解必须通过简单的平衡条件开始,尤其在带电粒子复合场运动模型中,寻找多种力共同作用时的平衡条件成为解题的核心纽带。
1.2电场元素复合场问题求解中构成上述平衡条件的基本单元之一为电场力的作用,从整个物理学内容来看,电场力特性是电学知识通过力学规律在现实生活中的客观体现,解决电学知识离不开力学规律的基础支撑,同时电学知识也使得力学体系更加完善。
复合场中电学基本元素中用到的基本公式为大家所熟知的电场力公式:F电=qE。
高中阶段接触的电场大多属于匀强电场,亦即解题中可以将F电视为恒力进行求解,此外,带电粒子在运动过程中所受电场力的方向和其电负性相关,也是决定正确求解的关键因素。
1.3磁场元素在高中物理中复合场问题求解中,洛伦兹力与电场力同等重要,也是整个高中物理的核心内容。
洛伦兹力表述了磁场对处于其中的带电粒子的作用,其效果通过运动轨迹体现出来。
洛伦兹力从形式上表示为:F电=qvBsinɑ,显然其大小与电荷量、运动速度以及磁场强度相关。
高中物理解决复合场中非圆周运动方法配速法
![高中物理解决复合场中非圆周运动方法配速法](https://img.taocdn.com/s3/m/3c642a9e29ea81c758f5f61fb7360b4c2f3f2a7d.png)
高中物理解决复合场中非圆周运动方法配速法一、配速法概述配速法是解决复合场中非圆周运动问题的一种有效方法。
其基本思想是:在复合场中,给物体施加一个虚拟的速度,使其在该虚拟速度的作用下,只受其中一种力(如重力或洛伦兹力)的作用,从而将复杂问题转化为简单问题进行求解。
二、配速法应用步骤1.分析题意,明确所求物理量。
2.选择合适的虚拟速度,使物体只受其中一种力作用。
3.建立运动方程,求解物理量。
4.检验虚拟速度是否合理。
三、配速法应用实例例题:一个带电量为q的粒子,质量为m,从竖直向上的匀强磁场中由静止释放,求粒子运动轨迹。
解:1.分析题意:求粒子运动轨迹。
2.选择虚拟速度:设粒子沿水平方向的速度为v,则粒子只受重力作用。
3.建立运动方程:y = y0 + v0t + ½gt²x = v0t4.检验虚拟速度:v²= v0²+ 2gy由上式可知,虚拟速度是合理的。
5.求解物理量:x = v0ty = y0 + ½gt²粒子运动轨迹为抛物线。
四、配速法注意事项1.选择虚拟速度时,应使物体只受其中一种力作用。
2.建立运动方程时,应考虑所有作用在物体上的力。
3.检验虚拟速度是否合理,是确保解题正确性的关键。
五、配速法拓展应用配速法还可以应用于解决其他复合场中非圆周运动问题,例如:•带电粒子在匀强电场和匀强磁场中的运动•带电粒子在非匀强磁场中的运动•流体在非匀强引力场中的运动六、总结配速法是一种解决复合场中非圆周运动问题的重要方法,具有简单易懂、应用范围广等优点。
掌握配速法,可以有效提高解决复合场中非圆周运动问题的能力。
高中物理人教版选修3-1分类题型5:等效场-重力与电场的复合场
![高中物理人教版选修3-1分类题型5:等效场-重力与电场的复合场](https://img.taocdn.com/s3/m/cfdc046255270722182ef74a.png)
高中物理选修3-1题型5(等效场-重力与电场复合场)1、复合场物体仅在重力场中的运动时最常见、最基本的运动,但是对处在匀强电场中的宏观物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些。
此时,可以将重力场与电场合二为一,用“复合场”来代替两个分立的场。
形象的把这个复合场叫做等效场或等效重力场。
2、处理思路(1)受力分析,计算等效重力(重力与电场力的合力)的大小和方向;(2)在复合场中找出等效最低点、最高点。
过圆心做等效重力的平行线与圆相交。
(3)根据圆周运动供需平衡结合动能定理列方程处理。
1、如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则(B)A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒2、如图所示,竖直放置的光滑绝缘圆环上套有一带正电的小球,圆心O处固定有一带负电的点电荷,匀强电场场强方向水平向右,小球绕O点做圆周运动,那么以下说法错误的是(D)A.在A点小球有最大的电势能B.在B点小球有最大的重力势能C.在C点小球有最大的机械能D.在D点小球有最大的动能3、如图所示,水平向左的匀强电场场强大小为E,一根不可伸长的绝缘细线长度为L,细线一端拴一个质量为m、电荷量为q的带负电小球,另一端固定在O点。
把小球拉到使细线水平的位置A,然后由静止释放,小球沿弧线运动到细线与水平方向成角θ=60°的位置B时速度为零。
以下说法中正确的是(B)A.A点电势低于的B点的电势B.小球受到的重力与电场力的关系是C.小球在B时,细线拉力为T=2mgD.小球从A运动到B过程中,电场力对其做的功为4、如图所示,竖直平面内有一固定的光滑椭圆大环,其长轴长BD=4L、短轴长AC=2L。
高中物理复习精讲 第10讲 复合场专题
![高中物理复习精讲 第10讲 复合场专题](https://img.taocdn.com/s3/m/a0becbcebe1e650e53ea994e.png)
1.带电粒子在复合场中的受力复合场是指电场、磁场和重力场并存,或者其中某两场并存,或分区域存在的某一空间。
粒子经过该空间时可能受到的力有重力、电场力和洛伦兹力,抓住三个力的特点是分析和求解相关问题的前提和基础。
2.带电粒子在复合场中的几种典型运动 ⑴ 直线运动 自由的带电粒子(无轨道约束)在匀强电场、匀强磁场和重力场中做的直线运动应该是匀速直线运动,除非运动方向沿匀强磁场方向而粒子不受洛伦兹力,这是因为电场力和重力都是恒力,带电粒子在复合场中的运动知识点睛第10讲 复合场专题重力:若为基本粒子(如电子、质子、α粒子、离子等)一般不考虑重力;若为带电颗粒(如液滴、油滴、小球、尘埃等)一般需要考虑重力。
电场力:带电粒子(体)在电场中一定受到电场力作用,在匀强电场中,电场力为恒力,大小为F qE =。
电场力的方向与电场的方向相同或相反。
静电场中,电场力做功也与路径无关,只与初末位置的电势差有关,电场力做功一定伴随着电势能的变化。
洛伦兹力:带电粒子(体)在磁场中受到的洛伦兹力与运动的速度(大小、方向)有关,洛伦兹力的方向始终既和磁场方向垂直,又和速度方向垂直,故洛伦兹力永远不做功,也不会改变粒子的动能。
当速度变化时,会引起洛伦兹力的变化,合力也相应的发生变化,粒子的运动方向就要改变而做曲线运动。
当匀速直线运动时,0F 合,常用力的合成法分析。
⑵ 匀速圆周运动......当带电粒子进入匀强电场、匀强磁场和重力场共存的复合场中,电场力和重力相平衡,粒子运动方向与匀强磁场方向相垂直时,带电粒子就在洛伦兹力作用下做匀速圆周运动。
可等效为仅在洛伦兹力作用下的匀速圆周运动。
此种情况下要同时应用平衡条件和向心力公式分析。
⑶ 曲线运动.... 当带电粒子所受的合外力是变力,且与初速度方向不在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹不是圆弧,也不是抛物线。
3.带电粒子在复合场中运动的力学观点⑴ 正确的受力分析:除重力、弹力、摩擦力外,要特别注意电场力和洛伦兹力的分析,搞清场和力的空间方向及关系。
高中物理人教版第十章-磁场 第七课时 带电粒子(质点)在复合场中的运动
![高中物理人教版第十章-磁场 第七课时 带电粒子(质点)在复合场中的运动](https://img.taocdn.com/s3/m/c6a26fd5951ea76e58fafab069dc5022aaea46d9.png)
a F合 qvB 2g
mm
y 1 at2,x vt,tan y
2
x
解得:t 3v,x 3v2
g
g
x
B o A θ F电
mg
B z
y
则A、B之间的距离为:L x 2 3v2 cos 60 g
电场力做功:W=EqL=6mv2
例4:如图所示,虚线上方有场强为E1=6×104 N/C的匀强 电场,方向竖直向上,虚线下方有场强为E2的匀强电场 (电场线用实线表示),另外在虚线上、下方均有匀强磁 场,磁感应强度相等,方向垂直纸面向里.ab是一根长为 L=0.3 m的绝缘细杆,沿E1电场线方向放置在虚线上方的 电磁场中,b端在虚线上.现将套在ab杆上的电荷量为q= -5×10−8 C的带电小环从a端由静止开始释放后,小环先 做加速运动后做匀速运动到达b端,小环与杆间的动摩擦 因数为μ=0.25,不计小环的重力,小环脱离ab杆后在虚线 下方仍沿原方向做匀速直线运动.
