煤气化工艺分类
国内最全的煤气化技术简介
国内最全的煤气化技术简介(最新整理)本文收集、整理、并汇总了国内当前大多数煤气化工艺(包括水煤浆、干煤粉、碎煤等加压气化工艺;固定床、流化床、气流床气化工艺;激冷流程、废锅流程;水冷壁、耐火砖等冷壁炉和热壁炉型),可作为煤化工、煤气化专业技术人员参考资料,是目前网络上公开交流的较为全面的一篇资料。
1、“神宁炉”粉煤加压气化技术(宁夏神耀科技有限责任公司)以高旋流单喷嘴大通量粉煤加压气化炉为目标载体,以多煤种理化特性数据为基础,构建了气化炉流场、传热分析等模型;基于燃烧器强动量传导机制,揭示了顶置式旋流气化场湍流燃烧的动力学机理;揭示了氧气和煤粉的强化反应规律,独创了高效无相变水冷壁反应室与“沉降-破泡式”激冷室相耦合的气化炉。
“神宁炉”干粉煤气化技术能源转化效率高,有效气成分≥91%,碳转化率≥98.5%。
固体灰渣好处理,灰渣中不含苯、酚、焦油等大分子有机物废物。
气化系统吨煤污水排放量控制在0.4—0.5t,废水处理后可完全回用。
高效、中空、高能点火系统,实现高压、惰性环境下点火成功率98%以上。
采用组合式燃烧器通道结构,控制火焰形成,确保气化炉内壁挂渣均匀。
2、“科林炉”CCG粉煤加压气化技术(德国科林工业技术有限责任公司)技术特点:(1)煤种适应性广:适用于各种烟煤、无烟煤、褐煤及石油焦等,对强度、热稳定性、结渣性、粘结性等没有具体要求。
对高灰分、高灰熔点、高硫含量的“三高”煤等低品质的煤种拥有很好的工业化业绩。
(2)技术指标高:因燃烧器采用多烧嘴顶置下喷的配置方式,原料在气化炉内碰撞混合更加充分,气化炉炉膛及顶部挂渣均匀,可实现较高的气化温度(1400~1700℃),碳转化率高达到99%以上,合成气中不含重烃、焦油等物质,有效合成气成分90~93%,冷煤气效率80~83%。
(3)投资低:根据项目规模不同,可提供日投煤量750吨/天至3000吨/天的不同气化炉炉型设计,主要设备制造已完全实现国产化,整个装置的投资建设成本低,建设周期短。
七种煤气化工艺介绍
七种煤气化工艺介绍煤气化是一种将固体煤转化为气体燃料的工艺,通常通过加热煤,使其在缺氧或氧气含量有限的条件下发生化学反应,生成焦炭、煤油和煤气等产物。
以下是七种常见的煤气化工艺的介绍。
1.固定床煤气化工艺:该工艺中,煤通过加热填充在固定的反应器中,在缺氧条件下进行气化。
在高温下,煤发生热解反应,生成固体残渣和一氧化碳、氢气等气体。
这些气体通常用于制造合成气或其他化学品。
2.流化床煤气化工艺:流化床煤气化工艺中,煤通过气化剂和促进剂的喷射,在气化炉内形成流体化床。
在床内,煤被高速的气流悬浮并在其表面上发生化学反应。
这种工艺适用于不同种类的煤,并能高效地产生合成气。
3.乌煤煤气化工艺:乌煤煤气化工艺是在低温和低压下对乌煤进行气化的一种方法。
乌煤是一种硬煤的变种,其含煤量高且易于破碎。
这种工艺能够产生较高浓度的一氧化碳和氢气,适用于燃料气和合成气的生产。
4. Lurgi煤气化工艺:Lurgi煤气化工艺采用干煤粉在喷射炉内与氧气和蒸汽进行气化。
这种工艺具有高效和灵活的特点,适用于各种煤种和煤粉尺寸。
其产气效率高,并且可以在高温下对产生的煤气进行分离和净化。
5. Koppers-Totzek煤气化工艺:Koppers-Totzek煤气化工艺是一种由德国公司开发的工艺。
该工艺利用煤在高温下与氧气和水蒸气进行反应,生成一氧化碳和氢气等气体。
这种工艺有助于减少硫化物和氨等有害物质的生成,并通过循环冷却来提高能源利用率。
6. Shell煤气化工艺:Shell煤气化工艺是一种高效的二代气化工艺,采用了先进的氧气冷喷射技术。
它将煤分解为焦炭和煤气,并将煤气用于合成气和其他化学品的生产。
该工艺具有高效能和较低的二氧化碳排放量。
7. Entrained Flow煤气化工艺:Entrained Flow煤气化工艺中,煤和氧气以高速混合,并通过特殊设计的喷射式燃烧器进行燃烧和气化。
这种工艺能够在高温下快速气化煤并生成高浓度的合成气。
煤气化制氢工艺配置与设备选型分析
煤气化制氢工艺配置与设备选型分析煤气化制氢是一种通过煤炭等碳质原料进行气化,生成合成气后,再进行净化纯化,最终得到高纯度氢气的工艺。
煤气化制氢工艺的配置与设备选型是该工艺实施过程中的关键环节,将直接影响到工艺效率和经济效益。
本文将对煤气化制氢工艺配置与设备选型进行详细分析。
一、煤气化制氢工艺配置分析1. 煤气化工艺种类煤气化制氢工艺主要有固定床煤气化、流化床煤气化和喷射床煤气化等不同类型。
