初一数学分式章节复习(含答案)
2024中考数学复习核心知识点精讲及训练—分式(含解析)
![2024中考数学复习核心知识点精讲及训练—分式(含解析)](https://img.taocdn.com/s3/m/92b9980aa55177232f60ddccda38376baf1fe0a7.png)
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
(完整版)初中数学分式章节知识点及典型例题解析
![(完整版)初中数学分式章节知识点及典型例题解析](https://img.taocdn.com/s3/m/4836ade4f18583d0496459f3.png)
分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2—a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。
(2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+。
2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B 。
12+x x C 。
133+x x D 。
25xx - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B 。
—1或—3 C 。
-1 D 。
3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去.例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B 。
最新初中数学—分式的知识点总复习含答案(2)
![最新初中数学—分式的知识点总复习含答案(2)](https://img.taocdn.com/s3/m/547110f22f60ddccda38a0f7.png)
一、选择题1.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的 2.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .B .C .D .3.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( )A .2B .﹣2C .﹣2或﹣2D .2或24.下列分式变形中,正确的是( ). A . b a b a b a +=++22 B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 5.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 26.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2•3ab 3=-3a 2b 5C .D .7.若分式的值为零,则x 的值为( )A .0B .﹣2C .2D .﹣2或28.分式 (a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的C .不变D .缩小为原来的9.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥310.若分式的值为0,则x 的值为( )A .0B .2C .﹣2D .2或﹣211.若分式211x x -+的值为零,则x 的值为( )A .0B .1C .1-D .±112.计算23x 11x +--的结果是A .1x 1-B .11x - C .5x 1- D .51x -13.下列各式变形正确的是( )A .B .C .D .14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.下列代数式y2、x 、13π、11a -中,是分式的是A .y 2B .11a - C .x D .13π16.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣517.若式子212x x m -+不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<118.若分式的值为0,则x 的值是( )A .3B -3C .4D .-419.化简﹣的结果是( )m+3 B .m-3 C .D . 20.已知115ab a b =+,117bc b c =+,116ca c a =+,则abc ab bc ca ++的值是( ) A .121 B .122 C .123 D .124 21.(2015秋•郴州校级期中)下列计算正确的是( ) A .B .•C .x÷y•D .22.下列分式中是最简分式的是( ) A . B . C . D .23.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有 A .1个 B .2个 C .3个 D .4个24.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+= D .0.250.25a b a b a b a b ++=++ 25.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14 B .14- C .4 D .-4【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的. 考点:分式的值2.A解析:A【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程. 3.D解析:D【解析】试题分析:根据题意可得:x-y=0或2x-y=0,则x=y 或2x=y ,当x=y 时,原式=1+1=2;当2x=y 时,原式=21+2=221. 考点:(1)、分式的计算;(2)、分类讨论思想4.C解析:C【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A 、B 无法进行约分,C 正确;D 需要保证m 不能为零.考点:分式的约分5.D解析:D【解析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零,根据题意可得:x-2=0,解得:x=2.考点:分式的意义6.D解析:D【解析】试题解析:A 、原式=8a 6,错误;B 、原式=-3a 3b 5,错误;C 、原式=,错误; D 、原式=,正确;故选D . 考点:1.分式的乘除法;2.幂的乘方与积的乘方;.3.单项式乘单项式;4.分式的加减法. 7.B解析:B【解析】试题分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0. 解:由分子x 2﹣4=0解得:x=±2. 当x=2时分母x 2﹣2x=4﹣4=0,分式没有意义; 当x=﹣2时分母x 2﹣2x=4+4=8≠0. 所以x=﹣2.故选B .8.B解析:B 【解析】 ,分式的值缩小为原来的 .故选B .9.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.10.B解析:B【解析】根据分式的值为0,分子为0,分母不为0可得 且x+2≠0,解得x=2,故选B.11.B解析:B【解析】由题意得:101x x -=⇒= ,故选B.12.B解析:B【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断:2323231x 11x 1x 1x 1x 1x-++=-+==------.故选B . 13.D解析:D【解析】试题分析:因为x y x yx y x y-+-=--+,所以A错误;因为2a bc d-+不能再化简,所以B错误;因为0.20.032030.40.05405a b a bc d c d--=++,所以C错误;因为,所以D正确;故选:D.考点:分式的性质. 14.C解析:C【解析】原式=()()()2111mm m+++=21m+,当m=-3时,原式=-1;当m=-2时,原式=-2;当m=0时,原式=2;当m=1时,原式=1.m的值有4个.故选C.15.B解析:B【解析】试题解析:由于11a-中,分母含有字母,故选B.16.B解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8.故选B.17.B解析:B【解析】试题解析:分式21 2x x m-+不论x取何值总有意义,则其分母必不等于0,即把分母整理成(a+b)2+k(k>0)的形式为(x2-2x+1)+m-1=(x-1)2+(m-1),因为论x取何值(x2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,即m>1.故选B.18.A解析:A【解析】试题分析:当x-3=0时,分式的值为0,所以x=3,故选:A.考点:分式的值为0的条件.19.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m mmm m m m-+--===+----,所以选:A.考点:分式的减法.20.D解析:D【解析】试题解析:由已知得:1115a b+=,1117b c+=,1116c a+=,∴11124 a b c++=,∴原式=11 11124a b c=++,故选D.考点:分式的运算.21.B解析:B【解析】试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=•=,错误;B、原式=,正确;C、原式=,错误;D、原式==,错误,故选B.考点:分式的乘除法.22.A解析:A【解析】选项A ,的分子、分母都不能再分解,且不能约分,是最简分式;选项B,原式=2x;选项C,原式=11x+;选项D,原式=-1.故选A.23.C解析:C【解析】试题分析:分式是指分母含有字母的代数式.考点:分式的定义24.D解析:D【解析】A选项错误,x yx y-+=-y xy x-+;B选项错误,x yy x+-=x y y xy x y x+---()()()()=()222y xx y--;C选项错误,2a aab+=1a aab+()=1ab+;D选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变. 25.C解析:C【解析】试题分析:根据负整指数幂的性质1(0)ppa aa-=≠计算,可得12⎛⎫-⎪⎝⎭2141()2==-.故选C。
七级数学分式的运算专题提高(含答案)
![七级数学分式的运算专题提高(含答案)](https://img.taocdn.com/s3/m/380238dc998fcc22bcd10d53.png)
【知识精读】1. 分式的乘除法法则a bcdacbd ⋅=;a b cdabdca db c÷=⋅=当分子、分母是多项式时,先进行因式分解再约分。
2. 分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。
求最简公分母是通分的关键,它的法则是:①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最高的。
(2)同分母的分式加减法法则acbca bc±=±(3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。
3. 分式乘方的法则()ababnnn=(n为正整数)4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。
学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式;(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。
下面我们一起来学习分式的四则运算。
【分类解读】例1:计算x x x x x x x x 22222662----÷+-+-的结果是() A. x x --13B. x x +-19C. x x 2219--D. x x 2213++分析:原式=-+-+÷+-+-()()()()()()()()x x x x x x x x 21323221 =-+-+⋅+-+-=+-+-=--()()()()()()()()()()()()x x x x x x x x x x x x x x 2132213211331922故选C说明:先将分子、分母分解因式,再约分。
例2:已知a b c =1,求a a ba b b cb ca cc ++++++++111的值。
分析:若先通分,计算就复杂了,我们可以用a b c 替换待求式中的“1”,将三个分式化成同分母,运算就简单了。
沪教版七年级上册数学第十章 分式含答案(满分必刷)
![沪教版七年级上册数学第十章 分式含答案(满分必刷)](https://img.taocdn.com/s3/m/e8278a49001ca300a6c30c22590102020740f266.png)
沪教版七年级上册数学第十章分式含答案一、单选题(共15题,共计45分)1、如果,,,那么三个数的大小关系为( )A. B. C. D.2、如果中的x、y都扩大4倍,那么下列说法中,正确的是()A.分式的值不变B.分式的值扩大4倍C.分式的值扩大8倍D.分式的值扩大16倍3、若代数式值为零,则()A. B. C. D.4、等于()A. B. C. D.5、若分式方程会产生增根,则m的值是()A.2B.1C.D.6、如图,若x为正整数,则表示的值的点落在()A.段①B.段②C.段③D.段④7、下列计算错误的是()A.(a ﹣1b 2)3=B.(a 2b ﹣2)﹣3=C.(﹣3ab ﹣1)3=﹣D.(2m 2n ﹣2)2•3m ﹣3n 3=8、如果把分式中的x和y都扩大2倍,那么分式的值()A.扩大4倍B.缩小2倍C.扩大2倍D.不变9、若a,b,c分别是三角形三边长,且满足,则一定有()A.a=b=cB.a=bC.a=c或b=cD.a 2+b 2=c 210、若分式有意义,则x的取值范围是()A. B. C. D.11、计算a÷a×的结果是()A.aB.1C.D.a 212、已知方程有增根,则这个增根一定是()A.2B.3C.4D.513、解分式方程分以下几步,其中错误的一步是()A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x -1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=114、函数中自变量x的取值范围是()A.x≥-1B.x≤-1C. x≠-1D. x=-115、关于x的分式方程=1,下列说法正确的是().A.方程的解是x=a﹣3B.当a>3时,方程的解是正数C.当a<3时,方程的解为负数D.以上答案都正确二、填空题(共10题,共计30分)16、如果分式的值为零,那么x=________.17、函数中,自变量x的取值范围是________.18、分式方程的解为________.19、用去分母的方法解关于x的方程产生增根,那么a的值是________.20、若分式的值为零,则x的值是________.21、若代数式有意义,则实数的取值范围是________.22、计算________.23、若a与b是互为相反数,且,则________;24、下列分式通分的最简公分母是________.25、若解分式方程产生增根,则增根可能是________.三、解答题(共5题,共计25分)26、计算:(3.14﹣π)0+|1﹣|+(﹣)﹣1﹣2sin60°.27、当2a﹣2b+5=0时,求﹣的值.28、解方程:29、先化简,再求值:,其中30、当k为何值时,分式方程有增根?参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、C5、C6、B7、C8、C9、C10、C11、C12、B13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