(1)求虚线下方的电场强度E2方向以及a 大E小1 ;
Bb
(2)若小环到达b点时立即撤去虚线下方的磁场,其他
条件不变,测得小环进入虚线下方区域后运动轨迹上一点
P到b点的水平距离为 L ,竖直距离为 L ,则小环从a
2
3
到b的运动过程中克服摩擦力做的功为多少?
解析:(1)小环脱离ab杆后
a E1
向下方向做匀速直线运动,受力
U qvB E电q d q
U
F电
F洛
v
v
即:E U Bvd
F洛
F电
3.电磁流量计
如图所示为原理图。一圆形导管直径为d,用非
磁性材料制成,其中有可以导电的液体向右流动。导
高中物理之带电粒子在组合场和复合场中的运动
![高中物理之带电粒子在组合场和复合场中的运动](https://img.taocdn.com/s3/m/af3f4f77326c1eb91a37f111f18583d049640fd3.png)
一、复合场与组合场1.复合场:电场、磁场、重力场共存,或其中某两场共存.2.组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现.二、带电粒子在复合场中的运动分类1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.非匀变速曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.[自我诊断]1.判断正误(1)带电粒子在复合场中的运动一定要考虑重力.(义)(2)带电粒子在复合场中不可能处于静止状态.(义)(3)带电粒子在复合场中不可能做匀速圆周运动.(义)(4)带电粒子在复合场中做匀变速直线运动时,一定不受洛伦兹力作用.(J)(5)带电粒子在复合场中做圆周运动时,一定是重力和电场力平衡,洛伦兹力提供向心力.(J)(6)带电粒子在复合场中运动涉及功能关系时,洛伦兹力可能做功.(义)2.(多选)如图所示,两虚线之间的空间内存在着正交或平行的匀强电场E 和匀强磁场B,有一个带正电的小球(电荷量为+ q、质量为附从电、磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过电、磁复合场的是()解析:选CD.A图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定增大,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动,故A错误.B图中小球受重力、向上的电场力、垂直纸面向外的洛伦兹力,合力与速度方向一定不共线,故一定做曲线运动,故B错误.C图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动,故C正确. D图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动,故D正确.3.(多选)在空间某一区域里,有竖直向下的匀强电场E和垂直纸面向里的匀强磁场B,且两者正交.有两个带电油滴,都能在竖直平面内做匀速圆周运动,如右图所示,则两油滴一定相同的是()A.带电性质B.运动周期C.运动半径D.运动速率解析:选AB.油滴受重力、电场力、洛伦兹力做匀速圆周运动.由受力特点及运动特点知,得mg=qE ,结合电场方向知油滴一定带负电且两油滴比荷%二E相等.洛伦兹力提供向心力,有周期T:缥,所以两油滴周期相等,故选A、qBm vB.由r二m知,速度v越大,半径则越大,故不选C、D.4. (2017・湖北襄阳调研)如图所示,两导体板水平放置,两板间电势差为U, 带电粒子以某一初速度。
“等效法”巧解复合场的圆周运动问题
![“等效法”巧解复合场的圆周运动问题](https://img.taocdn.com/s3/m/64dad639192e45361166f51c.png)
“等效法”巧解复合场的圆周运动问题
摘要:
物理教学中,等效法是常用的一种方法,等效法是从效果等同出发研究物理现象和物理过程的一种科学方法。
等效的概念在中学物理中应用很广。
例如,力的合成和分解,运动的合成与分解,热功当量,电路的总电阻,交流电的有效值等;他们的计算都是应用等效法得出的。
带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是高中物理教学中一类重要而典型的题型。
对于这类问题,若采用常规方法求解,过程复杂,运算量大。
若采用“等效法”求解,则能避开复杂的运算,过程比较简捷。
所谓“等效法”就是先求出重力与电场力的合力,将这个合力视为一个“等效重力”,将α=F合/m 视为“等效重力加速度”。
再将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解即可。
下面通过两个实例分析说明“等效法”在此类问题中的应用。
高中物理复合场问题处理方法探研
![高中物理复合场问题处理方法探研](https://img.taocdn.com/s3/m/c1455180c77da26925c5b0c4.png)
成才之路【学科教学与成才研究】高中物理复合场问题处理方法探研傅祥(江苏省扬州市广陵区红桥高级中学,江苏扬州225000)摘要:复合场问题一般是电场、磁场、重力场的两两组合,或是三场合一。
学生在进行复合场问题处理时,首先弄清楚题目中的复合场是由哪些场组成的,然后运用相关的物理学知识进行分析和解决,往往能取得良好的效果。
文章结合具体题型,对高中物理复合场问题处理方法进行探研。
关键词:高中物理;复合场;问题;处理方法;分析;探研中图分类号:G633.7文献标志码:A文章编号:1008-3561(2019)02-0086-01作者简介:傅祥(1988-),男,江苏扬州人,二级教师,从事高中物理教学与研究。
电场和磁场的复合场问题是高中物理学习的重点和难点,有很强的综合性,对学生的能力要求很高。
高中物理复合场问题的处理需要学生找准问题的切入点,从问题的特殊状态入手,找准复合场中的平衡状态,特别是对于一些带电粒子在复合场中的运动,需要学生结合已知条件,寻找对粒子起作用的多种力,其关键点是多种力作用的平衡状态。
在复合场中,粒子一般会受到重力、电场力、洛伦兹力等力的作用,这就要求学生能够对研究对象所受的不同性质的力进行分析,运用力学的知识进行物体运动轨迹或是速度的推断和计算。
因此,复合场问题最终会转化成力学问题和运动学问题。
一、无约束复合场问题无约束复合场问题,主要是对粒子在复合场中的运动受力以及运动轨迹进行分析。
此类问题需要学生以力学的受力分析为基础,从粒子达到受力平衡的状态入手进行分析,确定粒子平衡状态的条件是解决此类复合场问题的关键。
一般来说,复合场中的重力、电场力、洛伦兹力中的任意两个或三个的合力在某个方向上平衡,即合力为零时,即可以列出相关的方程,无约束复合场的问题基本就能顺利处理了。
例1:如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c 。
带电粒子在复合场中的运动-高中物理专题(含解析)
![带电粒子在复合场中的运动-高中物理专题(含解析)](https://img.taocdn.com/s3/m/d187ffbbf524ccbff12184b8.png)
带电粒子在复合场中的运动目标:1. 掌握带电粒子在电场、磁场中运动的特点2. 理解复合场、组合场对带电粒子受力的分析。
重难点:重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。
知识:知识点1 带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式(1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断(1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,qU =12mv 2.粒子在磁场中做匀速圆周运动,有qvB =m v 2r .由以上两式可得r =1B2mUq , m =qr 2B 22U , q m =2UB 2r 2.2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器(如图所示).(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E/B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =qU/L =qvB 得两极板间能达到的最大电势差U =BLv . 易错判断(1)电荷在速度选择器中做匀速直线运动的速度与电荷的电性有关.(×) (2)不同比荷的粒子在质谱仪磁场中做匀速圆周运动的半径不同.(√)(3)粒子在回旋加速器中做圆周运动的半径、周期都随粒子速度的增大而增大.(×)题型分类:题型一 带电粒子在组合场中的运动题型分析:1.带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零 做初速度为零的匀加速直线运动 保持静止 初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点 受恒力作用,做匀变速运动洛伦兹力不做功,动能不变2.“电偏转”和“磁偏转”的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力 运动规律匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2运动时间 t =θ2πT =θmBqt =Lv 0,具有等时性动能不变变化3.常见模型(1)从电场进入磁场(2)从磁场进入电场考向1 先电场后磁场【例1】.(2018·哈尔滨模拟)如图所示,将某正粒子放射源置于原点O ,其向各个方向射出的粒子速度大小均为v 0,质量均为m 、电荷量均为q ;在0≤y ≤d 的一、二象限范围内分布着一个匀强电场,方向与y 轴正向相同,在d <y ≤2d 的一、二象限范围内分布着一个匀强磁场,方向垂直于xOy 平面向里.粒子第一次离开电场上边缘y =d 时,能够到达的位置x 轴坐标范围为-1.5d ≤x ≤1.5d, 而且最终恰好没有粒子从y =2d 的边界离开磁场.