固定床煤气化工艺利用高温下煤与氧气的反应生成合成气,具有工艺成熟、设备简单等特点。
而流化床煤气化则采用颗粒状催化剂使煤气化反应发生在流态的床层中,具有反应速度快、产气量大等优势。
喷射床煤气化工艺则是将煤粉与氧气直接混合并喷入可燃烧的床层中,具有投资少、操作简便等特点。
2. 煤气净化工艺煤气化产生的合成气中含有大量的杂质,如硫化氢、氨、苯等。
为了得到高纯度的氢气,需要进行净化处理。
常见的煤气净化工艺包括低温净化、吸附净化和催化净化等不同类型。
低温净化通过调整温度降低硫化氢、氨等杂质的溶解度,从而实现净化目的。
吸附净化则采用吸附剂吸附杂质气体,如活性炭吸附硫化氢。
催化净化是通过催化剂使有害物质在催化剂表面发生反应转化为无害物质。
3. 氢气纯化工艺经过煤气净化后得到的合成气含有一定的氢气,但其中仍然存在氮气、一氧化碳等非氢成分。
为了进一步提高氢气的纯度,需要进行纯化处理。
常见的氢气纯化工艺包括压力摩擦吸附(PSA)和膜分离等。
压力摩擦吸附是通过吸附剂在不同压力下对气体分子的选择性吸附使其分离。
膜分离则是利用不同气体在膜上的渗透速率不同来实现分离纯化。
二、煤气化制氢设备选型分析1. 煤气化设备煤气化设备主要包括煤气化炉、煤粉输送系统和废气净化系统等。
煤气化炉是进行煤气化反应的核心设备,其选型应考虑设备稳定性、煤气化效率等因素。
煤粉输送系统用于将煤粉送入煤气化炉,需要考虑输送速度、输送距离等因素。
废气净化系统用于处理煤气化过程中生成的废气,选型时需要考虑净化效率、能耗等因素。
煤的气化
。
鲁奇( Lurgi) 循环流化床粉煤气化 ( CFB)
• 鲁奇CFB 气化技术采用较高的操作气速( 5~7m/ s) 从而使流化床内粒子更活动, 可在较高温度下操作 ( 950~1100℃) 而无结渣危险, 可适用从高活性到 低活性的原料, 可分离流化床内半焦与灰渣使下部 排灰含碳< 2% ~ 3% , 在接近常压( 0.15MPa) 下, 使 用螺旋进料器, 满足进料器要求而不需昂贵的锁气 系统, 飞灰循环系统采用鲁奇公司多年来CFB 燃烧 成熟技术, 可靠实用。鲁奇CFB 气化技术的特点在 于不刻意追求单一气化炉达到最佳效率, 而在于整 个系统达到最佳效率, 将CFB 气化装置与CFB 燃烬 装置组织在一起, 构成一个系统, 此系统的总碳转 化率可达到95% ~99% 。
其他气化工艺
U—gas气化工业装置流程图
、
用太阳能进行煤炭气 化
• 美国新墨西哥州怀特沙漠试验 地区次莫尔实验室, 使用太阳能 对煤炭进行气化的第一次试验 获得成功。它是用太阳能将煤 炭加热到1920 ℃ , 生产出可燃 煤气。 成分为一氧化碳 26.9%, 氢50.9% , 甲烷 5.4%,碳氢化合 物0.7%,二氧化碳16.1%。 所 使用的日光屏是由许多可活动 的平面镜组成的。
煤炭气化的方法
• 固定床气化法:固体气化原料在高温下与 气化剂发生氧化还原反应,产生以H2、CO 和CH4为有效气体的煤气,气化炉内原料床 层相对稳定或随着原料的消耗缓慢向下移 动。固体原料由气化炉顶加入,灰渣从气 化炉底排除,气化剂由炉底通过炉栅送入 炉内,生成的煤气由炉顶导出。
、
• 流化床煤气化法:采用0 ~ 10 mm 的小颗 粒煤作为气化原料,气化剂为蒸气/空气或 蒸气/氧气,气化剂自下而上经过床层。依 据原料的力度分布和湿度,控制气化剂的 流速,使床内原料煤全部处于流化状态, 在剧烈搅动和回混中,煤粒和气化剂充分 接触,进行化学反应和热量传递。利用碳 燃烧放出的热量,使煤粒干燥干馏和气化。
煤气化技术简介
煤气化技术煤气化已有100多年的发展历史,先后开发了200多种气化工艺或气化炉型,有工业化应用前景的十余种。
煤气化可分为完全气化和不完全气化两大类:完全气化是指煤及其它固体原料与气化剂进行一步法化学反应,生成可燃气或合成气;不完全气化是指固体原料进行热加工时,除生成可燃气外还有含碳固体产物(如煤炼焦过程)。
这些产物又可进行加工利用。
国外为了提高燃煤电厂热效率,减少环境污染,对煤气化联合循环发电技术作了大量工作,促进了煤气化技术的开发。
目前已成功开发出了对煤种适应性广、气化压力高、生产能力大、气化效率高、污染少的新一代煤气化工艺,主要有荷兰壳牌(Shell)的粉煤气化工艺、德国克鲁伯—考柏斯(Krupp—Koppers)的Prenflo工艺,美国德士古(Texaco)和Destec 的水煤浆气化工艺以及德国黑水泵的GSP工艺等。