初中数学复习---整式及分式化简专项计算题练习(含答案解析)
![初中数学复习---整式及分式化简专项计算题练习(含答案解析)](https://img.taocdn.com/s3/m/ff0344fd8ad63186bceb19e8b8f67c1cfad6eeae.png)
初中数学复习---整式及分式化简专项计算题练习(含答案解析)1.下列等式正确的是( ) A .3tan 452−+︒=− B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b −=++ D .()()33x y xy xy x y x y −=+−【答案】D 【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可. 【详解】A. 3tan 45314−+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意C. ()2222a b a ab b −=−+,不符合题意D. ()()3322()x y xy xy x y xy x y x y −=−=+−,符合题意故选D . 【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义. 2.下列运算正确的是( ) A .235a a a ⋅= B .()235aa = C .22()ab ab = D .632(0)a a a a=≠【答案】A【分析】根据同底数幂相乘,幂的乘方,积的乘方,分式的化简,逐项判断即可求解. 【详解】解:A 、235a a a ⋅=,故本选项正确,符合题意; B 、()236a a =,故本选项错误,不符合题意;C 、222()ab a b =,故本选项错误,不符合题意;D 、462(0)a a a a=≠,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了同底数幂相乘,幂的乘方,积的乘方,分式的化简,熟练掌握相关运算法则是解题的关键.3.下列运算中,正确的是( ) A .3515x x x ⋅= B .235x y xy +=C .22(2)4x x −=−D .()2242235610x x y x x y ⋅−=−【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 3515x x x ⋅=,根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B. 235x y xy +=,2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 22(2)4x x −=−,根据完全平方公式可得:22(2)44−=+−x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ⋅−=−,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则. 4.计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2aa + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.5.已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷− ⎪ ⎪⎝⎭⎝⎭的值是( )A 5B .5C 5D .5【答案】B【分析】先将分式进件化简为a bb a+−,然后利用完全平方公式得出a b ab −=5a b ab +,代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷− ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +−⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+−a b b a +=−, ∵223a b ab +=,∴222a ab b ab −+=,∴()2a b ab −=, ∵a>b>0,∴a b ab −=∵223a b ab +=,∴2225a ab b ab ++=,∴()25a b ab +=,∵a>b>0,∴5a b ab +=5abab−5=−B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 6.下列计算正确的是( )A .2m m m +=B .()22m n m n −=−C .222(2)4m n m n +=+D .2(3)(3)9m m m +−=− 【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意; B.()222m n m n −=−,故该选项错误,不符合题意; C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意; D.2(3)(3)9m m m +−=−,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 7.下列计算正确的是( )A .2()a ab a a b +÷=+B .22a a a ⋅=C .222()a b a b +=+D .325()a a = 【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确; B 、23a a a ⋅=,原式计算错误; C 、222()2a b a b ab +=++,原式计算错误;D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键. 8.因式分解:24x −=__________. 【答案】(x+2)(x-2) 【详解】解:24x −=222x −=(2)(2)x x +−; 故答案为(2)(2)x x +− 9.分解因式:34x x −=______. 【答案】x (x+2)(x ﹣2). 【详解】试题分析:34x x −=2(4)x x −=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2). 考点:提公因式法与公式法的综合运用;因式分解. 10.分解因式:2a 3﹣8a=________. 【答案】2a (a+2)(a ﹣2) 【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2−=−−.11.因式分21x −= . 【答案】(1)(1)x x +−. 【详解】原式=(1)(1)x x +−.故答案为(1)(1)x x +−. 考点:1.因式分解-运用公式法;2.因式分解. 12.分解因式:23x x −=_____________. 【答案】x(x-3) 【详解】直接提公因式x 即可,即原式=x(x-3). 13.分解因式:2ab a −=______. 【答案】a (b+1)(b ﹣1). 【详解】解:原式=2(1)a b −=a (b+1)(b ﹣1), 故答案为a (b+1)(b ﹣1). 14.分解因式:24m −=_____. 【答案】(2)(2)m m +− 【分析】直接根据平方差公式进行因式分解即可. 【详解】24(2)(2)m m m −=+−,故填(2)(2)m m +− 【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式. 15.因式分解:24−=x x _____. 【答案】2(1)(1)+−x x x【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)−=−=+−x x x x x x x ,故答案为:2(1)(1)+−x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.16.分解因式:2x x + = ______. 【答案】(1)x x +【分析】利用提公因式法即可分解. 【详解】2(1)x x x x +=+, 故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解. 17.分解因式:x 2-2x+1=__________. 【答案】(x-1)2【详解】由完全平方公式可得:2221(1)x x x −+=− 故答案为2(1)x −.【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底. 18.若分式21x −有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x −有意义,∴10x −≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键. 19.计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +−+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减. 20.化简:22a 3a 42a 3a 2a 4a 4−−⋅+−+++ =____________.【答案】2aa + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4−−⋅+−+++=2a 3(a 2)(a 2)2a 3a 2(a 2)−+−⋅+−++ 22222a a a a a −=+=+++故答案为2a a + 【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.21.化简:2291(1)362m m m m −÷−−−. 【解析】2291(1)362m m m m −÷−−− ()()()333322m m m m m m +−−=÷−−()()()332323m m m m m m +−−=⋅−− 33m m+=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 22.先化简,再求值:(1)(1)(2)x x x x +−++,其中12x =. 【答案】12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +−++ 2212x x x =−++12x =+当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键. 23.先化简,再求值:()()()2a b a b b a b +−++,其中1a =,2b =−. 【答案】2a 2ab +,3−【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算.【详解】解:原式222222a b ab b a ab =−++=+, 将1a =,2b =−代入式中得:原式()21212143=+⨯⨯−=−=−.【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键.24.已知23230x x −−=,求()2213x x x ⎛⎫−++ ⎪⎝⎭的值.【答案】24213x x −+,3【分析】先将代数式化简,根据23230x x −−=可得2213x x −=,整体代入即可求解. 【详解】原式222213x x x x =−+++24213x x =−+.∵23230x x −−=,∴2213x x −=. ∴原式22213x x ⎛⎫=−+ ⎪⎝⎭211=⨯+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键. 25.先因式分解,再计算求值:328x x −,其中3x =. 【答案】()()222+−x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x −=−=+−,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键. 26.先化简,再求值:()()212(2)x x x +++−,其中1x =. 【答案】25x +,7. 【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得. 【详解】解:原式22214x x x =+++−,25x =+,将1x =代入得:原式2157=⨯+=. 【点睛】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键. 27.先化简,再求值:(2)(2)(1)a a a a +−+−,其中54a =. 【答案】5a - 【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】()()()221a a a a +-+-224a a a =−+− 4a =−当54a =时, 原式5445−= 【点睛】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 28.先化简,再求值:()()()221x x x x +−−−,其中12x =. 【答案】4x −,132− 【分析】先根据平方差公式和单项式乘以多项式进行计算,再合并同类项,最后代入求出答案即可. 【详解】解:()()()221x x x x +−−−224x x x =−−+4x =−,当12x =时,原式114322=−=−. 【点睛】本题考查了平方差公式,单项式乘以多项式,合并同类项,运用平方差公式是解题的关键. 29.已知112,1x y x y−=−=,求22x y xy −的值. 【答案】-4 【分析】根据已知求出xy=-2,再将所求式子变形为()xy x y −,代入计算即可. 【详解】解:∵2x y −=,∴1121y x x y xy xy−−−===, ∴2xy =−,∴()()22224xy x x y xy y ==−−−⨯=−.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.30.化简:22311(1).m m m m m −+−+÷【答案】11m m −+【分析】直接根据分式的混合计算法则求解即可. 【详解】解:22311(1)m m m m m −+−+÷()()231`11m m m m m m m÷++=−−+ ()()2211`1m m m mm m −+=⋅+−()()()21`11mm mm m +⋅−−=11m m −=+.【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.31.