已知sin 37°=0.6,cos 37°=0.8,不计粒子重力以及粒子间的相互作用,求: (1)电场强度E ; (2)磁感应强度B ;(3)粒子在磁场中运动的最长时间.(只考虑粒子第一次在磁场中的运动时间) [解析](1)沿x 轴正方向发射的粒子有:由类平抛运动基本规律得1.5d =v 0t, d =12at 2a =qE m ,联立可得:E =8mv 209qd .(2)沿x 轴正方向发射的粒子射入磁场时有:d =v y 2t,联立可得:v y =43v 0,电场中:加速直线运动⇓磁场中:匀速圆周运动 电场中:类平抛运动⇓磁场中:匀速圆周运动磁场中:匀速圆周运动 ⇓v 与E 同向或反向 电场中:匀变速直线运动磁场中:匀速圆周运动⇓v 与E 垂直 电场中:类平抛运动v =v 2x+v 2y=53v 0 方向与水平成53°,斜向右上方,据题意知该粒子轨迹恰与上边缘相切,则其余粒子均达不到y =2d 边界,由几何关系可知:d =R +35R根据牛顿第二定律得:Bqv =m v 2R 联立可得:B =8mv 03qd .(3)粒子运动的最长时间对应最大的圆心角,经过(1.5d ,d)恰与上边界相切的粒子轨迹对应的圆心角最大,由几何关系可知圆心角为:θ=254°粒子运动周期为:T =2πR v =3πd4v 0则时间为:t =θ360°T =127πd240v 0.考向2 先磁场后电场 【例2】.(2018·潍坊模拟)在如图所示的坐标系中,第一和第二象限(包括y 轴的正半轴)内存在磁感应强度大小为B 、方向垂直xOy 平面向里的匀强磁场;第三和第四象限内存在平行于y 轴正方向、大小未知的匀强电场.p 点为y 轴正半轴上的一点,坐标为(0,l );n 点为y 轴负半轴上的一点,坐标未知.现有一带正电的粒子由p 点沿y 轴正方向以一定的速度射入匀强磁场,该粒子经磁场偏转后以与x 轴正半轴成45°角的方向进入匀强电场,在电场中运动一段时间后,该粒子恰好垂直于y 轴经过n 点.粒子的重力忽略不计.求: (1)粒子在p 点的速度大小;(2)第三和第四象限内的电场强度的大小;(3)带电粒子从由p 点进入磁场到第三次通过x 轴的总时间.[解析] 粒子在复合场中的运动轨迹如图所示(1)由几何关系可知rsin 45°=l 解得r =2l 又因为qv 0B =m v 20r ,可解得v 0=2Bql m .(2)粒子进入电场在第三象限内的运动可视为平抛运动的逆过程,设粒子射入电场坐标为(-x 1,0),从粒子射入电场到粒子经过n 点的时间为t 2,由几何关系知x 1=(2+1)l ,在n 点有v 2=22v 1=22v 0由类平抛运动规律有(2+1)l =22v 0t 2;22v 0=at 2=Eqm t 2 联立以上方程解得t 2=2+1m qB ,E =2-1qlB 2m. (3)粒子在磁场中的运动周期为T =2πmqB粒子第一次在磁场中运动的时间为t 1=58T =5πm4qB 粒子在电场中运动的时间为2t 2=22+1mqB粒子第二次在磁场中运动的时间为t 3=34T =3πm2qB故粒子从开始到第三次通过x 轴所用时间为t =t 1+2t 2+t 3=(11π4+22+2)mqB .[反思总结] 规律运用及思路①带电粒子经过电场区域时利用动能定理或类平抛的知识分析; ②带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理; ③注意带电粒子从一种场进入另一种场时的衔接速度.【巩固】如图所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E ,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直于x 轴进入第Ⅳ象限的磁场.已知OP 之间的距离为d ,则带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为( ) A.7πd 2v 0B.dv 0(2+5π) C.d v 0⎝ ⎛⎭⎪⎫2+3π2D.d v 0⎝ ⎛⎭⎪⎫2+7π2D [带电粒子的运动轨迹如图所示.由题意知,带电粒子到达y 轴时的速度v =2v 0,这一过程的时间t 1=d v 02=2dv 0.又由题意知,带电粒子在磁场中的偏转轨道半径r =22d.故知带电粒子在第Ⅰ象限中的运动时间为:t 2=38×2πr v =32πd 2v =3πd2v 0带电粒子在第Ⅳ象限中运动的时间为:t 3=12×2πr v =22πd v =2πd v 0故t 总=d v 0⎝ ⎛⎭⎪⎫2+7π2.故D 正确.] 题型二 带电粒子在叠加场中的运动考向1 电场、磁场叠加【例3】(多选)(2018·临川模拟)向下的匀强电场和水平方向的匀强磁场正交的区域里, 一带电粒子从a 点由静止开始沿曲线abc 运动到c 点时速度变为零, b 点是运动中能够到达的最高点, 如图所示,若不计重力,下列说法中正确的是( ) A .粒子肯定带负电, 磁场方向垂直于纸面向里 B .a 、c 点处于同一水平线上 C .粒子通过b 点时速率最大D. 粒子达到c 点后将沿原路径返回到a 点ABC [粒子开始受到电场力作用而向上运动,受到向右的洛伦兹力作用,则知电场力方向向上,故粒子带负电;根据左手定则判断磁场方向垂直于纸面向里,故A 正确.将粒子在c 点的状态与a 点进行比较,c 点的速率为零,动能为零,根据能量守恒可知,粒子在c 与a 两点的电势能相等,电势相等,则a 、c 两点应在同一条水平线上;由于在a 、c 两点粒子的状态(速度为零,电势能相等)相同,粒子将在c 点右侧重现前面的曲线运动,因此,粒子是不可能沿原曲线返回a 点的,故B 正确,D 错误.根据动能定理得,粒子从a 运动到b 点的过程电场力做功最大,则b 点速度最大,故C 正确.考向2 电场、磁场、重力场的叠加【例4】(2017·全国Ⅰ卷)如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( ) A .m a >m b >m c B .m b >m a >m c C .m c >m a >m b D .m c >m b >m aB [设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则m c g +qvB =qE ③ 比较①②③式得:m b >m a >m c ,选项B 正确.]考向3 复合场中的动量、能量综合问题【例5】(2018·南昌模拟)如图所示,带负电的金属小球A 质量为m A =0.2 kg ,电量为q =0.1 C ,小球B 是绝缘体不带电,质量为m B =2 kg ,静止在水平放置的绝缘桌子边缘,桌面离地面的高h =0.05 m ,桌子置于电、磁场同时存在的空间中,匀强磁场的磁感应强度B =2.5 T ,方向沿水平方向且垂直纸面向里,匀强电场电场强度E =10 N/C ,方向沿水平方向向左且与磁场方向垂直,小球A 与桌面间的动摩擦因数为μ=0.4,A 以某一速度沿桌面做匀速直线运动,并与B 球发生正碰,设碰撞时间极短,B 碰后落地的水平位移为0.03 m ,g 取10 m/s 2,求: (1)碰前A 球的速度? (2)碰后A 球的速度?(3)若碰后电场方向反向(桌面足够长),小球A 在碰撞结束后,到刚离开桌面运动的整个过程中,合力对A 球所做的功.[答案](1)2 m/s (2)1 m/s ,方向与原速度方向相反 (3)6.3 J 【例5-2】 (1)上题中,A 与B 的碰撞是弹性碰撞吗?为什么?(2)在第(3)问中,根据现有知识和条件,能否求出电场力对A 球做的功?提示:A 、B 碰前,只有A 有动能E kA =12m A v 2A1=12×0.2×22 J =0.4 JA 、B 碰后,E kA ′=12m A v 2A2=12×0.2×12 J =0.1 JE kB =12m B v 2B =12×2×0.32=0.09 J 因E kA >E kA ′+E kB故A 、B 间的碰撞不是弹性碰撞.提示:不能.因无法求出A 球的位移.【巩固1】(多选)(2017·济南模拟)如图所示,在正交坐标系O xyz 中,分布着电场和磁场(图中未画出).在Oyz 平面的左方空间内存在沿y 轴负方向、磁感应强度大小为B 的匀强磁场;在Oyz 平面右方、Oxz 平面上方的空间内分布着沿z 轴负方向、磁感应强度大小也为B 的匀强磁场;在Oyz 平面右方、Oxz 平面下方分布着沿y 轴正方向的匀强电场,电场强度大小为aqB 24m .在t =0时刻,一个质量为m 、电荷量为+q 的微粒从P 点静止释放,已知P 点的坐标为(5a ,-2a,0),不计微粒的重力.则( )A .微粒第一次到达x 轴的速度大小为aqb mB .微粒第一次到达x 轴的时刻为4mqBC .微粒第一次到达y 轴的位置为y =2aD .微粒第一次到达y 轴的时刻为⎝ ⎛⎭⎪⎫40+5π2mqBBD [微粒从P 点由静止释放至第一次到达y 轴的运动轨迹如图所示.释放后,微粒在电场中做匀加速直线运动,由E =aqB 24m ,根据动能定理有Eq ·2a =12mv 2,解得微粒第一次到达x 轴的速度v =aqB m ,又Eq m t 1=v ,解得微粒第一次到达x 轴的时刻t 1=4mqB ,故选项A 错误,B 正确;微粒进入磁场后开始做匀速圆周运动,假设运动的轨道半径为R ,则有qvB =m v 2R ,可得:R =a ,所以微粒到达y 轴的位置为y =a ,选项C 错误;微粒在磁场中运动的周期T =2πR v =2πm qB ,则运动到达y 轴的时刻:t 2=5t 1+54T ,代入得:t 2=⎝ ⎛⎭⎪⎫40+5π2m qB ,选项D 正确.]【巩固2】 (多选)(2018·兰州模拟)如图所示,空间中存在一水平方向的匀强电场和一水平方向的匀强磁场,磁感应强度大小为B ,电场强度大小为E =3mgq ,且电场方向和磁场方向相互垂直,在正交的电磁场空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内,一质量为m ,带电量为q (q >0)的小球套在绝缘杆上,若小球沿杆向下的初速度为v 0时,小球恰好做匀速直线运动,已知重力加速度大小为g ,小球电荷量保持不变,则以下说法正确的是( )A .小球的初速度v 0=mg2qBB .