本章着重介绍我厂油改煤改造工程所引进的Shell粉煤气化工艺技术。
第一节煤气化技术分类及其发展一、煤气化技术分类最常用的气化分类方法是按煤和气化剂在气化炉内的相对运动来划分,大体可分成三种:逆流:固定床、移动床。
煤(焦)由气化炉顶部加入,自上而下经过干燥层、干馏层、还原层和氧化层,最后形成灰渣排出炉外;气化剂自下而上经灰渣层预热后进入氧化层和还原层(两者合称气化层)。
代表炉型为常压UGI炉和加压Lurgi炉,主要用于制取城市煤气。
固定床气化的局限性是对床层均匀性和透气性要求较高,入炉煤要有一定的粒(块)度及均匀性。
煤的机械强度、热稳定性、粘结性和结渣性等指标都与透气性有关,因此,固定床气化炉对入炉原料有很多限制。
并逆流或返混流:流化床、沸腾床。
气化剂由炉底部吹入,使细粒煤(<6mm)在炉内呈并逆流反应,通常称为流态化或沸腾床气化。
煤粒( 粉煤)和气化剂在炉底锥形部分呈并流运动,在炉上筒体部分呈并流和逆流运动。
为了维持炉内的“沸腾”状态并保证不结疤,气化温度应控制在灰软化温度(ST)以下。
三种煤气化工艺详述
三种煤气化炉技术介绍一、概述煤气化技术的开发与应用大约经历了200年的发展历史。
煤气化技术按固体和气体的接触方式可分为固定床、流化床、气流床和熔融床4种,其中熔融床技术还没有实际应用开发,各种煤气化炉的模式见图1。
图1 各种煤气化炉模式图1.固定床。
固定床气化炉是最早开发出的气化炉,如图1(a)所示,炉子下部为炉排,用以支撑上面的煤层。
通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸气)则从炉子的下部供入,因而气固间是逆向流动的。
特点是单位容积的煤处理量小,大型化困难。
目前,运转中的固定床气化炉主要有鲁奇气化炉和BGC-鲁奇炉两种。
2.流化床。
流化床气化炉如图1(b)所示,在分散板上供给粉煤,在分散板下送入气化剂(氧、水蒸气),使煤在悬浮状下进行气化。
流化床气化炉不能用灰分融点低的煤,副产焦油少,碳利用率低。
3.气流床。
气流床气化炉如图1(c)所示,粉煤与气化剂(O2、水蒸气)一起从喷嘴高速吹入炉内,快速气化。
特点是不副产焦油,生成气中甲烷含量少。
气流床气化是目前煤气化技术的主流,代表着今后煤气化技术的发展方向。
气流床按照进料方式又可分为湿法进料(水煤浆)气流床和干法进料(煤粉)气流床。
前者以德士古气化炉为代表,还有国内开发的多元料浆加压气化炉、多喷嘴(四烧嘴)水煤浆加压气化炉;后者以壳牌气化炉为代表,还有GSP炉以及国内开发的航天炉、两段炉、清华炉、四喷嘴干粉煤炉。
二、三种先进的煤气化工艺我国引进并被广泛采用的三种先进煤气化工艺——鲁奇气化炉、壳牌气化炉、德士古气化炉。
1.鲁奇气化炉(结构见图2)属于固定床气化炉的一种。
鲁奇气化炉是1939年由德国鲁奇公司设计,经不断的研究改进已推出了第五代炉型,目前在各种气化炉中实绩最好。
德国SVZ Schwarze Pumpe公司已将这种炉型应用于各种废弃物气化的商业化装置。
我国在20世纪60年代就引进了捷克制造的早期鲁奇炉并在云南投产。
1987年建成投产的天脊煤化工集团公司从德国引进的4台直径3800mm的Ⅳ型鲁奇炉,先后采用阳泉煤、晋城煤和西山官地煤等煤种进行试验,经过10多年的探索,基本掌握了鲁奇炉气化贫瘦煤生产合成氨的技术,现建成的第五台鲁奇炉已投产,形成了年产45万吨合成氨的能力。
煤气化工艺
煤气化工艺一、煤气化工艺概述进行煤炭气化的设备叫气化炉。
按照燃料在气化炉内的运动状态来分类是比较通行的方法,一般分为移动床(又叫固定床)、沸腾床(又叫流化床)、气流床和熔融床等。
使用的气化剂不同,生产的煤气的性质和用途不同。
如果以空气作为气化剂,生产的煤气称空气煤气;以空气在(富氧空气或纯氧)和水蒸气的混合物作为气化剂,生产的煤气称混合煤气;如果将空气(富氧空气或纯氧)和水蒸气分别交替送入气化炉内,间歇进行,生产的煤气叫水煤气;气体成分经过适当调整(主要是调整含氮气的量)后,生产的煤气符合合成氨原料气的要求,这种煤气叫做半水煤气。
此外,气化炉在生产操作过程中,根据使用的压力不同,又分为常压气化炉和加压气化炉,根据不同的排渣方式,可以分为固态排渣气化炉和液态排渣气化炉。
总的来说,各种不同结构的气化炉基本上由三大部分组成,即加煤系统、气化反应部分和排渣系统。
炉型不同,这三部分的具体结构有很大差异。
但一般地讲,加煤系统要考虑煤入炉后的分布和加煤时的密封问题。