先化简,再求值:211121x x x x ⎛⎫−÷ ⎪+++⎝⎭,其中2x 【答案】1x +21【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121x x x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+−+=⨯+ 1x =+, ∵2x∴原式=121x +.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键.32.计算:(1)()()(2)x y x y y y +−+−;(2)2244124m m m m m −+⎛⎫−÷ ⎪⎝⎭−+. 【答案】(1)22x y −(2)22m − 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可;(2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可.(1)解:()()(2)x y x y y y +−+−=2222x y y y −+−=22x y −(2)解: 2244124m m m m m −+⎛⎫−÷ ⎪⎝⎭−+ =()()()222222m m m m m m −+−÷++− =()()()222222m m m m +−⨯+− =22m − 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.33.先化简,再求值:22211a a a a a ⎫⎛−÷⎪ +−⎝⎭,其中2cos601a =︒+. 【答案】1a a −;12【分析】根据分式的混合运算法则进行化简,再结合特殊角的三角函数值求出a 的值,再代入求解即可.【详解】 解:原式22(1)1(1)(1)a a a a a a a +−=÷++− 2(1)(1)1a a a a a +−=⨯+ 1a a −=; 当12cos6012122a =︒+=⨯+=时, 原式121122a a −−===. 【点睛】本题主要考查分式的化简求值问题,掌握运算法则与顺序,熟记特殊角的三角函数值是解题关键.34.先化简,再求值:21111m m m −⎛⎫+ ⎪−⎝⎭,其中2m =. 【答案】1m +,3【分析】先通分,再约分,将分式化成最简分式,再代入数值即可.【详解】解:原式11(1)(1)1m m m m m−+−+=⋅− (1)(1) 1m m m m m−+=⋅− 1m =+.∵2m =∴原式213=+=.【点睛】本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键.35.先化简,再求值:22211a a a a a ⎫⎛−÷⎪ +−⎝⎭,其中2tan45a =︒+1. 【答案】1a a −,23【分析】先去括号,然后再进行分式的化简,最后代值求解即可.【详解】解:原式=2222111a a a a a a a a+−−−⨯=+, ∵2tan45a =︒+1,∴2113a =⨯+=,代入得:原式=31233−=. 【点睛】本题主要考查分式的化简求解及特殊三角函数值,熟练掌握分式的化简求解及特殊三角函数值是解题的关键.36.先化简,再求值: 2212(1)121x x x x x x +++−÷+++,其中x 满足220x x −−=. 【答案】x (x+1);6【分析】先求出方程220x x −−=的解,然后化简分式,最后选择合适的x 代入计算即可.【详解】解:∵220x x −−=∴x=2或x=-1 ∴2212(1)121x x x x x x +++−÷+++=()221212()111x x x x x x +++÷+++− =()2222()11x x x x x ++÷++=()()22112x x x x x ++⨯++=x (x+1)∵x=-1分式无意义,∴x=2当x=2时,x (x+1)=2×(2+1)=6.【点睛】本题主要考查了分式的化简求值、分式有意义的条件以及解一元二次方程等知识点,化简分式是解答本题的关键,确定x 的值是解答本题的易错点.37.先化简,再求值:23219a a a ⎛⎫+⋅ ⎪−⎝⎭,其中2a =. 【答案】23a −,2−. 【分析】先计算括号内的分式加法,再计算分式的乘法,然后将2a =代入求值即可得.【详解】 解:原式32(3)(3)a a a a a a ⎛⎫+⋅+= ⎪−⎝⎭, 32(3)(3)a a a a a +=+⋅−, 23a =−, 将2a =代入得:原式222323a ===−−−. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.38.先化简,再求值:23210119x x x x −−⎛⎫⋅− ⎪−−⎝⎭,其中x 是1,2,3中的一个合适的数.【答案】13x x −+,15. 【分析】先计算括号内的异分母分式减法,再计算乘法,最后将可选取的x 值代入计算即可.【详解】 解:23210119x x x x −−⎛⎫⋅− ⎪−−⎝⎭ 2392101(3)(3)(3)(3)x x x x x x x x ⎡⎤−−−=⋅−⎢⎥−+−+−⎣⎦ 23211(3)(3)x x x x x x −−+=⋅−+− 23(1)1(3)(3)x x x x x −−=⋅−+− 13x x −=+, ∵1x ≠,3x ≠±,∴2x =, 原式211235−==+. 【点睛】本题考查了分式的化简求值,正确掌握分式的混合运算法则及确定字母的可取数值是解题的关键.39.先化简2222424421a a a a a a a a a −−−++++−÷,然后从0,1,2,3中选一个合适的a 值代入求解.【答案】2a ,6【分析】将分子、分母因式分解除法转化为乘法,约分、合并同类项,选择合适的值时,a 的取值不能使原算式的分母及除数为0.【详解】解:原式()2(2)(2)(2)(1)212a a a a a a a a a −++−=⨯+−−+2a =因为a=0,1,2时分式无意义,所以3a =当3a =时,原式6=【点睛】本题考查了分式的化简求值,关键是先化简,后代值,注意a 的取值不能使原算式的分母及除数为0.40.先化简,再求值:2293411x x x x x x−+÷+−−,其中2x =. 【答案】1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可.【详解】解:原式()()()313341x x x x x xx −=⨯++−−+ 1x x+=, 当2x =时,原式32=. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.41.先化简,再求值:32212111x x x x x x −−+⎛⎫+÷ ⎪+−⎝⎭,其中31x =. 【答案】21x −23 【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入式子进行计算即可.【详解】 原式21(1)11(1)(1)x x x x x x −−⎛⎫=+÷ ⎪++−⎝⎭22(1)(1)1(1)x x x x x x +−=⋅+− 21x =− 当31x =+时,原式23311==+−【点睛】本题主要考查的是分式的化简求值,最简二次根式,在解答此类型题目时,要注意因式分解、通分和约分的灵活运算,熟练掌握分式的混合运算法则是解题的关键.42.先化简,再求值:222442342x x x x x x−+−÷+−+,其中4x =−. 【答案】x+3,-1【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.【详解】解:原式=()()()()2223222x x x x x x −+⨯++−− =3x +,将4x =−代入得:原式=-4+3=-1,故答案为:-1.【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 43.先化简,再求值:221121m m m m m m−−−÷++,其中m 满足:210m m −−=. 【答案】2m m+1,1. 【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案.【详解】 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1=2m m m -m+1m+1+ =2m m+1, 又∵m 满足2m -m-1=0,即2m =m+1,将2m 代入上式化简的结果,∴原式=2m m+1==1m+1m+1. 【点睛】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.44.先化筒,再求值:22221244y x x y x y x xy y−−−÷+++其中11cos3012,(3)()3x y π−==−︒−︒ 【答案】23x y x y++,0 【解析】【分析】直接利用分式的混合运算法则化简,再计算x ,y 的值,进而代入得出答案.【详解】解:22221244y x x y x y x xy y −−−÷+++ ()()()2122x y x y x y x y x y +−−=+÷++, ()()()2212x y x y x y x y x y +−=+⨯++−, 21x y x y+=++, 23x y x y+=+; ∵3cos30122332x ===,()10131323y π−⎛⎫=−−=−=− ⎪⎝⎭所以,原式()()2332032⨯+⨯−==+−. 【点睛】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题的关键.45.先化简,再求值:22244242x x x x x x −+−÷−+,其中12x =. 【答案】2.【解析】【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.【详解】 解:22244242x x x x x x −+−÷−+ ()()()()222222x x x x x x −+=•+−− 1x =当1,2x = 上式11 2.2=÷= 【点睛】本题考查的是分式的除法运算,掌握把除法转化为乘法是解题的关键.46.先化简,再求值:229222a a a −⎛⎫−÷ ⎪−−⎝⎭,其中33=a . 【答案】23a +23【解析】【分析】首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a 的值可得答案.【详解】 解:原式226229a a a a −−=⋅−−, 2(3)22(3)(3)a a a a a −−=⋅−+−, 23a =+. 当33=a 时,原式233333===−+ 【点睛】此题主要考查了分式的化简求值以及分母有理化,关键是熟练掌握分式的减法和除法计算法则.47.先化简,再求值:222y y x y x y ⎛⎫− ⎪−−⎝⎭÷2x xy y +,其中x 3,y 31. 【答案】化简结果为2y x y−;求值结果为23 【解析】【分析】根据分式四则运算顺序和运算法则对原式进行化简222y y x y x y ⎛⎫− ⎪−−⎝⎭÷2x xy y +,得到最简形式后,再将x 3、y 31代入求值即可.【详解】 解:222y y x y x y ⎛⎫− ⎪−−⎝⎭÷2x xy y + =2()()()()()y x y y x y x y x y x y ⎡⎤+−⎢⎥+−+−⎣⎦÷()x y x y + =()()xy x y x y +−×()y x y x+ =2y x y− 当x 3,y 31时 2(31)−=23 【点睛】本题考查分式的混合运算,掌握计算法则,依据运算顺序进行计算是得出正确答案的关键.48.先化简,再求值:211()11a a a a a a −−−÷++,其中2a =− 【答案】1a a +;2a =−时,原式=2. 【解析】【分析】先利用分式的运算法则化简,然后代入2a =−计算即可.【详解】 解:211()11a a a a a a−−−÷++ 111a a a a−−=÷+ 111a a a a −=+− 1a a =+2a =−时,原式=2221−=−+ 【点睛】 本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.49.先化简,再求值:2221221(2)1144a a a a a a a a ⎛⎫+−+−⋅⋅+ ⎪+−++⎝⎭,其中2a =. 【答案】31a +,1 【解析】【分析】先根据分式的混合运算步骤进行化简,然后代入求值即可.【详解】 解:2221221(2)1144a a a a a a a a ⎛⎫+−+−⋅⋅+ ⎪+−++⎝⎭ 2212(1)(2)1(1)(1)(2)a a a a a a a ⎡⎤+−=−⋅⋅+⎢⎥++−+⎣⎦ 11(2)1(1)(2)a a a a a ⎡⎤−=−⋅+⎢⎥+++⎣⎦ 2111a a a a +−=−++ 31a =+ 当2a =时,原式3121==+ 【点睛】此题主要考查分式的化简求值,熟练掌握分式混合运算法则是解题关键.50.先化简,再求值:2222221211x x x x x x x x x ⎛⎫+−−÷ ⎪−−++⎝⎭,其中12x = 【答案】11x x +−21 【解析】【分析】先将括号中的两个分式分别进行约分,然后合并后再算括号外的除法,化简后的结果再将12x =+.【详解】解:原式()()()()()22111111x x x x x x x x x ⎡⎤+−+=−⋅⎢⎥⎢⎥⎣⎦+−− 1211x x x x xx +⎛⎫=−⋅⎪⎝⎭− − 11x x x x +=⋅− 11x x +=− 将12x =1121212211212x x ++++===+−−. 【点睛】 本题考查分式的混合运算,遇到分子分母都能因式分解的,可以先把分子分母进行因式分解,将分式进行约分化简之后再进行通分,然后再合并,合并的时候分子如果是多项的话注意符号;求值的时候最后的结果必须是最简的形式.。
数学七年级下《分式》复习测试题(答案)
![数学七年级下《分式》复习测试题(答案)](https://img.taocdn.com/s3/m/7c9b2747bed5b9f3f90f1ccd.png)