若小球沿杆向下的初速度v =mgqB ,小球将沿杆做加速度不断增大的减速运动,最后停止C .若小球沿杆向下的初速度v =3mgqB ,小球将沿杆做加速度不断减小的减速运动,最后停止D. 若小球沿杆向下的初速度v =4mgqB ,则从开始运动到稳定过程中,小球克服摩擦力做功为6m 3g 2q 2B 2BD题型三 带电粒子在复合场中运动的常见实例考向1 回旋加速器的工作原理【例6】(多选)(2018·成都模拟)粒子回旋加速器的工作原理如图所示,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f ,加速器的电压为U ,若中心粒子源处产生的质子质量为m ,电荷量为+e ,在加速器中被加速.不考虑相对论效应,则下列说法正确是( )A .质子被加速后的最大速度不能超过2πRfB .加速的质子获得的最大动能随加速器的电压U 增大而增大C .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速其它粒子AC [质子出回旋加速器时速度最大,此时的半径为R ,最大速度为:v =2πRT =2πRf ,故A 正确; 根据qvB =m v 2R 得,v =qBR m ,则粒子的最大动能E km =12mv 2=q 2B 2R 22m ,与加速器的电压无关,故B 错误;粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据qU =12mv 2,得v =2qU m ,质子第二次和第一次经过D 形盒狭缝的速度比为2∶1,根据r =mvqB ,则半径比为2∶1,故C 正确;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmqB 知,换用其它粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速其它粒子,故D 错误.故选AC.]考向2 速度选择器的工作原理【例7】在如图所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( ) A .一定带正电B .速度v =EBC .若速度v >EB ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动B考向3 质谱仪的工作原理【例7】质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( ) A .进入磁场时速度从大到小排列的顺序是氕、氘、氚 B .进入磁场时动能从大到小排列的顺序是氕、氘、氚 C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚 D .a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚A [离子通过加速电场的过程,有qU =12mv 2,因为氕、氘、氚三种离子的电量相同、质量依次增大,故进入磁场时动能相同,速度依次减小,故A 项正确,B 项错误;由T =2πmqB 可知,氕、氘、氚三种离子在磁场中运动的周期依次增大,又三种离子在磁场中运动的时间均为半个周期,故在磁场中运动时间由大到小排列依次为氚、氘、氕,C 项错误;由qvB =m v 2R 及qU =12mv 2,可得R =1B 2mUq ,故氕、氘、氚三种离子在磁场中的轨道半径依次增大,所以a 、b 、c 三条“质谱线”依次对应氚、氘、氕,D 项错误.]【巩固3】(多选)如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.则( ) A .打在P 1点的粒子是42HeB .打在P 2点的粒子是21H 和42He C .O 2P 2的长度是O 2P 1长度的2倍D .粒子在偏转磁场中运动的时间都相等BC [通过同一速度选择器的粒子具有相同的速度,故11H 、21H 、42He 的速度相等,由牛顿第二定律得qvB 2=m v 2R ,解得R =mv qB 2,由此可知,设质子的质量为m ,质子带电量为q ,11H 的半径R 1=mvqB 2,21H的半径R 2=2mv qB 2,42He 的半径R 3=2mvqB 2,故打在P 1点的粒子是11H ,打在P 2点的粒子是21H 和42He ,选项A 错误,B 正确;O 2P 1=2R 1=2mv qB 2,O 2P 2=2R 2=4mvqB 2,故O 2P 2=2O 2P 1,选项C 正确;粒子在磁场中运动的时间t =T 2=πmqB ,11H 运动的时间与21H 和42He 运动的时间不同,选项D 错误.故选B 、C.]基础练习:考查点:速度选择器1.如图所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,下列说法中正确的是( ) A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同 C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外[答案] C考查点:磁流体发电机2.(多选)磁流体发电机是利用洛伦兹力的磁偏转作用发电的.A 、B 是两块处在磁场中互相平行的金属板,一束在高温下形成的等离子束(气体在高温下发生电离,产生大量的带等量异种电荷的粒子)射入磁场.下列说法正确的是( ) A .B 板是电源的正极 B .A 板是电源的正极C .电流从上往下流过电流表D .电流从下往上流过电流表[答案] AD考查点:电磁流量计3.如图所示,电磁流量计的主要部分是柱状非磁性管.该管横截面是边长为d 的正方形,管内有导电液体水平向左流动.在垂直于液体流动方向上加一个水平指向纸里的匀强磁场,磁感应强度为B .现测得液体上下表面a 、b 两点间的电势差为U .则管内导电液体的流量Q (流量是指流过该管的液体体积与所用时间的比值)为( )A.UdB B.Ud 2B C.U BdD.d BU[答案] A考查点:质谱仪4. A 、B 是两种同位素的原子核,它们具有相同的电荷、不同的质量.为测定它们的质量比,使它们从质谱仪的同一加速电场由静止开始加速,然后沿着与磁场垂直的方向进入同一匀强磁场,打到照相底片上.如果从底片上获知A 、B 在磁场中运动轨迹的直径之比是d 1∶d 2,则A 、B 的质量之比为( )A .d 21∶d 22B .d 1∶d 2C .d 22∶d 21D .d 2∶d 1 [答案] A分类巩固:带电粒子在组合场中的运动1.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关A [带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与水平夹角为θ,则有:v 0v =cos θ 而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系得,半径与直线MN 夹角正好等于θ,则有:d2R =cos θ,所以d =2Rv 0v ,又因为半径公式R =mv Bq ,则有d =2mv 0Bq =2B 2mU 1q .故d 随U 1变化,d 与U 2无关,故A 正确,B 、C 、D 错误.]2.(多选)(2017·烟台模拟)如图所示,在x 轴上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )A .若粒子垂直于CM 射出磁场,则h =B 2a 2q2mEB .若粒子垂直于CM 射出磁场,则h =B 2a 2q8mEC .若粒子平行于x 轴射出磁场,则h =B 2a 2q2mED .若粒子平行于x 轴射出磁场,则h =B 2a 2q8mEAD [粒子在电场中加速,有qEh =12mv 20.在磁场中做圆周运动,若粒子垂直于CM 射出磁场,则轨迹所对的圆心角θ=45°,半径R =a ,由洛伦兹力提供向心力,有qv 0B =mv 20R ,得R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;若粒子平行于x 轴射出磁场,则轨迹所对的圆心有θ=90°,半径R =a 2,同理可得h =B 2a 2q8mE ,D 正确.]3.(2018·银川模拟)如图所示,AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以水平初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.已知OP 间距离为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3mv 20qd ,不计粒子重力.试求: (1)M 、N 两点间的距离;(2)磁感应强度的大小和圆形匀强磁场的半径;(3)粒子自O 点出发到回到O 点所用的时间.[解析](1)据题意,作出带电粒子的运动轨迹,如图所示:粒子从O 到M 的时间:t 1=d v 0;粒子在电场中加速度:a =qE m =3v 2d故PM 间的距离为:PM =12at 21=32d粒子在M 点时竖直方向的速度:v y =at 1=3v 0粒子在M 点时的速度:v =v 20+v 2y =2v 0速度偏转角正切:tan θ=v yv 0= 3 ,故θ=60°粒子从N 到O 点时间:t 2=d 2v 0,粒子从N 到O 点过程的竖直方向位移:y =12at 22故P 、N 两点间的距离为:PN =y =38d.所以MN =PN +PM =538 d.(2)由几何关系得:Rcos 60°+R =MN =538d,可得半径:R =5312d由qvB =m v 2R 解得:B =83mv 05qd ;由几何关系确定区域半径为:R ′=2Rcos 30°,即R ′=54d.(3)O 到M 的时间:t 1=d v 0;N 到O 的时间:t 2=d2v 0在磁场中运动的时间:t 3=4π3R 2v 0=53πd18v 0无场区运动的时间:t 4=Rcos 30°2v 0=5d 16v 0;t =t 1+t 2+t 3+t 4=29d 16v 0+53πd18v 0. 带电物体在叠加场中的运动4.