气化部分是煤炭气化的主要场所,如何在低消耗的情况下,使煤最大限度地转化为符合用户要求的优质煤气,是这一部分首要考虑的问题。
当然,由于煤炭气化过程是在非常高的温度下进行的,为了保护炉体(也包括炉内布煤器或搅拌装臵)的作用,同时可以吸收气化区的热量而生产蒸汽,该部分蒸汽又可以作为气化时需用的蒸汽而进入气化炉内。
煤炭气化后的残渣即煤灰,由排渣系统定期地排出气化炉外,这样就保证了炉内料层高度的稳定,同时保证了气化过程连续稳定地进行,对移动床而言,由于炉箅(气化剂的分布装臵)和排渣系统结合在一起,气化剂均匀分布和排渣操作是生产上较为重要的两个问题。
不论采用何种类型的气化炉,生产哪种煤气,燃料以一定的粒度和气化剂直接接触进行物理和化学变化过程,将燃料中的可燃成分转变为煤气,同时产生的灰渣从炉内排除出去,这一点是不变的。
然而采用不同的炉型,不同种类和组成的气化剂,在不同的气化压力下,生产的煤气的组成、热值以及各项经济指标是有很大差异的。
初探煤气化工艺方案的选择
初探煤气化工艺方案的选择引言煤气化是一种将煤炭转化为可燃性气体的化学过程。
随着能源需求的增长和对环境友好能源的需求,煤气化技术在能源行业中扮演着重要的角色。
选择适合的煤气化工艺方案对于确保高效能源生产至关重要。
本文将探讨煤气化工艺方案的选择。
煤气化工艺方案的分类煤气化工艺方案可以根据煤气化过程中所产生的气体组成和工艺特点进行分类。
根据气体组成,煤气化工艺方案可分为固定床煤气化、流化床煤气化和喷射流床煤气化三种。
固定床煤气化是煤气化过程中最传统的方法之一。
在固定床煤气化中,煤炭放置在固定的床层中,通过燃烧过程对煤进行加热并转化为煤气。
该方法具有操作简单、投资成本低等优势。
然而,由于需用气化剂氧气或空气进行反应,固定床煤气化的操作温度比较高,因此对设备材料要求较高。
流化床煤气化流化床煤气化是一种通过在催化剂的帮助下,在高温下将煤炭转化为煤气的技术。
在流化床煤气化中,煤炭颗粒通过高速流化床,与催化剂进行反应,产生煤气。
该方法具有反应速度快、煤炭利用率高的优势。
然而,流化床煤气化对催化剂的选择较为关键,同时也需要解决流化床内部的热传递和固体颗粒的回收问题。
喷射流床煤气化是一种将煤炭喷射到高温反应器中,利用高速气流将煤炭转化为煤气的工艺。
该方法具有煤炭颗粒均匀分布、热传递效率高等优势。
然而,由于煤炭在高温下的反应过程中会生成大量灰渣和焦炭,因此喷射流床煤气化需要解决灰渣和焦炭的分离和处理问题。
选择煤气化工艺方案的考虑因素在选择煤气化工艺方案时,需要考虑多个因素,包括煤性质、产气要求、产气效率和经济性。
煤性质煤性质对煤气化工艺方案的选择具有重要影响。
不同种类的煤炭具有不同的热值、灰分含量和挥发分含量等特性。
不同的煤炭在煤气化过程中的反应特点也不同,因此需要根据煤的性质选择适合的煤气化工艺方案。
产气要求根据煤气用途的不同,产气要求也各不相同。
有些应用需要高纯度的合成气体,而有些应用仅需要低纯度的燃料气体。
因此,在选择煤气化工艺方案时,需要明确产气的要求,以确定适合的工艺方案。
煤气化工艺分类
煤气化工艺分类煤气化工艺分类化工001煤在气化炉中,高温条件下与气化剂反应,使固体燃料转化成气体燃料,只剩下含灰的残渣。
通常气化剂用水蒸气、氧(空气)和二氧化碳。
粗煤气中的产物是二氧化碳、氢气和甲烷,伴生气体是二氧化碳,水蒸气等,此外,还有硫化物,烃类产物和其它微量成分。
各种煤气组成取决于煤的种类、气化工艺、气化剂的组成,影响气化反应的热力学和动力学条件。
气化方法的分类有多种方法,如下:一、按制取煤气的热值分类以下按制取煤气在标准状态下的热值把煤气化工艺分成3类1、制取低热值煤气方法,煤气热值低于8347kj/m3(2000kcal/m3);2、制取中热值煤气方法,煤气热值16747~33494kj/m3(4000~8000kcal/m3);3、制取高热值煤气方法,煤气热值高于33494kj/m3(8000kcal/m3)。
二、按供热方式分类煤气化过程的整个热平衡表明,总的反应是吸热的,因此必须供给热量。
各种过程需要的热量各不相同,这主要由过程的设计和煤的性质决定的,一般需要消耗气化用煤发热量的15%~35%,顺流式气化取上限,逆流式气化取下限,其供热方式有几种途径1、自热式气化法这是一种直接的供热方式,亦称部分气化方法,即气化过程中没有外界供热,煤与水蒸气气化反应所需要的热量,通过另一部分煤与气化剂中的氧气进行燃烧放热所提供。
这是目前各种工业气化炉中最常使用的供热方式。
含氧气体可以是工业氧气或富氧空气,也可以是空气。