第七章《分式》一、选择题(每小题3分,共30分)1、下列有理式223121153313,7,,,,2,,9247a ab xy a b x y x y b m ---+-中,是分式的个数有……………………………………………………………………………………( )A. 4B. 3C. 2D. 12、不改变分式的值,使23172x x x -+-+-的分子和分母中x 的最高次项的系数都是正数,应该是…………………………………………………………………………………( ) A. 23172x x x ++- B. 23172x x x --- C. 23172x x x +-+ D. 23172x x x --+ 3、如果把分式223y x y -中的x 和y 都扩大5倍,那么这个分式的值…………( ) A. 扩大为原来的5倍 B. 不变C.缩小到原来的15 D.扩大到原来的25倍 4、22222x x x x =--,若要使其有意义,则……………………………………( ) A. 0x > B. 0,2x x ≠≠且 C. 0x < D. 2x ≠5、当x 为任意实数时,下列分式一定有意义的是……………………………( ) A. 2x B. 21x C. 1x D. 211x +6、下列等式成立的是……………………………………………………………( ) A. 22n n m m = B. ()0n n a a m m a+=≠+ C.()0n n a a m m a -=≠- D. ()0n na a m ma=≠7、若25x >,那么2552x x --的值是………………………………………………( ) A. —1 B. 0 C. 1 D.23 8、下列各分式中与11y x+-的值相等的分式是……………………………( ) A. 11y x -- B. 11y x --- C. 11y x +-- D. 11y x -+9、若1044m x x x--=--无解,则m 的值是……………………………( ) A. —2 B. 2 C. 3 D. —310、若2202,22x x x x x--<<---化简:,结果等于……………………( ) A. —2 B. 2 C. 0 D. 1二、填空题(每小题3分,共30分)11、若5513b =+,则b=___________.12、如果方程()235,1x b b x ===-的解为则______________.13、1x-y 当x=,y=1时,分式的值为2xy-1_________________. 14、若分式()()414x x x -++的值为零,则x 的值是__________. 15、2933a a a -=++_______________. 16、已知22440x xy y -+=,那么分式x y x y+-的值等于___________. 17、531333Ax B x x x x x+-=+---,则A=________,B=_____________.18、分式1111x ++中的x 的取值范围是_____________________. 19、若关于x 的方程2111x m x x ++=--产生增根,则m=____________.20、计算机生产车间制造a 个零件,原计划每天造x 个,后来供货要每天多造b 个,则可提前____________天完成.三、解答题(共60 分)21、(8分)化简下列各式:(1)()2222a a a a +÷+- (2)22144422a a a a a --⨯-+-22、(10分)解下列方程:(1)32221221x x x x --+=-- (2)2133112133119x x x x x-++=+--23、(7分)当56,1949x y =-=-时,代数式4422222x y y x x xy y x y --⋅-++的值为多少?24、(6分)若2410x x -+=,求下列代数式的值:(1)1x x +(2)221x x +25、(7分)已知关于x 的方程4333k x x x-+=--有增根,则k 为多少?26、(6分)某学校进行急行训练,预计行36千米的路程可在下午5点到达,后来由于把速度加快15,结果于下午4点到达,求原来计划行军的速度.27、(8分)探索计算:()()()11112x x x x +++++…()()145x x +++28、(8分)(1)已知340x y z --=,222280,2x y z x y z xy yz zx+++-=++求的值. (2)在分式()1112S na n n d =+-中,已知()1,,01,.S a n n n d ≠≠且求。
最新初中数学—分式的知识点总复习附答案解析(1)
![最新初中数学—分式的知识点总复习附答案解析(1)](https://img.taocdn.com/s3/m/65388828aef8941ea66e050a.png)
一、选择题1.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()g/cm3.A.1.239×10﹣3B.1.2×10﹣3C.1.239×10﹣2D.1.239×10﹣4 2.已知:分式的值为零,分式无意义,则的值是()A.-5或-2B.-1或-4C.1或4D.5或23.把分式22x yx y-+中的x、y都扩大到原来的4倍,则分式的值()A.扩大到原来的8倍 B.扩大到原来的4倍C.缩小到原来的14 D.不变4.计算4-(-4)0的结果是()A.3B.0C.8D.45.若a=-0.3-2,b=-3-2,c=(-13)-2,d=(-13)0,则( )A.a<d<c<b B.b<a<d<c C.a<d<c<b D.a<b<d<c6.下列各式变形正确的是()A.B.C.D.7.分式(a,b均为正数),字母的值都扩大为原来的2倍,则分式的值()A.扩大为原来2倍B.缩小为原来倍C.不变D.缩小为原来的8.函数中自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.x>29.下列各式12x y+,52a ba b--,2235a b-,3m,37xy中,分式共有()个.A.2B.3C.4D.510.如果把分式22a bab+中的a和b都扩大了2倍,那么分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍11.把分式2nm n+中的m与n都扩大3倍,那么这个代数式的值A .不变B .扩大3倍C .扩大6倍D .缩小到原来的1312.若要使分式23363(1)x x x -+-的值为整数,则整数x 可取的个数为( ) A .5个 B .2个C .3个D .4个13.分式中,最简分式个数为( )个. A .1B .2C .3D .414.已知:a=()﹣3,b=(﹣2)2,c=(π﹣2015)0,则a ,b ,c 大小关系是( ) A .b <a <cB .b <c <aC .c <b <aD .a <c <b15.下列各式的约分,正确的是 A .1a b a b --=- B .1a ba b--=-- C .22a b a b a b -=-+ D .22a b a b a b-=++ 16.化简﹣的结果是( )m+3 B .m-3 C .D .17.若04(2)(3)x x ----有意义,那么x 的取值范围是( ) A .x >2 B .x >3 C .x ≠2或x ≠3 D .x ≠2且x ≠3 18.(2015秋•郴州校级期中)下列计算正确的是( ) A .B .•C .x÷y•D .19.若将分式(a ,b 均为正数)中a ,b 的值分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .缩小为原来的 C .不变 D .缩小为原来的 20.下列分式中,最简分式是( ) A .B .C .D .21.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ). A .19或﹣1 B .19或1 C .﹣1 D .1 22.在标准大气压下氢气的密度为0.00009g/cm 3,用科学记数法表示0.00009正确的是( )A .5910⨯B .5910-⨯C .4910-⨯D .40.910⨯23.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5 C .2.1×10-6 D .21×10-6 24.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等; ④平行线间的距离处处相等. 说法错误的有( )A .1个B .2个C .3个D .4个25.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣5【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A .2.A解析:A 【分析】当分式的分子为零,且分母不为零时,则分式的值为零;当分式的分母为零时,则分式无意义. 【详解】根据题意可得:,=0,解得:x=-3,y=1或-2,则x+y=-2或-5.【点睛】考核知识点:分式的性质.3.D解析:D.【解析】试题解析:根据题意得:844(2)2844(2y)2x y x y x yx y x x y---==+++,即和原式的值相等,故选D .考点:分式的基本性质.4.A解析:A【解析】试题分析:根据零指数幂的性质和有理数的加减法,可求解为:4-(-4)0=4-1=3.故选A.5.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a、b、c、d的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b,故选B.6.D解析:D【解析】试题分析:因为x y x yx y x y-+-=--+,所以A错误;因为2a bc d-+不能再化简,所以B错误;因为0.20.032030.40.05405a b a bc d c d--=++,所以C错误;因为,所以D正确;故选:D.考点:分式的性质.7.B解析:B【解析】试题分析:当a和b都扩大2倍时,原式=,即分式的值缩小为原来的.考点:分式的值8.A解析:A 【解析】试题解析:根据题意得:2﹣x≠0, 解得:x≠2. 故函数中自变量x 的取值范围是x≠2.故选A .考点:函数自变量的取值范围.9.B解析:B 【解析】试题解析:2235a b -,37xy的分母中均不含有字母,因此它们是整式,而不是分式.12x y +,52a b a b --,3m的分母中含有字母,因此是分式. 故选B .10.C解析:C 【解析】 分式22a bab+中的a 和b 都扩大了2倍,得: 4212822a b a bab ab ++=⨯, 所以是缩小了2倍. 故选C.11.A解析:A 【解析】 试题解析:分式2nm n+中的m 与n 都扩大3倍,得 6233n nm n m n =++,故选A .12.C解析:C 【解析】试题分析:根据x 为整数,且分式23363(1)x x x -+-的值为整数,可得3是(x-1)的倍数,可得答案.试题解析:由题意得,x-1=-3,1,3, 故x-1=-3,x=-2; x-1=1,x=2; x-1=3,x=4, 故选C . 考点:分式的值.13.C解析:C 【解析】根据最简分式的定义——分子和分母没有公因式的分式.易得共3个是最简分式:,,故选C.14.C解析:C 【解析】 a =31()2-=8, b =(−2) ² =4, c =(π−2015) º =1, ∵1<4<8, ∴c <b <a , 故选C.15.C解析:C . 【解析】试题分析:根据分式的基本性质作答. 试题解析:A .()1a b a b a b a b---+=≠--,故该选项错误; B .()1a b a b a b a b---+=≠---,故该选项错误; C .22()()a b a b a b a b a b a b -+-==-++,故该选项正确; D .22()()a b a b a b a b a b a b a b -+-==-≠+++,故该选项错误. 故选C .考点:约分.16.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m mmm m m m-+--===+----,所以选:A.考点:分式的减法.17.D解析:D【解析】试题解析:根据题意得:x-2≠0且x-3≠0解得: x≠2且x≠3故选D.考点:1.非零数的零次幂;2.负整数指数幂.18.B解析:B【解析】试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=•=,错误;B、原式=,正确;C、原式=,错误;D、原式==,错误,故选B.考点:分式的乘除法.19.B解析:B【解析】由题意得==,缩小为原来的故选B20.B解析:B【解析】试题分析:选项A ,原式=,所以A 选项错误;选项B ,是最简分式,所以B 选项正确;选项C ,原式=,所以C 选项错误;选项D ,原式=,所以D 选项错误.故选B . 考点:最简分式.21.D解析:D . 【解析】试题分析:根据分式值为零的条件可得:|x ﹣2|﹣1=0,且269x x -+≠0,再解即可.由题意得:|x ﹣2|﹣1=0,且269x x -+≠0,解得:x=1. 故选:D .考点:分式的值为零的条件;负整数指数幂.22.B解析:B【解析】根据科学记数法的书写规则,易得B.23.C解析:C【解析】0.0000021=2.1×10-6,故选C .24.C解析:C【解析】改正:①任何非0数的零次方都等于1;②如果两条平行的直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行(或共线)且相等;④正确.故选C.25.B解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8. 故选B .。
初中数学分式综合练习题(含有答案)
![初中数学分式综合练习题(含有答案)](https://img.taocdn.com/s3/m/ade6a4caf12d2af90242e6d8.png)
分式综合练习题一 选择题1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 Cx x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个A 1B 2C 3D 4 7 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-= 4 若2222,2ba b ab a b a ++-=则= 三 化简 1 ()d cd b a c ab 234322222-•-÷ 2 111122----÷-a a a a a a3 ⎪⎭⎫ ⎝⎛---÷--225262x x x x四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值2 若0<x<1,且xx x x 1,61-=+求 的值五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 1 12332-=-x x 2 1412112-=-++x x x七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式练习题参考答案一 CACBC CBBA二 1 -()n n n ab a b 137201,--, 2 9/5, 3 2, 4 53 三 1 ac1 ,2 1-a a ,3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。
初中数学分式部分题库练习汇总50题(含答案解析)
![初中数学分式部分题库练习汇总50题(含答案解析)](https://img.taocdn.com/s3/m/b58886d514791711cd791758.png)
初中数学分式章节习题练习(50题)一、单选题(共27题;共54分)1.下列运算一定正确的是( )A. a2+a3=a5B. 4a-5a=-aC. 2a-2=D. a10÷a2=a5【答案】B【解析】【解答】解:A. a2和a3不是同类项,不能合并,故选项A错误;B. 4a-5a=-a,故选项B正确;C. 2a-2=,故选项C错误;D. a10÷a2=a8,故选项D错误.故答案为:B.【分析】根据合并同类项法则、负整数指数幂、同底数幂相除的法则,逐项进行判断,即可求解.2.下列各式中,是分式的是( )A. B. C. D.【答案】C【解析】【解答】解:ABD、、、是整式,不符合题意;C、是分式,符合题意.故答案为:C.【分析】分母含有字母的代数式是分式,据此定义判断即可.3.分式和的最简公分母()A. B. C. D.【答案】C【解析】【解答】解:因为,,所以分式和的最简公分母为,故答案为:C.【分析】一般取各分母的所有因式的最高次幂的积作为公分母,它叫最简公分母,据此解答即可.4.当x为任意实数时,下列分式一定有意义的是( )A. B. C. D.【答案】 D【解析】【解答】解:x、x2、|x|的值可能为0,故A、B、C不符合题意,x2+1≥1,故x2+1的值不可能为0,故D选项符合题意.故答案为:D.【分析】分式有意义的条件为分式的分母不为零,判断分式有意义,只需判断分母不可能为0即可.5.若关于x 的分式方程有增根,则m 的值为()A. m=-1B. m=0C. m=3D. m=0或m=3【答案】A【解析】【解答】解:∵∴2-(x+m)=2(x-3)2-x-m=2x-63x-8+m=0∵分式方程有增根∴将x=3代入3x-8+m=0可得m=-1故答案为:A.【分析】根据题意,将分式方程化简为整式方程,根据其有增根,可知x=3,代入方程中,即可得到m 的值。