如图所示,界面MN 与水平地面之间有足够大且正交的匀强磁场B 和匀强电场E ,磁感线和电场线都处在水平方向且互相垂直.在MN 上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面.若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A .小球做匀变速曲线运动B .小球的电势能保持不变C .洛伦兹力对小球做正功D .小球的动能增量等于其电势能和重力势能减少量的总和D [带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,选项A 错误;根据电势能公式E p =q φ,知只有带电小球竖直向下做直线运动时,电势能保持不变,选项B 错误;根据洛伦兹力的方向确定方法知,洛伦兹力方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度知道选项D 正确.]5. (2017·桂林模拟)如图所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M 点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如图所示(粒子在N 点的速度比在M 点的速度大).则下列说法正确的是( )A .粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大C [根据粒子在电、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误.]6.如图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直.在电磁场区域中,有一个光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点, bd 沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,下列判断正确的是( )A .当小球运动到c 点时,洛伦兹力最大B .小球恰好运动一周后回到a 点C .小球从a 点运动到b 点,重力势能减小,电势能减小D .小球从b 点运动到c 点,电势能增大,动能增大C [电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于平时竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大,此时洛伦兹力最大;由于a 、d 两点关于新的最高点对称,若从a 点静止释放,最高运动到d 点,故A 、B 错误.从a 到b ,重力和电场力都做正功,重力势能和电势能都减少,故C 正确.小球从b 点运动到c 点,电场力做负功,电势能增大,但由于bc 弧的中点速度最大,所以动能先增大后减小,故D 错误.所以C 正确,A 、B 、D 错误.]7.(多选)(2018·哈尔滨模拟)如图所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,则关于小球的运动,下列说法正确的是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv 2BqD .小球第一次运动到最低点历时πm2qB。
高中物理模型法解题——复合场
![高中物理模型法解题——复合场](https://img.taocdn.com/s3/m/7291fa9edd3383c4ba4cd221.png)
高中物理模型法解题———复合场模型【模型概述】1、粒子速度选择器:只选速度,不选电性。
即不管是带正电还是带负电,只要初速度满足一定的关系,粒子均能沿直线飞出。
如图,粒子以速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,根据qv0B=qE,得v0=E/B,故若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>E/B,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2、质谱仪:组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片.作用:主要用于测量粒子的质量、比荷、研究同位素.(1)加速场中qU=½mv2(2)选择器中:v=E/B1(3)偏转场中:d=2r,qvB2=mv2/r比荷:122q E m B B d =质量122B B dqm E =3、回旋加速器:(1)回旋加速器的构造:两个D 形金属盒,粒子源,半径为R D ,大型电磁铁,高频振荡交变电压U .(2)用途:回旋加速器是产生大量高能量的带电粒子的实验设备. (3 ) 原理:a.电场加速:221mv qU =b.磁场约束偏转:r mv BqV 2=,Bq mvr =c .加速条件:高频交流电源的周期与带电粒子在D 形盒中运动的周期相同,即:Bq m 2T π==回旋电场T3、(1)电场加速:(2)磁场约束偏转:, (3)加速条件:高频交流电源的周期与带电粒子在D 形盒中运动的周期相同,即: (4) M 和N 间的加速电场很窄,可忽略加速时间.故粒子在回旋加速器中运动时间为:22max mv nUq =,2T n t =,22max 1222D B R m t Uq Bq U ππE =⋅⋅= 带电粒子在电场中的时间不能忽略:21t t t +=,22max mv nUq =,22T n t = , a V t max 1=或者max 1mv Ft = (5) 回旋加速器的优点是体积小,缺点是粒子的能量不会很高。
高中物理 复合场问题分类精析3
![高中物理 复合场问题分类精析3](https://img.taocdn.com/s3/m/ad1fbb5b3a3567ec102de2bd960590c69ec3d80d.png)
实蹲市安分阳光实验学校高中物理圆周与平抛类运动问题分类精析一、匀速圆周运动1、无约束的圆周运动必为匀速圆周运动,恒力必须抵消1.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g '表示宇宙飞船所在处的地球引力加速度,N 表示人对秤的压力,这些说法中,正确的是( )A .0g '=B .22R g g r '=C .N=0D .RN mg r=答案:BC2.如图所示,质量为m 、电荷量为q 的带电液滴从h 高处自由下落,进入一个互相垂直的匀强电场和匀强磁场区域,磁场方向垂直纸面,磁感强度为B ,电场强度为E .已知液滴在此区域中做匀速圆周运动,则圆周运动的半径R 为( )A .2E hB gB .2B hE gC .2m gh qB D .2qBgh m答案:AC3、(一中高三10月月考物理试题).我国古代传说中有:地上的“凡人”过一年,天上的“神仙”过一天,如果把看到一次日出就当做一天,那么,近地面轨道(距离地面300——700km )环绕地球飞行的员24h 内在太空中度过的“天”数约为(地球半径R=6400km ,重力加速度g=10m/s 2)(C )A .1B .8C .16D .244、(一中高三10月月考物理试题).由飞往洛杉矾的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小不变和距离海平面的高度不变,则以下说法正确的是(C )A .飞机做的是匀速直线运动B .飞机上的乘客对座椅的压力略大于地球对乘客的引力C .飞机上的乘客对座椅的压力略小于地球对乘客的引力D .飞机上的乘客对座椅的压力为零5、(八中高三第二次月考).地球赤道上的山丘e ,近地资源卫星p 和同步通信卫星q 均在赤道平面上绕地心做匀速圆周运动。
设e 、p 、q 的圆周运动速率分别为v 1、v 2、v 3,向心加速度分别为a 1、a 2、a 3,则 (D)A. v 1>v 2>v 3B. v 1<v 2<v 3C. a 1>a 2>a 3D. a 1<a 3< a 26、(八中高三第二次月考).正常的机械手表的时针与分针可视为匀速转动,则时针与分针从第一次重合到第二次重合所经历的时间为(D) A 、1h B 、11h/12 C 、13h/12 D 、12h/117、市一模试卷24.(20分)如图(甲)所示为一种研究高能粒子相互作用的装置,两个直线加速器均由k 个长度逐个增长的金属圆筒组成(整个装置处于真空中,图中只画出了6个圆筒,作为示意),它们沿中心轴线排列成一串,各个圆筒相间地连接到正弦交流电源的两端。
新人教版高中物理选修3-1:复合场问题
![新人教版高中物理选修3-1:复合场问题](https://img.taocdn.com/s3/m/b68c0342561252d380eb6e88.png)
1.(多选)如图所示,A 板发出的电子(重力不计) 经加速后,水平射入水平放置的两平行金属板 M、N 间, M、N 之间有垂直纸面向里的匀强磁场,电子通过磁场后 最终打在荧光屏 P 上,关于电子的运动,下列说法中正 确的是( )
A.当滑动触头向右移动时,电子打在荧光屏的位置上 升
B.当滑动触头向右移动时,电子通过磁场区域所用时 间不变
C.若磁场的磁感应强度增大,则电子打在荧光屏上的 速度大小不变
D.若磁场的磁感应强度增大,则电子打在荧光屏上的 速度变大
答案:AC
2.质量为 m、电荷量为 q 的带负电粒子自静止开始释 放,经 M、N 板间的电场加速后,从 A 点垂直于磁场边 界射入宽度为 d 的匀强磁场中,该粒子离开磁场时的位置 P 偏离入射方向的距离为 L,如图所示.已知 M、N 两板 间的电压为 U,粒子的重力不计.求匀强磁场的磁感应强 度 B.
第三章 磁场
第二课时 复合场问题
学习目标 重点难点
1.知道组合场和叠 加场. 2.理解带电粒子在 电场中和磁场中的 运动. 3.会解决组合场和 叠加场问题.
理解带电粒 子在电场中 重点 和磁场中的 运动. 会解决组合 难点 场和叠加场 问题.
知识点 复合场问题 提炼知识 1.叠加场:电场、磁场、重力场共存,或其中某两场 共存. 2.带电粒子在叠加场中的运动形式. (1)静止或匀速直线运动. 当带电粒子在叠加场中所受合外力为零时,将处于静 止状态或做匀速直线运动.