气化过程可以是间歇蓄热或连续自热气化。
2、间接供热气化法该法使煤仅与水蒸气进行气化反应,从气化炉外部通过管壁供给热量。
因而这类过程亦称为外热式(或配热式)煤的水蒸气化。
此类技术,多是采用流化床和气化床气化手段。
外热可采用电加热或核反应热。
3、煤的水蒸气气化和加氢气化相结合煤与氢气在800~1800摄氏度范围内和加压下反应生成甲烷的反应是放热反应。
可利用该反应直接供热,进行煤的水蒸气气化。
三种煤气化工艺的比较
三种煤气化工艺的比较三种煤气化工艺的比较煤气化技术视炉内气-固状态和运动形式,主要分为三大类∶以块煤(10~50mm)为原料的固定床;以碎煤(小于6mm)为原料的流化床;以粉煤(小于0.1mm)为原料的气流床。
为提高单炉能力和降低能耗,现代气化炉均在适当的压力(1.5~4.5MPa)下运行,相应地出现了增压固定床、增压流化床和增压气流床技术。
我国绝大多数正在运行的气化炉仍为水煤气或半水煤气固定床。
1.固定床气化工艺先进的固定床气化工艺以鲁奇移动床加压气化为代表,其主要优点包括:可以使用劣质煤气化;加压气化生产能力高;氧耗量低,是目前三类气化方法中氧耗量最低的方法;鲁奇炉是逆向气化,煤在炉内停留时间长达1h,反应炉的操作温度和炉出口煤气温度低,碳效率高、气化效率高。
虽然鲁奇气化工艺优点很多,但由于固定床气化只能以不粘块煤为原料,不仅原料昂贵,气化强度低,而且气-固逆流换热,粗煤气中含酚类、焦油等较多,使净化流程加长,增加了投资和成本。
2.气流床气化工艺德士古炉、K-T炉、壳脾炉,以粉煤为原料的气流床在极高温度下运行(1300-1500℃),气化强度极高,单炉能力己达2500煤/日,我国进口的德士古炉也达400~700煤/日,气体中不含焦油、酚类,非常适合化工生产和先进发电系统的要求。
气流床气化工艺的优点包括.煤种适应范围较宽,水煤浆气化炉一般情况下不宜气化褐煤(成浆困难),工艺灵活,合成气质量高,产品气可适用于化工合成,制氢和联合循环发电等.气化压力高,生产能力高.不污染环境,三废处理较方便。
该工艺缺点是,高温气化为使灰渣易于排出,要求所用煤灰熔点低(小于1300℃),含灰量低(低于10%-15%),否则需加人助熔剂(CaO或Fe2O3)并增加运行成本。
这一点特别不利于我国煤种的使用。
此外,高温气化炉耐火材料和喷嘴均在高温下工作,寿命短、价格昂贵、投资高,气化炉在高温运行,氧耗高,也提高了煤气生产成本。
煤气化技术工艺介绍(一)
煤气化技术经过150多年的发展,形成了上百种炉型,这些炉型有多种分类方法,最常用的还是按气化炉内原料煤与气化剂的接触方式不同来划分为固定床、流化床和气流床技术三种类型。
固定床气化固定床气化的煤质适应范围较广,除黏结性较强的烟煤外,从褐煤到无烟煤均可气化。
固定床气化的缺点是单炉产气量略小,反应温度较低,蒸汽的分解率低,气化装置需要大量的蒸汽。
气化装置所产生的废水中还含有大量的酚、氨、焦油,污水处理工序流程长,投资高。
由于出气化炉的煤气中的甲烷含量较高,对于煤制城市煤气或天然气项目,有较高的优势。
固定床炉型特点:①粗合成气中CH4含量高达5~12%。
②要求入炉煤粒(块)度为6-50mm。
③单炉生产规模相对较小,占地面积大。
④废水中因含焦油、酚氨等有机物,处理难度较大,处理成本高。
流化床气化流化床首次工业化大规模应用是温克勒用于粉煤气化,此法在1922年获得专利之后,就广泛应用于化工合成、冶金、干燥、燃烧、换热等工业过程中。
流化床炉型特点:①床层温度均匀,传质传热效率高,对高灰和高灰熔点劣质碎粉煤适应性强。
②产品煤气中基本不含有焦油和酚类物质,废水量小且易处理。
③对入炉煤的活性要求很高。
U-gas、灰熔聚和HTW 炉采取了一些改进的设计可以适当提高气化反应温度,理论上有助于提高低活性煤种的适应性问题,但是到目前为止还缺乏无烟煤应用的成功经验。
④对煤的颗粒度要求较高,且气体中带出细粉过多,影响了碳转化率。
⑤流化床气化在锅炉和燃气生产上应用较为广泛,但是生产化工合成气的大型工业经验相对较少。
气流床气化气流床气化是最清洁,也是效率最高的煤气化类型。
原料煤在1200-1700℃时被氧化,高温保证了煤的完全气化,煤中的矿物质成为熔渣后离开气化炉。
气流床所使用的煤种要比移动床和流化床的范围更广泛。
使用氧气可以使气化更有效,并可避免水煤气被氮气稀释,水煤气的热值也将高于空气氧化炉所产生的水煤气的热值。
气流床气化单炉产量大、气化压力和效率高,适用于甲醇、醋酸、合成氨、IGCC 等大型、超大型的化工装置,也可为大型的石油化工装置提供氢气。