6.若分式的值为零,则x的值为()A. -1B. 2C. -2D. 2或-2【答案】C【解析】【解答】解:∵分式的值为0∴x2-4=0且x-2≠0∴x=-2故答案为:C.【分析】根据分式为0的条件以及分式有意义的条件,综合考虑得到x的值即可。
新初中数学分式知识点总复习有答案(2)
![新初中数学分式知识点总复习有答案(2)](https://img.taocdn.com/s3/m/ba16a9b0af45b307e9719715.png)
新初中数学分式知识点总复习有答案(2)一、选择题1.下列各数中最小的是( )A .22-B .C .23-D 【答案】A 【解析】 【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项. 【详解】解:224-=-,2139-=2=-, 14329-<-<-<Q , ∴最小的数是4-,故选:A . 【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.2.若2250(0)a ab b ab ++=≠,则b aa b+=( ) A .5 B .-5C .5±D .2±【答案】B 【解析】 【分析】根据题意,先得到225a b ab +=-,代入计算即可. 【详解】解:∵2250(0)a ab b ab ++=≠, ∴225a b ab +=-,∴2255b a a b ab a b ab ab+-+===-; 故选:B. 【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.3.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0【解析】 【分析】根据分式的值为零的条件可以求出x 的值. 【详解】 根据题意,得 |x|-1=0且x+1≠0, 解得,x=1. 故选B . 【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若(x ﹣1)0=1成立,则x 的取值范围是( ) A .x =﹣1 B .x =1C .x≠0D .x≠1【答案】D 【解析】试题解析:由题意可知:x-1≠0, x≠1 故选D.5.0000025=2.5×10﹣6, 故选B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( ) A .5.035×10﹣6 B .50.35×10﹣5 C .5.035×106 D .5.035×10﹣5【答案】A 【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A .考点:科学记数法—表示较小的数.7.已知m ﹣1m ,则1m+m 的值为( )A .BC .D .11【答案】A 【解析】根据完全平方公式即可得到结果. 【详解】1m-mQ 21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=. 故选A. 【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.8.x 的取值范围为( ). A .x≥2 B .x≠2C .x≤2D .x <2【答案】D 【解析】 【分析】根据被开方式大于且等于零,分母不等于零列式求解即可. 【详解】∴2x 0x 20-≥⎧⎨-≠⎩ ∴x <2 故选:D 【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.9.乐乐所在的四人小组做了下列运算,其中正确的是( )A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .236236a a a ?【答案】B 【解析】 【分析】根据负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则依次判断. 【详解】A 、2913-⎛⎫- ⎪⎭=⎝,故错误; B 、()23624a a -=正确;C 、624a a a ÷=,故错误;D 、235236a a a =⋅, 故选:B. 【点睛】此题考查整式的计算,正确掌握负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则是解题的关键.10.下列运算中正确的是( )A .62652()a a a a a == B .624282()()a a a a == C .62121022()a a a a a == D .6212622()a a a a a== 【答案】C 【解析】 【分析】根据幂的乘方法则、分式的基本性质及同底数幂除法法则计算即可得答案.【详解】6212122102222()a a a a a a a a a÷===÷, 故选:C . 【点睛】本题考查幂的乘方及分式的基本性质,幂的乘方,底数不变,指数相乘;分式的分子、分母同时乘以(或除以)一个不为0的整式,分式的值不变;同底数幂相除,底数不变,指数相减;熟练掌握分式的基本性质是解题关键.11.若115a b =,则a b a b-+的值是( ) A .25B .38C .35D .115【答案】B 【解析】 【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案. 【详解】解:∵115a b = ∴设11a x =,5b x =∴11531158a b x x a b x x --==++ 故选:B 【点睛】此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.12.下列方程中,有实数根的方程是( )A .x 4+16=0 B .x 2+2x +3=0C .2402x x -=-D 0=【答案】C 【解析】 【分析】利用在实数范围内,一个数的偶数次幂不能为负数对A 进行判断;利用判别式的意义对B 进行判断;利用分子为0且分母不为0对C 进行判断;利用非负数的性质对D 进行判断. 【详解】解:A 、因为x 4=﹣16<0,所以原方程没有实数解,所以A 选项错误; B 、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B 选项错误; C 、x 2﹣4=0且x ﹣2≠0,解得x =﹣2,所以C 选项正确; D 、由于x =0且x ﹣1=0,所以原方程无解,所以D 选项错误. 故选:C . 【点睛】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则13.213-⎛⎫ ⎪⎝⎭的相反数是( )A .9B .-9C .19D .19-【答案】B 【解析】 【分析】先根据负指数幂的运算法则求出213-⎛⎫ ⎪⎝⎭的值,然后再根据相反数的定义进行求解即可. 【详解】2211113193-⎛⎫== ⎪⎝⎭⎛⎫⎪⎝⎭=9, 9的相反数为-9,故213-⎛⎫ ⎪⎝⎭的相反数是-9, 故选B . 【点睛】本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.14.a 的取值范围是( ) A .a≥-1 B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B 【解析】 【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】1-a≥0且a+2≠0, 解得:a≤1且a≠-2. 故选:B . 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.15.计算2111x xx x -+-+的结果为( ) A .-1B .1C .11x + D .11x -【解析】 【分析】先通分再计算加法,最后化简. 【详解】2111x xx x -+-+ =221(1)11x x x x x --+-- =2211x x -- =1,故选:B. 【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.16.分式可变形为( )A .B .C .D .【答案】B 【解析】 【分析】根据分式的基本性质进行变形即可. 【详解】=.故选B. 【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.17.下列说法正确的是() A .若 A 、B 表示两个不同的整式,则AB一定是分式 B .()2442a a a ÷=C .若将分式xyx y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍D .若35,34m n ==则2532m n-=【解析】 【分析】根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可. 【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称AB是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xyx y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34mn==则()22253332544m nmn -=÷=÷=,故此选项错误. 故选:C 【点睛】本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.18.已知23x y=,那么下列式子中一定成立的是 ( ) A .5x y += B .23x y =C .32x y =D .23x y =【答案】D 【解析】 【分析】根据比例的性质对各个选项进行判断即可. 【详解】 A. ∵23x y=,∴3x =2y ,∴ 5x y += 不成立,故A 不正确; B. ∵23x y=,∴3x =2y ,∴ 23x y =不成立,故B 不正确; C. ∵23x y=,∴23x y =y ,∴ 32x y =不成立,故C 不正确;D. ∵23x y=,∴23x y =,∴ 23x y =成立,故D 正确;故选D. 【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键. 更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a ,b ,c ,d ,且有b ≠0,d ≠0,如果a cb d=,则有a b c d =.19.下列分式中,最简分式是( )A .22115xyyB .22x y x y -+C .222x xy y x y -+-D .22x y x y+-【答案】D 【解析】 【分析】根据最简分式的定义即可求出答案. 【详解】 解:(A )原式=75xy,故A 不是最简分式; (B )原式=()()x y x y x y+-+=x-y ,故B 不是最简分式;(C )原式=2)x y x y--(=x-y ,故C 不是最简分式; (D) 22x y x y+-的分子分母都不能再进行因式分解、也没有公因式.故选:D . 【点睛】本题考查最简分式,解题关键是正确理解最简分式的定义,本题属于基础题型.20.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104 B .0.715×10﹣4C .7.15×105D .7.15×10﹣5【答案】D 【解析】。
七年级数学下册《分式》单元测试卷(附带答案)
![七年级数学下册《分式》单元测试卷(附带答案)](https://img.taocdn.com/s3/m/a009fcec5122aaea998fcc22bcd126fff7055db8.png)
七年级数学下册《分式》单元测试卷(附带答案)一、选择题(共10小题)1. 下列方程中,x=2不是它的一个解的是( )A. x+1x =52B. x2−4=0C. xx−2+1=2x−2D. x−2x2+3x+2=03. 已知方程:①xx +x24=6②2x+2+x=3③1x2−9=0④(x+38)(x+6)=−1这四个方程中,分式方程的个数是( )A.1B. 2C. 3D. 47. 为了绿化环境,需要在一块矩形场地上移植草皮.已知矩形场地的宽为x米,矩形的长比宽多14米,恰好铺满场地所需草皮的面积是3200平方米.根据题意,可以列出关于x的方程是( )A. x(x−14)=3200B. x(x+14)=3200C. 2x(x+14)=3200D. 2x(x−14)=32008. 若分式x2−4x2+x−2的值为零,则x的值为( )A. 2B. −2C. 1D. 2或−29. 用换元法解分式方程x+1x2+x2x+1=2时,若设x+1x2=y,那么原方程可化为关于y的方程是( )A. y2−2y+1=0B. y2+2y+1=0C. y2+y+2=0D. y2+y−2=010. 两车在两城间不断往返行驶:甲车从A城开出,乙车从B城开出,且比甲车早出发1小时,两车在途中距A,B两城分别为200公里和240公里的C处相遇;相遇后乙车改为按甲车速度行驶,而甲车却提速若干公里/时,两车恰巧又在C处相遇;然后甲车再次提速5公里/时,乙车则提速50公里/时,两车恰巧又在C处相遇.那么从起行到第3次相遇,乙车共行驶了( )小时.二、填空题(共6小题)11. 分式aa2+2ab+b2和ba+b的最简公分母是.12. 已知甲乙两人共同完成一件工作需12天.若甲乙两人单独完成这件工作,则乙所需的天数是甲所需天数的1.5倍,设甲单独完成这件工作需x天,则可列方程.13. 分母中含有,叫做.14. 当x时,分式x+5x+2有意义.15. 同分母分式加减法则:同分母分式相加减,分母,分子相.16. 若用去分母的方法解关于x的方程2x−1=1−k1−x有增根,则k=.三、解答题(共7小题)17. 下列方程中,哪些是分式方程?(1)x+1x=3(2)1x=2(3)2x−54+x3=12(4)2x−2=1x−118. 解分式方程的一般步骤,可用流程图表述为:19. 计算:(1)2x +3x=;(2)23x −13x=;(3)xx−y −yx−y=;(4)2a+1ab −1ab=.20. 化简再求值3a2−ab9a2−6ab+b2,其中a=34,b=−23.21. 小张利用休息日进行登山锻炼,从山脚到山顶的路程为12千米,他上午8时从山脚出发,到达山顶后停留了半小时,再原路返回,下午3时30分回到山脚,假设他上山与下山时都是匀速行走,且下山比上山时的速度每小时快1千米,求小张上山时的速度.22. 按照解分式方程的一般步骤解关于x的分式方程k(x+1)(x−1)+1=1x+1,出现增根x=−1,求k的值.23.甲的速度每小时a千米,乙的速度每小时b千米,如果从A地到B地,甲用m小时,那么乙要用多少小时?(结果用分式表示)参考答案1. C2. B3. C4. B5. B6. D7. B8. A9. A11. (a+b)212. 1x +11.5x=11213. 未知数的方程,分式方程14. ≠−215. 不变,加减16. 217. (1)(2)(4)是分式方程.18. 去分母;检验19. (1)5x (2)13x(3)1(4)2b20. a3a−b9 3521. 设上山时的速度为x千米每小时,则下山的速度为(x+1)千米每小时小张从山脚出发到回到山脚,总用时为:7小时30分,即7.5小时由题意得12 x +12x+1+0.5=7.5整理得7x2−17x−12=0解得x1=3,x2=−47 (舍)经检验,x=3是原方程的解故小张上山时的速度是3千米每小时22. k=−223. amb。