拓展二 对叠加场问题的处理
什么时候带电体要考虑重力,什么时候不考虑重 力?
提示:电子、质子、α 粒子等微观粒子一定不用考虑 重力,像带电小球、液滴等宏观物体需要考虑重力.
1.直线运动. (1)不计重力,粒子垂直进入正交的电磁场中的直 线运动必为匀速直线运动.例如速度选择器. (2)只在重力、电场力、洛伦兹力三力作用下的直 线运动也必为匀速直线运动. 2.复合场中做圆周运动,洛伦兹力充当向心力.重力和 电场力平衡.
高中物理复合场习题课
![高中物理复合场习题课](https://img.taocdn.com/s3/m/7bdb3fd2a58da0116c1749f9.png)
v
θ
F qE 2 3 105 N
F=qE
做匀速直线运动
F合=0
2 2 5
mg
f qvB (mg ) (qE ) 4 10 N
v=4×10-5/qB=20m/s
tanθ=qE/mg
θ=60°
速度方向与电场强度方向成θ=60°角度
例3、如图所示,水平放置的平行金属板A带正电,B带负电,A、B间距离为d, 匀强电场的场强为E,匀强磁场的磁感应强度为B,方向垂直纸面向里,今有一带 电粒子A、B间竖直平面内做半径为R的匀速圆周运动,则带电粒子的转动方向为 顺时针还是逆时针,速率是多少?
习题课
带电粒子在复合场中 的运动分析
带电粒子在复合场中运动
一、带电粒子在复合场中的运动情况分析 1.复合场:
(1)重力场、电场和磁场并存(叠加场)
(2)分区域存在(连接与组合)。
2.三种场的不同特点比较
三种力的比较:
大小 重力
电场力
G = mg
F = Eq F = BqV
方向
竖直向下
带正电粒子受力与电场 方向相同,负电相反 左手定则
⑵小球在运动过程中第一次下降的最大距离ym;
B O P(x,y) y x
解:⑴ 洛伦兹力不做功,由动能定理得: 1 2 mgy mv ① 2 ② 解得: v 2 gy ⑵设在最大距离ym处的速率为vm,根据圆周运动有: 2 vm qvm B mg m ③ R 且由②知 由③④及 解得:
A
B
D
B
例2 如图所示,在竖直平面内有一个正交的匀强电场和匀强磁场,磁感应强度 为1T,电场强度为10 3 N/C,一个带正电的微粒,q=2×10-6C,质量m=2×10-6 ㎏,在这正交的电场和磁场内恰好做匀速直线运动,则带电粒子运动的速度大小 -5 多大?方向如何?
高中物理:匀强电场与重力场的复合场的处理方法
![高中物理:匀强电场与重力场的复合场的处理方法](https://img.taocdn.com/s3/m/fe5978d2ba4cf7ec4afe04a1b0717fd5360cb2d0.png)
高中物理:匀强电场与重力场的复合场的处理方法一、分解法这种方法一般适用于电场力方向与重力方向不在一直线上(常见的情况是相互垂直)、且带电小物体的初速度方向与其所受合外力方向成任意角的情况。
处理这种运动的基本思路与处理带电粒子在电场中偏转运动类似,是将一个复杂的运动分解为沿重力方向和电场力方向的两个分运动。
由于重力和电场力都恒定,所以这两种分运动必是匀变速直线运动。
二、等效重力法这种方法一般适用于电场力与重力在一条直线上,或电场力和重力虽不在一直线上,但带电体还受其他条件的约束,如单摆、圆周运动等。
处理的基本思路是将重力和电场力合成,等效于重力;加速度,等效于重力加速度。
然后根据其运动特点,采用相应的物理规律进行求解。
这两种方法有时又同时并用。
例、真空中存在空间范围足够大的、水平向右的匀强电场。
在电场中,若将一质量为m、带正电的小球由静止释放,运动中小球速度与竖直方向夹角为(取,)。
现将该小球从电场中某点以初速度竖直向上抛出,求运动过程中:(1)小球受到的电场力的大小和方向;(2)小球从抛出点至最高点的电势能变化量;(3)小球最小动量的大小及方向。
解析:(1)由题意知,带正电的小球受的电场力水平向右,重力竖直向下,所以合力方向向下偏右角,如图1所示。
由图知,电场力的大小为:。
图1(2)小球竖直向上抛出,做类似于斜抛的运动。
显然,该题用正交分解法较为恰当。
将该运动分解为水平方向和竖直方向两种运动。
由于初速度沿竖直方向,所以小球在竖直方向做初速度为的匀减速直线运动;在水平方向作初速度为零的匀加速直线运动。
水平方向:,竖直方向:上升到最高点时,所用时间为此时小球沿水平方向的位移为:电场力做的功为:由功能关系知,小球上升到最高点的过程中,电势能减小了。
(3)根据斜抛运动的知识可知,小球运动到速度方向与合外力方向垂直时速度最小,因而动量也最小。
此时小球速度方向与水平方向成角,如图2所示。
设最小速度为,则:图2由于,代入上式可得:,所以。
高中物理知识点:复合场
![高中物理知识点:复合场](https://img.taocdn.com/s3/m/6fb4451c0a4c2e3f5727a5e9856a561252d32187.png)
高中物理知识点:复合场以下是作者为大家整理的关于《高中物理知识点:复合场》,供大家学习参考!复合场是指重力场、电场、磁场并存,或其中两场并存。
散布方式或同一区域同时存在,或分区域存在。
复合场是高中物理中力学、电磁学综合问题的高度集中。
既体现了运动情形反应受力情形、受力情形决定运动情形的思想,又能考核电磁学中的重点知识,因此,近年来这类题备受青睐。
通过上表可以看出,由于复合场的综合性强,覆盖考点较多,估计在2012年高考(微博)中还是一个热门。
复合场的出题方式:复合场可以图文情势直接出题,也能够与各种仪器(质谱仪,回旋加速器,速度挑选器等)相结合考核。
一、重力场、电场、磁场分区域存在(例如质谱仪,回旋加速器)此种出题方式要求熟练掌控平抛运动、类平抛运动、圆周运动的基本公式及解决方式。
重力场:平抛运动电场:1.加速场:动能定理2.偏转场:类平抛运动或动能定理磁场:圆周运动二、重力场、电场、磁场同区域存在(例如速度挑选器)带电粒子在复合场做什么运动取决于带电粒子所受协力及初速度,因此,把带电粒子的运动情形和受力情形结合起来分析是解决此类问题的关键。
(一)若带电粒子在复合场中做匀速直线运动时应根据安稳条件解题,例如速度挑选器。
则有Eq=qVB(二)当带电粒子在复合场中做圆周运动时,则有Eq=mgqVB=mv2/R(2009年天津10题)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。
一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为θ。
不计空气阻力,重力加速度为g,求(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h。
配速法巧解复合场问题-高中物理精讲精练解析版
![配速法巧解复合场问题-高中物理精讲精练解析版](https://img.taocdn.com/s3/m/28ed269d29ea81c758f5f61fb7360b4c2e3f2ae3.png)
配速法巧解复合场问题-高中物理精讲精练带电粒子垂直磁场方向进入磁场与重力场、电场的叠加场,如果粒子所受重力、电场力没有能够平衡,则带电粒子由于受力不平衡而作曲线运动(非圆周运动)时,就不能用简单的圆周运动知识来解决,而需要用到配速法:即将粒子的初速度分解为两个分速度,使一个分速度所对应的洛伦兹力与电场力(或重力或电场力与重力的合力)平衡,而另一个分速度所对应的洛伦兹力使之作匀速圆周运动,则粒子所作的实际运动即为匀速直线运动与匀速圆周运动的合成。
下面就平常训练中的两例谈谈配速法在复合场问题中的妙用1.如图所示,在直角坐标系xOy 的第三象限内存在垂直纸面向里的匀强磁场,磁感应强度为B。
一质量为m、电荷量为q 的带电液滴从x 轴上的A 点在重力作用下由静止进入第三象限,液滴最后垂直y 轴从C 点穿出,重力加速度为g,则OC 长度为()A.2222m gB q B.222m g B qC.222mg B q D.222mg B q 【答案】A【解析】液滴最后垂直y 轴从C 点穿出,说明液滴带正电。
液滴受力不平衡,做复杂的曲线运动。
可用配速法来解题:液滴在A 点速度为零,可假设液滴在A 点有两个方向分别沿x 轴正、负方向,大小均为v 的分速度,且沿x 轴正方向的分速度产生的洛伦兹力与液滴受到的重力平衡,即qvB mg =,液滴在磁场中的运动为x 轴正方向速度大小为v 的匀速直线运动与速率为v 的匀速圆周运动的合运动。