煤气化工艺
煤气化工艺下面按反应器分类方法分别进行介绍。
1、移动床煤气化前已述及,煤的移动床气化是以块煤为原料,煤由气化炉顶加入,气化剂由炉底送入。
气化剂与煤逆流接触,气化反应进行得比较完全,灰渣中残碳少。
产物气体的显热中的相当部分供给煤气化前的干燥和干馏,煤气出口温度低,灰渣的显热又预热了入炉的气化剂,因此气化效率高。
这是一种理想的完全气化方式。
移动床气化方法又分常压及加压两种。
常压方法比较简单,但对煤的类型有一定要求,要用块煤,低灰熔点的煤难以使用。
常压方法单炉生产能力低,常用空气-水蒸气为气化剂,制得低热值煤气,煤气中含大量的N2,不定量的CO、CO2、O2和少量的气体烃。
加压方法是常压方法的改进和提高。
加压方法常用氧气与水蒸气为气化剂,对煤种适用性大大扩大。
为了进一步提高过程热效率又开发了液态排渣的移动床加压气化炉,它又是加压移动床的一种改进型式。
⑴混合发生炉煤气采用蒸气与空气的混合物为气化剂。
制成的煤气称为混合发生炉煤气。
目前这种煤气在国内应用相当广泛。
①理想发生炉煤气 理论上,制取混合发生炉煤气是按下列两个反应进行的:2C+O2+3.76N2=2CO+3.76N2+246435kJC+H2O=CO+H2-118821kJ理想的发生炉煤气的组成取决于这两个反应的热平衡条件,即满足放热反应与吸热反应的热效应衡等的条件。
为了达到这个条件,每2kmol碳与空气反应,则与水蒸气起反应的碳应为:246435/118821=2.07所以,4.07kmol碳与蒸气空气混合物相互作用,在理论上,产生的煤气量为:4.07+2.07+3.76=9.9kmol,煤气组成为:CO=4.07/9.9×100%=41.1%H2=2.07/9.9×100%=20.9%N2=3.76/9.9×100%=38.0%在标准状态下煤气的产率:在标准状态下煤气的热值:气化效率为:实际上制取混合发生炉煤气,不可避免有许多热损失(如煤气带走的显热,灰渣中残碳是不可能消除的等),水蒸气分解和CO2还原进行不完全,使实际的煤气组成、气化效率与理论计算值有显著差异。
7种煤气化工艺介绍
7种煤气化工艺介绍目前国内可供选择的成熟或相对成熟的煤加压气化工艺很多,各种煤气化工艺的综合比较也有较多的文献、资料可供查阅,这里只简要叙述几种主要煤气化工艺的特点及现阶段存在的主要问题。
1、TEXACO水煤浆气化TEXACO水煤浆气化采用水煤浆进料、液态排渣、在气流床中加压气化,水煤浆与纯氧在高温高压下反应生成煤气。
气化炉主要结构是水煤浆单喷嘴下喷式,大部分是采用水激冷工艺流程,单炉容量目前最大可达日投煤量3000吨,操作压力大多采4MPa、6.5MPa,少数项目也已达到8.4MPa。
我国引进该技术最早的是山东鲁南化肥厂,于1993年投产,后来又有若干厂使用。
由于国内已经完全掌握了TEXACO气化工艺,积累了大量的经验,因此设备制造、安装和工程实施周期短,开车运行经验丰富,达标达产时间也相对较短,主要问题是对使用煤质有一定的选择性,同时存在气化效率相对较低、氧耗相对较高及耐火砖寿命短等问题,但随着在国内投运时间的延长部分问题已得到有效解决。
2、多喷嘴对置水煤浆气化本项技术是“九五”期间由华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司合作开发的。
2000年10月通过原国家石油和化学工业局组织的鉴定和验收。
示范装置为兖矿国泰化工有限公司,建成两套日投煤1150吨的气化炉,操作压力4.0MPa,生产24万吨/年甲醇,联产71.8MW发电,装置已于2005年10月投入运行。
该工艺仍属于水煤浆气化的范畴,与TEXACO的主要区别是由TEXACO单喷嘴改为对置式多喷嘴,强化了热质传递,气化效果较好,但多喷嘴需要设置多路控制系统,增加了设备投资和维修工作量。
由于是国内技术,工艺包及专有技术使用费较引进技术有较大幅度的降低。
3、SHELL粉煤气化气化炉主要结构是干煤粉多喷嘴上行废锅气化并采用冷炉壁,冷煤气回炉激冷热煤气,煤气冷却采用废锅流程。
由于壳牌气化技术上具有突出的优点,吸引了国内一些企业纷纷引进。
本工艺的最大缺点是投资高,设备造价过高;合成气换热采用废锅形式增加了投资,对需要水蒸汽成分的化工生产来看直接用水激冷更合理;干燥、磨煤、高压氮气及回炉激冷用合成气的加压所需的功耗较大等。
各种煤气化技术介绍