2022年沪科版七年级数学下册第9章 分式章节测试试题(含答案解析)
![2022年沪科版七年级数学下册第9章 分式章节测试试题(含答案解析)](https://img.taocdn.com/s3/m/c58cf4267275a417866fb84ae45c3b3567ecdd94.png)
沪科版七年级数学下册第9章 分式章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、分式24x -有意义,则x 满足的条件是( ) A .4x >B .4x <C .4x ≠D .0x ≠ 2、如果把223xy x y-中的x 和y 都扩大到原来的5倍,那么分式的值( ) A .扩大到原来的5倍 B .不变 C .缩小为原来的15 D .无法确定3、如果把分式2xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变4、某工程队要修路20千米,原计划平均每天修x 千米,实际平均每天多修了0.1千米,则完成任务提前了( )A .(20200.1x x -+)天B .(2020+0.1x x +)天C .(20200.1x x --)天D .(20200.1x x--)天 5、已知分式2ab a b +的值为25,如果把分式2ab a b+中的,a b 同时扩大为原来的3倍,那么新得到的分式的值为( )A .25 B .45 C .65 D .4256、若关于x 的不等式组12246x a x a a -⎧≥⎪⎨⎪-≤+⎩有解,且关于y 的分式方程32222ay y y y +=---有正数解,且符合条件的所有整数a 的和为( )A .5-B .9-C .10-D .14- 7、若101-=+a a ,则a 的值为( ) A .0 B .1- C .1 D .28、下列分式变形正确的是( )A .22a a b b =B .a b a b b b+=+ C .22142a a b b ++= D .22a a b b +=+ 9、若分式3x y y +中的x ,y 都扩大到原来的2倍,则分式的值( ) A .不变 B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的12 10、近几年鞍山市的城市绿化率逐年增加,其中2019年,2020年,2021年鞍山的城市绿化面积分别是1S ,2S ,3S ,2021年与2020年相比,鞍山城市绿化的增长率提高( )A .3221S S S S - B .2132S S S S -- C .322121S S S S S S --- D .322132S S S S S S --- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果分式21x x +-有意义,那么x 的取值范围是________. 2、 “有一种速度叫中国速度,有一种骄傲叫中国高铁.”快速发展的中国高速铁路,正改变着中国人的出行方式.下表是从北京到上海的两次列车的相关信息:已知从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟.设G27次高铁列车的平均速度为x km/h ,根据题意可列方程为____________.3、已知非零实数,x y 满足21x y x =+,则3x y xy xy -+的值等于________. 4、当x =______ 时,分式21(3)(1)x x x ---的值为零 5、已知:公式1221,P P V V 其中1P ,2P ,1V ,2V 均不为零.则2P =___________.(用含有1P ,1V ,2V 的式子表示) 三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)213x x x +=+; (2)2236111x x x +=+--. 2、材料:已知1ab =,求证11111a b+=++. 证法一:原式()()()()112211112b a a b a b a b ab a b a b+++++++====+++++++. 证法二:原式()111111111ab ab b ab a b a b b b b +=+=+=++++++.证法三:∵1ab =∴1a b =∴原式111111111b b b bb =+=+=++++. 阅读上述材料,解决以下问题:(1)已知1ab =,求11a b a b+++的值; (2)已知1abc =,求证1111111a ab b bc c ac ++=++++++. 3、一粥一饭当思来之不易,半丝半缕恒念物力维艰.开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚. 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份.近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%.求苹果每千克的价格.4、先化简,再求值:2311144x x x x x -⎛⎫+-⋅ ⎪--+⎝⎭,其中x =22.5、观察下列等式: ①1111212--=-⨯; ②111123434--=-⨯; ③111135656--=-⨯; ④111147878--=-⨯; ……根据上述规律回答下列问题:(1)第⑤个等式是 ;(2)第n 个等式是 (用含n 的式子表示,n 为正整数).-参考答案-一、单选题1、C【分析】直接利用分式有意义的条件得出答案.【详解】解:∵分式24x-有意义,∴40x-≠解得,4x≠故选:C【点睛】此题主要考查了分式有意义的条件(分式有意义,分母不为0),正确把握定义是解题关键.2、A【分析】把分式中的x与y分别用5x与5y代替,再化简即可判断.【详解】分式223xyx y-中的x与y分别用5x与5y代替后,得2(5)(5)50252(5)3(5)5(23)23x y xy xyx y x y x y⨯⨯==⨯⨯-⨯--,由此知,此时分式的值扩大到原来的5倍.故选:A【点睛】本题考查了分式的基本性质,一般地,本题中把x与y均扩大n倍,则分式的值也扩大n倍.3、A【分析】将x,y用3x,3y代入化简,与原式比较即可.【详解】解:将x,y用3x,3y代入得233y3233x xyx y x y⨯⨯⨯=++,故值扩大到3倍.故选A.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.4、A【分析】工程提前的天数=原计划的天数﹣实际用的天数,把相关数值代入即可.【详解】解:原计划用的天数为20x,实际用的天数为200.1x+,故工程提前的天数为(20200.1x x-+)天.故选:A.【点睛】此题考查了列分式解决实际问题,正确理解题意是解题的关键.5、C【分析】直接利用分式的基本性质进而化简得出答案.【详解】 解:把分式2ab a b +中的,a b 都扩大为原来的3倍, 则分式223392263333()55ab a b ab a b a b a b ===⨯=+++,故选:C .【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式.6、C【分析】先解不等式组,根据其有解得出5a ≥-;解分式方程求出61y a =-+,由解为正数解得出a 的范围,从而得出答案.【详解】解:解关于x 的不等式组12246x a x a a -⎧≥⎪⎨⎪-≤+⎩得, 4156x a x a ≥+⎧⎨≤+⎩, 不等式组有解,4156a a ∴+≤+,5a ∴≥-,关于y 的分式方程32222ay y y y +=---得, 2432222ay y y y y y -+=----, 622ay y y y --=--,61y a ∴=-+, y 有正数解,1a ∴<-,51a ∴-≤<-,2a ∴=-,3-,4-,5-,2y =会产生增根,4a ∴≠-,故满足条件的整数a 的和为:23510---=-,故选:C .【点睛】本题主要考查了分式方程的解,以及一元一次不等式,解题的关键是掌握方程和不等式的解法.7、C【分析】 根据11a a -+=0即可得到a −1=0,由此即可得到答案. 【详解】 解:∵11a a -+=0,,a+1≠0 ∴a −1=0,∴a =1,故选C .【点睛】本题主要考查了分式值为零的条件,解题的关键在于能够熟练掌握分式值为零时的条件是分子为0,分母不等于0.8、C【分析】分式的分子与分母都乘以或除以同一个不为0的数或整式,分式的值不变,根据分式的基本性质逐一判断即可.【详解】 解:22,a a b b≠故A 不符合题意; ,2a b a b a b b b b++=≠+故B 不符合题意; ()21221442a a a b b b+++==,故C 符合题意; 2,2a a b b+≠+故D 不符合题意; 故选C【点睛】本题考查的是分式的基本性质,掌握“分式的基本性质判断分式的变形的正误”是解本题的关键.9、A【分析】根据分式的基本性质可把x ,y 都扩大到原来的2倍代入原式得进行求解.【详解】解:把x ,y 都扩大到原来的2倍代入原式得,()22232233x y x y x y y y y+++==⨯⨯; 分式的值不变.故选A .【点睛】本题主要考查分式的基本性质,熟练掌握分式的基本性质,把握分子与分母的代数式的次数,分子与分母同次,不变,分子次数比分母次数高变大,分子的次数比分母点,变小是解题的关键.10、C【分析】求出2021年与2020年城市绿化的增长率,相减即可.【详解】解:2020年城市绿化的增长率为:211S S S -; 2021年城市绿化的增长率为:322S S S -; 2021年与2020年相比,鞍山城市绿化的增长率提高322121S S S S S S ---; 故选:C .【点睛】本题考查了列分式,解题关键是熟悉增长率的求法,正确列出分式并作差.二、填空题1、1x ≠【分析】根据分式有意义的条件“分母不为零”,列不等式求解即可.【详解】解:由题意得:10x -≠,解得:1x ≠.故答案为:1x ≠.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件“分母不为零”是解答本题的关键. 2、1463132526109860x -= 【分析】由题意直接依据从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟建立分式方程即可.【详解】解:由题意设G27次高铁列车的平均速度为x km/h , 可得1463132526109860x -=. 故答案为:1463132526109860x -=. 【点睛】本题考查分式方程的实际应用,读懂题意并根据题干所给定的等量关系建立方程是解题的关键. 3、5【分析】 由条件21x y x =+变形得,x -y =2xy ,把此式代入所求式子中,化简即可求得其值. 【详解】 解:由21x y x =+得:2xy +y =x ,即x -y =2xy ∴23553x x y xy xy xy xyy xy xy +==+=- 故答案为:5【点睛】本题考查了求代数式的值,分式的化简,整体代入法求代数式的值,关键是根据条件21x y x =+,变形为x -y =2xy ,然后整体代入.4、1-【分析】由分式的值为0的条件可得:()()210310x x x ⎧-=⎪⎨--≠⎪⎩,再解方程与不等式即可得到答案. 【详解】解: 分式21(3)(1)x x x ---的值为零, ()()210310x x x ⎧-=⎪∴⎨--≠⎪⎩①② 由①得:1,x =±由②得:3x ≠且1,x ≠综上: 1.x =-故答案为: 1.-【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.5、112PV V 【分析】在公式的两边都乘以1V 即可得到答案.【详解】解:1221,P P V V 1122,PV P V 故答案为:112PV V 【点睛】本题考查的是公式的变形,利用解分式方程的思想进行变形是解本题的关键.三、解答题1、(1)6x =(2)无解【分析】(1)先给方程两边同时乘以x (x +3)去分母化为整式方程,然后求出整式方程的解并检验即可解答;(2)先给方程两边同时乘以()()11x x -+去分母化为整式方程,然后求出整式方程的解并检验即可解答.(1)解:213x x x +=+ 22(3)(3)x x x x ++=+,22326x x x x ++=+,6x =.检验:当6x =时,(3)0x x +≠.所以,原分式方程的解为6x =.(2) 解:2236111x x x +=+-- 2(-1)316x x ++=(),2x -2+3x +3=61x=.检验:当1x=时,(1(1)0x x +-=). ∴1x=不是原分式方程的解.所以,原分式方程无解.【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解答本题的关键,最后的检验是解答本题的易错点.2、(1)1(2)见解析【分析】(1)由题意把原式第一项分母里的“1”换为ab ,约分后利用同分母分式的加法法则计算即可求出值;(2)根据题意把左边第一、二项分母中的“1”换为abc ,约分后再将第一项分母中的“1”换为abc ,计算得到结果,与右边相等即可求证.(1)解::∵ab =1, ∴11a b a b+++1a b ab a b=+++ 111b b b=+++ 11b b +=+ 1=;(2)证明:∵abc =1, ∴111111a ab b bc c ac++++++++ 11abc abc abc a ab abc b bc c ac=++++++++ 111bc ac bc abc b ac c c ac=++++++++ 1111c ac c ac ac c c ac=++++++++ 11c ac c ac ++=++ 1=.【点睛】本题考查代数式求值以及分式的加法运算,熟练掌握分式的加法运算法则和运用题干所给方法进行求值是解答本题的关键.3、14元【分析】设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元.根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解.【详解】解:设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元. 根据题意,得1500180050(140%)x x-=- 解得14x =经检验:14x =是原分式方程的解,且符合题意,∴苹果每千克的价格为14元.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.4、212x x +- 【分析】根据分式的加减法则“异分母分式相加减,先通分,变为同分母的分式,再加减”和分式的乘法法则“分式乘分式,用分子的积作为积的分子,分母作为积的分母”进行化简,再将2x =+得.【详解】解:原式=2(1)(1)31()1144x x x x x x x +------+ =22131()1144x x x x x x ------+ =2241144x x x x x ----+ =2(2)(2)11(2)x x x x x +---- =22x x +-当2x =原式1.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的加减法则和乘法法则.5、(1)11115910910--=-⨯;(2)11112122(21)n n n n n--=---【分析】(1)根据已知的等式即可写出第⑤个等式;(2)发现规律即可得到第n个等式.【详解】(1)第5个等式为:1111 5910910--=-⨯;(2)第n个等式为:11112122(21)n n n n n--=---.【点睛】此题主要考查分式运算的应用,解题的关键是根据已知的等式找到规律.。