液滴垂直y 轴穿出磁场,则液滴在C 点速度为2v ,OC=2R,其中R 为液滴做匀速圆周运动的轨道半径,由2v qvB m R=,解得2222OC m gB q =,故A 正确,BCD 错误。
2:一质量为m 、电荷量为+q 的带电粒子,以初速度v 0从左端中央沿虚线射入正交的场强为E 的匀强电场和磁感应强度为B 的匀强磁场区域中,若0v EB>,当粒子从右端某点C 离开时速率为C v ,侧移量为s ,粒子重力不计,则下列说法中正确的是()A.v CB.粒子有可能从虚线下方离开该区域C.粒子到达C 点时所受洛伦兹力一定大于电场力D.粒子在该区域中的加速度大小恒为a =0qv B qEm-【答案】D【解析】由动能定理知-qEs =12mv C 2-12mv 02,得v C,A 错误;粒子初速度可分解为v 1和v 0-v 1,其中qv 1B =qE ,粒子的运动可看成以v 1的匀速直线运动和以速率v 0-v 1做匀速圆周运动的合成,只可能在虚线上方离开磁场区域,加速度大小就是向心加速度大小,a =01()q v v B m -=0(qB Ev m B-=0qv B qE m -,B 选项错误,D 正确;粒子到达C点时的速度C v =v 1=EB ,所受洛伦兹力不一定大于电场力,C 错误。
浅析高中物理复合场的解题思路和技巧
![浅析高中物理复合场的解题思路和技巧](https://img.taocdn.com/s3/m/a4bde26903768e9951e79b89680203d8ce2f6a9b.png)
新教师教学教改教研身的发展和学生的发展。
二、评价的基本原则课堂教学评价学生的目的就是为了激发学生学习的兴趣,体现学生学习主体的地位,提高学习的效率和教学效果。
我校教学实践证明,在课堂教学中,教师使用合理、客观、睿智的课堂评价,能使学生学习更有积极性,使学生行为更有表现性,使学生评价更有自主性,学习行为具有多元收获,整体课堂更具艺术感。
我校“6+2”课堂教学模式的课堂教学评价坚持以下基本原则:1.以学生为主体的原则首先,评价应该以学生为主体,包括学生自评、学生同伴互评和教师的评价。
自我评价的一个重要目的就是培养学生参与观察与反思,是学生连续不断的自我改进过程,自我教育过程。
要使评价真正起到诊断、促进的作用,评价就应该以学生为主体,采用学生自评和互评为主的评价方式。
学生之间相互了解可能比老师对学生的了解更彻底更透彻,老师不能唱独角戏,要想方让学生参与进来,让他们来评价他人,或作自我评价,这三种如果能有机结合起来,对于我们的课堂教学一定会起到促进作用。
其次,学生、教师都应该参与课堂学习活动,体现教师的主导作用和学生学习主体的地位。
每位学生和老师都必须清楚评价的目标要求,掌握评价的基本操作技能。
最后,评价应该有利于教师和学生整体的发展。
教学评价不是一个孤立的行为,学生的发展需要一个和谐的整体、需要一个团队学习机制、需要一个共同愿景,需要一个柔性化的人本管理组织,也就是一个学习型组织。
学习型组织中团队学习、共同愿景、和谐整体可以通过组建实践共同体的方式进行。
只有形成实践共同体,才能保证课堂观察的系统进行,才能保证课堂教学评价起到其应有的作用,教师才可能得到应有的发展。
2.以激励为主的原则我校“6+2”课堂教学模式的课堂教学评价目的是为了激发学生学习的积极性,唤醒学生学习的内在动力,充分体现学生学习的主体地位,从而提高学习效率和课堂教学效果。
因此,课堂教学中的评价要以激励为主。
通过教师的评价,要能够增强学生的自尊心、自信心,激发学生发展主动性与自觉性,鼓励他们不断上进。
高中物理带电粒子在复合场中的运动问题教学反思
![高中物理带电粒子在复合场中的运动问题教学反思](https://img.taocdn.com/s3/m/e70512f948649b6648d7c1c708a1284ac85005f8.png)
高中物理带电粒子在复合场中的运动问题教学反思高中物理是一门困难但又有趣的学科,它包含了很多关于电粒子在复合场中的运动问题。
在教学中,我们需要把这些抽象的数学知识和实际生活之间的联系理解得很清晰,以便学生能够理解和掌握电粒子在复合场中的运动问题。
本文对我对高中物理电粒子在复合场中的运动问题的教学进行反思,以加深我对这一问题的理解,并从中总结出教学中的一些经验。
尽管复合场中的电粒子运动问题是一个数学概念,但通过实验可以帮助学生理解和掌握它。
我在教学中使用了一种叫做“排斥力模型”的实验教学模式。
在这个模型中,我使用了一种看起来像“小玩具电车”的玩具,并在实验中,学生用它来模拟电粒子在复合场中的各种运动状态。
其中,学生可以模拟电粒子在各种复合场中的受力情况。
学生这样做可以帮助他们更好地理解复合场中电粒子的受力情况,并有效地吸收高中物理中有关电粒子在复合场中的运动的知识点。
此外,在教学时也应该重视学生的实践能力。
首先,我会让学生在自己的电脑上进行一些数学计算练习,从而培养他们对数学计算的能力。
其次,通过让学生用实验设备模拟电粒子在复合场中的运动,将增强他们对实验技术以及操作仪器的能力。
最后,在学习过程中,我还会让学生就自己实验得出的结果进行讨论和分析,从而增强他们的推理能力和探索精神。
在教学实践中,我发现电粒子在复合场中的运动问题的学习对学生来说是比较困难的。
一方面,学生面对这种抽象的数学知识可能很难理解;另一方面,学生对实验技术的使用也缺乏熟练的操作能力。
为了解决这一问题,我在教学中重视学生实践能力的培养,同时也注重教学的有效性,让学生在理解学习内容的同时也能掌握实验技能。
总之,本文对我对高中物理中电粒子在复合场中的运动问题的教学进行了反思,我认为,教学应该充分利用实验以及实践能力培养来帮助学生更好地理解和掌握复合场中电粒子的运动问题。
只有这样,学生才能在学习高中物理中把握关于电粒子在复合场中的运动的知识点,掌握实验技能,提高实践能力,最终取得高分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年高中物理复合场问题分析复合场问题综合性强,覆盖的考点多(如牛顿定律、动能定理、能量守恒和圆周运动),是理综试题中的热点、难点。
复合场一般包括重力场、电场、磁场,该专题所说的复合场指的是磁场与电场、磁场与重力场、电场与重力场,或者是三场合一。
所以在解题时首先要弄清题目是一个怎样的复合场。
一、无约束1、 匀速直线运动如速度选择器。
一般是电场力与洛伦兹力平衡。
分析方法:先受力分析,根据平衡条件列方程求解1、 设在地面上方的真空室内,存在匀强电场和匀强磁场.已知电场强度和磁感强度的方向是相同的,电场强度的大小E =m ,磁感强度的大小B =.今有一个带负电的质点以=υ20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量q 与质量之比q/m 以及磁场的所有可能方向.1、由题意知重力、电场力和洛仑兹力的合力为零,则有22)()(Eq Bq mg +=υ=q 222E B +υ,则222E B g m q +=υ,代入数据得,=m q / 1.96C/㎏,又==E B /tan υθ,可见磁场是沿着与重力方向夹角为75.0arctan =θ,且斜向下方的一切方向2、(海淀区高三年级第一学期期末练习)15.如图28所示,水平放置的两块带电金属板a 、b 平行正对。
极板长度为l ,板间距也为l ,板间存在着方向竖直向下的匀强电场和垂直于纸面向里磁感强度为B 的匀强磁场。
假设电场、磁场只存在于两板间的空间区域。
一质量为m 的带电荷量为q 的粒子(不计重力及空气阻力),以水平速度v 0从两极板的左端中间射入场区,恰好做匀速直线运动。
求: (1)金属板a 、b 间电压U 的大小; (2)若仅将匀强磁场的磁感应强度变为原来的2倍,粒子将击中上极板,求粒子运动到达上极板时的动能大小; (3)若撤去电场,粒子能飞出场区,求m 、v 0、q 、B 、l满足的关系;(4)若满足(3)中条件,粒子在场区运动的最长时间。
2、(1)U=l v 0B ;(2)E K =21m v 0221-qB l v 0;(3)m qBl v 40≤或m qBl v 450≥; (4)qBm π 3、两块板长为L=1.4m ,间距d=0.3m 水平放置的平行板,板间加有垂直于纸面向里,图28b a q lB=的匀强磁场,如图所示,在两极板间加上如图所示电压,当t=0时,有一质量m=2⨯10-15Kg ,电量q=1⨯10-10C 带正电荷的粒子,以速度Vo=4×103m/s 从两极正中央沿与板面平行的方向射入,不计重力的影响,(1)画出粒子在板间的运动轨迹(2)求在两极板间运动的时间答案:(1) 见下图(2)两板间运动时间为 t=⨯解析:本题主要考查带电粒子在电磁复合场中的匀速圆周运动和匀速直线运动。