各种煤气化技术介绍煤气化技术是将煤转化为合成气的一种技术,合成气主要由一氧化碳(CO)和氢气(H2)组成。
煤气化技术可以实现煤炭资源的高效利用,并且合成气还可以作为化工原料、能源供应和替代燃料等多个领域的重要能源。
下面将介绍几种常见的煤气化技术。
亚煮煤气化技术主要是通过在水中煮沸煤炭来实现煤气化过程。
这种技术具有操作稳定性好、产气质量高、煤耗低等特点。
亚煮煤气化技术可以适用于各种不同性质的煤炭,并可以通过调节操作参数来获得不同产气组成和质量。
2. 固定床煤气化(Fixed Bed Gasification,FBG)固定床煤气化技术是将煤炭放置在固定床上,通过通过煤床中的氧气进行燃烧,从而实现煤的气化。
这种技术具有气化效率高、产气质量稳定、操作灵活等特点。
固定床煤气化技术主要适用于高炉煤气和干、湿煤气的生产。
3. 流化床煤气化(Fluidized Bed Gasification,FBG)流化床煤气化技术是将煤炭与气化剂一起放置在气化反应器中,通过气体的上升速度和反应器中的床层来实现气化过程。
这种技术具有反应温度均匀、气化效率高、适用于多种煤种等特点。
流化床煤气化技术主要适用于高硫煤和高灰煤的气化过程。
4. 上升管煤气化(Entrained Flow Gasification上升管煤气化技术是将煤炭和气化剂一起注入到气化反应器中,通过气化剂的速度和反应器中的温度来实现气化过程。
这种技术具有高气化效率、适用于多种煤种等特点。
上升管煤气化技术主要适用于低灰、低硫和低磷的煤气化过程。
5. 行动床煤气化(Moving Bed Gasification,MBG)行动床煤气化技术是将煤炭放置在一个倾斜的床上,通过流化床的气流来实现气化过程。
这种技术具有气化效率高、产气质量好等特点。
行动床煤气化技术主要适用于低灰和低硫煤的气化过程。
总体来说,煤气化技术具有可替代性化石燃料、高效能源利用和多种资源转化等优势,对于能源的可持续发展具有重要意义。
13种煤气化工艺比较
13种煤气化工艺比较1.常压固定床间歇式无烟煤(或焦炭)气化技术目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准 25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。
(直接使用空气中氧气)2.常压固定床无烟煤(或焦炭)富氧连续气化技术其特点是采用富氧为气化剂、连续气化、原料可采用标准15~35mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。
(氧气纯度30%-50%)。
3.常压固定床纯氧连续气化技术其特点是采用纯氧与蒸汽、或纯氧与二氧化碳为气化剂、连续气化、原料可采用标准8~25mm粒度的无烟煤、焦炭、半焦、型煤、型焦等,进厂原料利用率高,无废气排放,无涨库冷却水,对大气环境无污染、气化效率高、灰渣残炭0~3%。
煤气质量高,水煤气CO+H2=82~85%,CO2制CO粗气中CO=70~72%。
设备流程简化,维修工作量小、大修周期长,维修费用低,适合用于化工、化肥、制氢、燃气等装置配置使用。
(氧气纯度≥99.6%、气化强度:生产水煤气时1400~1600m3/m2/h)。
4.鲁奇固定床煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。
其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。
焦油分离、含酚污水处理复杂,不推荐用以生产合成气。
5.灰熔聚煤气化技术中国科学院山西煤炭化学研究所技术。
其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。
可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。
煤气化技术
煤气化原理煤气化是一个热化学过程。
以煤或煤焦为原料,以氧气(空气、富氧或纯氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为气体燃料的过程。
煤的气化类型可归纳为五种基本类型:自热式的水蒸气气化、外热式水蒸气气化、煤的加氢气化、煤的水蒸气气化和加氢气化结合制造代用天然气、煤的水蒸气气化和甲烷化相结合制造代用天然气。