初一数学分式试题答案及解析
![初一数学分式试题答案及解析](https://img.taocdn.com/s3/m/3e745bd748649b6648d7c1c708a1284ac85005a8.png)
初一数学分式试题答案及解析1.(1)(-3)2-+(-1)0+2cos30º;(2)化简:.【答案】(1)(2)【解析】(1)原式==(2)本题涉及了整式的计算和分式的化简,该题较为简单,是常考题,主要考查学生对整式的计算,如0次幂,三角函数值和分式的化简的掌握。
2.在代数式①;②;③;④中,属于分式的有()A.①②B.①③C.①③④D.①②③④【答案】B【解析】分式的定义:分母中含有字母的式子叫做分式.属于分式的有①,③,故选B.【考点】分式的定义点评:本题属于基础应用题,只需学生熟练掌握分式的定义,即可完成.3.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“长方形的长和宽的长分别是3和4,求长方形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若长方形的周长为14,且一边长为3,求另一边的长”;也可以是“若长方形的周长为14,求长方形面积的最大值”,等等.(1)设,,求A与B的积;(2)提出(1)的一个“逆向”问题,并解答这个问题.【答案】(1)(2)逆向”问题一:已知,,求A.解答:=(等等,答案不唯一)【解析】(1)==(2)“逆向”问题一:已知,,求A.解答:=“逆向”问题二:已知,,求B.解答:= = =“逆向”问题三:已知,,求.解答:.===. 等注:只要将“”作为条件之一的数学问题,都是问题(1)的“逆向”问题.【考点】分式运算点评:本题难度中等,主要考查学生对分式运算知识点的掌握,根据分式性质和整式性质综合运算能力。
为计算题常考题型,要求学生牢固掌握。
4.若用m表示3.14,-,,,-6.31的五个实数中分数的个数,那么m的值是()A.2B.3C.4D.5【答案】C【解析】根据分数的定义找出其中的分数,数出个数即可得到结果;注意含的数是无理数. 由题意分数有3.14,-,,-6.31共4个,故选C.【考点】分数的定义点评:本题属于基础应用题,只需学生熟练掌握分数的定义,即可完成.5.计算: .【解析】解:6.计算:=____________.【答案】【解析】解:7.计算【答案】解:原式【解析】先对分式部分化简,再通分即得结果。
最新初中数学分式知识点总复习有答案解析(3)
![最新初中数学分式知识点总复习有答案解析(3)](https://img.taocdn.com/s3/m/3377229d76eeaeaad1f330dc.png)
最新初中数学分式知识点总复习有答案解析(3)一、选择题1.下列各式中,正确的是( )A .1a b b ab b++= B .()222x y x y x y x y --=++ C .23193x x x -=-- D .22x y x y -++=- 【答案】B【解析】【分析】根据分式的基本性质分别进行化简即可.【详解】解:A 、1b a+ab =b ab+ ,错误; B 、222x y x y =x y (x y )--++ ,正确; C 、2x 31=x 3x 9-+- ,错误; D 、x y x y =22-+-- ,错误. 故选:B .【点睛】本题主要考察了分式的基本性质,分式运算时要同时乘除和熟练应用约分是解题的关键.2.在等式[]209()a a a ⋅-⋅=中,“[]”内的代数式为( )A .6aB .()7a -C .6a -D .7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.【详解】()01a -=Q ,则原式化简为:[]29a a ⋅=,∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.3.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A .考点:科学记数法—表示较小的数.4.要使分式81x -有意义,x 应满足的条件是( ) A .1x ≠-B .0x ≠C .1x ≠D .2x ≠ 【答案】C【解析】【分析】直接利用分式有意义的条件得出答案.【详解】 要使分式81x -有意义, 则x-1≠0,解得:x≠1.故选:C .【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.5.若分式12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x >B .2x <C .1x ≠-D .2x ≠【答案】D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】由题意可知:x-2≠0,x≠2,故选:D .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.6.数字0.00000005m ,用科学记数法表示为( )m .A .70.510-⨯B .60.510-⨯C .7510-⨯D .8510-⨯ 【答案】D【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将0.00000005用科学记数法表示为8510-⨯.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104B .0.715×10﹣4C .7.15×105D .7.15×10﹣5【答案】D【解析】8.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.9.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==- 【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.10.下列各分式中,是最简分式的是( ).A .22x y x y++ B .22x y x y -+ C .2x x xy + D .2xy y 【答案】A【解析】【分析】 根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式;B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式; D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.11.下列分式中,最简分式是( )A .22115xy y B .22x y x y -+ C .222x xy y x y -+- D .22x y x y+- 【答案】D【解析】【分析】 根据最简分式的定义即可求出答案.【详解】解:(A )原式=75x y,故A 不是最简分式; (B )原式=()()x y x y x y +-+=x-y ,故B 不是最简分式;(C )原式=2)x y x y--(=x-y ,故C 不是最简分式; (D) 22x y x y+-的分子分母都不能再进行因式分解、也没有公因式. 故选:D .【点睛】本题考查最简分式,解题关键是正确理解最简分式的定义,本题属于基础题型.12.计算211a a a -+-的正确结果是( ) A .211a a -- B .211a a --- C .11a - D .11a -- 【答案】A【解析】【分析】先将后两项结合起来,然后再化成同分母分式,按同分母分式加减的法则计算就可以了.【详解】211a a a -+-, =2(1)1a a a --- =222111a a a a a -+--- =211a a --. 故选:A.【点睛】 本题考查了数学整体思想的运用,分式的通分和约分的运用,解答的过程中注意符号的运用以及完全平方公式的运用.13.式子2a +有意义,则实数a 的取值范围是( ) A .a≥-1B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】1-a≥0且a+2≠0, 解得:a≤1且a≠-2.故选:B .【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.计算2111x x x x -+-+的结果为( ) A .-1B .1C .11x +D .11x - 【答案】B【解析】【分析】先通分再计算加法,最后化简.【详解】2111x x x x -+-+ =221(1)11x x x x x --+-- =2211x x -- =1,故选:B.【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.15.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.16.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
最新初中数学—分式的知识点总复习含答案(3)
![最新初中数学—分式的知识点总复习含答案(3)](https://img.taocdn.com/s3/m/65abc0c6866fb84ae55c8daa.png)
一、选择题1.若 ()1311xx --=,则 x 的取值有 ()A .0 个B .1 个C .2 个D .3 个2.下列分式是最简分式的是( )A .22a a ab +B .63xy aC .211x x -+D .211x x ++3.下列判断错误..的是( ) A .当23x ≠时,分式132x x +-有意义 B .当a b 时,分式22aba b -有意义 C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x--有意义4.下列各式中,正确的是( )A .a m ab m b+=+ B .a b0a b +=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+5.分式x 22x 6-- 的值等于0,则x 的取值是 A .x 2= B .x ?2=-C .x 3=D .x ?3=-6.分式:22x 4- ,x 42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+- D .()()2x 2?x 2+-7.在式子:2x、5x y + 、12a - 、1x π-、21xx +中,分式的个数是( ) A .2B .3C .4D .58.计算32-的结果是( ) A .-6B .-8C .18-D .189.下列计算,正确的是( )A .2(2)4--=B 2=-C .664(2)64÷-=D =10.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个11.分式a x ,22x y x y +-,2121a a a --+,+-x y x y中,最简分式有( ). A .1个B .2个C .3个D .4个12.若代数式2x -在实数范围内有意义,则x 的取值范围为( ) A .x<-3 B .x ≥-3C .x>2D .x ≥-3,且x ≠213.生物学家发现一种病毒的长度约为0.00 004mm ,0.00 004用科学记数法表示是( ) A .40.410-⨯ B .5410-⨯C .54010-⨯D .5410⨯14.使分式224x x +-有意义的取值范围是( ) A .2x =-B .2x ≠-C .2x =D .2x ≠15.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道16.下列各式:2116,,4,,235x y xx y x π++-中,分式有( ) A .1个B .2个C .3个D .4个17.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( ) A .3.5×10﹣6米 B .3.5×10﹣5米 C .35×1013米 D .3.5×1013米 18.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y19.若(1-x )1-3x =1,则x 的取值有( )个.A .1个B .2个C .3个D .4个20.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1521.函数2y x =-的取值范围是( ) A .x >2B .x ≥3C .x ≥3,且x ≠2D .x ≥-3,且x ≠222.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个23.下列运算错误的是( )A 4=B .12100-=C 3=- D 2=24.若()3231tt --=,则t 可以取的值有( )A .1个B .2个C .3个D .4个25.下列分式中,最简分式是( )A .x y y x--B .211x x +-C .2211x x -+D .2424x x -+【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案. 【详解】解:∵(1-x )1-3x =1, ∴当1-3x=0时,原式=1, 当x=0时,原式=1, 故x 的取值有2个. 故选C . 【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.2.D解析:D 【解析】A 选项中,分式的分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确. 故选:D .点睛:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解析:B 【解析】A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22aba b-有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x+值为0.故本选项正确; D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确;故选:B .4.