第一个10-4s 有电场,洛伦兹力F=qE=5⨯10-7N (方向向下),f=qvB=5⨯10-7N(方向向上),粒子作匀速直线运动,位移为x=v o t=0.4m ;第二个10-4s 无电场时,做匀速圆周运动,其周期为T=qBm π2=1⨯10-4s, 半径为 R=qB mv =⨯-2m<2d 不会碰到板,粒子可以转一周 可知以后重复上述运动粒子可在磁场里作三个完整的圆周运动,其轨迹如图(2)直线运动知x L =4.04.1= 由图像可得,粒子转了3周,所以B(a)⨯10-4s 54 2 1 O (b)图10-5在两板间运动时间T ’=+3T=4、如图3-4-2所示的正交电磁场区,有两个质量相同、带同种电荷的带电粒子,电量分别为q a 、、q b ,它们沿水平方向以相同速率相对着直线穿过电磁场区,则( )A .它们若带负电,则 q a 、>q bB .它们若带负电,则 q a 、<q bC .它们若带正电,则 q a 、>q bD .它们若带正电,则q a 、<q b5、如图3-4-8所示,在xoy 竖直平面内,有沿+x 方向的匀强电场和垂直xoy 平面指向纸内的匀强磁场,匀强电场的场强E =12N/C ,匀强磁场的磁感应强度B =2T .一质量m =4×10-5㎏、电量q =×10-5C 的带电微粒,在xoy 平面内作匀速直线运动,当它过原点O 时,匀强磁场撤去,经一段时间到达x 轴上P 点,求:P 点到原点O 的距离和微粒由O 到P 的运动时间.6、如图3-4-9所示,矩形管长为L ,宽为d ,高为h ,上下两平面是绝缘体,相距为d的两个侧面为导体,并用粗导线MN 相连,令电阻率为ρ的水银充满管口,源源不断地流过该矩形管.若水银在管中流动的速度与加在管两端的压强差成正比,且当管的两端的压强差为p 时,水银的流速为v 0.今在矩形管所在的区域加一与管子的上下平面垂直的匀强磁场,磁感应强度为B (图中未画出).稳定后,试求水银在管子中的流速.7、如图3-4-10所示,两水平放置的金属板间存在一竖直方向的匀强电场和垂直纸面向里的匀强磁场,磁感应强度为B ,一质量为4m 带电量为-2q 的微粒b 正好悬浮在板间正中央O 点处,另一质量为m 的带电量为q 的微粒a ,从P 点以一水平速度v 0(v 0未知)进入两板间正好做匀速直线运动,中途与B 相碰.(1) 碰撞后a 和b 分开,分开后b 具有大小为的水平向右的速度,且电量为-q/2.分开后瞬间a 和b 的加速度为多大分开后a 的速度大小如何变化假如O 点左侧空间足够大,则分开后a 微粒运动轨迹的最高点和O 点的高度差为多少(分开后两微粒间的相互作用的库仑力不计)(2) 若碰撞后a 、b 两微粒结为一体,最后以速度 v 0从H 穿出,求H 点与O 点的高度差.a 图O8、在平行金属板间,有如图1-3-31所示的相互正交的匀强电场的匀强磁场.α粒子以速度v 0从两板的正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的答案有:A .不偏转B .向上偏转C .向下偏转D .向纸内或纸外偏转⑴若质子以速度v 0从两板的正中央垂直于电场方向和磁场方向 射入时,将 ( A )⑵若电子以速度v 0从两板的正中央垂直于电场方向和磁场方向射入时,将( A )⑶若质子以大于的v 0速度,沿垂直于匀强电场和匀强磁场的方向从两板正中央射入,将( B )⑷若增大匀强磁场的磁感应强度,其它条件不变,电子以速度v 0沿垂直于电场和磁场的方向,从两板正中央射入时,将 ( C )9、电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图1-3-37所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c .流量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度为B 的匀强磁场,磁场方向垂直于前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电阻的两端连接,I 表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 ( A )A .)(a c bRB I ρ+ B .)(c b aR B I ρ+C .)(b a cR B I ρ+D .)(abc R B I ρ+2、匀速圆周运动当带电粒子所受的重力与电场力平衡时,带电粒子可以在洛伦兹力的作用下,在垂直于磁场的平面内做匀速圆周运动。
无约束的圆周运动必为匀速圆周运动。
分析方法:先受力分析, 一般是洛伦兹力提供向心力,然后根据牛顿定律和匀速圆周运动知识,以及其他力平衡条件列方程求解。
1、 一带电液滴在如图3-13所示的正交的匀强电场和匀强磁场中运动.已知电场强度为E ,竖直向下;磁感强度为B ,垂直纸面向内.此液滴在垂直于磁场的竖直平面内做匀速圆周运动,轨道半径为R .问:(1)液滴运动速率多大方向如何(2)若液滴运动到最低点A 时分裂成两个液滴,其中一个在原运行方向上作匀速圆周运动,半径变为3R ,圆周最低点也是A ,则另一液滴将如何运动1、(1)Eq=mg ,知液滴带负电,q=mg/E ,R m Bq 2υυ=,E BRg m BqR ==υ.(2)设半径为3R 的速率为v 1,则R m q B 32/2211υυ=,知υυ3331===EBgR m BqR ,由动量守恒,212121υυυm m m +=,得v 2=—v .则其半径为R Bqm Bq m r ==⋅=υυ2222/. 2、如图1-3-33,在正交的匀强电磁场中有质量、电量都相同的两滴油.A 静止,B 做半径为R 的匀速圆周运动.若B 与A 相碰并结合在一起,则它们将 ( B )图图1-3-31 图1-3-33图1-3-37A .以B 原速率的一半做匀速直线运动B .以R /2为半径做匀速圆周运动C . R 为半径做匀速圆周运动D .做周期为B 原周期的一半的匀速圆周运动3、在真空中同时存在着竖直向下的匀强电场和水平方向的匀强磁场,如图1-3-39所示,有甲、乙两个均带负电的油滴,电量分别为q 1和q 2,甲原来静止在磁场中的A 点,乙在过A 点的竖直平面内做半径为r 的匀速圆周运动.如果乙在运动过程中与甲碰撞后结合成一体,仍做匀速圆周运动,轨迹如图所示,则碰撞后做匀速圆周运动的半径是多大原来乙做圆周运动的轨迹是哪一段假设甲、乙两油滴相互作用的电场力很小,可忽略不计.B q q v m m r )()(2121++=';DMA 是4、 如图1-3-41所示的空间,匀强电场的方向竖直向下,场强为E 1,匀强磁场的方向水平向外,磁感应强度为B .有两个带电小球A 和B 都能在垂直于磁场方向的同一竖直平面内做匀速圆周运动(两小球间的库仑力可忽略),运动轨迹如图。
已知两个带电小球A 和B 的质量关系为m A =3m B ,轨道半径为R A =3R B =9cm . (1) 试说明小球A 和B 带什么电,它们所带的电荷量之比q A : q A 等于多少(2) 指出小球A 和B 的绕行方向 (3) 设带电小球A 和B 在图示位置P 处相碰撞,且碰撞后原先在小圆轨道上运动的带电小球B 恰好能沿大圆轨道运动,求带电小球A 碰撞后所做圆周运动的轨道半径(设碰撞时两个带电小球间电荷量不转移)。
都带负电荷,13q q B A=;都相同;cm R A 7='5、如图1-3-52甲所示,空间存在着彼此垂直周期性变化的匀强电场和匀强磁场,磁场和电场随时间变化分别如图中乙、丙所示(电场方向竖直向上为正,磁场方向垂直纸面水平向里为正),某时刻有一带电液滴从A 点以初速v 开始向右运动,图甲中虚线是液滴的运动轨迹(直线和半圆相切于A 、B 、C 、D 四点,图中E 0和B 0都属未知)(1) 此液滴带正电还是带负电可能是什么时刻从A点开始运动的(2) 求液滴的运动速度和BC 之间的距离.1)、带正电,可能是s n 10)34(π-(n=1,2,3,…)(2)2m/s, 0.4m6、(18分)如图所示,半径R=0.8m 的四分之一光滑圆弧轨道位于竖直平面内,与长CD=2.0m 的绝缘水平面平滑连接,水平面右侧空间存在互相垂直的匀强电场和匀强磁场,电场强度E=40N/C ,方向竖直向上,磁场的磁感应强度B=,方向垂直纸面向外。