煤干馏过程主要经历如下变化:当煤料的温度高于100℃时,煤中的水分蒸发出;温度升高到200℃以上时,煤中结合水释出;高达350℃以上时,粘结性煤开始软化,并进一步形成粘稠的胶质体(泥煤、褐煤等不发生此现象);至400~500℃大部分煤气和焦油析出,称一次热分解产物;在450~550℃,热分解继续进行,残留物逐渐变稠并固化形成半焦;高于550℃,半焦继续分解,析出余下的挥发物(主要成分是氢气),半焦失重同时进行收缩,形成裂纹;温度高于800℃,半焦体积缩小变硬形成多孔焦炭。
当干馏在室式干馏炉内进行时,一次热分解产物与赤热焦炭及高温炉壁相接触,发生二次热分解,形成二次热分解产物(焦炉煤气和其他炼焦化学产品)。
煤干馏的产物是煤炭、煤焦油和煤气。
煤干馏产物的产率和组成取决于原料煤质、炉结构和加工条件(主要是温度和时间)。
随着干馏终温的不同,煤干馏产品也不同。
低温干馏固体产物为结构疏松的黑色半焦,煤气产率低,焦油产率高;高温干馏固体产物则为结构致密的银灰色焦炭,煤气产率高而焦油产率低。
中温干馏产物的收率,则介于低温干馏和高温干馏之间。
煤干馏过程中生成的煤气主要成分为氢气和甲烷,可作为燃料或化工原料。
高温干馏主要用于生产冶金焦炭,所得的焦油为芳烃、杂环化合物的混合物,是工业上获得芳烃的重要来源;低温干馏煤焦油比高温焦油含有较多烷烃,是人造石油重要来源之一。
煤炭气化煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤气化工艺分类
化工001
煤在气化炉中,高温条件下与气化剂反应,使固体燃料转化成气体燃料,只剩下含灰的残渣。
通常气化剂用水蒸气、氧(空气)和二氧化碳。
粗煤气中的产物是二氧化碳、氢气和甲烷,伴生气体是二氧化碳,水蒸气等,此外,还有硫化物,烃类产物和其它微量成分。
各种煤气组成取决于煤的种类、气化工艺、气化剂的组成,影响气化反应的热力学和动力学条件。
气化方法的分类有多种方法,如下:
一、按制取煤气的热值分类
以下按制取煤气在标准状态下的热值把煤气化工艺分成3类
1、制取低热值煤气方法,煤气热值低于8347kj/m3
(2000kcal/m3);
2、制取中热值煤气方法,煤气热值16747~33494kj/m3(4000~8000kcal/m3);
3、制取高热值煤气方法,煤气热值高于33494kj/m3
(8000kcal/m3)。
二、按供热方式分类
煤气化过程的整个热平衡表明,总的反应是吸热的,因此必须供给热量。
各种过程需要的热量各不相同,这主要由过程的设计和煤的性质决定的,一般需要消耗气化用煤发热量的15%~35%,顺流式气化取上限,逆流式气化取下限,其供热方式有几种途径1、自热式气化法
这是一种直接的供热方式,亦称部分气化方法,即气化过程中没有外界供热,煤与水蒸气气化反应所需要的热量,通过另一部分煤与气化剂中的氧气进行燃烧放热所提供。
这是目前各种工业气化炉中最常使用的供热方式。
含氧气体可以是工业氧气或富氧空气,也可以是空气。
气化过程可以是间歇蓄热或连续自热气化。
2、间接供热气化法
该法使煤仅与水蒸气进行气化反应,从气化炉外部通过管壁供给热量。
因而这类过程亦称为外热式(或配热式)煤的水蒸气化。
此类技术,多是采用流化床和气化床气化手段。
外热可采用电加热或核反应热。
3、煤的水蒸气气化和加氢气化相结合
煤与氢气在800~1800摄氏度范围内和加压下反应生成甲烷的反应是放热反应。
可利用该反应直接供热,进行煤的水蒸气气化。
该过程的原理在于煤首先加氢气化,加氢气化后的残焦再与水蒸气进行反应,产生的合成气为加氢阶段提供氢源。
4、热载体供热
在一个单独的反应器内,用煤或焦炭和空气燃烧加热热载体供热,热载体可以是固体(如石灰石),液体熔盐或熔渣。
三、按汽化剂分类
1、空气-蒸汽气化
以空气(或富氧空气)-蒸汽作为气化及。
其中又有空气-蒸汽内部蓄热的间歇制气和富氧空气-蒸汽自热式的连续制气方法两种。
一般以空气为气化剂制得的煤气称空气煤气,主要成分为大量氮气、二氧化碳
和一定量的一氧化碳和氧气。
以水蒸汽为汽化剂制得的煤气称水煤气,主要成分为氢气、一氧化碳、二氧化碳及甲烷。
以空气和水蒸气的混合物为汽化剂制得的煤气称发生炉煤气。
此外,合成氨工业中将(一氧化碳+氢气)≈3:1的煤气称为半水煤气
2、氧气-蒸汽气化
以工业氧和水蒸气作为汽化剂。
近代气化技术,几乎都是以工业氧和高压蒸汽作为汽化剂的。
3、氢气气化
煤气化过程中用氢气或富含氢气的气体作为气化剂可生成富含甲烷的煤气,该法亦称加氢气化法。
四、按固体燃料的运动状态分类
1、移动床(固定床)气化法
2、流化床气化法
3、气流床气化法。