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误;D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确. 故选D.5.A解析:A 【解析】由题意得:20260x x -=⎧⎨-≠⎩,解得:2x =. 故选A.点睛:分式值为0需同时满足两个条件:(1)分子的值为0;(2)分母的值不为0.6.D解析:D 【解析】∵2224(2)(2)x x x =-+-,422(2)x xx x =---, ∴分式22 442xx x --、的最简公分母是:2(2)(2)x x +-. 故选D.解析:B 【解析】 解:分式有2x 、12a -、21x x +共3个.故选B . 点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.8.D解析:D 【解析】3311228-==. 故选D. 9.C解析:C 【解析】 【详解】 解:A .()2124--=,所以A 错误;B 2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D ==D 错误,故选C .10.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.11.B解析:B 【解析】试题解析:a x ,+-x yx y是最简分式,221()()x y x y x y x y x y x y ++==-+--,2211121(1)1a a a a a a --==-+--.故选B.12.D解析:D 【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可. 【详解】根据题意得x+3≥0且x−2≠0, 所以x 的取值范围为x ≥−3且x≠2. 故答案选D. 【点睛】本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.B解析:B 【解析】解:0.00 004=5410-⨯.故选B .14.D解析:D 【解析】 【分析】根据分式有意义分母不为零可得2x-4≠0,再解即可. 【详解】解:由题意得:2x-4≠0, 解得:x≠2, 故选:D . 【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.A解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确; ⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.16.A解析:A 【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.17.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m =3.5×10﹣5m .故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.18.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.19.B解析:B 【分析】利用零指数幂,乘方的意义判断即可. 【详解】解:∵(1-x )1-3x =1, ∴1-x≠0,1-3x=0或1-x=1,解得:x=13或x=0, 则x 的取值有2个, 故选B 【点睛】本题考查了零指数幂,以及有理数的乘方,熟练掌握运算法则是解题的关键.20.A解析:A 【解析】 【分析】x ,y 都扩大为原来的5倍就是分别变成原来的5倍,变成5x 和5y .用5x 和5y 代替式子中的x 和y ,看得到的式子与原来的式子的关系. 【详解】用5x 和5y 代替式子中的x 和y 得:()2255,151032x x x y x y=++则扩大为原来的5倍. 故选:A. 【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键.21.D【解析】 【分析】根据二次根式的性质和分式有意义的条件,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【详解】根据题意得:3020x x +≥⎧⎨-≠⎩,解得:x ≥﹣3且x ≠2.故选D . 【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.22.C解析:C 【解析】 【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可. 【详解】①()011-=,正确; ②2113333--⨯==,正确;③当m 为偶数时,()()33m mx x -≠-,错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误. 故选C . 【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键.23.B解析:B 【解析】 【分析】分别根据立方根及算术平方根的定义对各选项进行逐一解答即可.A 、∵42=16=4,故本选项正确;B 、12100-110,故本选项错误;C 、∵(-3)3=-273=-,故本选项正确;D =2,故本选项正确.故选B . 【点睛】本题考查的是立方根及算术平方根,熟知立方根及算术平方根的定义是解答此题的关键.24.B解析:B 【解析】 【分析】根据任何非0数的零次幂等于1,1的任何次幂等于1,-1的偶数次幂等于1解答. 【详解】当3-2t=0时,t=32,此时t-3=32-3=-32,(-32)0=1, 当t-3=1时,t=4,此时3-2t=2-3×4=-6,1-6=1, 当t-3=-1时,t=2,此时3-2t=3-2×2=-1,(-1)-1=-1,不符合题意, 综上所述,t 可以取的值有32、4共2个. 故选:B . 【点睛】本题考查了零指数幂,有理数的乘方,要穷举所有乘方等于1的数的情况.25.C解析:C 【解析】 试题分析:A 、x yy x--=-1,不是最简分式; B 、21111(1)(1)1x x x x x x ++==-+--,不是最简分式; C 、2211x x -+分子、分母不含公因式,是最简分式;D 、24(2)(2)2242(2)2x x x x x x -+--==++,不是最简分式. 故选C .点睛:本题考查最简分式,解题的关键是明确最简分式的定义,即分子、分母不含公因式的分式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式复习知识点梳理1. 分式的概念:A 、B 表示两个整式,A ÷B (B ≠0)可以表示为B A 的形式,如果B 中含有字母,那么我们把式子B A(B ≠0)叫分式,其中A 叫分子,B 叫分母。
关于分式概念的两点说明:i )分式的分子中可以含有字母,也可以不含字母,但分母中必须含有字母,这是分式与整式的根本区别。
ii )分式中的分母不能为零,是分式概念的组成部分,只有分式的分母不为零,分式才有意义,因此,若分式有意义,则分母的值不为零(所谓分母的值不为零,就是分母中字母不能取使分母为零的那些值)反之,分母的值不为零时,分式有意义。
2. 分式的值为零"分式的值为零⎩⎨⎧分子的值等于零分母的值不等于零3. 有理式的概念⎪⎩⎪⎨⎧⎩⎨⎧分式多项式单项式整式有理式4. 分式的基本性质(1)分式的分子、分母乘同一个不等于零的整式,分式的值不变。
即)0(≠⨯⨯=M M B M A B A{(2)分式的分子、分母除以同一个不等于零的整式,分式的值不变。
即)0(≠÷÷=M M B M A B A注:(1)分式的基本性质表达式中的M 是不为零的整式。
(2)分式的基本性质中“分式的值不变”表示分式的基本性质是恒等变形。
5. 分式的符号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
6. 约分:把分式中分子和分母的公因式约去,叫约分。
注:约分的理论依据是分式的基本性质。
;约分后的结果不一定是分式。
约分的步骤:(1)分式的分子、分母能分解因式的分解因式写成积的形式。
(2)分子、分母都除以它们的公因式。
7. 最简分式:如果一个分式的分子与分母没有公因式,这个分式就叫最简分式。
8. 分式的运算: bd d b =⋅(2)分式除法:ad bc d c a b c d a b =⋅=÷ ¥注:i )分式的乘除法运算,归根到底是乘法运算。
ii )分式的乘法运算,可以先约分,再相乘。
iii )分式的分子或分母是多项式的先分解因式,再约分,再相乘。
(3)乘方:n n na b a b =⎪⎭⎫ ⎝⎛(n 为正整数) (4)通分:在不改变分式的值的情况下,把几个异分母的分式化为同分母分式的变形叫通分。
注:分式通分的依据是分式的基本性质。
最简公分母:几个分式中各分母的数字因数的最小公倍数与所有字母(因式)的最高次幂的积叫这几个分式的最简公分母。
>(5)分式的加减法: 同分母:m b a mb m a ±=± 异分母:mn bm an mn bm mn an n b m a ±=±=± (6)混合运算:做分式的混合运算时,先乘方,再乘除,最后再加减,有括号先算括号内的。
9. 分式方程:分母里含有未知数的方程叫分式方程。
注:分母中是否含有未知数是分式方程与整式方程的根本区别,分母中含未知数就是分式方程,否则就为整式方程。
10. 列分式方程的一般步骤:(1)方程两边都乘以最简公分母,约去分母,化为整式方程。
~(2)列整式方程,求得整式方程的根。
(3)验根:把求得的整式方程的根代入A ,使最简公分母等于0的根是增根,否则是原方程的根。
(4)确定原分式方程解的情况,即有解或无解。
11. 增根的概念:在分式方程去分母转化为整式方程的过程中,可能会增加使原分式方程中分式的分母为零的根,这个根叫原方程的增根,因此列分式方程一定要验根。
注:增根不是解题错误造成的。
12. 列方程解应用题步骤:审、设、列、解、验、答。
例题分析—例1. 若分式11||+-x x 的值为零,求x 的值。
解:…例2. 若分式732-x x 的值为负,求x 的取值范围。
分析:欲使732-x x 的值为负,即使0732<-x x ,就要使2x 与73-x 异号,而02≥x ,若0=x 时,732-x x 不能为负,因此,只有⎩⎨⎧<->07302x x 才成立。
解:~例3. 如果把分式y x xy+的x 和y 都扩大3倍,那么分式的值( )A. 不变B. 扩大3倍C. 缩小3倍D. 缩小9倍&例4. 计算:…(1)x x x x x x x 4126)3(446222--+⋅+÷+-- (2)22221111⎪⎭⎫ ⎝⎛-+-⋅⎪⎭⎫ ⎝⎛-÷--a a a a a a a (3)x x x -+-++1111112 (4)231421222+++⋅--÷⎪⎭⎫ ⎝⎛+-a a a a a a a a a;)例5. 解方程。
(1)1613122-=--+x x x(2)13242132++-=--x x x x;例6. 某人骑自行车比步行每小时快8公里,坐汽车比步行每小时快24公里,此人从甲地出发,先步行4公里,然后乘汽车10公里就到达乙地,他又骑自行车从乙地返回甲地,往返所用的时间相等,求此人步行的速度。
.%例7. 先化简再求值:222)()(22222--++-+-⋅-++y x x xy y x xy x y x y xy x ,其中232=-=+y x y x ,。
{$例8. 方程234222+=-+-x x mx x 会产生增根,m 的值是多少分析:增根是使分式方程的最简公分母等于零的值,这里最简公分母)2)(2(-+x x 若为零,则x=2或-2,解关于x 的分式方程可求得含m 的代数式表示的方程的解,利用方程思想问题得以解决。
[|小结:分式一章的学习是在之前学习了有理数运算,整式运算,分解因式以及方程,方程组和不等式,不等式组后进行的,在本章的研究过程中,同学们要充分运算已有的知识和思想方法,将代数的学习推向一个新的高度,在复习过程中,充分理解概念以及性质,熟练掌握各类运算,并会用分式的知识解决实际问题和具体数学问题。
、-【模拟试题】(答题时间:50分钟)一. 填空题:1. 分式41--x x 当x________时,分式有意义,当x________时,分式值为零。
2. 22)()(b a b a ba ab -=+=---。
3. 约分:=-22242412nz m z n m ________。
4. =⎪⎪⎭⎫ ⎝⎛-3232b a ________。
《5. 在梯形面积公式h b a S )(21+=中,已知b h S ,,,则=a ________。
6. 当1-=x 时,分式4342xy kx -的值等于零,则=k ________。
7. 4322332141xy z z y x y x --,,的最简公分母是________。
8. 方程1131+=++-x m m x 是关于________的分式方程。
9. 当x________时,分式x +-21的值为正数。
10. m=________时,方程133+-=-x m x x 有增根。
{二. 选择题:1. 下面各分式:4416121222222+-+---++-x x x x x yx y x x x x ,,,,其中最简分式有( )个。
A. 4B. 3C. 2D. 12. 下面各式,正确的是( ) A. 326x x x =B. b a c b c a =++ ]C. 1=++b a b aD. 0=--b a b a3. 如果把分式y x xy+3中x 、y 都扩大为原来的5倍,那么分式的值( )A. 扩大5倍B. 扩大4倍C. 缩小5倍D. 不变4. 已知1=ab ,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-b b a a 11的值为( ) A. 22a B. 22b C. 22a b - D. 22b a -三. 计算题:!1. 96312---m m2. xy x y yx y x 2246222-+--<3.)3)(1(12131122+++-⋅-+-+a a a a a a a[4. b b b b b b 21)1(41222--⋅+÷⎪⎪⎭⎫ ⎝⎛--}四. 解方程:1. 222+-=-x x x x2.y y y y y -++=-2221712|五. 化简求值: ⎪⎭⎫ ⎝⎛+-⋅+÷--+21123262m m m m m ,其中3-=m 。
·六. 应用题:A 、B 两地相距50千米,甲骑自行车,乙骑摩托车,都从A 地到B 地,甲先出发1小时30分,乙的速度是甲的倍,结果乙先到1小时,求甲、乙两人的速度。
【试题答案】一. 填空题:1. ≠4,=12. 222b ab a b a +--,3.z n m 22- 4. 36278b a - 5. h bh S -26. 21- 7. z y x 4312 8. m 9. 2> 10. 3-二. 选择题:1. D2. C3. A4. D三. 计算题:1. 31+m2. xy x y x 222+-3. 1222++a a4. b b 2-四. 解方程: 1. 32=x 2. 解得1=y ,经检验1=y 是原方程增根,∴原方程无解五. 化简求值: 化简得)2(36-+m m ,当3-=m 时,原式51-=六. 解:设甲速为x 千米/时,则乙速为2.5千米/时,依题意,有:1603015.25050++=-x x解得:12=x经检验12=x 是原方程的根,且符合题意当12=x 时,305.2=x答:甲速度为12千米/时,乙速度为30千米/时。